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ABSTRACT

We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence
for strong AGN feedback. We study the correlation at low radio frequencies using two new surveys – the First Alternative Data
Release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR’s first all-sky survey, the Multifrequency Snapshot
Sky Survey (MSSS) at 140 MHz. We find a scaling relation Pcav ∝ Lβ148, with a logarithmic slope of β = 0.51 ± 0.14, which is in
good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion
reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. Previous
studies have shown that the magnitude of this scatter can be reduced when bolometric radio luminosity corrected for spectral aging
is used. We show that including additional measurements at 148 MHz alone is insufficient to improve this correction and further
reduce the scatter in the correlation. For a subset of four well-resolved sources, we examine the detected extended structures at low
frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In Perseus we discuss
details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with
multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed
low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the
fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss
how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination
with future, complementary deeper X-ray observations.

Key words. galaxies: clusters: general — galaxies: clusters: individual 2A 0335+096, Perseus Cluster, A2199, MS 0735.6+7421 —
galaxies: clusters: intracluster medium — radio continuum: general — X–rays:galaxies: clusters
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1. Introduction

High-resolution X-ray images have revealed many large-scale
interactions between the intracluster medium (ICM) and the cen-
tral AGN in galaxy cluster cores (e.g. Perseus: Boehringer et al.
1993; Fabian et al. 2006, 2011; Zhuravleva et al. 2015 and Hydra
A: McNamara et al. 2000; Nulsen et al. 2002; Wise et al. 2007).
In these systems, the radio jets of the AGN have pushed out cav-
ities in the cluster’s atmosphere, creating surface-brightness de-
pressions. The energy released by the AGN required to create
these cavities appears to be sufficient to balance the cooling ob-
served in the X-rays (Bîrzan et al. 2004; Rafferty et al. 2006; Mc-
Namara & Nulsen 2007). Therefore, the X-ray cavities provide
a unique way of measuring the amount of energy dissipated into
the ICM from AGN activity. This feedback process is believed
to moderate the availability of fuel for the accretion process in
a homeostatic way that regulates both the growth of the black
hole and the formation of stars in the surrounding galaxy (Silk
& Rees 1998; Gebhardt et al. 2000; Ferrarese & Merritt 2000).

In many cavity systems, the depressions in X-ray surface
brightness are found to be filled with radio emitting plasma. This
spatial anti-correlation between the X-rays and radio provides
strong circumstantial evidence that the AGN activity is respon-
sible for the observed X-ray cavities. Given this common origin,
X-rays directly probe the mechanical effects of the feedback pro-
cess, while radio observations directly reveal the radiative output
of the lobes. Combined X-ray and radio observations can pro-
vide constraints on the radio radiative efficiencies, radio lobe and
ICM properties.

Evidence for this common origin is found in the observed
correlation between the power required to create the X-ray cavi-
ties and the luminosity of the radio plasma associated with them.
Using a sample of 24 systems with pronounced cavities, Bîrzan
et al. (2008) find that the scaling relation is well described by
a power law of the form Pcav ∝ Lβrad with a logarithmic slope
of 0.35 ≤ β ≤ 0.70. They further find that the correlation
is steeper at 327 MHz than at 1.4 GHz (β327 = 0.51 ± 0.07
vs. β1400 = 0.35 ± 0.07), albeit with similarly large scatters of
0.80 dex and 0.85 dex, respectively. Subsequent investigations
of Cavagnolo et al. (2010) and O’Sullivan et al. (2011) expand
the sample size and essentially confirm the Pcav−Lrad scaling re-
lation found by Bîrzan et al. (2008). Hardcastle & Krause (2013,
2014) show that a significant scatter is physically expected in
this correlation.

Although now well established, this correlation suffers from
several limitations related to both the radio and the X-ray data.
In radio, all of the analysis to date has been based on data from
higher frequencies, above 300 MHz. Yet, in objects where low-
frequency data has previously been available, the observed emis-
sion tends to be more diffuse and extended (e.g. Lane et al.
2004). At the same time, the original analysis in X-rays was
based on a sample of bright nearby objects that show a clear
single pair of cavities. In objects with deeper X-ray data, how-
ever, we often see evidence of multiple surface brightness de-
pressions at larger radii (Table 3 in Vantyghem et al. 2014). Fur-
ther, these more extended structures are often poorly described
by simple spherical geometry and are usually not as well corre-
lated spatially with high frequency radio emission as the inner
cavity structures.

Obtaining sufficiently deep X-ray data for a large sample of
these systems is problematic. Extending these studies to higher
redshift is also difficult, as it becomes increasingly difficult to
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both detect and resolve the cavity structures. With the advent
of new low-frequency all-sky surveys, however, we can obtain
maps of the extended diffuse emission for a large sample of
sources. If properly calibrated, the Pcav − Lrad scaling relation
can be a powerful tool in statistical studies of the AGN activity
and its impact on the surrounding medium over time.

In this work, we employ low-frequency observations at 140
– 150 MHz in order to pursue a more complete picture of
AGN feedback signatures. Our goal is two-fold: to extend the
Pcav−Lrad scaling relation to low radio frequencies, and to under-
stand and reduce the observed scatter in this correlation. For the
statistical study we derive fluxes from the publicly available First
Alternative Data Release of the TIFR GMRT Sky Survey (TGSS
ADR1; Intema et al. 2017, hereafter TGSS) at 148 MHz. In or-
der to resolve individual clusters and examine the structure of
their extended radio emission in the context of the X-ray cavities,
we reprocess data from LOFAR’s first all-sky imaging survey,
the Multifrequency Snapshot Sky Survey (MSSS; Heald et al.
2015). We focus our analysis on the Bîrzan et al. (2008) sam-
ple since it consists of very well known nearby sources which
already have a deep ensemble of multi-wavelength data and it
includes primarily very bright sources, easily detectable in the
shallow low-frequency surveys available so far.

In Section 2 we describe the characteristics of the cluster
sample, the radio observations, and the X-ray data used. Sec-
tion 3 presents a statistical analysis of the cavity power to radio
luminosity relation including the new low frequency data. A de-
tailed discussion comparing these results to previous analyses is
also presented. In Section 4, we present images for a subset of
objects well-resolved in MSSS and discuss their detailed mor-
phology in comparison with existing X-ray data. We conclude in
Section 5 with a summary of our analysis and a discussion of the
implications of these results.

We adopt H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7
for all calculations throughout this paper.

2. Data Sources and Sample Selection

We base our study on the Bîrzan et al. (2008) sample of 24 feed-
back systems (hereafter B-24). The sample consists of relaxed
cool-core clusters showing evidence of AGN activity. This is an
X-ray selected sample for which the available X-ray observa-
tions have shown clear signatures of cavities and at the same
time radio data has demonstrated strong lobes. However, in the
radio, these clusters have been primarily studied at higher fre-
quencies which tend to reveal emission associated with the most
recent epoch of AGN activity.

Throughout this work we use MSSS (Section 2.1 and 2.2)
and TGSS (Section 2.3) data to study the sample of feedback
systems. Based on the data from those two surveys we select
two subsamples of the B-24 sample that are described in Section
2.4. The Pcav literature values we use for the correlation stud-
ies are summarized in Section 2.5. We do not include the VLA
Low-Frequency Sky Survey Redux at 74 MHz (VLSSr; Cohen
et al. 2007; Lane et al. 2012, 2014) in our analysis due to its
low sensitivity combined with low resolution and insufficient sky
coverage (see Section 2.6). The Galactic and Extragalactic All-
sky Murchison Widefield Array survey (GLEAM; Wayth et al.
2015; Hurley-Walker et al. 2017) was released shortly before the
submission of this work and we do not include it in our study.
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Table 1. Characteristics of the sample sources and the field images from MSSS at 140 MHz and TGSS at 148 MHz.

TF-23 Sample MF-14 Sample
Source z Coordinates Exta TGSS Res.b Noisec Extd MSSS Res.e Noisef

(RA Dec) (arcsec) (mJy/beam) (arcsec) (mJy/beam)
A2199 0.030 16 28 38.0 +39 32 55 Y 25.00 10 Y 21.63 40
MS 0735.6+7421 0.216 07 41 44.8 +74 14 52 Y 25.00 3 Y 27.77 30
2A 0335+096 0.035 03 38 35.3 +09 57 55 Y 25.31 5 Y 23.58 11
Perseus 0.018 03 19 47.2 +41 30 47 Y 25.00 10 Y 20.81 20
A262 0.016 01 52 46.8 +36 09 05 N 25.00 5 N 20.75 15
MKW3s 0.045 15 21 51.9 +07 42 31 Y 25.42 7 N 223.05 100
A2052 0.035 15 16 44.0 +07 01 07 N 25.42 7 N 251.05 150
A478 0.081 04 13 25.6 +10 28 01 N 25.31 5 N 178.05 30
Zw 3146 0.291 10 23 39.6 +04 11 10 N 25.85 3.5 N 236.05 30
Zw 2701 0.214 09 52 49.2 +51 53 05 N 25.00 2.5 N 172.05 10
A1795 0.063 13 48 53.0 +26 35 44 N 25.00 7 N 269.05 40
RBS 797 0.350 09 47 12.9 +76 23 13 N 25.00 6 N 185.05 15
MACS J1423.8 0.545 14 23 47.6 +24 04 40 N 25.00 7 N 270.05 35
A1835 0.253 14 01 02.3 +02 52 48 N 26.03 4 N 246.05 40
M84 0.0035 12 25 03.7 +12 53 13 Y 25.14 20
M87 0.0042 12 30 49.4 +12 23 28 Y 25.31 70
A133 0.060 01 02 42.1 −21 52 25 Y 32.53 6
Hydra A 0.055 09 18 05.7 −12 05 44 Y 29.09 30
Centaurus 0.011 12 48 47.9 −41 18 28 Y 49.90 6
HCG 62 0.014 12 53 05.5 −09 12 01 N 28.27 3
Sersic 159/03 0.058 23 13 58.6 −42 44 02 N 52.98 3
A2597 0.085 23 25 20.0 −12 07 38 Y 29.55 7
A4059 0.048 23 57 02.3 −34 45 38 Y 43.02 6
a Indicates if the source is extended with respect to a point source in the TGSS map.
b Resolution of TGSS maps. This column shows one axis of the synthesized beam. The other axis of the TGSS beam is 25.00′′.
c Local rms noise in TGSS maps, measured within 1 deg from the center of the source.
d Indicates if the source is extended with respect to a point source in either the default or reprocessed MSSS map.
e Resolution of MSSS maps. MSSS maps have a circular synthesized beam with the stated diameter.
c Local rms noise in MSSS maps, measured within 1 deg from the center of the source.

2.1. MSSS

MSSS is the first major imaging campaign with the Low Fre-
quency Array (LOFAR; van Haarlem et al. 2013). The main
goal of MSSS is to produce a broadband catalog of the brightest
sources in the low-frequency northern sky, creating a calibra-
tion sky model for future observations with LOFAR. It covers
two frequency windows: one within the low-band antenna range
(LBA; 30 – 75 MHz) and the other in the high-band antenna
range (HBA; 119 – 158 MHz). The LBA survey is a work in
progress and will be examined in a separate publication. In this
paper we focus exclusively on the HBA part of the survey, where
each one of the 3616 fields required to survey the entire northern
sky is observed in two 7-minute scans separated by 4 hours to
improve the uv-coverage.

In this work we use a set of preliminary images (hereafter
default images) used by the MSSS team to produce the first
internal version of the MSSS catalog. The preliminary MSSS
processing strategy includes primary flux calibration based on a
bright, compact calibrator observed before the target snapshot.
One round of phase-only, direction-independent calibration is
performed using a VLSSr-based sky model (Heald et al. 2015)
and then imaging is performed with the AWImager (Tasse et al.
2013) with a simple, shallow deconvolution strategy using 2500
CLEAN iterations. The imaging run per field incorporates pro-
jected baselines shorter than 2 kλ. Baselines shorter than 100 λ
were excluded from the imaging for fields at declination δ ≤ 35
degrees in order to exclude contamination from incompletely

sampled large-scale galactic plane structures and thus provide
a smoother background (see Heald et al. 2015). A correction
based on VLSSr and the NRAO VLA Sky Survey (NVSS; Con-
don et al. 1998) was applied to the MSSS images to compensate
for errors in the default flux density scale dependent on the posi-
tion of the source on the sky (Hardcastle et al. 2016).

2.2. Reprocessing of MSSS data

Although the characteristic resolution of the default MSSS im-
ages is ∼ 2′, the either high or low declination of the majority
of the B-24 systems visible in MSSS results in an average res-
olution of ∼ 3.5′ due to the limited subset of the data imaged
as described in Section 2.1. Thus, the default MSSS images do
not allow us to resolve the sources and study the radio features
corresponding to the observed X-ray structures. For this reason
we developed a strategy to reprocess the data and produce cus-
tom images with 20 – 30′′ resolution that allow us to study the
morphology of the most extended systems in the sample. Fur-
thermore, the resolution of the reprocessed MSSS data matches
the resolution of the TGSS image products (discussed in more
detail below), which allows for easy and reliable comparison be-
tween the two surveys.

In order to reach angular resolution of 20 – 30′′, we re-
processed the long baselines which were not used so far in
the default MSSS imaging strategy but were included as part
of the MSSS observation. The primary step of the reprocess-
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ing is an additional round of phase-only, direction-independent
self-calibration in order to fine-tune the calibration for higher-
resolution imaging capability. We accessed the MSSS archive to
obtain the flagged, demixed, and flux-calibrated target snapshot
observations/data sets. Each snapshot consists of 8 measurement
sets containing the individual 2 MHz-wide bands at 120, 125,
129, 135, 143, 147, 151, and 157 MHz. These bands are treated
separately throughout the phase-only self-calibration process ac-
complished with Black Board Selfcal (BBS; Pandey et al. 2009).

The first step of our reprocessing procedure is to image the
default pre-calibrated MSSS data to a higher resolution. We use
AWImager including projected baselines up to 10 kλ employing
Briggs weighting (Briggs 1995) with a robust parameter of −1.
From the resulting map, we extract a high-resolution skymodel,
which we use to perform phase-only self-calibration. After the
self-calibration loop, the two snapshots are combined (for better
uv-coverage) and each of the 8 bands is imaged separately using
the same imaging parameters as in the first imaging round. Indi-
vidual band images are later smoothed to match resolution and
weighted by rms noise before they are combined to create the
final full-band images presented in Section 4.

To make sure that there are no significant astrometric shifts
between the separately-calibrated bands, we crossmatched cata-
logs derived from the individual-band images against TGSS, and
assessed the typical difference in positions for the sources com-
mon to both. Each field typically contains several tens of sources
detected both in MSSS and TGSS. Although the overall astrom-
etry of each individual field can differ from TGSS by up to 1−2′′,
the relative astrometric difference between the MSSS bands was
seen to be negligible within the uncertainties, which are < 1′′ for
all fields. We do find a small systematic astrometric shift with
frequency only in the field of A262, but even in this case the dif-
ference between the two most distant bands is at the 1′′ level, far
smaller than the synthesized beam (20.75′′).

We focused our reprocessing efforts on six fields
(A2199, MS 0735.6+7421, 2A 0335+096, A262, Perseus,
and MKW3s/A2052) since, based on the 330 MHz and 1.4 GHz
VLA maps, only they had sizes that could be potentially
resolved at a resolution of 20 – 30′′. Unfortunately, we could not
obtain a reliable image at this resolution for the field of MKW3s
and A2052. Due to the presence of three very strong sources
in that field (MKW3s, A2052 and 3C313), the 10 kλ image
contained many strong artifacts, which distort faint features and
bias the flux measurements. Thus we use the default MSSS
images to measure the flux of those two systems. Furthermore,
A262 was not well resolved at 20′′ resolution, so we used the
reprocessed image only to measure the flux of the source. The
successfully reprocessed images of A2199, MS 0735.6+7421,
2A 0335+096, and Perseus are shown and discussed in detail in
Section 4.

For several objects in the studied sample deep LOFAR ob-
servations are already available. As a sanity check we imaged
a small frequency chunk (ν = 142 MHz, ∆ν = 4 MHz) of a
full 8-hour LOFAR observation on A2199. This image revealed
the same morphology as observed in the reprocessed MSSS im-
age (shown in Section 4.4). Furthermore, the total flux of A2199
measured in the test LOFAR image coincides with the flux de-
rived from the MSSS map within 2%. This gives us confidence
that the quoted flux densities and the features outlined below are
not a product of processing artefacts or poor uv-coverage but real
physically existing characteristics of the sources.

2.3. TGSS

TGSS was carried out at 148 MHz with the Giant Metrewave
Radio Telescope (GMRT). Each pointing was observed for ∼15
minutes, split over 3 or more scans spaced out in time to improve
uv-coverage. The TGSS data products have gone through a fully
automated pipeline (Intema et al. 2009; Intema 2014), which in-
cludes direction-dependent calibration, modeling and imaging to
suppress mainly ionospheric phase errors. As a result the flux
density accuracy is estimated to be ≈10% and the noise level is
below 5 mJy/beam for the majority of the pointings. TGSS and
MSSS have a comparable bandwidth (16.7 and 16 MHz) and
integration time per field (15 and 14 min, respectively). The cur-
rent data release of TGSS covers the sky between −53 and +90
deg declination. By including the TGSS data in our analysis, we
can look at the full B-24 sample, for which 30% of the sources
are in the southern hemisphere.

Compared to MSSS, TGSS has a number of advantages and
disadvantages, which follow from the different uv-coverage be-
tween the two surveys and the different processing schemes used
to produce the images. While MSSS is more sensitive to ex-
tended diffuse emission, TGSS has a higher resolution than the
default MSSS (∼ 25′′ and ∼ 3.5′, respectively). This makes
TGSS better at resolving the morphology of the more distant
sources and correctly isolating their emission from the contami-
nating emission of neighboring sources (e.g. Zw3146 and A478).
On the other hand, being much more sensitive to extended dif-
fuse emission, MSSS allows us to get a more complete picture
of the integrated AGN activity over time.

2.4. Sample Selection

Since radio galaxies of Fanaroff-Riley type I and II (FRI and
FRII; Fanaroff & Riley 1974) are likely to have different particle
content, we do not expect them to follow the same relationship
(Godfrey & Shabala 2013). Thus, we exclude Cygnus A (e.g.
McKean et al. 2016) as being the only FRII. In total the sam-
ple comprises 23 systems: 21 galaxy clusters, one galaxy group
(HCG 62), and one elliptical galaxy (M84). They range in red-
shift from 0.0035 (M84) to 0.545 (MACS J1423.8+2404). Since
we will study this sample with TGSS, we will refer to this sam-
ple as the TGSS Feedback sample, shortly TF-23. In this work
we use the TF-23 sample to study the Pcav − Lν relation.

We further define a subsample of B-24 including only the
systems observed by MSSS. This subsample again excludes
Cygnus A for being the only FRII as well as M87 and M84 for
not having MSSS observations of reasonable quality. In total the
sample comprises 14 galaxy clusters and ranges in redshift from
0.016 (A262) to 0.545 (MACS J1423.8+2404). We will call this
sample the MSSS Feedback sample, shortly MF-14. Table 1 lists
the redshift and coordinates of the sources as well as the proper-
ties of the corresponding maps in MSSS and TGSS.

2.5. X-rays

The X-ray data utilized in this work are taken from the literature
or based on archival Chandra observations. For the correlation
analysis discussed in Section 3, we have adopted the values cal-
culated for Pcav by Rafferty et al. (2006). These estimates were
determined from the existing Chandra exposures for the sample
at that time and assume a simple geometrical model to calculate
the mean cavity power based on the cavity’s size, pressure, and
position relative to the cluster center. This technique for estimat-
ing cavity powers has been employed routinely in other studies
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of feedback systems and can yield variations in the derived val-
ues for Pcav of ∼ 2–4 due to uncertainties in the cavity geometry
as well as the methods used to estimate the cavity ages. In this
work, we take the literature values from Rafferty et al. (2006) as
reported and discuss some of the caveats associated with these
estimates below in Section 3.

For the four resolved sources in our MSSS sample, Perseus,
2A0335+096, MS0735.6+7421, and A2199, we have created
X-ray surface brightness images and residual maps using the
current Chandra archival data. In all four cases, the objects
were imaged multiple times with the ACIS detector and we
have extracted all of the existing exposures from the Chandra
Data Archive. The data were reprocessed using CIAO 4.7 and
CALDB 4.6.7 to apply the latest gain and other calibration cor-
rections as well as filtered to remove any contamination due to
background flares. Instrument and exposure maps were created
for each exposure individually with the spectral weighting de-
termined by the fitting a single temperature, MEKAL thermal
model (Mewe et al. 1985; Liedahl et al. 1995) plus foreground
Galactic absorption to the total integrated spectrum from the
central region of each cluster. Individual background event files
were created for each dataset from the standard ACIS blank-sky
event files following the procedure described in Vikhlinin et al.
(2005).

Finally, combined X-ray surface brightness maps were con-
structed by reprojecting the data for each exposure to a com-
mon target point on the sky for each object and then com-
bining each exposure into a final mosaic. Corresponding mo-
saics of the exposure maps and background counts were also
constructed and used to form the final background-subtracted,
exposure-corrected X-ray surface brightness images. The X-ray
images shown in Section 4 have been filtered in energy to the
range 0.5-7.0 keV. For each object, unsharp-masked images have
been constructed by subtracting images which have been Gaus-
sian smoothed on two length-scales. The resulting residual im-
ages are used in Section 4 in conjunction with our reprocessed
MSSS radio maps at 140 MHz to study the correspondence, or
lack thereof, between the observed, diffuse low-frequency emis-
sion and the presence of feedback signatures in the X-ray.

2.6. VLSSr

In principle, data at low frequencies such as VLSSr at 74 MHz
(Cohen et al. 2007; Lane et al. 2012, 2014) could be used to pro-
vide extra information which helps constrain the turnover fre-
quencies in the radio spectra (as discussed in Section 3.5). With
this in mind we have obtained the VLSSr maps, with a resolution
of 75′′ and an average rms noise of ∼0.1 Jy/beam, and attempted
to compile VLSSr flux density measurements for our sample.
Unfortunately, we could not obtain reliable measurements for
more than a third of our sample. Two sources are outside of
the VLSSr coverage (Centaurus and Sersic 159/03), three sys-
tems are below the detection limit (A478, MACS J1423.8, and
HCG 62), and two sources are only marginally detected (RBS
797 and A1835). Due to the low resolution of VLSSr, Zw3146
is blended with the emission from close-by sources. For the rest
of the sources we analyzed the spectra from which was clear that
the available VLSSr points do not help constrain the turnover
frequency. Given the incomplete coverage of the sample and the
lack of improvement in the fitting results we do not include these
points in the subsequent analysis. The radio spectra of the sam-
ple systems are discussed in detail in Section 3.5.

3. Sample Analysis and Correlations

In this section we use the TF-23 sample of bright feedback sys-
tems in order to derive the Pcav−Lν scaling relation at 148 MHz.
We also study the radio spectra of the sample sources and com-
ment on the correlation between cavity power and bolometric
radio luminosity corrected for spectral aging.

3.1. Radio Flux Measurements

Since more than 40% of the TF-23 sample sources are not re-
solved at 20 – 30′′ scale, and in many of the resolved sources
it is difficult to separate the lobes and the core, we only mea-
sure the total flux densities from the sources. In principle, this
could introduce a systematic offset to higher radio luminosities
in the correlation. However, based on the analysis of Bîrzan et al.
(2008), the core emission comprises . 20% of the total flux den-
sity of these sources for frequencies ≥ 300 MHz. Due to the
steep spectrum of the lobe emission, we expect the core contri-
bution to be even smaller at lower frequencies (140–150 MHz).

To obtain the flux densities from TGSS, we used the publicly
available mosaics at 148 MHz. We used the reprocessed MSSS
fields to measure the flux density of A2199, MS 0735.6+7421,
2A 0335+096, Perseus, and A262. These reprocessed maps pro-
vide higher resolution which allows us to more easily isolate the
region of interest and disentangle contaminating emission from
nearby sources. For the remaining nine sources in the MF-14
sample, the fluxes were extracted from the default MSSS mo-
saics.

Our general recipe for obtaining the flux densities consists
of two steps. First, we visually inspect the maps and select a
nearby region devoid of sources which we use to define the lo-
cal rms noise (Table 1). Then we measure the flux density of
the source in a region confined by the 3σ contour. We used this
strategy for well-resolved and marginally resolved sources. For
point sources, we measured the flux in a region with the size of
the FWHM of the synthesized beam. This was done for HCG62
in TGSS and MACS J1423.8 in MSSS.

In several fields we noted the presence of strong artifacts in
the images. For these objects we use a higher cut-off for the
background in order to exclude surrounding artifacts from the
measurements. We used a 5σ threshold for A4059 and Hydra
A in TGSS; and for MS 0735.6+7421, Zw 3146, A2199, and
A1795 in MSSS.

In some cases we clearly detect more extended diffuse emis-
sion at low frequencies that was not observed in the high fre-
quency maps of Bîrzan et al. (2008). In order to be consistent
with the analysis at high frequencies, we restrict the flux den-
sity measurements to the morphological features considered at
325 MHz. In TGSS we applied this strategy for Perseus and
M87; in MSSS, for Perseus and 2A0335+096.

We report the measured fluxes in Table 2. In accordance with
Bîrzan et al. (2008), the listed uncertainties include the statistical
error (thermal noise) plus the uncertainty of the absolute flux
scale. The flux scale uncertainty is 10% in MSSS, as well as in
TGSS (Intema et al. 2017).

3.2. Cavity Power Measurements

Rafferty et al. (2006) have utilized Chandra X-ray data to cal-
culate the amount of work required to create the observed cavi-
ties, which gives a measure of the total mechanical energy pro-
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Table 2. Flux density measurements from MSSS, TGSS, and higher frequencies from literature used for the spectral fitting discussed in Section
3.5. The values for MSSS, and TGSS derive from our analysis. The unreferenced values at higher frequencies come from Bîrzan et al. (2008). The
numbers in superscripts reference the high frequency flux density measurements coming from the literature.

Source MSSS 140 MHz TGSS 148 MHz P-band 750 MHz L-band S-band C-band
S ν S ν ν S ν ν S ν ν S ν ν S ν ν S ν

(Jy) (Jy) (MHz) (Jy) (MHz) (Jy) (MHz) (Jy) (MHz) (Jy) (MHz) (Jy)
A2199 54.3 ± 6.1 52.9 ± 5.6 324 24.00 ± 0.96 7501 9.1900 ± 0.0049 14002 3.68 ± 0.12 27003 1.21 ± 0.06 4675 0.313 ± 0.012
MS 0735.6+7421 5.30 ± 0.83 3.95 ± 0.46 330 0.80 ± 0.03 1425 0.021 ± 0.001
2A 0335+096 1.10 ± 0.21 1.05 ± 0.19 324 0.21 ± 0.01 14902 0.0367 ± 0.0018 4860 0.01 ± 0.001
Perseus 58.8 ± 6.3 42.4 ± 4.4 4084 29.00 ± 0.04 7501 21.82 ± 0.28
A262 0.57 ± 0.15 0.540 ± 0.091 324 0.299 ± 0.012 1365 0.0734 ± 0.0030
MKW3s 17.3 ± 2.2 15.6 ± 1.8 327 4.73 ± 0.18 1440 0.0897 ± 0.0040 4860 0.0025 ± 0.0001
A2052 58.5 ± 6.7 59.4 ± 6.3 330 30.9 ± 1.2 7501 11.76 ± 0.041 1490 5.7 ± 0.2 27005 2.02 ± 0.04 4860 0.72 ± 0.03
A478 0.53 ± 0.14* 0.305 ± 0.050 327 0.11 ± 0.01 1440 0.027 ± 0.001
Zw 3146 0.259 ± 0.056** 0.0174 ± 0.0056 324 0.016 ± 0.004*** 4860 0.00139 ± 0.00007
Zw 2701 1.36 ± 0.18 1.35 ± 0.15 324 0.21 ± 0.01 4860 0.0043 ± 0.0002
A1795 7.47 ± 0.90 6.08 ± 0.67 327 3.36 ± 0.14 1465 0.88 ± 0.04 27003 0.48 ± 0.03 48506 0.261 ± 0.034
RBS 797 0.133 ± 0.035 0.174 ± 0.033 324 0.104 ± 0.006 1475 0.021 ± 0.001 4860 0.0042 ± 0.0003
MACS J1423.8 0.103 ± 0.044 0.054 ± 0.013 327 0.0269 ± 0.002 1425 0.0044 ± 0.0002
A1835 0.150 ± 0.055 0.107 ± 0.021 327 0.095 ± 0.007 1400 0.031 ± 0.001 4760 0.0099 ± 0.0004
M84 14.9 ± 1.9 324 11.1 ± 0.5 1425 05.6 ± 0.2 4860 2.28 ± 0.09
M87 436 ± 45 324 124 ± 5 1400 138 ± 6 4860 59 ± 2
A133 9.6 ± 1.0 330 3.60 ± 0.10 1425 0.132 ± 0.005
Hydra A 317 ± 36 333 152 ± 6 7507 79.9 ± 3.2 1423 39.2 ± 1.6 27008 23.50 ± 0.93 4760 15.0 ± 0.6
Centaurus 19.5 ± 2.0 327 12.3 ± 0.5 6257 7.160 ± 0.040 1565 3.4 ± 0.1 27009 2.458 ± 0.048 4760 1.37 ± 0.06
HCG 62 0.0090 ± 0.0039 324 0.008 ± 0.002 1440 0.0050 ± 0.0004
Sersic 159/03 4.23 ± 0.45 324 1.53 ± 0.06 1425 0.22 ± 0.01 4860 0.056 ± 0.002
A2597 14.7 ± 1.5 328 8.3 ± 0.3 1400 1.86 ± 0.07 4985 0.37 ± 0.02
A4059 22.8 ± 2.4 328 9.93 ± 0.40 14402 1.285 ± 0.043 270010 0.35 ± 0.07 486011 0.12 ± 0.04
* A478 is not resolved in the MSSS map and is blended with neighboring cluster members. Thus, the flux measurement at 140 MHz includes serious contributions from several surrounding sources.
** Zw3146 is not resolved in the MSSS map and is blended with neighboring sources. Thus, the flux measurement at 140 MHz includes serious contributions from several surrounding sources.
*** Value not identical with the one cited in Bîrzan et al. (2008). We used the P-band map from Bîrzan et al. (2008) to measure the flux ourselves.
References: (1) Pauliny-Toth et al. (1966), (2) Condon et al. (1998), (3) Andernach et al. (1981), (4) Burbidge & Crowne (1979)
(5) Wall & Peacock (1985), (6) Gregory & Condon (1991), (7) Haynes et al. (1975), (8) Wright & Otrupcek (1990),
(9) Sadler (1984), (10) Vollmer et al. (2005), (11) Wright et al. (1994)

duced by the AGN. The total energy, combined with a buoyancy
timescale estimate of the age of the bubble, provides an estimate
of the time averaged cavity/jet power. We adopt the cavity power
estimates of Rafferty et al. (2006) for our correlation analysis.

Those cavity power estimates have two main limitations. For
all systems except two (Perseus and Hydra A) the cavity power
is estimated for a single or a pair of cavities; thus the measure-
ments are potentially limited to the energy output of a single
outburst. Another mechanism that carries energy into the ICM is
the mild shocks, with Mach number between 1.2 and 1.7, which
are observed in many systems (Fabian et al. 2006; McNamara
et al. 2005; Nulsen et al. 2005a,b; Forman et al. 2005, 2007;
Sanders & Fabian 2006; Wise et al. 2007; McNamara & Nulsen
2007). Therefore, the cavity estimates are only lower limits on
the energy output of the AGN, and as a consequence, the radia-
tive efficiencies are overestimated.

3.3. Luminosity and Cavity Power Uncertainties

The monochromatic radio luminosity was calculated as

Lν = 4πD2
LS ν(1 + z)−(α+1), (1)

where DL is luminosity distance, z is redshift, and S ν is the radio
continuum flux density, for which we have assumed a power-law
spectrum of the form S ν ∝ ν

α. The values of the spectral index α
are presented in Table 4 and are derived from our spectral anal-
ysis described in Section 3.5.

To estimate the errors in the luminosity values we propa-
gate the uncertainties of the flux density, luminosity distance,
and spectral index using

∆Lν = Lν

√(
2∆DL

DL

)2

+

(
∆S ν

S ν

)2

+ (ln(1 + z)∆α)2 . (2)

To compute the luminosity distance uncertainties we follow
the recipe used by Godfrey & Shabala (2016). The sources lying
at DL > 70 Mpc have redshift-derived distance estimates and for

them we assume ∆DL = 7 Mpc corresponding to peculiar veloc-
ities of σv ≈ 500 km/s. For sources with DL < 70 Mpc we as-
sume ∆DL = 0.1DL, corresponding to the estimated uncertainty
in redshift independent distance measurements (Cappellari et al.
2011). The distances of M84 and M87 are accurate within ∼ 3%
since they have been measured with the Hubble Space Telescope
using the surface brightness fluctuation method (Blakeslee et al.
2009). Thus, the uncertainties in luminosity are greater than the
ones of Bîrzan et al. (2008).

The cavity power measurements that we take from Rafferty
et al. (2006) have asymmetric errors. In order to simplify the
fitting, we assume Gaussian uncertainties in the cavity power
measurements and calculate their standard deviation as the aver-
age of the positive and negative uncertainties given by Rafferty
et al. (2006). The distance uncertainties are not propagated with
cavity power, since the cavity power uncertainties are strongly
dominated by other sources of error such as volume estimates
(O’Sullivan et al. 2011).

3.4. Pcav vs. L148

For our correlation analysis we use the flux density values de-
rived from TGSS at 148 MHz for the TF-23 sample. For com-
parison we performed the same analysis at 327 MHz using the
flux density values published by Bîrzan et al. (2008).

We utilized orthogonal distance regression to fit a model of
the form

log Pcav = log P0 + β log Lν, (3)

where Lν is in units of 1042 erg s−1 and P is in units of 1024

W Hz−1. The uncertainties of both radio luminosity and cavity
power were taken into account as weights in the fit. The result of
the regression analysis is presented in Table 3. The Pcav vs. Lν
plots are shown in Figure 1.

First, we must note that thare is no significant difference be-
tween the fit of Bîrzan et al. (2008) on the sample of 24 sources
and our results for the TF-23 sample. This suggests that remov-
ing Cygnus A from the sample does not significantly bias the
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Fig. 1. Cavity (jet) power vs. the total radio luminosity for the TF-23 sample at 327 MHz (left) and 148 MHz (right). The dashed line shows the
best-fit power law. It is log Pcav = (1.6 ± 0.2) + (0.50 ± 0.14) log L327 with intrinsic scatter of 0.86 dex at 327 MHz and log Pcav = (1.4 ± 0.3) +
(0.51 ± 0.14) log L148 with intrinsic scatter of 0.85 dex at 148 MHz.

Table 3. Results of fitting Equation 3 for the TF-23 sample.

νa Pb
0 βc σd

327 101.6±0.2 0.50 ± 0.14 0.86
148 101.4±0.3 0.51 ± 0.14 0.85
a Frequency in MHz.
b Normalization.
c Luminosity slope.
d Intrinsic scatter in dex.

correlation. The β reported by Bîrzan et al. (2008) at 327 MHz is
0.51 ± 0.07 with a scatter (standard deviation) of 0.81 dex, while
for the TF-23 sample we get 0.50 ± 0.14 with a scatter of 0.86
dex. We get the same slope but higher uncertainty and slightly
higher scatter. This small difference is a cumulative effect from
several factors; most importantly, omitting Cygnus A and us-
ing different spectral indices when computing the Lν. Other con-
tributors are the different luminosity errors we compute, which
change the weighting of points during the fit, and the lower flux
of Zw3146 we measure from the map at 327 MHz of Bîrzan et al.
(2008) (see Table 2).

We show that the Pcav – Lν scaling relation holds at low radio
frequencies. As can be seen from Table 3, there is no difference
between the correlation at 327 MHz and 148 MHz. They have
virtually identical slope and scatter. The comparison between the
results at 148 MHz and 327 MHz shows that merely moving to
∼150 MHz does not provide us with a better understanding of
the correlation between cavity power and monochromatic radio
luminosity. This is not surprising since the shift by a factor of
≈ 2 in frequency corresponds to only a factor of ≈ 1.4 in terms
of electron energy.

In only 2 of the 12 resolved sources in TGSS (Perseus
and M87) we detect significantly more extended low-frequency
emission than observed at 327 MHz. For the remainder of the
sample, the observed low-frequency emission is well correlated
spatially with higher frequency emission seen at 327 MHz.
Therefore, we conclude that for ∼90% of the systems in TF-
23 sample, TGSS retrieves the flux density at 148 MHz asso-
ciated with the same episode(s) of AGN activity seen at higher
frequency by Bîrzan et al. (2008) and in the X-rays by Rafferty
et al. (2006). Only Perseus and Hydra A include cavity power
measurements for more than one pair of cavities, and thus more
than one episode of activity. Therefore, our analysis at 148 MHz,
as well as the analysis of Bîrzan et al. (2008) at higher frequen-
cies, is effectively restricted to a fairly limited range of outburst
ages.

In the reprocessed MSSS images of Perseus and
2A0335+096 (presented in Section 4) we clearly detect
diffuse emission extending well beyond the regions associated
with the X-ray cavities studied by Rafferty et al. (2006).
The X-ray morphology of these objects on this large scale is
complex and not well correlated spatially with the observed
low-frequency emission. Associating these more extended
structures in the radio and X-rays with single, well-defined
episodes of AGN activity is not trivial. This complication is
most evident in the case of Perseus where even in the radio
map, it is difficult to separate emission associated with relic
AGN outbursts from the surrounding mini-halo. In the absence
of well-defined spatial correlation, including the flux from
this more extended radio emission without measurements of
corresponding X-ray structures would artificially result in a
correlation with flatter slope and large scatter. This situation
indicates that in order to study the correlation over multiple
episodes of activity, we would need a sample with deeper X-ray
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data with multiple cavities and the corresponding low-frequency
radio observations.

Studying the previously published correlations between Pcav
and Lν, Godfrey & Shabala (2016) have raised and explored the
question if the observed correlation is caused by the underlying
physical mechanisms or is a result of distance effect related to a
selection bias. Isolating the luminosity distance effect, they find
a much weaker correlation between Pcav and Lν. The selection
effects discussed by Godfrey & Shabala (2016) apply equally to
the sample discussed in the present paper, since they considered
a larger sample, which includes the objects studied here. We re-
fer the reader to the work of Godfrey & Shabala (2016) for a
deeper analysis of the distance dependence of the two studied
parameters. Although, it seems that at least some of the corre-
lation we measure here is due to this effect, regression taking
distance into account does not necessarily correctly account for
potential measurement bias. A more complete way to investigate
a likely distance dependence would be to perform a population
synthesis simulation in which to create a theoretical sample and
study its properties over distance. Such analysis is however be-
yond the scope of this paper and we leave it for further work.

3.5. Spectrum and Pcav vs. Lbol

As the bolometric radio luminosity (Lbol) is expected to be a bet-
ter gauge of the total radiative power, Bîrzan et al. (2008) also
study the relation between Lbol and cavity power. They conclude
that the total bolometric radio power is not a better proxy for cav-
ity power than the monochromatic luminosity at 327 MHz due
to the similarly large scatter. They further show that the scatter is
reduced from 0.83 to 0.64 dex if only the lobe emission is con-
sidered. This selection, however, reduces the number of studied
systems to 13 (Table 3 Bîrzan et al. 2008). To further investi-
gate whether the scatter is due to radio aging, they include the
spectrum break frequency (νC) in the regression analysis and de-
rive a tight correlation (Equation 17; Bîrzan et al. 2008). They
show that the knowledge of the lobe break frequency improves
the scatter by ≈50% (to 0.33 dex), which significantly increases
the accuracy by which one can estimate the cavity power of the
AGN when cavity data are unavailable.

Although now widely used, the Pcav – Lbol,νC scaling relation
is based on a number of simplifying assumptions. Bîrzan et al.
(2008) report that the continuous injection model (CI; Kardashev
1962) does not provide acceptable fits to many of the spectra. As
an alternative they adopt the single injection KP model (Karda-
shev 1962; Pacholczyk 1970). It is, however, by now well es-
tablished that the KP model makes unrealistic physical assump-
tions especially for studies of extended FRI type sources (e.g.
Tribble 1993; Harwood et al. 2013; Hardcastle 2013). From the
13 points used to derive the Pcav – Lbol,νC relation, six systems
have only lower or upper limits on the break frequency. However,
these limits are treated as detections in the regression analysis of
Bîrzan et al. (2008). The actual break frequencies could be far
from the limit values, and the resulting impact of these limits on
the reduction in the correlation scatter has not been assessed.

From the remaining seven systems used by Bîrzan et al.
(2008) to derive the Pcav – Lbol,νC relation, three include break
frequencies obtained by fitting a KP model to the data. For one
of these sources (MS 0735.6+7421) the KP fit results in a very
high injection index of αi = 1.3, while the typical value for αi in
the literature is in the range 0.5 – 0.8 (Komissarov & Gubanov
1994). The other four systems have their break frequency com-
puted using the recipe of Myers & Spangler (1985) assuming a
fixed injection index of αi = 0.5. This approximation is based on

the KP model and allows estimation of the break frequency by
assuming an injection index and providing a measurement of the
spectral index between 1.4 and 4.9 GHz. While this strategy con-
veniently provides break frequencies based on two data points,
the presented values for those four systems do not include uncer-
tainty estimates. Although correcting for the effects of spectral
aging can in principle reduce the scatter in the observed corre-
lation, large uncertainties in the derived break frequencies may
distort the reduction in the scatter this correction can yield.

In an attempt to derive reliable break frequencies and bolo-
metric luminosities, we revisit the radio spectra adding our new
low frequency measurements. Plotting the total flux values at
330 MHz, 1.4 GHz, 4.5 GHz, and 8.5 GHz from Bîrzan et al.
(2008) we find that in several cases the fluxes at 8.5 GHz ap-
peared significantly higher than expected by extrapolating the
lower frequency points. This difference is especially evident
in the SED’s of MKW3s, MS0735, and Zw2701. Inspecting
the VLA contours provided in Fig. 10 of Bîrzan et al. (2008)
we determined that no extended structures are observed on the
8.5 GHz maps of ten systems – 2A0335, A262, A478, A1795,
A2052, MKW3, MS0735, Perseus, RBS797, A133. The emis-
sion at this frequency clearly derives from the compact core. The
lobes are partially exposed on the 8.5 GHz map of only eight
systems – A2199, Hydra A, Centaurus, Sersic 159/03, A2597,
A4059, and M84. Four systems (Zw 2701 and Zw 3146, A1835,
and HCG 62) are basically unresolved at all frequencies and
there is no observation of MACS J1423.8 at 8.5 GHz. We ar-
gue that the total luminosity at 8.5 GHz primarily derives from
the core, as opposed to the aged radio lobes which clearly dom-
inate below 1.4 GHz. For this reason, we have neglected the 8
GHz data points in our analysis and considered only data below
5 GHz in our SED fits.

Given the agreement in flux scales between MSSS and
TGSS, and the more complete sky coverage of the TGSS sam-
ple, we have restricted ourselves to the TGSS fluxes in our spec-
tral fitting analysis. We note that in four systems, MSSS shows
significantly higher flux densities relative to TGSS. These sys-
tems include Perseus, A478, Zw3146, and MACS J1423.8 with
flux densities that are factors of 1.4, 1.7, 10.0, and 1.8 higher,
respectively. These discrepancies may represent new emission
components, issues in the flux density calibration, or, in the case
of A478 and Zw3146, blending with neighboring objects due to
insufficient angular resolution. Although excluded from the fit-
ting process, we have included the MSSS points in the SED plots
in Figure 6 and 7 in Appendix A for the purposes of comparison.

As an alternative to the KP model used by Bîrzan et al.
(2008), we could consider fitting a continuous injection (CI)
model to the SEDs to correct for the effects of spectral curva-
ture. However, we note recent work has shown that fitting inte-
grated spectra with the CI model should be treated with caution
(Harwood 2017). In addition, the number of frequency points for
objects in our sample range from three to six, with 40% of the
sample having just three data points for fitting. With these limita-
tions, we find we cannot fit a single, well-constrained and phys-
ically justified electron aging model consistently for all sources.
As a result, we are unable to derive a reliable and uniform set
of break frequencies and bolometric luminosities for the sample.
Given the available data, we therefore find that the addition of a
single low-frequency constraint at 148 MHz is insufficient to im-
prove upon the spectral aging correction of Bîrzan et al. (2008).

For this reason, and in order to treat all sources consistently,
we have fit a simple power law model to all spectral points. Re-
constructing the SEDs, we include the TGSS 148 MHz flux den-
sities, the 330 MHz, 1.4 GHz, and 4.5 GHz VLA measurements,
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Table 4. Spectral information. Points at 148 MHz derive from TGSS. If not designated differently, the higher frequency points come from Bîrzan
et al. (2008).

Source Pointsa αb σ c χ2
r

d Radio data used in the fite
(dex) (MHz)

A2199 6 −1.65 ± 0.02 0.24 73 148, 324, 750 (1), 1400 (2), 2700 (3), 4675
MS 0735.6+7421 3 −2.43 ± 0.04 0.14 9.9 148, 330, 1425
2A 0335+096 4 −1.17 ± 0.03 0.19 6.8 148, 324, 1490 (2), 4860
A262 3 −0.96 ± 0.04 0.07 1.0 148, 324, 1365
Perseus 3 −0.46 ± 0.02 0.04 0.9 148, 408 (4), 750 (1)
MKW3s 4 −2.72 ± 0.02 0.28 43 148, 327,1440, 4860
A478 3 −1.00 ± 0.05 0.07 1.5 148, 327,1440
A2052 6 −1.33 ± 0.01 0.14 31 148, 330, 750 (1), 1490, 2700 (5), 4860
Zw 3146 3 −0.81 ± 0.07 0.17 1.9 148, 324, 4860
Zw 2701 3 −1.49 ± 0.02 0.24 30 148, 324, 4860
A1795 5 −0.90 ± 0.03 0.04 0.8 148, 327, 1465, 2700 (3), 4850 (6)
RBS 797 4 −1.14 ± 0.03 0.14 6.8 148, 324, 1475, 4860
MACS J1423.8 3 −1.20 ± 0.05 0.10 0.9 148, 327, 1425
A1835 4 −0.84 ± 0.03 0.18 7.5 148, 327, 1400, 4760
M84 4 −0.57 ± 0.02 0.07 9.4 148, 324, 1425, 4860
M87 3 −0.60 ± 0.03 0.08 5.3 148, 1400, 4860
A133 3 −2.18 ± 0.03 0.31 52 148, 330, 1425
Hydra A 6 −0.89 ± 0.02 0.02 1.9 148, 333, 750 (7), 1423, 2700 (8), 4760
Centaurus 6 −0.76 ± 0.01 0.04 4.0 148, 327, 625 (7), 1565, 2700 (9), 4760
HCG 62 3 −0.29 ± 0.13 0.04 0.1 148, 325, 1440
Sersic 159/03 4 −1.09 ± 0.02 0.04 10 148, 325, 1425, 4860
A2597 4 −1.09 ± 0.02 0.11 10 148, 328, 1400, 4985
A4059 5 −1.37 ± 0.03 0.22 5.0 148, 328, 1440 (2), 2700 (10), 4860 (11)
a Number of frequencies used for the power-law fit.
b Spectral index derived from the power-law fit.
c Intrinsic scatter of the points towards the power-law fit.
d Reduced χ2 of the power-law fit.
e The frequencies in MHz used for power-law fitting of the radio spectra. The numbers in parentheses

are the references for the literature values and have the same meaning as in Table 2.

as well as the high frequency literature values used by Bîrzan
et al. (2008). We perform the spectral analysis using total flux
measurements since the majority of the TF-23 sources have only
total flux density measurements at both low and high frequen-
cies. Table 4 presents the derived spectral index, the intrinsic
scatter, the reduced chi-squared, the number of fitted points, and
their origin. Plots of the fits themselves can be seen in Figure
6 and 7 in Appendix A. We note that, based on the reduced
chi-squared values, the SED’s for many of the sources in the
sample are not well fit by a simple power-law. However, as al-
ready discussed above, the available data is currently insufficient
to consistently fit a more complicated spectral model. The de-
rived spectral indices are used for computing the monochromatic
luminosities employing Equation 1.

4. Resolved Systems

This section describes the morphology of the resolved sources
from our reprocessed MSSS fields. We review 2A0335+096, MS
0735.6+7421, A2199, and the Perseus cluster and discuss the
new features revealed at 140 MHz. We present both the MSSS
and TGSS images and discuss the differences between the two
surveys. We compare the low frequency radio images with Chan-
dra X-ray maps and study the correspondence between the ob-
served radio and X-ray structures.

4.1. Perseus

The Perseus cluster, A426, is the brightest cluster in the X-ray
sky and has therefore been well studied by all X-ray telescopes.
The X-ray emission is sharply peaked on the cluster core, cen-
tered on the cD galaxy NGC 1275 (Perseus A). A pair of X-ray
cavities in north (N) and south (S) from the center are coincident
with the FRI radio source, 3C84 (Pedlar et al. 1990; Boehringer
et al. 1993; Fabian et al. 2000; Churazov et al. 2000). More dis-
tant bubbles, presumably a product of past activity, are seen to
the NW and S. Further to the north, X-rays have revealed a re-
gion of flux drop, named the northern trough by Fabian et al.
(2011). At 50 – 80 kpc from the center, Fabian et al. (2006, 2011)
identify a south ’bay’ of hot gas which is in approximate pres-
sure equilibrium. They argue that rising bubbles from energetic
past outburst have accumulated in the northern trough and the
south bay.

A semi-circular cold front (Markevitch & Vikhlinin 2007),
accompanied by a sharp drop of metallicity, is distinguished at
∼100 kpc to the west and south-west of the nucleus of NGC 1275
(Fabian et al. 2011). The northern trough and the southern bay
lie along a continuation of the west cold front. While the mor-
phology inside the cold front is dominated by the AGN activity
and turbulence in the gas (Hitomi Collaboration et al. 2016), the
structures at larger radii are most probably associated with a sub-
cluster merger (Churazov et al. 2003), which also accounts for
the east-west asymmetry in the X-ray surface brightness.
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Fig. 2. Perseus cluster. Top left: Reprocessed MSSS map with resolution 20.8′′ × 20.8′′ and rms noise 20 mJy/beam. The contours start at 5σ
level and are drawn at 100 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11, 16, 22, 32, 45, 64, 91, 128]. Top right: Chandra X-ray surface brightness
residual map. The image is produced by unsharp masking using archival data in the 0.5 – 7 keV band with total exposure of 1.4 Msec after standard
filtering. Contours correspond to the MSSS image. Bottom: TGSS map with resolution 25.0′′ × 25.0′′ and rms noise 10 mJy/beam. The contours
start at 5σ level and are drawn at 50 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11, 16, 22, 32, 45, 64, 91, 128, 182, 256].

It is known from higher frequency observations that the cen-
ter of Perseus hosts a rare (Feretti et al. 2012) radio mini-halo,
which may be generated by turbulence (Gitti et al. 2004) or gas
sloshing (ZuHone et al. 2011; Mazzotta & Giacintucci 2008),
presumably induced by an off-axis merger. In our MSSS map
at 148 MHz we successfully recover the known general mor-
phology of the inner part of the mini-halo and distinguish new
structures in this region.

While the TGSS image only shows the radio emission
around the inner cavities (Figure 2), the reprocessed MSSS map
reveals the inner part of the mini-halo (Figure 2). Being a short
integration survey, MSSS is not deep enough to detect the full
scale of the mini-halo, as observed at 330 MHz (Burns et al.

1992; de Bruyn & Brentjens 2005) and 610 MHz (Sijbring
1993), but it does reveal interesting new features within 100 kpc
around NGC 1275.

The inner part of the radio emission follows the general NS
orientation of the jets (Figure 2). The outer part of the diffuse
emission continues up to 60 kpc north from center of Perseus A,
reaching up to an arch-like drop in X-ray brightness (Figure 2).
South from the core the mini-halo bends towards the west and
stretches up to 100 kpc towards SW, reaching as far as the cold
front.

The northern part of the diffuse emission shows two pro-
nounced features elongated towards N and NW. The NW fea-
ture corresponds to the outer NW X-ray cavity. The structure
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stretching north lies along the main jet axis and is cospatial with
a known optical filament (Conselice et al. 2001; Fabian et al.
2011). It extends along the X-ray spur, which continues further
than the optical filament. What we see in our MSSS map is pre-
sumably the base of the radio structure observed at higher fre-
quencies (Burns et al. 1992; Sijbring 1993; de Bruyn & Brent-
jens 2005), which reaches the X-ray northern trough.

We further identify two radio ‘streamers’ within the mini-
halo. We distinguish an elongated structure which starts at the
eastern edge of the inner north cavity and stretches NE reaching
the arch-like drop in X-ray brightness ∼80 kpc from the center.
Our MSSS map also shows an enhancement of the radio flux
to the south of the core which corresponds to the southern old
cavity.

The outlined radio features once again exemplify the com-
plicated morphology at the center of the Perseus cluster. Our
shallow MSSS map demonstrates the potential of low-frequency
observations on Perseus and promises that the deep LOFAR data
will reveal more details of the complex morphology of the mini-
halo. We will present a full track LOFAR observation in a fol-
lowup paper. The deep LOFAR map is expected to help us con-
strain the integrated energy output of the AGN over the last few
Myr and verify if the low-frequency radio mini-halo is energeti-
cally consistent with the turbulence recently measured with Hit-
omi (Hitomi Collaboration et al. 2016).

4.2. 2A 0335+096

2A 0335+096 is a compact, radio-bright, nearby (z = 0.035)
galaxy cluster with a luminous X-ray core (Sanders et al. 2009).
The central galaxy has a cD morphology that hosts a weak radio
source (Farage et al. 2012). It has a nearby companion ellipti-
cal galaxy situated ∼ 7′′ (∼5 kpc) to the north-west (Sanders
et al. 2009). The velocities of the central galaxy and the com-
panion derived from optical spectroscopy studies suggest they
are merging (Gelderman 1996; Donahue et al. 2007; Hatch et al.
2007).

2A0335+096 shows a very complicated morphology in both
radio and X-rays. XMM-Newton and Chandra have revealed ev-
idence for an active history of interaction between the AGN and
ICM in the core of 2A 0335+096. X-ray observations show a
complex system of X-ray-emitting structures in the core, includ-
ing filaments, cool clumps, a metal-rich spiral, and at least five
distinct cavities at varying distances and position angles relative
to the central galaxy (Mazzotta et al. 2003; Bîrzan et al. 2004;
Kaastra et al. 2004; Sanders & Fabian 2006; Sanders et al. 2009).
The total 4pV enthalpy associated with the five cavities is esti-
mated to be 5 × 1059 erg (Sanders et al. 2009). There is a sharp
drop in X-ray surface brightness at 1′ radius to the south-east
of the core, identified as a cold front by Mazzotta et al. (2003).
Since the feature shows an abrupt density decline but no signifi-
cant temperature change over the edge, Sanders & Fabian (2006)
classify it as an isothermal shock, as found in the Perseus cluster.

The radio source shows a very different morphology at dif-
ferent frequencies. At ∼ 5 GHz twin lobes associated with op-
positely directed radio jets are observed in NE – SW direction
extending ∼ 12′′ in length (Sanders et al. 2009). Using the My-
ers & Spangler (1985) relation, Donahue et al. (2007) estimate
an age for the radiating electrons of 25 Myr assuming equipar-
tition or 50 Myr if the magnetic field is a factor of 4 less than
the equipartition value. They propose that an interaction between
the central and the nearby companion elliptical galaxy may have
triggered the current episode of radio activity.

At 1.5 GHz (Figure 3) the main observable feature is a
clear single peak at the center of the galaxy surrounded by a
steep-spectrum emission roughly symmetric around the center
(Sarazin et al. 1995; Bîrzan et al. 2008; Sanders et al. 2009). The
observed shape and spectral index has led the observed emission
to be classified as a mini-halo. At 330 MHz the mini-halo is not
well observed, but a second peak of emission is distinguished
30′′ (∼20 kpc) NW from the center (Bîrzan et al. 2008) and the
morphology appears clearly elongated in NW-SE direction.

The cluster hosts an unusual nearby Narrow Angle Tail
(NAT) radio source which has been observed at 327 MHz (Pat-
naik & Singh 1988) and 1.5 GHz (O’Dea & Owen 1985; Sarazin
et al. 1995). Its center is situated at ∼380 kpc in the N-W direc-
tion from the center of the cluster, but its long tail propagates
south getting as close as ∼150 kpc (∼ 3.5′) from the central
galaxy. No interaction between the NAT source and the core
of 2A0335+096 has been observed on previously published im-
ages. At low significance level the reprocessed MSSS map (Fig-
ure 3) shows some evidence that the diffuse emission surround-
ing the core of 2A0335+096 is connected to the emission from
the NAT source. This suggest that the two sources might be in-
teracting, however, the quality of the data does not allow us to
be conclusive about this scenario.

The diffuse radio emission at 140 MHz (Figure 3) extends
in all directions further than observed at 1.5 GHz (Figure 3).
Similar to the Perseus cluster, the reprocessed MSSS map (Fig-
ure 3) reveals much more diffuse structure than the TGSS image
(Figure 3). Although the reprocessed MSSS map includes sig-
nificant artifacts around point sources, our visual inspection con-
firmed that the observed extended emission of 2A0335 is authen-
tic since no other source in the maps shows emission with sim-
ilar extent or morphology. The 140 MHz map (Figure 3) shows
pronounced elongated shape along the NW - SE direction. The
diffuse emission at 140 MHz spans ∼130 kpc in NW–SE direc-
tion and ∼60 kpc in NE–SW direction. The boundaries of the
observed emission at 140 MHz towards south reach as far as the
isothermal shock at ∼ 1′ from the center.

Figure 3 shows that, besides the central peak of emission,
there is clearly a second peak of emission situated 30′′ (∼20 kpc)
in the NW direction from the center. In the MSSS map these
two peaks appear equally bright. The central maximum (i) cor-
responds to the very center of the cluster. The second peak (ii) is
clearly associated with the most pronounced cavity in the system
(cavity A, Figure 3).

We observe a significant extension of the emission towards
north-west which includes the distant radio peak (iii). The ob-
servations at 140 MHz (Figure 3) and 148 MHz for the first
time reveal the bridge between the radio emission associated
with the central mini-halo and the radio maximum iii, which ap-
peared disconnected from the core at higher frequencies. De-
spite the fact that emission at peak iii was observed in deep
high-frequency maps, it is nonetheless found to be a steep spec-
trum source. We measured the spectral index in a circular aper-
ture centered at peak iii and found a value of ∼ −1.8 between
147 MHz and 1.5 GHz. This spectral index seems consistent with
the idea that this plasma originated in an older outburst of AGN
activity. The distant peak iii is situated ∼110 kpc from the cen-
tral AGN and for it we calculate an age of 150 Myr based on the
sound speed estimate for the system by Bîrzan et al. (2004).

The residual map we calculate based on archival X-ray data
(Figure 3) agrees reasonably well with the image published by
Sanders et al. (2009). The only major difference is that cavity
E appears much less pronounced in our residual map. Based on
our MSSS image, all of the five cavity structures identified by
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Fig. 3. 2A0335+096. Top left: Reprocessed MSSS map with resolution 23.6′′ × 23.6′′ and rms noise 11 mJy/beam. Contours start at 5σ level and
correspond to 55 mJy/beam × [1, 1.2, 1.4, 1.6, 1.8, 2, 2.4, 2.8, 3.2, 3.6]. Individual features are labeled i, ii, and iii. These are discussed in the text.
Top right: Chandra X-ray surface brightness residual map. The image is produced by unsharp masking using archival data in the 0.5 – 7 keV band
with total exposure of 101 ksec after standard filtering. Green contours correspond to the MSSS image. The five cavities identified by Sanders et al.
(2009) are marked. The correspondence between these features and our radio map is discussed in the text. Bottom left: TGSS map with resolution
25.3′′ × 25.0′′ and rms noise 5 mJy/beam. Contours start at 3σ level and correspond to 15 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11]. Bottom right:
Radio map at 1.5 GHz from Bîrzan et al. (2008). Contours correspond to 0.25 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11, 16, 22, 32, 45].

Sanders et al. (2009) contain low frequency emission. There is
a clear extension of the radio emission along cavity D, which
continues beyond the cavity. A spur of emission starts at cavity
B and continues south through the isothermal shock. Although
cavities C and E are also fully covered by the radio emission,
they are not clearly associated with a particular features of the ra-
dio morphology. The association between the radio emission and
the X-ray cavities implies that the former is mostly formed from
multiple previous generations of AGN radio outbursts. However,
the morphology of the cavities is complex and is unclear what
the order of generation of the bubbles was.

In general, what we observe with LOFAR appears much
more extended and complicated than the picture at higher fre-
quencies. The overall shape of the source does not resemble the
traditional symmetric round morphology associated with a mini-
halo. The structure is elongated to the NW, following the direc-
tion defined by the two main radio enhancements (i and ii), i.e
the direction between the center and cavity A. This direction is
consistent with the elongation observed at 330 MHz and matches
the axis between the central galaxy and the nearby companion,
as well as the direction of the filament observed in Hα (Sanders
et al. 2009).
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If the source is not a mini-halo the other most likely candi-
date is structure formed by activity over time from the AGN. We
see evidence for this in the correlation between this extended
low-frequency radio structure and the X-rays. There is a clear
correspondence between peak i and ii and the X-ray cavities The
correspondence between radio peak iii and the X-ray morphol-
ogy is of lower significance, which might be due to the quality
of the X-ray data. The observed structures seem consistent with
relics of past AGN outbursts. Although we cannot definitively
say with the currently available data, the evidence seems to fa-
vor the AGN interpretation over a simple mini-halo.

The observed X-ray cavities do not follow the usual simple
linear progression, but resemble a network of structures that are
presumably related to multiple outbursts (Sanders et al. 2009).
It might be that density inhomogeneity of the surrounding en-
vironment has deflected the straight buoyancy rise path of the
bubbles. Based on the fact that the orientation of the low fre-
quency radio peaks i and ii is perpendicular to the small scale
radio lobes observed by Donahue et al. (2007), the idea that the
radio source has changed orientation over time also seems quite
plausible. This interpretation would imply that the source has
been deflected in the recent past. Based on its circular shape and
proximity to the center, X-ray cavity A (coincident with low fre-
quency radio peak ii) seems to be the newest one. Considering
the buoyancy age of cavity A from Rafferty et al. (2006), the
change in direction of the radio source must have happened in
the last ∼ 60 Myr. This value is consistent with the age estimate
for the NE-SW radio lobes of Donahue et al. (2007) presented
earlier.

Unfortunately, with the currently available data we cannot be
conclusive about the origin of the newly observed diffuse radio
emission. The proximity of the NAT source additionally compli-
cates the interpretation of the faintest and most extended struc-
ture to the west and NW. We expect that the future map from the
LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017)
will be able to shed light onto the outburst history of this AGN
by showing in greater detail the radio structures corresponding
to the numerous X-ray cavities and by revealing the region of
interaction between the NAT source and the AGN.

4.3. MS 0735.6+7421

The cool-core cluster MS 0735.6+7421 (hereafter MS0735)
hosts one of the most energetic radio AGN known. It is the most
distant (z = 0.22) among the sub-sample of clusters that we re-
solve with MSSS. MS0735 hosts large X-ray cavities in an oth-
erwise relaxed system (Gitti et al. 2007). Each cavity has a diam-
eter of ∼200 kpc and is filled with synchrotron emission from the
radio lobes. A weak but powerful shock front encloses the cavi-
ties and the radio lobes in a cocoon (McNamara et al. 2005). The
total energy required to inflate the cavities and drive the shock
front is above 1062 erg (McNamara et al. 2009; Vantyghem et al.
2014).

Both the MSSS map and the TGSS image (Figure 4) re-
trieve the main morphology of the source known from higher
frequencies. In this system, two symmetric lobes are propagat-
ing in north-south direction. We observe a change of direction
of the lobes at 140 MHz consistent with the bending visible
at 324 MHz. As opposed to higher frequencies, at 140 MHz
the compact core is not distinguished between the bright steep-
spectrum lobes, which clearly dominate radio structure. The
140 MHz map does not show more extended diffuse radio emis-
sion associated with this object.

The data from TGSS and MSSS is consistent with the picture
from higher frequencies showing the radio emission still trapped
in the surrounding cocoon (Figure 4). This phenomenon may be
related to the fact that MS0735.6+7421 is the most energetic out-
burst observed so far. The energy of the outburst has clearly dis-
placed and compressed material in the cluster atmosphere which
may have piled up faster and created a more effective confining
shell to stop the advance of any radio plasma. We find no evi-
dence in this data for more extended emission corresponding to
older outbursts. If present, that emission will presumably peak at
even lower frequencies detectable with LOFAR LBA.

4.4. A2199

A2199 is a nearby cool-core cluster at z = 0.030. The central
dominant galaxy NGC 6166 hosts the unusual restarted radio
source 3C338. The large-scale structure of 3C338 can be sepa-
rated into two regions. The active region includes the core and
two symmetric jets terminating in two faint hot spots. The older
region is displaced to the south and consists of two extended
steep-spectrum radio lobes connected by a bright filamentary
structure (Burns et al. 1983; Giovannini et al. 1998). Burns et al.
(1983) propose that the shift between the large-scale structure
and the restarted jets could indicate a motion of the central AGN
inside the galaxy. Vacca et al. (2012), on the other hand, sug-
gest that the displacement could also be due to an interaction be-
tween the old radio lobes with bulk motions in the surrounding
medium caused by the sloshing of the cluster core (Markevitch
& Vikhlinin 2007).

The diffuse radio lobes clearly coincide with two large X-ray
cavities 25 kpc either side of the nucleus (e.g. Johnstone et al.
2002; Gentile et al. 2007; Nulsen et al. 2013). The low-frequency
data at 330 MHz shows the presence of an extension to the south
that corresponds to a third X-ray cavity (Gentile et al. 2007).
Similar to 2A0335+096 and the Perseus cluster, A2199 hosts an
isothermal shock - a sharp drop in X-ray brightness with a pres-
sure jump but no temperature change across it (Sanders & Fabian
2006). It is seen in X-rays as a surface brightness edge 100′′ SE
from the cluster center and Nulsen et al. (2013) argue that it is
most probably a result of a shock produced by an older, signifi-
cantly more powerful AGN outburst than the one that produced
the current outer radio lobes and cavities.

Our 140 MHz MSSS map is shown in Figure 5. The new low-
frequency data are consistent with previously published results.
In general, the emission at this frequency appears slightly more
extended than it shows on the maps at 327 MHz presented by
Gentile et al. (2007) and Bîrzan et al. (2008), even though the
comparison is difficult due to the lower angular resolution of our
map. Interestingly, at a comparable resolution, the emission on
the MSSS map also extends further from the center than on the
74 MHz image of Gentile et al. (2007). This is most probably
a result of the low sensitivity of VLA at 74 MHz at the time of
their observation.

The radio emission at 140 MHz fully covers the southern
X-ray cavity (Figure 5). Similar to the observed morphology at
higher frequency maps (Bîrzan et al. 2008; Gentile et al. 2007),
the eastern lobe appears well confined. We do not detect radio
signatures of the powerful outburst which presumably created
the isothermal shock. On the other hand, since the SE X-ray edge
and the outer radio lobes have comparable scales, it seems con-
sistent that the shock front restricts the expansion of the eastern
lobe further east.

The plume extending north-ward from the northern tip of the
western lobe, seen at the 330 MHz by Gentile et al. (2007) and
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Fig. 4. MS0735+7421. Top left: Reprocessed MSSS map with resolution 27.8′′ ×27.8′′ and rms noise 30 mJy/beam. The contours start at 5σ level
and are drawn at 0.150 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7]. Top right: Chandra X-ray surface brightness residual map. The image is produced by
unsharp masking using archival data in the 0.5 – 7 keV band with total exposure of 520 ksec after standard filtering. Green contours correspond to
the MSSS image. Bottom: TGSS map with resolution 25.0′′ × 25.0′′ and rms noise 3 mJy/beam. The contours start at 5σ level and are drawn at
15 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11, 16, 22, 32].

Bîrzan et al. (2008), is also present at 140 MHz. It appears di-
luted in our map due to the lower resolution, which is also the
case at 74 MHz (Gentile et al. 2007). Nulsen et al. (2013) argue
that the indistinct appearance of the 100′′ front to the northwest
would then imply that the turbulence is greater there than on the
southeastern side of the cluster center. A more disturbed envi-
ronment could well explain why the western lobe has a more un-
typical shape than the eastern one. Nulsen et al. (2013) show that
a shell of denser gas is situated to the west of the western lobe
at 4.9 GHz. This denser structure seems to inhibit the growth of
the lobe towards the west. However, since the shell is discontin-
ued to the north, it leaves room for the lobe to expand in this
direction.

In Figure 5 we show the TGSS image only for completeness.
On this image, the shape of the system looks very different. The
lobes do not have their expected morphology and orientation,
and only one central peak of emission is observed. Based on
our experience calibrating the MSSS data of A2199, where we
were getting similar deformations, we believe that the TGSS im-
age suffers from significant distortions due to phase calibration
problems. As noted earlier in Section 2.2, a deeper full-track LO-
FAR pointing for A2199 is already available. This observation is
currently being analyzed and will be published separately.
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Fig. 5. A2199. Top left: Reprocessed MSSS map with resolution 21.6′′ × 21.6′′ and rms noise 40 mJy/beam. The contours start at 5σ level and
are drawn at 200 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11, 16, 22, 32, 45]. Top right: Chandra X-ray surface brightness residual map. The image is
produced by unsharp masking using archival data in the 0.5 – 7 keV band with total exposure of 154 ksec after standard filtering. The east, west,
and south cavities are denoted by ’E’, ’W’, and ’S’, respectively. The SE surface brightness edge is denoted by arrows. Contours correspond to
the MSSS image. Bottom: TGSS map with resolution 25.0′′ × 25.0′′ and rms noise 10 mJy/beam. The contours start at 3σ level and are drawn at
30 mJy/beam × [1, 1.4, 2, 2.8, 4, 5.7, 8, 11, 16, 22, 32, 45, 64, 91, 128, 182].

5. Discussion and Conclusions

With facilities such as LOFAR, GMRT, and the Murchison
Widefield Array (MWA) online, uniform surveys at low radio
frequencies are now becoming available for a large fraction of
the sky. The angular resolution and sensitivity of these first
all-sky, low-frequency surveys are well-matched to studies of
extended, steep spectrum diffuse emission in cluster feedback
systems and will ultimately provide the larger samples neces-
sary for statistical population studies. In this pilot work, we
have employed data from the first all-sky imaging surveys with
LOFAR (MSSS at 140 MHz) and the GMRT (TGSS ADR1 at
150 MHz) to study a sample of known, strong AGN feedback

sources drawn from Bîrzan et al. (2008). Combining data from
both surveys, we have searched for the presence of extended,
diffuse emission not seen previously at higher radio frequencies
and possibly associated with relic emission from previous AGN
activity. We have also computed total low-frequency fluxes for
the sources in the sample in order to test the well-known corre-
lation between high frequency radio flux and the power required
to create the cavity structures seen in the X-ray (Bîrzan et al.
2008; Rafferty et al. 2006).

For both MSSS and TGSS surveys, images were created and
examined for each of the objects in the sample. In the case of the
TGSS data, images were extracted from the default mosaics pro-
vided as part of the standard TGSS ADR1 data products (Intema
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et al. 2017) and no additional processing was required. The LO-
FAR images used in this work were based on a preliminary data
release of the MSSS all-sky survey (Heald et al. 2015). Although
the MSSS survey data included baseline lengths out to 100 km,
the initial imaging products produced during the development of
the survey processing utilized a cutoff in baseline length to ob-
tain a nominal angular resolution of ∼ 2′. In this work, we have
described a simple reprocessing strategy that takes advantage of
data from these longer baselines to both improve the noise and
angular resolution of the resulting maps. We have applied this
procedure to all objects in the sample which showed evidence
of extended emission in the default, low-resolution maps result-
ing in improved images with angular resolutions of ∼ 25′′. For
the subset of resolved objects, these improved MSSS maps were
used to characterize the presence of any diffuse, extended emis-
sion and in all subsequent comparisons to TGSS, high-frequency
radio, and X-ray images.

Based on the resulting TGSS and MSSS maps, we have mea-
sured the total radio fluxes for all sources; however, due to differ-
ing sky coverages, not all sources were visible in both surveys.
For the subset of overlapping sources, we have compared the de-
rived fluxes between the two surveys and find good agreement.
The exceptions are Perseus, where the radio mini-halo shows
complicated spatial structure over a large area, and A478 and
ZW3146, which are not well resolved in the MSSS maps and
blended with nearby sources. Given the agreement in flux scales
and the more complete sky coverage of the TGSS sample, we
have utilized the TGSS fluxes in all subsequent analysis of the
Pcav − Lν correlation known from higher frequency data. Esti-
mates for the values of Pcav based on Chandra X-ray data were
taken from the literature (Rafferty et al. 2006) and compared to
the radio luminosity at 148 MHz as inferred from the measured
TGSS flux values. At this frequency, we find a correlation of the
form Pcav ∝ L0.51±0.14

148 , which is in good agreement with the result
found by Bîrzan et al. (2008) at 327 MHz.

We find a relatively large scatter in the 148 MHz correlation
of ∼0.85 dex which again is consistent with the value obtained at
327 MHz by Bîrzan et al. (2008). This large scatter makes the de-
rived correlation difficult to use as a reliable proxy for jet power
in sources where only radio data is available. In the previous
high frequency study, Bîrzan et al. (2008) found that the scat-
ter in the correlation could be significantly reduced by including
the effects of spectral aging, although in that analysis the lack of
low-frequency data required a number of simplifying assump-
tions in order to constrain the break frequency. Including our
new data points at 148 MHz with the data at higher frequencies
taken from Bîrzan et al. (2008), we have examined the spectral
energy distributions for our sample in an attempt to provide bet-
ter constraints on the break frequencies and by extension an im-
proved correction for the scatter in the observed correlation due
to spectral aging. Unfortunately, our results show that including
additional measurements at 148 MHz alone is insufficient to fit
a consistent, physically justified spectral aging model. We there-
fore conclude that to improve on the aging correction of Bîrzan
et al. (2008) will likely require additional data below 148 MHz,
such as with the LOFAR LBA at 30 – 90 MHz, and data with
sufficient angular resolution to clearly resolve emission from the
core and lobe regions.

In four of the sources, Perseus, 2A0335+096,
MS0735.6+7421, and A2199, the reprocessed MSSS im-
ages show clear evidence for extended, diffuse emission at
140 MHz. We have compared the observed morphology of the
extended, diffuse emission in the MSSS maps with correspond-
ing radio images from TGSS and the VLA, as well as X-ray

surface brightness and residual maps based on archival Chandra
data. In Perseus, we easily resolve the well-known, radio
lobes observed at higher frequencies (Pedlar et al. 1990) and
associated with the inner cavities seen in X-ray images (Fabian
et al. 2000, 2006). The MSSS image also clearly recovers the
more extended halo structure seen in previous deep radio maps
of Perseus out to radii of ∼ 100 kpc (Burns et al. 1992; Sijbring
1993; de Bruyn & Brentjens 2005). The overall morphology of
the low-frequency radio halo is well-correlated with a number
of arc-like edges and ripples visible in the unsharp-masked
X-ray image (Fabian et al. 2006) reinforcing the current picture
whereby the X-ray and radio structures share a common origin
in the recurrent AGN activity of Perseus A.

We find a similar situation in the well-known feedback sys-
tem 2A0335+096. Although the overall morphology of the low-
frequency emission present in the reprocessed MSSS image con-
firms the structure visible in the TGSS maps and hinted at in
higher frequency VLA maps (Bîrzan et al. 2008), the diffuse
emission detected in the MSSS map is more extended and ex-
hibits a rough correspondence to the large-scale depressions seen
in the X-ray map outside the inner ∼ 20 kpc (Sanders et al.
2009). A bridge of low-frequency emission is also observed con-
necting the core of 2A0335+096 with a bright peak of low-
frequency emission ∼ 110 kpc to the NW, parallel to the axis
of the inner cavity system. This peak does not appear to be as-
sociated with a known radio source and exhibits a steep spectral
index of α ∼ −1.8 consistent with remnant plasma from previ-
ous AGN activity. Assuming this emission originated in the core
of 2A0335+096, we estimate an age of ∼ 150 Myr for the origi-
nal outburst based on estimates of the sound speed in the cluster
core (Bîrzan et al. 2004). This emission peak, however, does not
seem to correlate with an obvious depression in the X-ray map.

For the remaining two resolved sources in our sample,
MS0735.6+7421 and A2199, we find the low-frequency emis-
sion observed in the MSSS maps corresponds closely with what
has been seen at 327 MHz. In both the TGSS and MSSS images
for MS0735.6+7421, the low-frequency emission clearly traces
the large-scale, X-ray cavities seen in the X-ray and at higher
radio frequencies (McNamara et al. 2005). The low-frequency
emission shows no evidence for a strong central core and is com-
pletely dominated by emission in the lobes corresponding to the
X-ray cavities. We find no evidence for more extended, diffuse
low-frequency emission outside the well-known cocoon shock
in this system (McNamara et al. 2009; Vantyghem et al. 2014),
implying that the radio plasma is fully enclosed by the shock. In
the case of A2199, the overall morphology of the diffuse emis-
sion in both TGSS and MSSS maps agree and is consistent with
the structures seen in the 330 MHz map of Bîrzan et al. (2008).
Compared to the TGSS image, the final, reprocessed MSSS map
has higher quality and angular resolution, which allows us to
clearly resolve two peaks of low-frequency emission coincident
with the two main X-ray cavities observed in the core along the
jet axis (Nulsen et al. 2013), as well as extensions to the S and
NW corresponding to an additional cavity and surface bright-
ness jump seen in the X-rays, respectively (Gentile et al. 2007;
Nulsen et al. 2013). Taken all together, the morphology of the
low-frequency emission in A2199 is consistent with the picture
of a system having undergone at least two episodes of AGN ac-
tivity.

While the images presented in this work demonstrate the
potential of LOFAR to recover extended, diffuse emission,
our analysis highlights some important caveats for future low-
frequency radio studies of feedback. First, the original sample
of Bîrzan et al. (2008) were selected on the basis of containing
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well-defined cavity systems in the X-ray. With a few exceptions,
these cavities and the higher frequency radio emission they en-
close can be linked to a single epoch of AGN activity occur-
ring over a fairly narrow range of outburst ages. The same can
be said for the "ghost" cavities seen in systems such as Perseus
(Fabian et al. 2006) and A2597 (Clarke et al. 2005) and found
to contain lower frequency radio emission at 330 MHz. At the
lower frequency and moderate angular resolutions provided by
TGSS and MSSS, however, the distribution and morphology of
the observed low-frequency radio emission is quite complicated
and not easily resolved into individual components that may be
associated with well-defined episodes of AGN activity. As a re-
sult, radio flux measurements at these frequencies are difficult to
place in the context of the Pcav − Lν correlation found for single
episodes of AGN activity at higher frequency.

The situation is similarly complicated in the X-ray. As even
the small sample of objects in this work illustrates, the well-
defined surface brightness depressions or "cavities" associated
with the radio emission at higher frequencies is harder to identify
for older outbursts (≥ 100 Myr). Even for objects with deeper X-
ray exposures such as Perseus and 2A0035+096, the morpholo-
gies of these outbursts are more complicated, difficult to dis-
entangle from other features possibly related to shocks or core
sloshing, and not always well-correlated with the low-frequency
radio emission. This complexity is further exacerbated by the
lack of sufficiently deep exposures for many of the nearby, strong
feedback systems where we might expect to resolve the X-ray
signatures of older AGN outbursts at larger radii (e.g., Perseus
Fabian et al. (2006)). Taken altogether, these factors introduce
considerable uncertainty in estimates for the value of Pcav asso-
ciated with older or multiple AGN outbursts.

The LoTSS currently underway will produce images of the
full accessible northern sky at angular resolutions of 5′′ and sen-
sitivities of ∼ 100µJy. When combined with new high frequency
data from surveys such as the VLA Sky Survey (VLASS; Hales
2013), we will have the radio data necessary to both spatially re-
solve and spectrally discriminate between different episodes of
AGN activity for virtually all nearby feedback systems. In the
near-term, these new radio data can be matched to deeper X-ray
exposures with Chandra and XMM to better attempt to separate
outburst related signatures from other physical processes operat-
ing in the cluster cores. On the longer term, upcoming missions
such as eRosita (Merloni et al. 2012) and Athena (Nandra et al.
2013) will yield larger samples of potential feedback systems
as well as information about velocity motions in the gas from
high spectral resolution emission line studies. The combination
of these new radio surveys, in particular the low-frequency data
from LoTSS, and improved X-ray data will allow us to build up a
picture of the integrated effects of AGN output on the surround-
ing environment for a large sample of systems over timescales
of several 100 Myr.
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Fig. 6. SED power law fits for the source in the MF-14 sample. The MSSS (red) and TGSS (green) points come from our measurements. The VLA
(black) points are from Bîrzan et al. (2008). The higher frequency literature points are presented in blue. The dashed line shows the best fitted
power law. The MSSS points are not taken into account for the fit. The value at the top right corner of each plot indicates the derived spectral index
with its error and the reduced chi-squared of the fit.
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Fig. 7. SED power law fits for the sources in the TF-23 sample but not in the MF-14 sample. TGSS (green) points come from our measurements.
The VLA (black) points are from Bîrzan et al. (2008). The higher frequency literature points are presented in blue. The dashed line shows the best
fitted power law. The value at the top right corner of each plot indicates the derived spectral index with its error and the reduced chi-squared of the
fit.
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