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Abstract 

Sensory dysfunctions may underlie key characteristics in children with Autism Spectrum Disorders 

(ASD). The current study aimed to investigate auditory change detection in children with ASD in order to 

determine event-related potentials to meaningless and meaningful speech stimuli. 11 high functioning 

boys with a diagnosis of autism spectrum disorders (mean age = 13.0; SD = 1.08) and 11 typically 

developing boys (mean age = 13.7; SD = 1.5) participated in a mismatch negativity (MMN) paradigm. 

Results revealed that compared to TD controls, the children with ASD showed significantly reduced 

MMN responses to both words and pseudowords in the frontal regions of the brain and also a significant 

reduction in their activation for words in the Central Parietal regions. In order to test the relationship 

between sensory processing and auditory processing, children completed the Adult and Adolescent 

Sensory Profile.  As predicted, the children with ASD showed more extreme sensory behaviours and were 

significantly higher than their typically developing controls across three of the sensory quadrants (sensory 

sensitivity, low registration and sensory avoidance). Importantly, only auditory sensory sensitivity was 

able to account for the differences displayed for words in the frontal and central parietal regions when 

controlling for the effect of group, revealing an inverse relationship of the higher sensory sensitivity 

scores the less activation in response for words. We discuss how the expression of sensory behaviours in 

ASD may result in deficient neurophysiological mechanisms underlying automatic language processing. 

 

Keywords: EEG, Sensory behaviours, auditory processing, language 

 

Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children 

across the autism spectrum (Kellerman, Fan & Gorman, 2005; Nieto Del Rincόn, 2008; Samson, Mottron, Jemel, Belin & Ciacca, 

2006). Many of these children are reported to show a lack of response to sounds, an inability to interpret auditory stimuli, and an 

absence of orientation reflex to such stimuli.  These diminished responses to sound are often interpreted in the literature as 

hyposensitivity (e.g. lack of response to their name). In contrast, other children are reported as hypersensitive and show a 

heightened reactivity to seemingly meaningless stimuli (e.g. intense tantrum responses to the hum of a blender; Allen & 

Courchesne, 2001). Importantly, sensitivity to auditory stimuli in infancy has been shown to be a powerful predictor that a child 

would have a diagnosis of autism (Dahlgren & Gillberg, 1989), with both auditory hypersensitivity (Bettison, 1994; Gillberg & 

Coleman, 1996; Rimland & Edleson, 1995) and auditory unresponsiveness being reported in those who received an autism 

diagnosis (Baranek 1999; Ostering & Dawson, 1994; Wing, 1966). 

Atypicalities in the processing of auditory stimuli by individuals with ASD has also been shown in the way they react to 

non-speech stimuli compared to speech-like stimuli (Allen & Courchesne, 2001). Research has consistently found that individuals 

with autism not only perceive music well but also outperform their peers in pitch discrimination (Heaton, 2003, 2005; Heaton et 

al., 1998; Mottron et al., 2000; O’Riordan and Passetti, 2006) and in the perception of the detailed structure of segments of 

melodies (Bonnel et al., 2003). Therefore findings suggest that individuals with autism are able to successfully process certain 

types of complex nonverbal auditory input. This is in marked contrast to the deficits observed in their speech-like perception. For 

example, they have been shown to have particular difficulties processing speech in background noise, as demonstrated by high 

speech perception thresholds and poor temporal resolution and frequency selectivity (Alcantara, Weisblatt, Moore, & Bolton, 

2004). Deficits in processing speech prosody have also been observed (Kujala, Lepistö, Nieminen-von Wendt, Näätänen, 

Näätänen, 2005; McCann & Peppe, 2003). 

Autism may then be characterized by a speech-specific attentional deficit in orienting towards the ‘speechness’ quality of 

sounds, and correspondingly, an attentional bias towards non-speech information. Thus, one possible explanation for the pattern of 

behavioral findings that indicates co-occurring unimpaired musical and pitch perception, is that a general bias towards non-vocal 

information results in enhanced non-linguistic stimuli (Järvinen-Pasley, Pasley, & Heaton, 2008). Yet, it is unclear why 
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differences in auditory perception of speech and non-speech like stimuli occur given that speech prosody and music share 

significant acoustic features (Jarvinen-Päsley, Wallace, Ramus, Happé & Heaton, 2008). 

Deficient feature encoding in autism has often been cited alongside explanations of atypical sensory processing.  

Functionally, an individual must be able to select certain sensory inputs for enhanced processing while either filtering or 

suppressing others. Our attention system is not infinite and therefore to process sensory input effectively and efficiently, we need 

to select what we attend whilst ignoring other features. Children with ASD appear to have particular difficulties when requiring 

automatic attention, showing an inability to automatically shift their attention to changes in sounds failing outside of their 

attention spotlight unless they are specifically requested to redirect their attention (Dunn, Gomes & Gravel, 2008). It is therefore 

suggested, that the multi-flow of information is impaired in individuals with ASD and that this disruption in cortical 

communication underlies the inability to attend to their environment in a flexible and meaningful way (Marco, Hinkley, Hill, & 

Nagarajan, 2011). 

Consequences of abnormal automatic processing can be linked to many of the key characteristics observed in ASD, such as 

under-reactivity to sound and failing to notice important auditory information in the environment, in other words hyposensitivity. 

Automatic processing has also been linked specifically to language development, mainly semantic organization. If children with 

ASD are unable to automatically process information outside of their attention spotlight, likely results would be memorization of 

isolated facts of schemas but poor organization of semantic material, resulting in a weak understanding of the relationships among 

concepts. This idea is given further support by the many studies cited in the literature showing that abnormalities exist in semantic 

processing in ASD (e.g. Dunn & Bates, 2005; Toichi & Kamio, 2001). 

Within the auditory modality, attentional switch has typically been tested using a mismatch negativity (MMN) component 

of the auditory event-related potential (ERP). The MMN is elicited by any perceptible change in the auditory input even when the 

subject is not attending to sounds. Its amplitude and latency also closely correlate with the individual’s behavioural discrimination 

skills (Amenedo & Escera, 2000; Kujala et al., 2001; Novitski et al., 2004), making the MMN a feasible tool for evaluating sound-

discrimination abilities. Neural processing of speech and vocal sound, but not tonal and environmental sounds, has consistently 

been shown to be abnormal in individuals with autism relative to typically developing controls using the MMN paradigm 

(Čeponienė et al., 2003; Gervais et al., 2004). Children with ASD have been shown to have frontocentrally diminished N4 

response to standard speech but not to non-speech stimuli, indicating deficient speech-sound encoding (Lepistö et al., 2006). It is 

concluded that this might be due to the fact that enhanced low-level perceptual processing in ASD children negatively affects the 

perception of speech sounds at a higher processing level. This is further supported in a later study by Lepistö et al. (2008) showing 

the children with ASD to have enhanced MMNs for pitch changes irrespective of feature variations but not when the ASD 

children were processing phoneme-category changes.  These authors interpret this on the basis of impairments of phoneme 

discrimination in a speech-like context which requires abstracting invariant speech features from varying input. Thus enhanced 

pitch discrimination often associated with ASD may eradicate in the context of speech stimuli (Lepisto et al., 2006; 2008). 

Whilst there are conflicting findings reported for MMN amplitude in ASD, it is widely viewed that reduced MMN is 

observed in ASD when requiring passive responses. For example, Dunn, Gomes and Gravel (2008) carried out a study looking at 

automatic and active processing of simple stimuli using the MMN paradigm and found that amplitudes of MMN in children with 

autism was significantly smaller than in children with typical development (Seri et al., 1999; Kuhl et al., 2005). Only when 

children attended to the auditory stimuli did they show similar amplitudes to the typically developing children. Lepisto et al., 

(2005, 2006) also found smaller amplitudes in the autistic group compared to controls using a paradigm requiring passive 

responses.  

The present study aimed to test whether high functioning children with a diagnosis of ASD were impaired in auditory 

discrimination of speech sounds using an MMN paradigm with two types of deviants, words and pseudowords, compared to a 

matched group of typically developing children. This paradigm allows the recording of cortical responses to words and 

pseduowords in a constantly varying auditory environment, and is thus more similar to the discrimination challenges posed by 

natural speech. More specifically, this study aimed to assess whether a relationship existed between sensory behaviours and 

underlying brain activity for processing speech properties of acoustically matched stimuli.  Auditory discrimination of speech 

sounds has previously been shown to be abnormal in children with a diagnosis of ASD. However whilst several studies have 

considered differences between speech and non-speech stimuli, fewer studies have addressed the influence of semantic content of 

the stimuli using a MMN task. When considering that many children (and adults) with ASD have difficulties processing language, 

one could assume that this would be reflected in a reduction of MMN using real (meaningful) words and meaningless 

pseudowords. It was also predicted that if children with ASD demonstrate differences in their MMN, there would also be expected 

to show larger differences in their auditory sensory processing compared to typically developing controls. Importantly, it was 

anticipated that scores across these sensory measures may predict their responses to the deviants across the MMN auditory 

paradigm. 

Method 

Participants 

Children with Autism Spectrum Disorders (ASD) and typically developing control participants (TD) were recruited 

through local mainstream schools. Twelve children with a diagnosis of Autism Spectrum Disorders were recruited and took part in 

the study and were paid for their participation. However one child was female and was not included in the final analysis in order 

to match for gender.  Eleven boys aged 11-16 years with a diagnosis of Autism Spectrum Disorder—9 subjects with diagnosis 

“High Functioning Autism” and 2 with Asperger’s Syndrome—and 11 typically developing boys were included in the final 
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analysis. Their ages ranged from 11 years 1 month- 16 years (mean age = 13 years; SD = 1.08) in the ASD group and ages ranged 

from 11 years 11 months- 15years 8 months (mean age = 13.7 year; SD =1.5) in the control group. All children were native 

monolingual speakers of English. Their parents confirmed that partaking children did not suffer from any hearing problems or any 

other psychopathological or neurological disorders, and had not suffered from such a disease in the past. Children were matched 

for verbal and nonverbal IQ as well as for handedness (Oldfield, 1971). Details of participant characteristics are displayed in 

Table 1. 

Table 1. Psychometric data for ASD and TD children with differences between groups 

 Group Difference p value 

 ASD (N=11) TD (N=11) t (20)  

Age in years 13.0 (1.08) 13.7 (1.5) 1.37 .65 

Verbal IQ 100.9 (10.4) 99.7 (18.2) .75 .87 

Non verbal IQ 97.4 (12.7) 93.4 (12.8) .19 .21 

Laterality quotient 73.25 (13.6) 90.0 (6.32) 3.69 < .001 

Note: Standard Deviations are in parenthesis 

The Autism Diagnostic Observation Schedule Generic (ADOS-G; Lord et al., 2000) was carried out on the clinical group 

to confirm their diagnosis of autism and to gain additional information about their social and language patterns of behaviour. The 

ADOS-G was carried out by researchers trained to use it for research purposes. The protocol consists of a series of structured and 

semi-structured tasks that involve social interaction between the examiner and the participant. All ASD participants had an 

unambiguous clinical diagnosis of autistic disorder or Asperger’s syndrome according to DSM-IV criteria, and scored above 

threshold for ASD on the ADOS-G diagnostic algorithm. None had identifiable medical conditions underlying their ASD. 

Materials 

Clinical and behavioural data were collected from all children (ASD and TD groups) including the following measures: 

The Adolescent/Adult Sensory Profile Questionnaire (Brown & Dunn, 2002), the Edinburgh Handedness Questionnaire (Oldfield, 

1971), Nonverbal IQ based on the Ravens Matrices (Raven et al., 1992), and verbal IQ using the British Picture Vocabulary Scale 

(Dunn et al., 1997). 

The Adolescent/ Adult Sensory Profile (Brown & Dunn, 2002) is a 60 item self-reporting questionnaire which measures 

responses to sensory events in everyday life. Individuals complete the questionnaire by reporting how frequently they respond in 

the way described by each item using a 5 point Likert scale. A high score on that scale indicates a high level of sensory 

behaviours. The Sensory Profile Questionnaire includes four subscales:  Low Registration (passive behavioural responses such as 

missing stimuli or responding slowly), Sensation Seeking (active behavioural responses such as seeking items to identify 

responses and characteristics such as enjoyment, creativity, and the pursuit of sensory stimuli); both subscales reflecting a high 

neurological threshold for noticing and responding to stimuli. The other two subscales include Sensory Sensitivity (passive 

behavioural responses such as noticing behaviours, distractibility and discomfort with sensory stimuli) and Sensation Avoiding 

(passive behavioural responses such as noticing behaviours, distractibility and discomfort with sensory stimuli); both reflecting a 

low neurological threshold for noticing and responding to stimuli. Sensory sensitivity denotes a passive behavioural response to 

this neural over-responsiveness, whereas sensation avoiding denotes an active behavioural response of reducing and preventing 

exposure to sounds. 

The Edinburgh Handedness Questionnaire (Oldfield, 1971) was used to assess handedness and a laterality quotient was 

calculated for each participant. Whilst all participants were right handed, the mean handedness quotient was significantly reduced 

in the ASD group consistent with previous reports (Hauck & Dewey, 2001; McManus, Murray, Doyle & Baron-Cohen, 1992). 

Participants’ psychometric data are shown in Table 1. 

MMN Stimuli. The stimuli in the present study were identical to those previously used by Garagnani, Shtyrov, & 

Pulvermüller (2009). Digital recordings (sampling rate 44.1kHz) of a large sample of the items [baj], [paj], [bajt], [baip], [paip] 

and [pajt] spoken in random order by a female native English speaker were acquired in a soundproof room. From this set of 

stimuli we chose a pair of Consonant vowel (CV) syllables [baj] and [paj] and extracted the syllable-final phonemes [p] and [t]. 

The two chosen CV syllables had the same F0 frequency (272 Hz), and were carefully adjusted to have equal duration (330 ms) 

and average sound energy, or root-mean-square (RMS) power (−9.4 dB relative to the maximal amplitude allowed by the stimulus 

file format). The chosen samples of the critical phonemes [p], [t] had the same length (75 ms) and similar envelopes; their 

amplitudes were also normalized to match for Averaged RMS power (−36.6dB). 

The word deviants [bajt] (bite) and [pajp] (pipe) and pseudoword deviants [bajp] and [pajt] were obtained by cross-splicing 

the same recordings of the coda consonants [p], [t] onto both CV syllables [baj] and [paj]. This avoided differential coarticulation 

cues and minimized acoustic differences between the stimuli. The silent closure time between CV end and onset of the plosion of 

the final stop consonant was adjusted to a value typical for English unvoiced (80 ms) stops. The duration of the word and 

pseudoword deviants was 485 ms. 

For the analysis and generation of the acoustic stimuli, we used the CoolEdit 2000 program (Syntrillium Software Corp., 

AZ, USA). The stimuli were delivered at a comfortable hearing level through headphones and were controlled by a personal 

computer running E-prime software (Psychology Software Tools, Inc., Pittsburgh, PA, USA). 
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MMN Design 

The design was nearly identical to the one described by Garagnani et al. (2009) and used a multi-feature design. In this 

paradigm, the standard stimulus was presented in every second trial alternating with one out of 2 different deviant stimuli (pseudo-

random sequence). The MMN was recorded for two standard types ([bai], [pai]) and for two deviant types for each standard. CVC 

syllables ending in [p] or [t] were used as word and pseudoword stimuli. The overall percentage of standard and deviant stimuli 

for each condition was as follows: 60% standard stimuli (30% [baj] and 30%[pai]), 20% deviant CVC pseudowords (10% [baip] 

and 10% [pait], 20% CVC words (10% [bait], and 10% [paip]. 

The stimulus was presented in two blocks.  In each block one standard stimulus was presented 500 times and deviants were 

presented 125 times each. This provided a sequence of 625 stimuli per block which lasted approximately 15 min. Block order was 

counterbalanced between participants providing an overall duration of approximately 30 min of auditory stimulation. The stimulus 

onset asynchrony (SOA, delay between onsets of two consecutive stimuli) was 1000 ms.  All stimuli were presented to both ears 

simultaneously. 

Procedure 

After psychometric testing, children engaged in a mismatch negativity (MMN) task.  During the MMN task, children were 

seated comfortably in a video-controlled, electrically shielded and sound-proof chamber. The stimuli were presented via 

headphones placed on the children’s head. The children heard the stimuli as coming from the back midline space at an intensity of 

60dB while they were watching a silent movie of their choice. There were at least two breaks where children were offered 

refreshments. The overall duration of the experiment was 30 min. During the experiment, children were instructed to attend to a 

silent movie of their choice and to ignore the incoming acoustic stimuli.   

EEG recording 

Throughout the experiment, electrical brain activity was continuously recorded from 32head positions, using a 10-20 

system electrode cap (EASYCAP GmbH, Hersching, Germany, Figure 1). A 32-channel EEG amplifier system (Brainproducts, 

Munich, Germany) was used and electrodes were referenced to CPz during EEG data acquisition. Data were recorded with a 

sampling rate of 200 Hz and a bandpass from DC to 30 Hz. Impedances were kept below 5 kOhm. Data were recorded 

continuously and stored for off-line analysis. Horizontal and vertical electrooculogram (EOG) was recorded as two separate 

bipolar traces with respect to the EEG reference. 

Data Analysis 

Data Analysis was conducted using Brainproducts Brain Vision Analyzer 1 Software (Brainproducts Inc., Munich). Data 

analysis of each participant was digitally rereferenced to linked mastoids. EOG artefact correction was carried out using the 

Gratton, Coles & Donchin (1983) method. After correction of eye artefacts, trials were averaged separately for each participant 

and condition across trials. Trials containing artefacts with voltage variation above 100 microVolts were omitted. The average 

number of accepted trials for each deviant type was 159.51 (range 100 - 197, SD = 31.18) for the participants with ASD and 

162.00 (range 103 - 168, SD = 27.92) for the typically developing children. The average number of accepted trials for the standard 

stimuli was 796.64 (range 537– 978, SD = 162.97) for the ASD participants and 807.45 (range 541 –975, SD = 146.63) for the TD 

children. Stimulus-triggered event-related potentials (ERPs) starting at 100 ms before stimulus onset and ending 900 ms after 

onset were computed from the filtered data for each stimulus. ERPs were digitally filtered with a passband of 1.5-20 Hz and 

baseline corrected with respect to the 100 ms pre-stimulus period. 

Figure 1. Electrode Arrangement for Recording Showing Frontal region (Light Grey) and Centro-Parietal region (Dark Grey). 

 

 

The epochs of the stimulus blocks with standard stimulus /pai/ and those with /bai/ were combined.  Grand averages 

waveforms were formed for each stimulus type for both groups (Figures 2 and 3). Standard stimulus elicited P1, N1, and N4 
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deflections, which are typical for children at this age (Cepoiene et al., 2005; 2008; Kujala et al., 2010). These responses were 

identified from the group grand average waveform with the following time window: P1 as the maximum positive peak between 

100-150ms and N2 and N4 as the maximum negative peaks between 200-250ms and 300-400ms, respectively. Difference 

waveforms for each participant and for both groups were obtained for each deviant stimulus by subtracting the ERP elicited by the 

standard stimulus from that elicited by the deviant stimulus.  The MMN was identified as the negative peak in the grand average 

difference waveform within the time window.  All peaks were identified using the software’s maximum peak search function. 

Figure 2. MMN wave form for words 

 

Figure 3. MMN wave form for pseudowords 

 

Results 

Standard Stimuli Responses 

The standard responses [baj] and [paj] were averaged to create one single score for each of the two regions and the P1, N2 

and N4 waveform combinations. The waveforms analysed were selected based on visual inspection and the maximum peak 

reported by the software (Brainproducts Inc., Munich). The P1 peak was identified between 75 and 175 ms from onset. The N2 

region was identified as the wave ranging from 260 to 385 ms from onset. Finally, the N4 wave ranged from 435 to 515 ms from 

the onset of the stimuli (Figure 4). 

Figure 4. ERPs at 15 scalp sites for TD and ASD groups in response to standard stimulus presentation showing the frontal, central 

and parietal electrode positions. The Obligatory ERP waveform of P1-N2-N4 is clearly visible in both groups. 
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A two-tailed t-test revealed that all the responses in the ASD group were significantly different from zero in both regions 

(Table 2). For the TD group, the P1 responses in both regions were not significantly different from zero, whereas the N2 and N4 

amplitudes were significantly different from zero in both regions (Table 2). In order to compare differences between groups a 

repeated measures ANOVA with a 2 (Region: Frontal vs. CP, within participants) x 3 (Wave: P1 vs. N2 vs. N4, within 

participants) x 2 (Group: ASD vs. TD, between participants) was used. Results revealed a significant main effect of Region, F (1, 

20) = 41.30, MSE = .80, p < .001, η2
 = .67, showing overall larger amplitudes in the frontal region than in the CP region. A main 

effect of Wave was also present, F (2, 40) = 98.57, MSE = 5.64, p < .001, η2
 = .83, showing that the peak amplitudes in the three 

waves were significantly different from each other. The main effect of group was marginally significant, F (1, 20) = 3.16, MSE = 

12.46, p = .09, η2
 = .14, showing overall higher activation in the TD group than on the ASD group. The Wave x Region 

interaction was significant, F (2, 40) = 87.89, MSE = .20, p < .001, η2
 = .81, showing significantly larger amplitudes in the frontal 

region compared to the CP region for the tree waves but this effect was stronger in the N2 and N4 waves than on the P1 wave. The 

Wave x Group and the 3-way interactions resulted non-significant, F (2, 40) = 1.10, MSE = 5.64, p = .34, η2
 = .05 and F (2, 40) = 

2.18, MSE = .20, p = .13, η2
 = .10, respectively. 

Table 2. Mean and standard deviations of amplitudes in P1, N2 and N4 peak latencies by region (Frontal=FR and Centro-

Parietal=CP) and group. 

 TD ASD 

 FR t (10) CP t (10) FR t (10) CP t (10) 

P1 
0.85 

(2.34) 
1.21 

0.38 

(1.77) 
0.71 1.18 (1.43) 2.75* 0.77 (1.09) 2.34* 

N2 
-7.96 

(2.68) 
-9.84*** 

-5.7 

(1.74) 
-10.87*** -5.73 (2.85) -6.66*** -4.21 (2.22) -6.28*** 

N4 
-6.03 

(1.95) 
-10.24*** 

-4.26 

(1.76) 
-8.02*** -4.77 (2.19) -7.23*** -3.41 (1.74) -6.50*** 

Note: Standard deviations are in parenthesis. *** = p < .001, * = p < .05. t (10) values refer to the difference from 0 of latencies on 

each region. 

Differences in Sensory Processing 

All of the children in the study completed the Adolescence Sensory Profile (AASP, Brown & Dunn, 2002). The auditory 

sensory scores from the AASP were broken down into the four sensory quadrants of the profile: low registration (LR), sensory 

seeking (SSK), sensory sensitivity (SSN) and sensory avoidance (SA). In order to explore differences between the two groups a 2 

(Group: TD vs. ASD, between participants) x 4 (Profile: LR vs. SSK vs. SSN vs. SA, within participants) mixed model analysis of 

variance revealed a significant main effect of group, F (1, 20) = 35.25, MSE = 6.77, p < .001, η2
 = .64; and a non-significant main 

effect of Profile, F (3, 60) = 1.74, MSE = 4.04, p = .17, η2
 = .08. A significant interaction was also present, F (3, 60) = 3.83, MSE 

= 4.04, p < .05, η2
 = .16. Analysis comparing the groups on each quadrant revealed that the ASD group scored significantly higher 

than the TD group on Low Registration (t (20) = 5.11, p <.001), Sensory Sensitivity (t (20) = 2.30, p <.05) and Sensory Avoidance 

(t (20) = 5.81, p <.001). The difference between the groups on Sensory Seeking was not significant (t (20) = 1.59, p =.13). Means 

and standard deviations are in Table 3. 

Table 3. Mean and standard deviations of sensory profile and MMN amplitude responses in Frontal and Centro-parietal regions by 

group. 

 Sensory Profile Lexicality / Region 

 LR SSK SSN SA 
Words 

Frontal 

Pseudowords 

Frontal 

Words 

CP 

Pseudowords 

CP 

TD 
5.36 

(2.11) 

6.27 

(1.95) 

6.45 

(2.38) 

4.55 

(1.63) 

-3.81 

(2.15) 

-4.13 

(2.49) 

-2.15 

(1.64) 

-2.01 

(1.99) 

ASD 
10.18 

(2.32) 

7.45 

(1.51) 

9.18 

(3.12) 

9.00 

(1.95) 

-1.90 

(1.61) 

-1.80 

(1.75) 

-0.06 

(1.16) 

-0.92 

(1.03) 

Note: Standard deviations are in parenthesis. Low Registration = LR, Sensory seeking = SSK, Sensory Sensitivity=SSN, Sensory 

Avoidance = SA 

MMN Amplitude Responses 

Analysis of variance with a 2 (Region: Frontal vs. Centro parietal, within participants), x 2 (Lexicality: Words vs. 

Pseudowords, within participants) x 2 (Group: TD vs. ASD, between participants) revealed a significant main effect of Region, F 

(1, 20) = 60.13, MSE = .96, p <.001, η2
 = .75, revealing overall more activity in the frontal region than in the CP region. A main 

effect of group was also present F (1, 20) = 7.61, MSE = 9.93, p <.01, η2
 = .28, showing larger overall amplitudes in the TD group 

than the ASD group. The main effect of Lexicality, as well as the Lexicality x Region and Lexicality x Group were not significant 

(all F < 1.59, all p > .22). These interactions were qualified by a significant Region x Lexicality x Group interaction, F (1, 20) = 

6.41, MSE = .44, p <.05, η2
 = .24. Analysis of this interaction (Figure 5) revealed that the TD group showed significantly higher 

amplitudes than the ASD group for words (t (20) = 2.35, p < .05) and Pseudowords (t (20) = 2.54, p < .05), in the frontal region. 

However, the TD group showed significantly higher amplitudes than the ASD group in CP region only when processing words (t 

(20) = 3.45, p < .05), but not when processing Pseudowords (t (20) = 1.61, p = .12. 
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Figure 5. Mean Amplitude Responses by Lexicality, Region and Group 

 

Sensory processing and MMN amplitudes 

In order to identify whether auditory sensory processing moderated the differences in the way words and pseudowords 

were processed a regression analysis was performed using the four quadrants of the sensory profile as predictors of words and 

pseudowords in two separate analyses. The effect of group (coded 0 = TD, 1 = ASD) was also included as a predictor in order to 

control for the differences between groups. Results revealed that sensory sensitivity was the only quadrant of the sensory profile 

that influenced the processing of words, and none of the quadrants significantly predicted the processing of pseudowords (Table 

4). 

Table 4. Standardised regression coefficients of sensory profile and group predicting words and pseudowords by Region 

 Frontal Centro-Parietal 

 Words Pseudowords Words Pseudowords 

LR -.25 -.17 -.34 -.19 

SSK .01 .14 -.14 .04 

SSN .53* .15 .43
†
 .36 

SA -.43 -.29 -.23 -.30 

Group .75
†
 .73 .89* .54 

Note: * = p < .05. 
†
 = p < .08. 

 In addition, the effect of sensory sensitivity was significant on the frontal region and marginally significant on the CP 

region. In order to confirm this finding, a bootstrapping analysis with 5000 replacements and 95 % confidence intervals revealed 

that sensory sensitivity was the only significant predictor of words in the frontal region and a marginally significant predictor for 

words in the CP region. 

In order to identify whether auditory sensory processing moderated the differences in the way words and pseudowords 

were processed, a bootstrapping, single-step with multiple mediators technique was carried out using the procedure and macros 

provided by Preacher and Hayes (2008). The effect of the group (coded 0 = TD, 1 = ASD) was used as an independent predictor 

of words and pseudowords in separate analysis for each region, including the four quadrants of the sensory as mediators of this 

relationship. 

Results confirmed the significant effect of group on the LR, SSN and SA quadrants of the sensory profiles but not on the 

SSK quadrant (Figure 6). The analysis also revealed that ‘sensory sensitivity’ was the only quadrant that consistently predicted 

response amplitudes, and that this relationship was present only for words and not for pseudowords. The results also showed that 

the effect of sensory sensitivity was stronger in the frontal region. These results suggest that the inverse relationship between 

sensory sensitivity and amplitude responses is significant and stronger for words only in the frontal region. Although SSN was the 

only relevant predictor of words in both regions, results revealed that these effects were marginally different from 0 for words 

(both p < .10), and not significantly different from 0 for pseudowords (both p > .22). 

Discussion 

The current study investigated auditory processing in children with ASD in order to determine electrophysiological 

correlates of brain activity during automatic language processing. Results revealed children with ASD to show significantly 

reduced MMN amplitudes for speech like stimuli (both words and pseudowords) compared to the typically developing children. 

This effect was more marked between groups across the meaningful stimuli whereby children with ASD showed significantly 

reduced activation in both the frontal and central parietal regions for words but only differences in the frontal regions for 

pseduowords. 
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Figure 6. Multiple Mediation Model of Sensory Profile as mediator of the Group and Region/Lexicality combinations.
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incoming sounds of different intensity are regulated. Jones et al., (2009) discuss how an inability to modulate incoming intensity 

levels could lead to poorer discrimination ability (the results of a less finely tuned system), but could also mean that behaviour 

reactions to sounds are augmented due to a threshold mechanism that does not adequately filter or make sense of incoming stimuli 

(Bruneau, Bonnet-Brilhaulf, Gomet, Adrien & Barthèlèmy 2003; Brueau, Rout, Adrien & Barthèlèmy 1999). Alternatively 

children with ASD may have fewer resources allocated to attending incoming stimuli. A finding already demonstrated in children 

with sensory disorders (Davies, Chan & Gavin, 2010) 

Whilst the results of the current study are suggestive that auditory sensory sensitivity is particularly important in the 

auditory perception of speech-like stimuli, it is not clear whether the same affect would be observed in non-speech-like stimuli 

using a similar paradigm. Sensory behaviours are also highly correlated and consequently impact upon other sensory 

characteristics (Bettison, 1994; Gillberg & Coleman, 1996; Rimland & Edleson, 1995; Baranek 1999. Therefore given that the 

children with ASD reported significantly higher auditory sensory behaviours than the typically developing children across three of 

the sensory quadrants, future studies need to address the interaction between the different auditory sensory measures as well as 

considering the sensory behaviours across other sensory modalities. 

In sum, despite some of the limitations noted, the current study addresses an important question showing sensory 

behaviours may underlie differences in auditory perception of speech like stimuli in ASD. Specifically, lack of automatic attention 

to sounds in the environment may be a consequence of abnormal auditory processing in individuals with ASD. Therefore 

abnormal sensory behaviours could be considered a core deficit to the autistic disorder eventually leading to difficulties in 

processing language. Further studies are needed to uncover the neural mechanisms responding to sensory stimuli in ASD and their 

relationship to behavioural deficits. This will help to assist in a better understanding of the nature of the disorder and guide 

appropriate treatment for children with sensory abnormalities. 
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