
Relevant Information as a Formalised Approach to
Evaluate Game Mechanics

Christoph Salge
Department of Computer Science

University of Hertfordshire
Hatfield AL10 9AB

United Kingdom
Email: c.salge@herts.ac.uk

Tobias Mahlmann
IT University of Copenhagen

Center for Computer Games Research
2300 Copenhagen

Denmark
E-mail: tmah@itu.dk

Abstract—We present a new approach to use adaptive AI in
the game design process to aid evaluating of game mechanics.
During production, this is a crucial task to improve the player
satisfaction with a game title. The problem with automated game
evaluation via AI is the measurement of values that indicate the
quality of the game mechanics. We apply the Information Theory
based concept of “Relevant Information” to this problem and
argue that there is a relation between enjoyment related game-
play properties and Relevant Information. We also demonstrate,
with a simple game implementation, how an adaptive AI can be
used to approximate the Relevant Information, and how those
measurable numerical values related to certain game design
flaws.

Index Terms—AI and Games, Information Theory, Game
Development, Strategic Games

I. INTRODUCTION

A. Motivation

The development of a current, state of the art, computer
games has become a large financial enterprise, involving many
people and serious investment of money. This necessitates the
use of project management techniques, such as risk analysis
and quality control for all the components of a game. But while
certain aspects, such as graphics quality or code stability, are
somewhat straight forward to test, the evaluation of the actual
“game mechanics” of a computer game often poses a problem.

Not only is it difficult to actually define what makes good
game mechanics, but the common way of testing those, the
use of several human play testers, is cost intensive, slow, and
mingles the quality assessment of the game mechanics with
the quality assessment of several other aspects of the game.
Furthermore, play testing requires the game to have passed
through most of its initial development stages beforehand.

B. Related Work

An alternative is the use of an adaptive AI that plays and
evaluates the game mechanics. Already, there are several adap-
tive AI approaches, such as genetic algorithms [1], particle
swarm optimization [2], reinforcement learning [3] and neural
network s[4], [5], all aimed to create high performing AIs. But
the problem for AI in game design, as Yannakakis [6] points
out, is not to create a good AI, but one that is enjoyable to

play against, and one that can be used to improve the game
itself.

AI aided game balancing [7], [8] is a good step towards au-
tomated game improvement. A more general approach would
be to have an AI play the game then evaluate how much
“fun the AI had”. One approach here [9] is the application
of the theory of Artificial Curiosity. A more empirical way
to approach this goal would be to model an AI after actual
neurological and physiological data, to simulate the emotions
of a real player [10]. Another approach would be to observe
an adaptive AI as it plays the game and analyse the resulting
strategies in regard to exploits and other game play flaws
[11]. But again, this currently requires a human analysis of
the strategies to evaluate how much fun they would be for a
real human.

C. Overview

In this paper we apply the Information Theory [12] based
concept of “Relevant Information” [13], [14] to this problem.
First, we will give a short introduction to Information Theory,
explain “Mutual Information” and how to apply it to games
to calculate their Relevant Information. Then we argue that
Relevant Information is a numerical value that corresponds to
enjoyment related game-play properties. We will then demon-
strate, for a simple, turn based, strategy game, how Relevant
Information can be approximated by gathering statistical data
from an adaptive, genetic algorithm driven, neural network.
This data is then used through several scenarios to detect game
play flaws, and adapt the game mechanics.

II. INFORMATION THEORY

Information Theory [12], [15] can be used to study the
properties of random variables. If a random variable X can
assume the states x, and P (X = x) is the probability for X
to assume the specific state x, we can define a measure H(X)
called entropy as:

H(X) = −
∑

x

P (X = x) · log(P (X = x))

This is often described as the uncertainty about the outcome
of X , or the average expected surprise, or else the information

S A

R

Strategy

Game

Player

Fig. 1. A causal Bayesian network depicting the abstract model of player
game interaction.

gained if one was to observe the state of X , without having
prior knowledge about X . The entropy has a number of im-
portant properties. Among other, the a priori uncertainty (i.e.
entropy) is larger if the outcomes are more evenly distributed
than if the outcomes are more concentrated on a particular
value in other words, concentrated values are easier to predict
than if uniformly spread ones.

Consider two jointly distributed random variables, X and
Y ; then we can calculate the conditional entropy of X given
a particular outcome Y = y as:

H(X|Y = y)−
∑

x

P (X = x|Y = y)·log(P (X = x|Y = y))

This can also be generalized to the entropy of X , given Y in
general, averaged over all possible outcomes of Y :

H(X|Y) = −
∑

y

P (Y = y)
∑

x

(P (X = x|Y = y)

·log(P (X = x|Y = y))

This is the entropy of X that remains if Y is known.
Consider here H(X) and H(X|Y), the entropy of X before
and after we learn the state of Y . Thus, their difference is the
amount of information we can learn about X by knowing Y .
Subtracting one from the other, we get a value called mutual
information:

I(X; Y) = H(X)−H(X|Y)

The mutual information is symmetrical [15] and measures, in
bits, the amount of information one random variable contains
about another (and vice versa, by symmetry). This quantity
will be of central importance in the following argument.

A. Game Player Interaction Model

In order to apply Information Theory to a specific game we
model the interaction between the game and the player with a
“Causal Bayesian Network” [16], as seen in Fig. 1. Since we
are dealing with a computer game it should be no problem
to assign discrete values to the parameters that describe
the current state of the game. The actual causal Bayesian
network now consists of compound random variables. S and

A represent the user interface. A corresponds to the action
the player chooses, its state space are the available actions for
the player. S corresponds to the sensor input of the player.
The state s of S is the state of the game world as shown to
the player. R represents the rest of the parameters that are
needed to describe the current state of the game. The arrows
denote the causal relations between those nodes as defined in
[16]. This indicates that everything that influences a state of a
variable either has a arrow pointing to that variable, or does
so through another variable. The game thereby if fully defined
by A, S,R, the causal relations from A to R and from R to
S. In addition we assume that there is a function that assigns
a performance value (like winning or losing, or points) to R.
The player, or the agent playing the game, determines the
conditional probability P (A|S), which we will call a strategy.
This probability determines what actions are chosen depending
on the sensor input of the player.

For our arguments we assume that the agent can see all of
the world, and therefore R equals S. This also makes agent
memory, which would record information about the game state
that cannot be observed every round, obsolete.

B. Relevant Information

Relevant Information is a formalism based on mutual infor-
mation. It measures how much information an agent needs to
obtain from the environment to determine its optimal strategy.
We will adapt its definition for the previously introduced game
player interaction model. Are more general definition can be
found in [13].

Given that the game has a utility function that determines
the performance of the player in regard to the state of the
game R then there exists one, or several strategies P (A|S),
that result in the highest expected utility. We will call those
strategies the optimal strategies.

Relevant Information is defined as the (minimal) amount of
information the agent needs to acquire to be able to realise
one of its optimal strategies. For a given strategy the amount
of information that is needed about R to chose the state of
A can be measured by the mutual information I(A; R), or
I(A; S) if we assume that the sensor state and the state of the
environment are identical. The Relevant Information for the
system is therefore defined as the mutual information of the
optimal strategy with the lowest mutual information. See Fig.
2 for some examples. If S and R are not identical then we can
still treat S as a subset of all the world information R, and then
ask ourselves what the Relevant Information in that subset S
is. By extension, it is also possible to calculate the amount
of information needed to obtain a certain payoff level, by
calculating the minimum Relevant Information of all strategies
that reach at least that level of expected payoff [14]. Since the
strategy with the minimal mutual information is chosen from
a set of strategies that gets smaller as performance increases
it follows that an increase in the payoff level increases the
Relevant Information or keeps it at least the same. So the
function that relates Relevant Information and performance is
monotonously increasing.

(Pay Off) State 1 State 2 State 3 State 4

Action 1 0 0 2 1

Action 2 0 0 1 2

Action 3 2 1 0 0

Action 4 1 2 0 0

(Pay Off) State 1 State 2 State 3 State 4

Action 1 1 0 0 0

Action 2 0 1 0 0

Action 3 0 0 1 0

Action 4 0 0 0 1

(Pay Off) State 1 State 2 State 3 State 4

Action 1 0 0 0 0

Action 2 0 0 0 0

Action 3 0 0 0 0

Action 4 0 0 0 0

(Pay Off) State 1 State 2 State 3 State 4

Action 1 0 0 1 1

Action 2 0 0 1 1

Action 3 1 1 0 0

Action 4 1 1 0 0

World 1 World 2

World 3 World 4

Fig. 2. This figure depicts the relation between action and utility, given a
certain world state. In world 1 the Relevant Information can be computed as
two bits. The optimal strategy chooses a different action for every state of the
world; therefore it has to obtain two bits of information to determine what
state the world is in. World 2 is an example of a scenario where there is no
Relevant Information. The actions of the agent do not matter, and it needs to
know nothing to make the best choice. World 4 has a Relevant Information
of only 1 bit. One optimal strategy here would still be to choose a different
action for every state, but there is also another strategy that just relies on
finding out if the world is in the first two or last two states. Since we look for
the minimum mutual information across all strategies, the agent only needs to
obtain one bit. World 3 demonstrates that a suboptimal pay-off level can be
reached with less Relevant Information. Using the same strategy as in World
4, the agents obtains an average payoff of 1.5, but if the agents would obtain
two bits of information he could achieve an average pay-off of two

It should also be clear, that this function is defined for a
given game mechanic and does not actually depend on the
strategy chosen by the player, but on the strategy that has the
lowest mutual information. Therefore, Relevant Information is
a property of the game mechanic itself.

III. RELEVANT INFORMATION AND PLAYER SATISFACTION

In this chapter we argue how Relevant Information corre-
sponds with game mechanical properties that foster or hinder
enjoyment. Since it is questionable if fun can be ensured
by some mathematical formalism, we are mainly looking at
factors that hinder fun in games. Those factors are mainly
taken from literature, such as [17], [18], or determined by
commons sense. Some of them might be debatable, but this
is beyond the scope of this paper, as is a psychological or
sociological evaluation of those factors and their relation to
game play fun.

What we want to demonstrate instead, is the relation of
some measurable numerical values with some common game
play properties, most of which should be avoided. The first
measurement point we are looking at is the actual Relevant
Information, the minimal mutual information of the set of
optimal strategies.

A. Inferior Choices

On possible design flaw is to offer the player an action that
is never a good action to play in any given situation, so this
option is never played by an optimal strategy. Since the Mutual

Fig. 3. Two utility matrices, depicting the payoff for a specific action and
world state combination. In both worlds the actions of the player have not
impact on the utility received. In world one, the payoff depends only on the
world state, in the second world nothing has any influence on the payoff.

information between R and A is calculated as either

I(A; R) = H(A)−H(A|R) = H(R)−H(R|A)

it is bound by H(A) and H(R), because the conditional
entropy is always positive. If A, the actions of the players,
would be of size n, meaning that there are n options, then the
maximal entropy in case all actions are chosen with the same
frequency is:

max(H(A)) = −
∑

a

P (A = a) · log(P (A = a)) = log(
1
n

)

If we now eliminate one option for A, the maximum entropy
is log(1

n−1), which is smaller. So, for every inferior choice the
maximum Relevant Information is more limited. This should
lead to a diminishing of the maximum Relevant Information.

B. Irrelevant Actions

A different fault is to design a game mechanic where the
agent’s effort has no impact on the outcome of the game. Apart
from the question if this is a game at all then, we assume that
this is not desirable. Also it is doubtful that such a scenario
is designed by a human designer, it is possible in a complex
game world that such a pathological case sneaks in, and if we
evolve game mechanics, it might be possible that the computer
creates a game like we see in World 1 or 2 in Fig. 3. World 2
has describes the payoff of a scenario where neither the agent’s
action nor the states of the environment matter. All strategies
have the same payoff, and therefore, the Relevant Information
is 0, because the strategy that plays random is also optimal.
World 1 has a payoff that depends only on the world state, so
random again is a viable strategy, and the Relevant Information
for all those cases is 0.

To tell those two cases apart, we can now also look at the
performance of the AIs. There is another measurement point
that can be easily identified, the one of the strategy that plays
random. There is no mutual information in that strategy, so the
Relevant Information for that level is 0. We can now look at
the performance of the random strategy and note two things.
First, how well does it actually perform. If the performance
level of the random strategy is too high, it could be argued that
there is no player effort involved in solving the game, since
simply pressing buttons at random will already yield very good
results. The other thing to look at is how much the optimal
strategy is better than the random strategy. If they are close,

Fig. 4. A utility matrix depicting the payoff for a specific action and world
state combination. In this world the player has an impact on the payoff, but
the state of the world does not. Therefore, the player needs no information
about the world state to make a decision.

or identical, than we can conclude, that we are dealing with
a non empowered agent, a scenario where the agent’s choices
do not matter. If there is actually a difference, then this is not
the case.

C. Dominant Strategies

Related to the inferior choices problem is another flaw,
the existence of a dominant strategy. In those scenarios an
agent will always choose the same actions, regardless of its
sensor input, because no matter what the environment does,
the action is always optimal. Such a case is also undesirable,
because once the player finds this strategy he is forced to play
it continuously. In the case seen in Fig. 4 the player would
always play action 1, the amount of information one would
need to acquire is 0, so the Relevant Information is also 0,
given that the states of the environment are equally spread
out.

This would allow the player to reach a higher performance
level than the random strategy, without actually using any
game information, so the function that relates Relevant Infor-
mation and performance would stay 0 for higher performance
levels.

D. Optimal Case

To achieve a maximum amount of Relevant Information it
is therefore necessary to design a game that :

1) Uses all possible options, in similar frequency
2) The decision of the player have an impact on the world
3) The optimal decision depend on the different states of

the environment
It seems, that it should be desirable to have a high degree
of Relevant Information for the best strategy. Furthermore,
the performance for the random strategy should be low, and
the increase in performance should lead to an increase in
Relevant Information, so the player does not just learn a
strategy template he then plays regardless of the actual game
world.

E. Partitioning of the World Space

Additionally, all of the considerations discussed in the last
part can also be applied to a part of the world. Instead of
calculating the mutual information between A and S, we can
observe a subset of S, called S∗, and calculate I(A; S∗). This
makes it possible to answer the question, of whether a certain

part (S∗) of the world contains information relevant to the
player. If this is not the case the display of that part of the
game world to the player might be unnecessary or confusing.
Alternatively, it might be possible that S∗ is supposed to have
an impact on the players decision, in which case one could
pinpoint where the game mechanics have to be altered to make
S∗ relevant.

Furthermore, for any part of R, called R∗ we can use mutual
information to determine if that part of the game world is
having an actual impact on the game’s outcome; meaning
that there is mutual information between R∗ and a random
variable encoding if a game is lost or won. If there is no
mutual information then it follows that there is no statistical
dependence. If there is also no Relevant Information in R∗ it
becomes questionable how that part of the world relates with
the game mechanics at all.

Considering the cases where there is a relation between R∗

and the game’s outcome we can again identify several cases.
If R∗ is not perceivable by the player, than we are introducing
a hidden random factor into the game. If R∗ is actually visible
to the player, but yields no Relevant Information, than an
optimal strategy does not need to take R∗ into account. This
means, R∗ is a factor in the game world that we can do
nothing about. If this is desirable or not is a design question (it
could be information about how close the player is to winning
the game). But an information theoretic analysis allows us to
identify those factors, nonetheless.

IV. TECHNICAL IMPLEMENTATION

To test our hypothesis we implemented a simple game,
where the player has to take control of an army, and decide
whom to attack. We will demonstrate how AIs, that are adapted
to the game via genetic algorithm, are used to approximate the
actual relation between Relevant Information and performance,
and how this information can then be used to improve the game
mechanics.

A. Game Mechanics

Our test-bed is a small game inspired by the turn-based
tactical battles of the Heroes of Might & Magic series. Two
players are facing each other, each player starts with three
stacks of creatures each containing three creatures. The goal
of each player is to kill the other player’s stacks by attacking
them with their own stacks.

All creatures start with the same attributes for attack damage
and hitpoints. Additionally we removed the spatial component
so stacks can attack each stack of the enemy, regardless
of position. Every stack gets to act once per round, the
order is random. If a stack attacks another, the damage dealt
is calculated by multiplying the hitpoint of all remaining
creatures in the stack and their attack damage. There is a
random element in the attack damage, so each creature has
a certain damage where the actual damage is chosen from at
random. The damage is then subtracted from the hitpoints of
the first enemy creature. If the hitpoints of a creature reach
zero the number of creatures in the stack is decreased, and the

remaining damage is subtracted from the next creature. If the
number of creatures in a stack reaches zero, the stack dies and
is removed/ignored until the game ends. A special rule is the
concept of retaliation. If a stack has the ability to retaliate it
can attack back after it has been attacked.

The AI input is determined as follows: We uses two bits to
encode the stack’s topmost creature’s health and two bits for
the actual number of creatures in a stack. An additional bit
was used to determine if the stack has the ability to retaliate
in the current round. So overall we used five bits to encode a
stack’s current state. Two players with three stacks each make
six stacks in the game which makes the signature of each game
state an array of thirty bits.

B. Approximation via Genetic Algorithm

Calculating the actual Relevant Information for each perfor-
mance level would make it necessary to look at all possible
strategies. But this approach becomes quickly unfeasible, once
the complexity of a game grows. Our alternative suggestion
is to use a genetic algorithm to select a subsection of all
strategies, those adapted to be of high performance and low
mutual information. We then record the mutual information
and performance of those strategies and use those to approx-
imate the actual Relevant Information.

Note that, since the computation of mutual information re-
quires the joint probability of both variables, it is not sufficient
to only look at a strategy P (A|S) to compute I(A; S); it is
also necessary to get data about the distribution of P (S).

Our AI is a neural network that uses the sensor states as an
input. Each input node receives one bit of the sensor data as a
float value of either 1.0 or 0. The output nodes are associated
with the different actions the player can take. The genome
of our genetic algorithm is the collected internal weights of
the neural network. We first create 20 genomes with random
values, and then we create the associated neural networks that
play the game for 1000 games against an opponent that picks
random actions.

As a next step, for each strategy, we measure both the
performance, as the fraction of games won, and the mutual
information for the recorded joint distribution of sensor states
and chosen actions for those games. Note that each game
consists of several pairs of sensor inputs and taken actions.

We then evaluate the genomes with a fitness function
that favours high performance and low mutual information,
weighted with a variable weighting factor lambda. Both values,
performance and mutual information are normed to values
between 1.0 and 0. For the performance we divide the number
of won games by the number of played games. For the mutual
information we divide the results by the maximum entropy of
the actions, in our case 2. The mutual information is then
subtracted from 1.0, since we want to minimise it. We usually
use the values of 0, 0.25, 0.5, 0.75 and 1.0 for lambda, where
lambda = 0.0 means that only mutual information matters,
and lambda = 1.0 means that only performance is taken into
account. The most fit genomes are procreated and we repeat

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

M
u

tu
al

 In
fo

rm
at

io
n

Performance

Relevant
Information of
optimal strategy

Random strategy

Increase Performance

Relevant
Information of
optimal strategy

Random strategy

Min.
I(S;A)

Fig. 5. A diagram of the graph relating performance and Relevant Infor-
mation. The line indicates the actual Relevant Information function, all data
point have to be either on or above that function. The fitness function of the
genetic algorithm prefers AIs that are closer to the function, thereby trying
to approximate the actual function.

this process until we exhaust a set amount of generations,
usually 200.

We measure the relation between performance and mutual
information for all genomes in all generations and the result
is a graph as seen in Fig. 5. Every data point in the graph is
a strategy, the values indicate its performance and its mutual
information. The actual graph for the Relevant Information
would be a line that all data point are either on or above, since
it is possible for a strategy to have higher mutual information,
but not lower. The two factors in our fitness function are used
to evolve the strategies towards higher performance, and lower
mutual information, thereby moving the resulting strategies
closer to the actual graph. Note that the graph is not an
average of the strategies we are looking it, but a lower bound.
Therefore, it is possible to combine the results of several evo-
lutionary runs and combine them all into the same graph. This
can only improve the approximation. Also, since the mutual
information is a function defined by the game mechanics,
it is possible to vary lambda, and evolve strategies that are
more optimized towards performance or mutual information
reduction, and still combine them in the same graph. Indeed,
our experience suggests that this is advised to get a good
selection of strategies.

C. Technical Problems

1) Deterministic Strategy: One problem in approximating
the actual Relevant Information of a game is the use of
deterministic strategies. The neural network usually picks one
action based on its inputs, and normally it would always
choose the same action for the same input. This automatically
limits the strategies P (A|S) to those where H(A|S) = 0 ,
since the action is determined by the sensor inputs. This leads

Performance as fraction of won games

I(A;S)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.005 0.01 0.015 0.02 0.025

lambda 0

lambda 0.25

lambda 0.5

lambda 0.75

lambda 1

Fig. 6. A graph showing the relation between performance and mutual
information based on the statistics for strategies in case 1. Note that the
scale for performance only reaches from 0.0 to 0.025, otherwise all datapoints
appear in a line above 0.

to the mutual information being calculated as

I(A; R) = H(A)−H(A|R) = H(A)− 0

Since we are looking for the strategy with the least amount
of mutual information, limiting us to deterministic strategies
seems to hinder a good approximation. Strategies that take
a random decision in those circumstances where it does not
matter are not included, and therefore the overall mutual
information is pushed upwards.

One solution is to modify the way the neural network
chooses the actions. Instead of picking the actions whose
nodes got the highest values, we now associate the values
of the end nodes with the probability for that action to be
picked. This allows the neural network to realise random
strategies; strategies that should be favoured if they have the
same performance, but lower mutual information.

V. SCENARIOS

A. Case 1, no player effect

In our initial scenario both sides had the same creatures and
there was no ability to retaliate. The player had the option to
attack the stacks in position one, two or three, and if he would
try to attack a stack that was dead, the game would redirect
his attack to the next stack alive. The damage a stack dealt
was calculated in regard to the remaining combined hitpoints
of the stack. Several evolutions of our adaptive AI yielded the
results seen in Fig. 6.

Two things can be observed here. Firstly, there is no
real difference in performance levels between the different
strategies, they all seem to be very close to zero. So it seems
that the players actions have no real impact on the outcome
of the game. The small variation in performance values is
likely due to the random element in damage calculation that
allows the player to win in rare cases. The graphs performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

lambda 0

lmbda 0.25

lambda 0.5

lambda 0.75

lambda 1

Performance as fraction of won games

I(A;S)

Fig. 7. A graph showing the relation between performance and mutual
information based on the statistics for strategies in case 2.

scale is actually only reaching from 0.0 to 0.025, otherwise,
if the scale would go up to 1.0, the variations would be nearly
invisible on the graph.

Note that the performance is near zero, so the player nearly
never wins. This is slightly surprising, since we first thought
that the player should have an fair chance against the opponent
AI, but then we realised with closer examination, that the
opponent always seems to go first.

The second thing we observe is that the Relevant Informa-
tion for all the performance levels up to ca. 0.011 is zero,
since there is always at least one strategy that does not use
any information. Also, for the other strategies that go above
that value the increase in Relevant Information is quite low.

Comparing that to our earlier theories we seem to be dealing
with a case where the players actions are irrelevant, and
a closer look at our current game mechanics supports this
analysis. All actions are attacks, deal similar damage, always
hit a valuable target, and even reduce the opponents ability to
deal damage in a similar way. So no matter what the player
decides, the actions has a similar payoff.

B. Case 2, dominant strategy

In our second case, we modify the game mechanics so the
player has an impact on the game. We introduce the retaliate
mechanics, and now each stack can retaliate once per game
round. We also introduce the option for a stack to wait and
do nothing for one round. Now the player has an impact on
the game. A good strategy will have to learn that waiting is
a bad choice, since it never does anything, and it should also
aim to attack and enemy stack that has already retaliated.

Looking at Fig. 7 we can see, that there are several strategies
with better performances than random, and we see several
strategies that are able to win the game more than 60 percent
of the time, even though the game still lets the opponent start
first. But even for those relatively high performance levels the
amount of Relevant Information seems to be zero, since there

are strategies that reach that performance, but have no mutual
information.

A closer look at the actual decision of the AIs shows that
one good strategy is to always attack stack 1. This avoids
using wait, it focusses all attacks on the same target to avoid
retaliation, and if the first stack is dead, the attack will be
forwarded to the next stack. This, arguably, seems to even
be an optimal strategy. On the downside, this also seems
to be what we earlier identified as a dominant strategy. A
strategy, that given the current game mechanics, always seems
to be optimal, no matter what the actual state of the world
is. So there is no need for the player to actually look at
the game world to make a decision. This works well with
our predictions, since the graph of the mutual information
would indicate this as well. As discussed, we get strategies
that improve well above the performance level of the random
strategies but still keep a mutual information of zero.

This graph also shows how the different weights in the
fitness function push the AIs along different paths in the
two dimensional projection (to mutual information and perfor-
mance) of the solution space. The adaptation towards minimal
mutual information (lambda = 0.0) moves quickly towards
the random strategies and then ends up in a cluster around
zero performance and zero mutual information. The strategies
that maximise performance (lambda =1.0) dont move towards
the lower mutual information, but their cluster pushes to the
right to explore strategies with higher performance. Finally, the
strategies that balance both constraints (lambda = 0.5) develop
good strategies that also use no mutual information.

C. Case 3, positive Relevant Information

We further modify the game so it is necessary for a good
strategy to acquire information about the game world. Now
retaliate is stronger, and it will only be activated if a stack
has waited in the last turn. Since the AI chooses strategies at
random this should lead to some opponents randomly being
able to retaliate. A good strategy should avoid those stacks.
Furthermore, we also stop the forwarding of attack orders. So,
if an AI now attacks a stack that is dead its attack will have no
effect. Thus, the information of whether a stack has remaining
creatures should become relevant.

Looking at the graph in Fig. 8 we can see that our game
play modifications have lead to a measurable change in the
Relevant Information. It seems possible for the AI to actual
develop good strategies, some of them win in more than 70
percent of the cases, but for all the strategies that go beyond a
performance of 10 percent there seems to be at least a certain
amount of information those strategies need to pick up. Also,
the better the strategies get the more information they seem to
use. This indicates, that a higher performance level also needs
a better analysis of the different factors of the game world.
All in all, this graph does not indicate any of the flaws we
discussed earlier.

Performance as fraction of won games

I(A;S)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

lambda 0

lambda 0.25

lambda 0.5

lambda 0.75

lambda 1

Fig. 8. A graph showing the relation between performance and mutual
information based on the statistics for strategies in case 3.

VI. DISCUSSION

The analysis of the different cases seems to support our
initial theory about how to relate measurements from infor-
mation theory with enjoyment related game parameters. If the
properties discussed, such as inferior choices and dominant
strategies, are actually undesirable for a game or not, is a
discussion that is out of the scope of this work, but we think
that having a implementable solution to detect them might be
useful, nonetheless.

We also demonstrated a technique to approximate Relevant
Information. Here we should note that there exist better ways
to determine the actual Relevant Information, as discussed in
[14], but we believe those are more complicated in applica-
tion, and require detailed knowledge of the system they are
studying, while the genetic algorithm approach can treat the
studied game as a black box.

All in all, it seems that this approach is something that can
be implemented with the techniques described, and can be
used, if for nothing else, as an additional mean to evaluate the
quality of game rules, especially those of strategic decision
making games. The analysis of Relevant Information could of
course also be extended to different kinds of games, since it
would also make sense to check if a player actually needs to
react to the environment in an ego shooter, but the modelling
of such games in terms of random variables would require
some additional consideration. Turning the input and output
of the game into discrete state is usually not difficult, since
everything is implemented on a computer, and ultimately made
of bits and bytes, but the enormous increase in the state space
can make the calculation of the mutual information unfeasible.

VII. FUTURE WORK

The discussed results are only a first step towards a fully
automated evaluation of game mechanics. A closer look at how
the Relevant Information is distributed inside the game world
could yield additional information about what aspects of the

game should be exposed to the player. Also, there are other
information theoretic measures, such as “Empowerment”, that
could be used to take a context independent look at games.
Empowerment seems to be particularly interesting here, be-
cause it basically measures how much impact the actions of a
player have on the world he can perceive.

Once more robust evaluation mechanics are found an in-
teresting next step would be to automate both, the design
and the evaluation processes of a game. Given that one
has a formalised language that expresses game mechanics,
it would be possible to make a game itself the subject of
a genetic algorithm. The genomes would represent different
game mechanics, which would then be evaluated in turn by
an adaptive AI, itself driven by an genetic algorithm.

Another, more practical, approach would be to apply a
clustering technique to the different Relevant Information
graphs to predict what kind of game play flaw a certain game
mechanic has. As we discussed in this paper, different flaws
e.g. inferior choices or dominant strategies generate different
patterns in these diagrams.

REFERENCES

[1] C. Louis, S.J.and Miles, “Playing to learn: case-injected genetic algo-
rithms for learning to play computer games,” IEEE Transactions on
Evolutionary Computation, 2005.

[2] P. Huo, S. C.-K. Shiu, H. Wang, and B. Niu, “Application and
comparison of particle swarm optimization and genetic algorithm in
strategy defense game,” in Fifth International Conference on Natural
Computation. IEEE, 2009, pp. 387–392.

[3] S. Wender and I. Watson, “Using reinforcement learning for city site
selection in the turn-based strategy game civilization iv,” in CIG’08:
IEEE Symposium on Computational Intelligence and Games., 2008.

[4] P. Huo, S. C.-K. Shiu, H. Wang, and B. Niu, “A neural-evolutionary
model for case-based planning in real time strategy games,” in Next-
Generation Applied Intelligence. Springer Berlin / Heidelberg, 2009,
pp. 291–300.

[5] ——, “Case indexing using pso and ann in real time strategy games,”
in Pattern Recognition and Machine Intelligence. Springer Berlin /
Heidelberg, 2009, pp. 106–115.

[6] G. N. Yannakakis and J. Hallam, “Capturing player enjoyment in com-
puter games,” in Advanced Intelligent Paradigms in Computer Games,
2007, pp. 175–201.

[7] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Automatic
computer game balancing: a reinforcement learning approach,” in AA-
MAS, F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and
M. Wooldridge, Eds. ACM, 2005, pp. 1111–1112.

[8] R. Leigh, J. Schonfeld, and S. J. Louis, “Using coevolution to understand
and validate game balance in continuous games,” in GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2008, pp. 1563–1570.

[9] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of IEEE Computational Intelligence and Games
2008, 2008, pp. 111–118.

[10] G. N. Yannakakis and J. Hallam, “Towards Capturing and Enhancing
Entertainment in Computer Games,” in Proceedings of the Hellenic
Conference on Artificial Intelligence, 2006, pp. 432–442.

[11] C. Salge, C. Lipski, T. Mahlmann, and B. Mathiak, “Using genetically
optimized artificial intelligence to improve gameplaying fun for strategi-
cal games,” in Sandbox ’08: Proceedings of the 2008 ACM SIGGRAPH
symposium on Video games. New York, NY, USA: ACM, 2008, pp.
7–14.

[12] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, July 1948.

[13] D. Polani, T. Martinetz, and J. T. Kim, “An information-theoretic
approach for the quantification of relevance,” in ECAL ’01: Proceedings
of the 6th European Conference on Advances in Artificial Life. London,
UK: Springer-Verlag, 2001, pp. 704–713.

[14] D. Polani, C. L. Nehaniv, T. Martinetz, and J. T. Kim, “Relevant
information in optimized persistence vs. progeny strategies,” in Artificial
Life X : Proceedings of the Tenth International Conference on the
Simulation and Synthesis of Living Systems. The MIT Press (Bradford
Books), August 2006, pp. 337–343.

[15] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley and Sons, Inc., 1991.

[16] J. Pearl, Causality. Causality, by Judea Pearl, pp.˜400.˜ISBN
0521773628.˜Cambridge, UK: Cambridge University Press, March
2000., March 2000.

[17] R. Koster, A theory of fun for game design. Paraglyph press, 2005.
[18] J. Juul, “The game, the player, the world: looking for a heart of

gameness,” in DIGRA Conf., 2003.

