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Abslract- Models of associative memory usually have full 
connectivity or if diluted, random symmetric connectivity. I n  
contrast biological neural systems have predominantly local, 
nou-symmetric connectivity. Here we investigate sparse 
networks of threshold units, trained with the perceptron 
learning rule. The units are arranged in a small world 
network, with short path-lengths but cliquish connectivity. The 
connectivity may be symmetric or non-symmetric. The results 
show that the small-world networks with non-symmetric 
weights perform well as associative memories. It is also shown 
that in highly dilute networks with random connectivity, it is 
symmetry of the weights, rather than symmetry of the 
connectivity matrix, that causes poor performance. 

Inder T e r m s  Associative Memory, Neural Network, Dilution, 
Small World Nehvork, Weight Symmetry. 

1. INTRODUCTION 
I t  is possible to build associative memory models from 

networks of simple perceptrons [ I ,  21. These networks 
perform much better than the canonical Hopfield model, 
both in terms of capacity and pattern completion. It is also 
possible to use such networks of perceptrons with sparse or 
diluted connectivity, and the performance is relatively 
robust, even at high rates of dilution [3]. Of course real 
neural networks have sparse connectivity, which motivates 
the investigation undertaken here. I t  is also known that in 
biological systems the networks have a small world 
characteristic [4]. That is they exhibit short path lengths 
between any pair of neurons, as in a random network, but 
also show a cliquish behaviour, with locally clustered 
connections. The benefit of such clustering is apparent in 
the mean connection length (the average wiring length), 
which is far smaller than in an equivalent random network. 
Recently Bohland and Minau [SI showed that a small world 
Hopfield network could be a relatively effective associative 
memory. This analysis is extended here using. the better 
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performing high capacity model. 

11. BACKGROUND 

The simple small world model of Watts and Strogatz [4]  
consists of  a regular N-node ring lattice. Each node is 
connected to W 2  neighbours on each side, where k is 
typically small compared to N. The mean path length 
between any pair of random points is therefore high. A 
fraction, p, of these local connections is then rewired to 
randomly selected nodes. They showed that at surprisingly 
low values of p, the mean path length in the network 
dropped dramatically, resulting in a small world regime: 
highly clustered but low path lengths. Many real networks 
have been shown to have a small world architecture, 
including the internet, human acquaintance networks and 
real networks of neurons [4]. Theoretical work [6] has now 
shown the detailed relationship between the characteristics 
of such networks. 

Much is known about the effect of sparse connectivity on 
the standard Hopfield neural network, in particular Komlos 
and Paturi [7] show that the performance of the diluted 
Hopfield network can be charecterised by the size of the 
first two eigenvalues of the connection matrix. Some work 
has also been undertaken on diluted Hopfield networks with 
modular and small world connectivity [S, 81 

For the higher capacity version of the Hopfield network, 
trained using perceptron training much less is known about 
the effect of connectivity pattems. It was shown in [3] that 
capacity falls linearily with dilution and in [9] that structured 
local connectivity could help in storing locally correlated 
data. 

Ill.  NETWORK MODEL 

All the high capacity models studied here are 
modifications to the standard Hopfield network. The net 
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input, or local field, of a unit, is given by: hi = 2 w i g j  

where S (21) is the current state and wv is the weight on 
the connection from unit j to unit i. The dynamics of the 
network is given by the standard update: SI = @ ( h i ) ,  where 
0 is the heaviside function. Unit states may be updated 
synchronously or asynchronously. Here we use 
asynchronous, random order updates. A symmetric weight 
matrix and asynchronous updates ensures that the network 
will evolve to a fixed point. I f  a training pattem gv is one 
of these fixed points then it is successfully stored, and is said 
to be a fundamental memory. A network state is stable if, 
and only if, all the local fields are of the same sign as their 
corresponding unit, equivalently the aligned local fields, 
h i s i ,  should be positive. 

We examine sparse networks with both small world 
connectivity and random connectivity. 

For the small world networks the network topology is 
similar to the original Watts and Strogatz model. We start 
with a N-ring regular lattice, with each unit connected to its 
k nearest neighbours, and then rewire with probability p. 
However a network of perceptrons is not necessarily 
constrained to have symmetric connections so we can 
generalize the network to a weighted directed graph (as is 
the case for real neural networks). We examine both 
rewiring possibilities, firstly where symmetry is maintained 
and secondly when it is not. In both cases the overall level 
of connectivity is kept equal. For purposes of comparison 
we also investigate networks with random, diluted 
connectivity, again with both symmetric and non-symmetric 
connections. 

The networks are trained using two variants of the normal 
perceptron training rule. The non-symmetric learning (NSL) 
[ I ]  algorithm is: 

Begin w i t h  z e r o  w e i g h t s  
Repeat u n t i l  a l l  local  f i e l d s  are correct 

j . i  

Set  s t a t e  of network t o  one of t h e  6' 
For each u n i t ,  i, i n  t u r n :  

Ca lcu la t e  h P f P .  I f  t h i s  is  less t h a n  T 
t h e n  change t h e  w e i g h t s  t o  u n i t  i 
according to:  

V j # i  wk=wv+-  5%; 
N 

Where sp denotes the training patterns, and T is the 

leaming threshold which here has the value of IO. All 
weights on removed connections are fixed at zero 
throughout. 

And for the symmetric version (SL) the weight update is: 

Of course a network with N on-Symmetric-Connectivity 
(NSC) must be trained using NSL, but a symmetric network 
can reasonably he trained using either version of the leaming 
rule. We denote networks with Symmetric-Connectivity 
(SC) graphs, trained symmetrically and non-symmetrically, 
as SC-SL and SC-NSL respectively. NSC-NSL denotes 
networks with non-symmetric connectivity and non- 
symmetric leaming. Table 1 summarises the three types of 
network. 

TABLE I :  
THETYPESOFNETWORK CONNECTIVITY AND LEARNING RULE 

Name Connection Matrix Learning Rule 
NSC-NSL Non-Symmetric Non-Symmetric 
SC-NSL Symmetric Non-Symmetric 
sc -SL Symmetric Symmetric 

f v .  GRAPH THEORETIC QUALITY OF THE SMALL WORLD 
NETWORK 

For the diluted, standard Hopfield model the capacity and 
pattern completion capability can be predicted from the 
relative size of the first two eigenvalues of the connection 
matrix [7]. The larger the difference the better the network 
would perform. If, for example, both eigenvalues have the 
same value then the network separates into two disconnected 
sub-graphs. In the standard fully connected Hopfield net it 
is the loading of the network, a, that determines the 
performance of the network [IO]. Komlos and Pa& show 

that for regular connectivity graphs the parameter: a + - 
plays an analogous role to that of a in fully connected 
Hopfield networks, where 4 and 4 are the first and 
second largest eigenvalues of the connection matrix. 

4 
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Figure 1: A 100 unit small world network. with k = IO. The ratio of the 
first two eigenvalues of the connection matrix is plotted as the rewiring 
probabiliry, p. increases. Averages over 10 networks are given. 
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Figure 1 shows that for the locally connected network, p = 
0.0, the first two eigenvalues are almost the same, implying 
that network is almost disconnected. The difference 
between the two eigenvalues does increase as the network is 
rewired, implying that the performance of the network 
should improve as  p increases. Interestingly this 
improvement does not continue past p = 0.6. 

To illustrate the potential benefits of the small world 
architecture, the ratio of total wiring in the small world 
network to the total wiring in a random network, with the 
same number of connections, is s h o w  in Figure 2. 

LIL-nndOm 
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Figure 2: The fraction of total wiring when comparing the 500, unit k = 38 
small world nerworks with random networks with the same number of total 
connections 

V. PERFORMANCE MEASURE 

We are interested in how well the small world networks 
and random networks, trained using the various perceptron 
style learning N k S  described above, perform as associative 
memories. The capacity of such networks is determined by 
the number of incoming connections (K) that each 
perceptron has. For random pattern sets a perceptron can 
leam up to 2K patterns [IO]. Assuming roughly regular 
connectivity graphs (as is the case here) the capacity will be 
determined by the level of dilution and not the specific 
pattern of connections, and hence is not subject to empirical 
investigation. 

We use, R, the normalised mean radius of the basins of 
attraction, as a measure of attractor performance in these 
networks. It is defined as: 

R -  ((2)) 
where mo is the minimum overlap an initial state must 

have with a fundamental memory for the network to 
converge on that fundamental memory, and m, is the largest 
overlap of the initial state with the rest of the fundamental 
memories. The angled braces denote a double average over 
sets of training patterns and initial states. Details of the 

algorithm used can be found in [3]. A value of R = I implies 
perfect performance and a value of R = 0 implies no pattem 
correction. 

For small world networks a further refinement of this 
basic measure is of interest. With predominantly local 
connections it is particularly difficult for a small world 
network to correct patterns in which the errors are 
contiguous [ 1 I]. We therefore also measure R.o.ti&ou in 
which all initial states contain only contiguous patterns of 
error. 

The final measure we report is the symmetry of the 

trained weights. This is evaluated as: U ='.I . For a 
p , w ,  

1 w:, 
i. j 

symmetric matrix this takes the value + I .  For an anti- 
symmetric matrix it takes the value -1 and for a random set 
of weights it will be roughly zero. 

VI. RESULTS 

A .  Small World Regime 
Here 500 unit networks were arranged in a ring, as 

described earlier.' Experiments were conducted using two 
different network configurations. Firstly initializing the 
network with each unit connected to its k = 38 nearest 
neighbours, and a training set of 12 random, unbiased 
patterns. The second configuration had k = 76 and a training 
set of 24 patterns. Each network type was then rewired with 
varying rewiring probabilities p. For the networks with non- 
symmetric connectivity, NSC, the rewiring was non- 
symmetric. For both network types with symmetric 
connectivity, symmetry was maintained in the rewiring. 
However in all cases the total number of connections was 
maintained across network types, for a specific value of p. 
As described earlier it is interesting to measure the 
performance of these networks at pattern correction for both 
contiguous and non-contiguous domains of enor: both Rand 
R.~~ , i ro .~  are reported. Figure 3 shows the R values for the k 
= 38 networks. 

The first point of interest is the poor performance of. the 
networks with only local connectivity, p = 0. This should 
not be surprising - as seen in Section 111 such networks are 
almost disconnected. As p increases so does the 
performance of the networks with non-symmetric weights. 
When p = 0.4 both NSL networks are performing perfectly. 
The network with symmetric weights, SC-SL however 
performs poorly across the full range of p values. 

Figure 4 shows the performance of the networks at 
correcting contiguous domains of error. Up to p = 0.3 all the 
networks perform very poorly. Then first NSC-NSL and 
later SC-NSL show a rapid jump in performance. At p = 0.4 
NSC-NSL is correcting even these patterns perfectly 

.. 

179 



1 ~ 

J , , , , , , ,  1 
0 001 0.1 0.1, 0.2 0.u 0.3 0.35 11.4 0 O D  0.1 0.1, 0 1  0.25 0.3 0.3s 0.4 

P 

Figure 3: 500 unit small world network, k = 38 and a training set of 12 
panems. Results are averages over 5 NOS at each value of the rewiring 
parameter, p. R values ofthe three different types of network are shown. 

Figure 5 :  500 unit small world network, k = 76 and a training set of 24 
partems. Results are averages over 5 mns at each value of the rewiring 
parameter, p. R values ofthe three different ripes of nehvork are shown. 

0 0.M 0.1 0.15 0.1 0.u 0.3 0.35 0.4 

Figure 4 500 unit small world network, k = 38 and a training set of 12 
panems. Results are averages over 5 N ~ S  at each value of the rewiring 
parameter. p. L~~ V ~ I U ~ S  of the three different types of network are 
shown. shown. 

Figures 5 and 6 show the results when both the loading and 
level of connectivity are doubled, so that 24 patterns are 
stored in networks with k = 76. The general pattern of 
performance is repeated, with the pattern correction ability 
of the non-symmetric learning networks both correcting 
contiguous errors perfectly with p = 0.4. The performance 
difference between SL and NSL is however not as great in 
this case, suggesting that higher levels of connectivity are 
not as detrimental to SL. 

Figure 6 :  500 unit Small world network. k = 76 and a training set of 24 
panems. Results are average over 5 mns at each value of the rewiring 
parameter, P- &tirmar values if the three different types ofnetwork are 

B. Random Connectiviry 
The results in the previous section suggest that at high 

rates of dilution, symmetric weights do not give good 
performance, but symmetric connectivity is not a problem. 
To investigate this phenomena more thoroughly a set of 
experiments were performed on the simpler randomly 
connected diluted networks. 
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increases. It is also noteworthy that the NSC-NSL network 
still performs well with low levels of weight symmetry (for 
example the 10 training pattern, 0.6 dilution, R value of 
0.907). 
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Figure 7: Random diluted networks, each network is 100 units and is mined 
with IO random panems. Results are averages of50 mm 81 each rate of 
dilution. Above the R values and below the weight symmetry. 

Figures 7 and 8 show the performance of the three types 
of diluted network described earlier. Note that for random 
networks there will be no difference between the normal R 
measure and R.o.,ip.o... At both loadings R values eventually 
decrease as dilution increases. At high rates of dilution it is 
apparent that SC-SL networks have much lower R values 
than the other two types. It is interesting that SC-NSL and 
NSC-NSL have similar performance, suggesting that it is the 
imposition of symmetric weights in SC-SL that causes the 
relatively poor performance at high dilution rates. 

It is known [3] that for fully connected networks NSL 
produces very symmetric weights. However the symmetry 
results show that both non-symmetric learning rules produce 
increasingly less symmetric weights as the dilution 

0.1 0.1 . 0.1 0.4 aJ 
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Figure 8: Random diluted networks, each network is 100 units and is 
trained with 30 random panems. Results arc averages of 50 mns at each 
rate ofdilution. Above the R values and below the weight symmelry. 

VI I DISCUSSION 

Associative memories built from small world networks 
are attractive because they have lower mean wiring cost 
than an equivalent random network. They also 
correspond more closely to real biological neural 
networks. It has been shown here that small world 
networks of perceptrons can perform very well with a 
suitable level of rewiring, and are even capable of 
correcting contiguous patterns of error. The exceptions to 
this result were small world networks that adhered to strict 
weight symmetry, namely symmetric connectivity and 
symmetric weights. However the constraint of symmetric 



connectivity alone did not hamper the networks [I I ]  A. J. Noest, "Domains in Neural Networks with Restricted- 
Range Interactions," Physical Review Leners, vol. 63, 1989. performance in a major way. 

In order to investigate the role of symmetry more fully 
networks with non-structured dilute connectivity were 
examined. These networks confirmed the results from the 
small world networks. At very high levels of dilution the 
performance of the strictlysymmetric network was much 
worse than that of either of the other non-symmetric 
models. Interestingly the symmetrically connected 
networks with the non-symmetric learning rule became 
progressively less symmetric as dilution-increased. 
These results also raise a more general question about the 
role of symmetry in this type of model. Of course in the 
canonical Hopfield network the weights are symmetric, 
and this is sufficient to guarantee point attractors under 
asynchronous dynamics [IO]. Here the networks without 
a symmetry constraint become highly non-symmetric at 
high rates of dilution hut the convergence behavior is not 
disturbed. Further theoretical or empirical work is needed 
to explain the dynamic behaviour of these perceptron 
based networks with non-symmetric weights. Another 
issue that we have not been able to pursue, as yet, is the 
relationship between the connectivity level, the loading of 
the network, and the value of rewiring parameter, p. at 
which good attractor performance is restored. 
Ultimately the most interesting question that this type of 
model raises is: what is the optimal pattern of connectivity 
to maximize performance and minimize wiring cost? The 
answer to this could throw light on the connectivity 
panem in real neural networks. 
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