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Abstract: A Flexible Manufacturing System (FMS) is an application of modern 

manufacturing techniques. Like other manufacturing equipment, the success of a FMS is very 

much dependent upon its trouble-free operation. It is crucial to monitor all the possible faults 

or abnormalities in real time and when a fault is detected, to react quickly in order to maintain 

the productivity of the FMS. Because of the FMS’s complexity, the functionally complete 

diagnosis of a FMS should be based on all the available information and various advanced 

diagnostic techniques so as to get a satisfactory result. This paper proposes a systematic 

approach to fault diagnosis of FMS’s integrating condition monitoring, fault diagnosis and 

maintenance planning. An intelligent integrated fault diagnosis system is designed with a 

modular and reconfigurable structure. The implementation of the integrated diagnosis system 

is presented in detail. The system can monitor the major conditions and diagnose the major 

faults of a FMS, and give corresponding maintenance planning as well. The developed system 

has been applied to an existing FFS-1500-2 FMS in Zhengzhou Textile Machinery Plant and 

has achieved good results. 
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1. INTRODUCTION 

With the development of modern manufacturing technology, Flexible Manufacturing Systems 

(FMS) have become key equipment in factory automation. This kind of manufacturing 

equipment is being more and more widely used because of its potential to improve the 

strategic and competitive position of firms. However, such manufacturing equipment is very 

dependent upon the trouble-free operation of all its component parts. When a fault occurs, it is 

critical to isolate the causes as rapidly as possible and to take appropriate maintenance action. 

Typically, when a FMS goes down, only a small fraction of the downtime is spent repairing 

the machine that causes the fault. Up to 80% of the downtime is spent locating the source of 

the fault [1]. For this reason, corresponding diagnostic techniques and systems are studied 

extensively with the application and dissemination of FMS’s. 

Many diagnostic techniques and systems appear to have been reported in literatures on 

diagnosis of FMS’s. Toguyeni proposes some reasoning mechanisms for the implementation 

of an on-line diagnostic system [2]. These mechanisms are based on a distributed processing 

of symptoms that enables the problem of the real-time constraint to be solved. Cheng 

proposes a model-based approach for automating the fault diagnosis process of a FMS [3]. 

The approach utilises a fuzzy digraph coupled with worst-first search reasoning for tracing 

root causes of a system faults. Weck describes several aspects of an on-line integration of a 

knowledge based diagnostic system in a hierarchical automation structure of a FMS [4]. 

DeBonneval presents a hierarchical and modular structure for real-time control of FMS’s 

integrating monitoring of process failures [5]. Modularity is obtained by using a basic 

component – the module – to build the control system. Chang proposes an integrated quality 

diagnosis approach which models a manufacturing process using Object-Orient Programming 

(OOP) techniques and imbeds the dynamic shop floor information in the OOP model [6]. The 

approach alleviates the burden of storing massive diagnostic information for all the parts in a 
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FMS environment. Milacic developed a model of an expert system for the conceptual 

diagnosis and maintenance of FMS mechanical systems [7]. Wu presents an approach for 

dealing with several critical issues that arise in performing the three activities of an error 

recovery module: error classification, error knowledge representation, and generation of 

recovery procedures [8]. Especially the execution errors occurring in a manufacturing system 

are emphasised. Kuo proposes the Coloured Timed Petri Net (CTPN) based Statistical 

Process Control (SPC) and fault diagnosis models to model the FMSs’ SPC and fault 

diagnosis behaviours [9]. Ye developed a highly integrated system integrating neural 

networks with a procedural decision making algorithm to implement hypothesis–test cycles of 

a system diagnosis on tested fault events [10]. 

All available diagnostic techniques as well as systematic approaches have their drawbacks, all 

are not absolute and there is a plea for the effective integration of condition monitoring and 

fault diagnosis, making full use of all the available diagnostic information and knowledge. In 

addition, in order that it can be generally used and easily transplanted so as to be convenient 

to disseminate and develop, the designed diagnosis system should have the following 

characteristics and functions: 

 modular, expandable and reconfigurable structure; 

 able to measure and process a large amount of analogue and digital signals; 

 able to make complex multi-parameter decision; 

 with on-line and real time interfaces to the FMS controllers; 

The integrated fault diagnosis system presented in this paper is designed and developed to 

meet this need. 

 

2. A TYPICAL FMS 

A FMS mainly consists of seven component parts: tool system, automated production system 

(machine tool), material transportation system, load/unload station, computer control and 
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management system, and interface. All these parts are interdependent, interrelated and 

interactive. They complete different tasks respectively so as to achieve the functions of the 

FMS. These component parts and their interrelationships are shown in Figure 1. 

In order to obtain the optimal operation performance and the biggest economic benefits, all 

the component parts should be well combined and co-ordinated. Meanwhile, the whole 

system should be highly flexible and automated. Therefore, among these component parts the 

computer control and management system is the most important, which has close links with 

the system diagnostics. The hardware of the control and management system of a FMS is 

generally in the form of three levels, a reference model of which is shown in Figure 2. 

In Figure 2, the material flow controller and the machine tool controller are usually 

implemented by Computer Numerical Controller (CNC) and Programmable Logical 

Controller (PLC), which directly control machine tools and material transportation system as 

well as load/unload stations to perform the I/O functions of the whole system. CNC/PLC can 

exchange feedback and other information with the computer at the upper level. The control 

level computer distributes the data from the central computer to every CNC and transportation 

device, and co-ordinates their operation. It can also be used to analyze and evaluate the 

production status of each machine tool, and produce commands to revise control parameters. 

The central computer is used to compile source files of part programs into objective files, and 

is responsible for management, control, making report forms and recording historical data, 

etc. Thus it can be seen that, the control information is very important to the system 

diagnostics. 

 

3. MONITORING AND DIAGNOSTIC TASKS OF FMS’s 

Like the diagnosis of other manufacturing equipment, fault diagnosis of FMS’s means a group 

of special control functions, namely: 

 observation of the machine and process condition using on-line sensors; 
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 recognition of any incorrect event; 

 making decisions on the necessary control action; 

 analysis of the diagnostic information; 

 display and storage of the fault information for maintenance planning and scheduling. 

The fundamental task of a FMS is to realize the relative motions among the work piece and 

the cutting tool and the auxiliary mechanisms setting out the geometric and technological data 

of a part program [11]. These motions are previously planned by the programmer. An 

unexpected and catastrophic change of the condition may indicate a machine or process fault.  

In general, correct operational behaviour of a FMS may be characterized by a series of state 

transitions of the equipment used during the manufacturing of a product [12]. These state 

transitions occur because of the proper functioning of causal agents responsible for the 

transitions. The state is characterized by discrete and continuous variables. 

Discrete state variables are not only binary or digital control signals but also the signals from 

switching sensors observing the motion of auxiliary and positioning mechanisms. The error-

free cycle of these mechanisms is the foundation of automatic operation. The monitoring and 

diagnostic tasks based on discrete variables are: 

 monitoring and diagnosis of the CNC functions; 

 monitoring and diagnosis of the integrated PLC; 

 supervision of the correct schedule of the cycling operating mechanisms. 

Continuous state variables are the sensor signals measuring the physical state of the machine 

or process. The monitoring and diagnostic tasks based on continuous state variables are: 

 monitoring and diagnosis of machining operation; 

 indirect monitoring and diagnosis of the most important mechanisms and functional 

elements of the FMS; 

 monitoring and diagnosis of the tools’ cutting features. 



 6 

In addition, in order to realise the fault diagnosis of FMS’s, the following aspects should be 

taken into consideration: 

 FMS structure, principle and functions; 

 FMS fault mechanisms and regularity of occurrence; 

 the relationship between FMS operating state parameters and process state variables. 

When diagnosing a specific FMS fault, besides the monitored process status, we should also 

have some knowledge about what is normal, what is abnormal and how a system fault affects 

its operation [13]. Meanwhile, in order to automate the diagnosis process, design of an 

automatic diagnosis system instead of artificial diagnosis is necessary. According to the FMS 

monitoring and diagnostic tasks, the designed system should be able to diagnose: 

 main process related mechanisms (gearbox, spindle motor, spindle bearing); 

 feed process related mechanisms (feed drive devices, servo loop, motion coding devices); 

 auxiliary mechanisms (pallet exchange, tool exchange, cooling system, lubricating 

system); 

 materials transportation system; 

 control system including CNC, PLC and main control system. 

 

4. DESIGN OF THE INTEGRATED DIAGNOSIS SYSTEM 

It is necessary to design new, more complex and powerful monitoring and diagnosis systems, 

due to the rapid development of hardware and software tools and the continuously increasing 

demands of the industry [14]. The vast majority of FMS’s has automatic monitoring available 

for faults characterized by discrete state signals in their controllers. These discrete state 

signals indicate the machine operating state, by which further diagnosis can be carried out. 

These signals can be obtained directly by using an on-line linkage between the controllers and 

the monitoring and diagnostic system computer (this can also be carried out via several 

information-technical levels using local area networks). 
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However, there is little evidence that the process conditions are continuously monitored inside 

FMS’s. Those continuous state variables must be acquired by designing a data acquisition 

system outside the FMS’s. Hence, the hardware of the integrated monitoring and diagnosis 

system with a modular structure is designed as shown in Figure 3. 

In order to automate the condition monitoring and fault diagnosis, artificial intelligence, in 

particular an expert system, is often used. However, a highly automated and integrated FMS 

is an integration of very complex machinery and an equally complex computer system. This is 

limited to not only mechanical parts, but also electronic, hydraulic, software and human 

elements as well. All these have different fault distributions. A traditional expert system is 

ineffective for this purpose. Therefore, there is a need for an integrated diagnosis expert 

system. 

Figure 4 shows the software block diagram of the monitoring and diagnosis system. This is an 

integrated diagnosis expert system also with a modular structure. A large distributed expert 

system is formed through the integration of several functional modules and the integration of 

numerical computation and symbolic reasoning, etc. Above these functional modules, there is 

a special module called a meta-module, which manages and co-ordinates and controls the 

whole integrated diagnosis system, calls relevant modules to complete corresponding tasks 

and provides a good environment for man-machine interaction. The models used are 

described further in [15] 

 

5. IMPLEMENTATION OF THE INTEGRATED DIAGNOSIS SYSTEM 

An integrated diagnosis system based on the above design has been developed for a FFS-

1500-2 FMS in Zhengzhou Textile Machinery Plant. The FMS has the construction and 

control and management system separately as in Figure 1 and Figure 2. In the diagnosis 

system, condition monitoring, database, knowledge base and reasoning engine are four major 

functional modules. The implementation of these modules is given in this section. 
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5.1 Condition monitoring 

Early condition monitoring systems relied on the sensing and processing of a single parameter 

by a single sensor [16]. This kind of monitoring strategy is simple and has poor usability and 

often brings about false or incomplete diagnosis. This single-sensor and single-parameter 

strategy is only suited for the monitoring of simple process with a single condition or 

infrequently changed conditions. 

The processes of FMS’s are complex and changeable. All parts associated with these 

processes are closely related to each other. The processes involve a large number of factors 

and the relationship between these factors and processes is very complex and to some extent 

is fuzzy. In these situations, traditional single-sensor and single-parameter monitoring 

strategies are not effective. Therefore, a fuzzy hybrid strategy with multiple sensors and 

multiple parameters must be used to extract multiple parameters from those important parts of 

the FMS. The hybrid analysis and judgement are then carried out so as to reach a significant 

conclusion from multiple parameters. 

 

5.1.1 Parameters monitored 

Considering the sensitivity and ease of acquisition, we chose to monitor power, vibration, 

temperature of the spindle, feed axes in three directions (X, Y, Z), and pressure of the 

hydraulic oil and pneumatic supply. In detail, the parameters are as follows: 

 Power related parameters: voltage (U), spindle drive motor current (Is), X-axis drive 

motor current (Ix), Y-axis drive motor current (Iy), Z-axis drive motor current (Iz). Power 

(P) is calculated by P=UI. 

 Vibration related parameters: accelerations of the spindle and the three feed axes (X-axis, 

Y-axis, Z-axis), each in three directions (X, Y, Z). 
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 Temperature parameters: temperature of the spindle motor (Ts), oil temperature in the 

spindle box (Tb), temperature of feed drive motors in three axes (Tx, Ty, Tz). 

 Pressure parameters: pressure of the pneumatic supply for clamping devices (Pc), pressure 

of the hydraulic oil for rotating devices (Pr), and pressure of the hydraulic oil for feed 

drives (Pf). 

 

5.1.2 Feature extraction 

In order to describe the operating state of the FMS, the monitoring system must be able to 

extract signals that indicate the essential features of its process status from many available 

parameters. A common and normalised feature extraction rule is adopted here, which is based 

on the classification of the signals into slowly changing signals and fast changing signals. For 

slowly changing signals, an energy related feature such as amplitude, variance or sum of 

squares is extracted, which is represented as E(k). For fast changing signals, two kinds of 

features are extracted. They are 

 a feature that indicates the instantaneous rate of change of the process status, represented 

as (k); 

 a feature that indicates the changing trend of the process status at the moment, represented 

as (k), such as energy, divergence, distributed matrix and average variance. 

Essentially (k) uses the status at a preceding time to check the status change at a later time. 

Suppose (k) and (k1) are parameters indicating the process status at time k and k1 

respectively, then 

(k)= (k)(k1)               (1) 

Generally speaking, (k) is related to the information at a certain number of preceding times. 

Suppose {x} is the array of signals to be checked, then 

(k)f{x(k), x(k1), , x(kn)}        (2) 
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(k1)=f{x(k1), x(k2), , x(kn1)}              (3) 

(k)= (k)(k1) = f{x(k), x(k1), , x(kn1)}         (4) 

If the representations of the common items in equations (2) and (3) are the same, i.e. they are 

not affected by time, then 

(k)=f{x(k), x(kn1)}               (5) 

The greater the relative status change is, the bigger (k) is. The machining centre is 

considered to have a significant event if the status change exceeds a fixed pre-set limit. 

The auto-regressive (AR) model for the self-adaptive Kalman wave-filter is suitable for the 

description of the signal features. Its adaptability is well suited to the principles of feature 

extraction. Therefore, it is used to describe the fast changing signal features. The AR model is 

k
t

k kkXX  )()(                (6) 

where (k)={a1, a2, , an} is the model parameter, X(k)={x(k1), x(k2), , x(kn)}
t
 is 

the sample array, and k is white noise when the average value is 0. 

Parameter estimation by the AR model is defined by 
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where P(k) is the co-variance matrix for parameter estimation, and w is the residual. 

Therefore, (k) can be calculated according to any of the following equations. 

)1()()(  kkk         (9) 

)1()()(  kPkPk       (10) 
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x  represents the norm of “x”. 

Another feature, (k), is described by variance. 
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Here the changing rate of variance is not chosen for (k), and the parameter estimation by 

AR model is not chosen for (k). This is because the process status can be represented more 

efficiently through different feature parameter composition, and integration of multiple 

parameters can be achieved. 

For those slowly changing signals, the feature is chosen to be 
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Parameters like current and voltage can also be processed using the same methods for rapidly 

changing signals. Their features are 
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where n is determined according to the sampling frequency and the cycle of revolution of 

every axis. It is usually less than the number of the measured signal points within a revolving 

cycle of a monitored part/component. This parameter as well as the order of the model can be 

adjusted during real-time monitoring. 

In addition, a normalised processing strategy is employed for state changes caused by the 

shape of the work-piece and the time sequence of the process. Because the time sequence of 

the abruptly occurring faults is much shorter than the usual process change, a normalised 

feature parameter (k) is introduced to process  further. 
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Thus for each monitored part/component, the extracted features include: U, (P), (P), 

(P), (I), (I), (I), (ax), (ax), (ax), (ay), (ay), (ay), (az), (az) (az) and T. In 

addition, the temperature feature Tb, and three pressure features Pc , Pr, Pf are also extracted. 

In total, 72 features (1744=72) are extracted in the monitoring system. 

 

5.2 Data acquisition 

The condition monitoring results described above are stored in the database for subsequent 

diagnosis use. These data form a major part of the database. The database is seen as a 

dynamic base that is generated and used by both monitoring and diagnosis. Besides the 

condition monitoring results, the database also contains other two kinds of fault data: signals 

from the controller (CNC/PLC) and the observed symptoms. Figure 5 shows a diagram of the 

data acquisition module. 

During diagnosis, a threshold τ is set for each kind of feature, which is obtained according to 

experience or multiple experiment results. If a feature is greater than or equal to the threshold, 

it is considered to be abnormal, i.e. 














i

i

i
f

f
f

            abnormal,

                normal,
    (19) 

The signals from the controllers include the machine operating status signals in the CNC and 

PLC input, output and flag signals. Fault symptoms are obtained from operation in the plant. 

The status of these controller signals as well as the observed symptoms is 0 or 1, which can be 

described by a binary function as 
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Specifically, for controller signals, the status 0 or 1 indicates the current operating state or 

position of the machine, while for observed symptoms, it indicates the existence of a 

symptom. If a status of a symptom is 1, it means there is a symptom, otherwise there is no 

such symptom. 

Taking the PFZ1500 flexible manufacturing cell (FMC), a production cell in a FFS-1500-2 

FMS as an example, we may have the following data: 

 Cm   signal in CNC. m is not fixed (depends on how many are needed). 

 Em.n  PLC input signal. m(0, 127), n(0, 7); 

 Am.n  PLC output signal. m(0, 127), n(0, 7); 

 Mm.n  PLC flag signal. m(0, 255), n(0, 7); 

 Fn  feature data extracted from condition monitoring. In our system, n=72. 

 Sn  observed symptom. n varies according to how many symptoms are observed. 

  

5.3 Knowledge acquisition and representation 

In a fault diagnosis expert system, fault data is the driver of the diagnostic process, while 

diagnostic knowledge is the grounds of the diagnosis. Only by combining them can the faults 

and fault reasons be explained. Like other diagnostic expert systems, this system uses two 

kinds of knowledge: physical knowledge and experiential knowledge. Physical knowledge is 

also called deep knowledge or principle knowledge. Experiential knowledge is the shallow 

knowledge or knowledge of experience. There is a large amount of principle knowledge on a 

FMS. Most of the experiential knowledge is on the basis of the principle knowledge about the 

machine, and explains the rough fault reasons according to the fault mechanisms. Experiential 

knowledge just provides optimized routes to the final diagnostic solution, but not the only 

route. Therefore, in our system we mainly acquire the principle knowledge, combined with 

auxiliary experiential knowledge acquisition. This not only reduces the difficulty in 

knowledge acquisition, but also makes knowledge representation more hierarchical. 
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In the FMS integrated diagnosis expert system, the diagnostic knowledge acquisition include 

the following methods: 

 Knowledge acquisition based on fault tree analysis: Firstly, the machine is decomposed 

into multiple functional modules. Secondly, a fault tree is built for each module. The top 

event in each tree is the most critical fault, even if it is unlikely to occur in practice. The 

fault trees are coded and saved into the respective knowledge bases. 

 Knowledge acquisition based on the control information and principles. This kind of 

knowledge is acquired from the control programs and relevant documents, electrical and 

hydraulic circuit drawings, etc. They are the description of the logical relationship 

between the electrical signals for the machine control processes and sequences. 

 Acquisition of condition monitoring knowledge which reflects the faults or abnormalities 

from the condition monitoring point of view. This kind of knowledge is obtained from the 

monitoring system designers and the domain experts, or summarized from long-term 

practical experience. This is used to find possible faults or the location of a fault. 

 Collection of expertise. This kind of knowledge is also experiential knowledge mainly 

about the diagnostic behaviour of knowledgeable engineers or domain experts. This may 

also be obtained from the diagnostic or repair records of maintenance personnel at the site. 

 In the design of the diagnostic knowledge base, one of the key problems is knowledge 

representation. In this system, the physical knowledge, i.e. the hierarchical diagnostic 

knowledge in the form of a fault tree, is represented as structures. The experiential knowledge 

and condition monitoring knowledge, as well as the causal knowledge between the symptoms 

and the faults are represented as independent facts or rules. This forms the hierarchy of 

diagnostic knowledge representation. 

The above knowledge acquisition and representation methods are not independent, but 

interrelated and combined with each other. After being coded this knowledge is stored in the 

knowledge base. Principle knowledge can help to determine the exact fault position and 
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explain the condition monitoring results. Experiential knowledge can help to rule out some 

fault classes and the possibility of some fault positions, determine a rough fault area and 

provide repair measures. The detailed knowledge acquisition and representation is described 

in Figure 6. 

 

5.4 Integrated diagnostic reasoning 

The reasoning engine is the kernel of the integrated diagnosis expert system. As mentioned in 

section 5.3, a diagnostic process is also the combination of fault data and diagnostic 

knowledge. It is the reasoning engine that performs the function of the combination. 

In order to realize integrated diagnosis and simulate the usual fault propagation process of the 

FMS, the diagnostic knowledge in knowledge bases is divided into three different levels from 

the reasoning point of view. They are functional knowledge (functional decomposition), 

principle knowledge (decomposition according to the operating principles) and experiential 

knowledge (experts’ or knowledgeable engineers’ experience). All the knowledge bases are in 

the form of a fault tree, i.e. a functional fault tree, a principle fault tree and an experiential 

fault or rule tree respectively. During the diagnosis of a fault, a human expert or maintenance 

engineer firstly locates the faulty functional modules using functional fault trees. He/she then 

uses the principle fault trees related to the faulty functional modules to find the rough fault 

causes, and lastly localizes the fault causes with the help of corresponding rule trees. The 

diagnostic reasoning process in the integrated system is carried out as described in Figure 7. 

In Figure 7, the diagnostic reasoning based on the functional fault tree and principle fault tree 

is performed using the strategy of breadth-first search combined with the failure probability of 

each node in the fault trees. Whether a node is faulty or not is determined by various signals 

in controllers and the logic relationship between these signals. Reasoning based on 

experiential knowledge or the rule tree is more complicated. For rules associated with 

machine or process condition, reasoning is performed with the help of condition monitoring 
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results, while for other rules, reasoning is performed as a sequential hypothesis-test cycle 

[17]. In the cycle, a cost-weighted entropy criterion is used to choose the next part of the rule 

tree to be activated. This entropy criterion helps to select the rule that gives the maximum 

fault discernment per unit cost in cases where multiple tests might be performed. 

Supposing Rkj is a node in the k-th level of the rule tree and Rk+1,1, Rk+1,2,, , Rk+1,m are nodes 

in the (k+1)-th level, the cost-weighted entropy of node Rkj can be calculated by the following 

equations: 

H= w P Pj j j

j

m

ln



1

        m  2     (21) 

where 

1wj  0,           Pj

j

m




1

=1     (22) 

The weighting factor, w, is a normalized cost, determined by the ratio between the actual cost 

of a measurement operation and the maximum of the set of measurement costs for all 

components at the current rule level. Pj is the probability with that Rk+1,j is the cause of Rki, 

under the condition that the test result of node Rki is known. Cost-weighted entropy is used to 

select and activate a part of the experiential knowledge base or rule tree. It selects the 

measurement that will give the most discernment at the lowest cost. That is to say, the entropy 

of the next rule to be tested must be the minimum. 

 

6. CASE STUDY 

The FFS-1500-2 FMS consists of a PFZ1500 FMC, a KBNG85 machining centre (MC) and 

an automatically guided vehicle (AGV). The PFZ1500 FMC is made up of some functional 

modules such as tool change, tool-head change, axis drive and hydraulic drive. The axis drive 

can also be divided into spindle drive, X-axis drive, Y-axis drive, and Z-axis drive. This 

decomposition is based on fault tree analysis.  
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On one occasion, the PFZ1500 FMC failed to work because of an unexpected fault. A 

diagnostic search of the integrated diagnosis system was conducted as shown in Figure 8. 

Depending on signals in the controllers and condition monitoring results, the first search 

through the functional knowledge base (functional fault tree) led to F33 (machining process), 

which was a terminal functional knowledge node. The principle knowledge base P11 (the 

principle knowledge base corresponding to F33) was activated at this point and another search 

through the principle knowledge base (principle fault tree) led to P32 (spindle motor), which 

is a terminal principle knowledge node. 

Then the experiential knowledge base (rule tree) R111 was activated and the cost-weighted 

entropy was computed for the R211 and R212 groups. The rule with minimum entropy (R311 

– mechanical parts) was firstly tested and maintenance personnel were then instructed to 

check the corresponding parts of the equipment. Nothing was found to be abnormal. Then the 

rule with second smallest entropy (R312 – motor temperature) was tested to be abnormal. So 

further diagnosis proceeded to the next level. The corresponding cost-weighted entropy was 

computed at this level. At this time the rule with the minimum entropy (R422 – cooling 

system) was firstly tested. In the end, the fault was found to be caused by a blocked cooling 

oil pipeline. The cooling system could not provide high enough pressure, which stalled the 

motor drive which led to the malfunction. In any case, the fault was located and the 

corresponding maintenance action was recommended. After clearing the pipeline in 

accordance with the prescribed action, the equipment returned to normal operation.  

When a diagnostic search proceeds to the lowest level, the rule with the minimum entropy 

will be tested first, and the rule with next smallest entropy will be tested second, and so on. If 

a rule at the bottom level shows a fault, then the diagnosis process terminates. Otherwise the 

system will check if other observed symptoms have been tested before backtracking within 

the functional and principle knowledge bases. 
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7. CONCLUSIONS 

The research described in this paper has introduced a systematic approach to integrated fault 

diagnosis of FMS’s. The designed system is an intelligent integrated system with a modular 

and reconfigurable structure The system is capable of the functions of condition monitoring, 

fault diagnosis, and maintenance planning. The system has been implemented on a FFS-1500-

2 FMS but its generic aspects can also be provided as a turn-key solution to other 

manufacturing equipment. 

Future work on this research will focus on refinement of the monitoring and diagnostic 

algorithm, improvement of the system design and implementation, and investigation of the 

potential for a learning strategy. It would be ideal to make the integrated system adapt to 

changes in various monitoring and diagnostic environments. Furthermore, in order to 

popularize the use of such a system and also to improve the efficiency of the system, it is 

important to identify a generic strategy/standard to host the integrated diagnosis expert system 

on the controllers of FMS’s. 
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Figure 4  The integrated diagnosis expert system 
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