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Abstract 10 

A combined wavelet packet transform (WPT) and artificial neural networks (ANNs) modeling 11 

is developed for predicting the ice accretion on the surface of an airfoil. Wavelet packet 12 

decomposition is used to reduce the number of the input vectors to ANN and improves the 13 

training convergence. Artificial neural network is developed with five variables (velocity, 14 

temperature, liquid water content, median volumetric diameter and exposure time) taken as input 15 

data and one dependent variable (decomposed ice shape) as the output. For the purpose of 16 

comparison, three different artificial neural networks, back-propagation network (BP), radial 17 

basis function network (RBF), and generalized regression neural network (GRNN) are trained to 18 

simulate the wavelet packet coefficients as a function of the in-flight icing conditions. The 19 

predicted ice accretion shapes are compared with the corresponding results of NASA experiment, 20 

LEWICE and the Fourier-expansion-based method. Results show that the GRNN network has an 21 

advantage in predicting both the rime ice and glaze ice when the specimens are prepared using a 22 

separate method. Whereas the RBF network demonstrates a better performance in predicting the 23 

ice shape for the case of using the whole set of specimens. It is also found that WPT shows an 24 

advantage in performing the analysis of ice accretion information with high accuracy. The 25 

proposed model could be an efficient and a robust tool to predict aircraft ice accretion. 26 
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mailto:sn_chang@buaa.edu.cn
mailto:hongwei.wu@uws.ac.uk


Nomenclature  

c chord length [inch]  ler  airfoil leading-edge radius [inch] 

f single-valued ice thickness functions [-] LWC
 

liquid water content [ 3g m ] 

g  wavelet decomposition low-pass filter [-] MVD  median volumetric diameter [ m ] 

*g  wavelet reconstruction low-pass filter [-] Time
 

time for the airfoil exposed to the 

icing condition [min] 

h  wavelet decomposition high-pass filter [-] T
 

free-stream static temperature [K] 
*h  wavelet reconstruction high-pass filter [-] V

 
free-stream velocity [ m s ] 

1. Introduction 28 

    Aircraft icing has long been recognized for over sixty years and continues to be an 29 

important flight safety issue in the aerospace community. Ice accretion on an aircraft wing occurs 30 

when supercooled water droplets in the atmosphere impact on the surface of aircraft’s wings. The 31 

formation of ice on an aircraft wing results in a sharp increase in drag and a reduction in 32 

maximum lift. Furthermore, ice accretion on aircraft wings also leads to a reduction in stall angle 33 

and increment in moment coefficient of the wing. This causes a deterioration in the aerodynamic 34 

performance of the aircraft [1,2]. In terms of this, it is imperative to predict the ice accretion 35 

prior to designing reliable anti-icing/de-icing system. It is well recognized that several 36 

parameters, such as exposure time, liquid water content (LWC), median volumetric diameter 37 

(MVD), temperature, flight speed, angle of attack (AOA) and the chord length, play an dominate 38 

role in ice accretion. Droplets may freeze directly, building up rime ice or form a thin water film 39 

before freezing, and it may lead to glaze ice under certain conditions of high temperature and 40 

large LWC [3,4]. The former ice shape presents a smooth outline and can be simulated easily. 41 

Whereas the latter one usually exhibits uneven behaviour and may form two ice horns, which is 42 

more threatening to the flight safety [5]. 43 

Many efforts have been devoted to in-flight icing certification from both experimental and 44 

numerical aspects [6,7]. Icing wind tunnel testing usually provides most reliable data in 45 



fundamental study of aircraft ice accretion. Nevertheless, icing wind tunnel tests are very 46 

expensive and time consuming. It is thus not difficult to imagine that a CFD-based approach is 47 

desirable to save resources and to obtain relatively accurate results [8]. However, most of the 48 

models that are available rely on assumptions and simplifications that disagree at the real 49 

conditions of operation. In order to overcome these limitations, some researchers proposed a fast 50 

prediction method for aircraft icing through statistical strategy [9-11]. These efforts have 51 

achieved success in improving the icing prediction efficiency, but owning to the insufficiency 52 

and non-grid of the experimental data, a considerable computing time is still needed to obtain 53 

numerical simulation samples for the interpolation procedure.  54 

The artificial neural networks (ANNs) technique offers an alternative approach for predicting 55 

the performance and generalizations of complex non-linear systems shortly. It is a method that is 56 

often used for predicting the response of a physical system that cannot be easily modeled. Neural 57 

networks have demonstrated the strong capability of learning non-linear and complex 58 

relationships between process variables without any prior knowledge of system behaviors. 59 

Ogretim et al. [12] achieved attractive performance with the neural network for predicting rime 60 

ice. ANN has been applied in modeling complicated relations or to find patterns in detection for 61 

in-flight icing characteristics [13], calibration of the multi-hole aerodynamic pressure probe [14], 62 

identification of the icing intensity [15], and predicting the effects of ice geometry on airfoil 63 

performance [16]. As data sets increase in size, their analysis become more complicated and time 64 

consuming. Thus, it is essential to reduce the size of data sets. The discrete wavelet transform 65 

(WT) is normally to analyze the irregular signals in view of its flexible time–frequency 66 

resolution [17]. However, WT can determine analysis only for low band frequency. As an 67 

extension of the WT, the wavelet packet transform (WPT) is capable of dividing the whole 68 



time-frequency plane while the classical [18-21]. For this reason, WPT will be considered in the 69 

current study. 70 

The present study proposes a new methodology by the application of WPT and ANN to 71 

predict a 2D aircraft ice accretion. The paper is organized as follows: Section 2 recalls the 72 

conformal transform (CT), WPT and neural network techniques. Section 3 summarizes the 73 

results and observations. Finally Section 4 concludes the findings of this paper.  74 

2. Algorithm and methodology 75 

In this paper, the input data are converted to a single-valued signal using conformal transform 76 

(CT). Afterwards, the signal will be further analyzed through wavelet packet transform (WPT). 77 

Finally, the optimum artificial neural networks (ANNs) is selected as the target network. The 78 

schematic diagram of a combined WPT and ANN modeling is illustrated in Fig. 1. 79 

 80 
Fig. 1. The structure of intelligent modeling. 81 

 82 

2.1. Conformal transform (CT) 83 



Since the input data of the WPT must be single-valued, the coordinate of the original ice 84 

shapes are converted based on the conformal mapping method [22]. In the current study, the 85 

Cartesian coordinate system where the ice shape and airfoil originally exist is converted to the 86 

parabolic coordinate system where the ice shape will become a single-value function of abscissa. 87 

The leading-edge geometry of the airfoil with ice accretion is non-dimensionalized by the chord 88 

length, and then scaled by the non-dimensional airfoil leading-edge radius to coincide with the 89 

parabola: 90 

 ( ) ( ) 0.5, ( ) ( )x x c ler c y y c ler c                             (1) 91 

where ler represents the airfoil leading-edge radius, and c is the chord length, x y  is the 92 

original coordinate system and x y   is the scaled coordinate system.  93 

The parabolic shape and the ice accretion shape are illustrated in the same coordinate, as 94 

shown in Fig. 2. A conformal mapping is applied to transform the scaled physical x y   plane 95 

to the     plane by using Eq. (2): 96 
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 98 

Fig. 2. Base parabola and scaled experimental ice shape in the  x - y  plane. 99 

 100 

As a consequence, the parabola surface in the physical plane becomes a straight line and the 101 

airfoil with ice accretion can be seen as perturbations to the baseline parabola. The ice shape 102 

after conformal mapping is illustrated in Fig. 3. Following the conformal mapping, the Prandtl 103 

transposition is applied to separate the variables from the baseline: 104 

 
, ( )f                                         (3) 105 

where ( )f   is an analytic expression representing all the perturbations at 1 . In order to 106 

normalize the specimens, the new coordinates of the ice shape in    plane are obtained 107 

through linear interpolation. In this paper, the value of the abscissa is in the range from -4.38 to 108 

2.0, and the space step is 0.02. 109 



 110 

Fig. 3. Ice shape after conformal transform and its prolongation with airfoil. 111 

 112 

2.2. Wavelet packet transformation (WPT) 113 

Unlike the wavelet transform (WT), which is obtained by iterating the low pass branch, the 114 

wavelet packet transform (WPT) is obtained by iterating both low pass (approximation 115 

coefficients) and high pass branches (detail coefficients) at each level j. During wavelet packet 116 

decomposition procedure, both lower and higher frequency bands are decomposed into two 117 

sub-bands. Thereby wavelet packet gives a balanced binary tree structure. Fig. 4 shows a two 118 

level wavelet packet decomposition tree of an ice shape. For the j-level decomposition, the ice 119 

shape geometry after conformal transformation can be expressed as: 120 
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 123 

Fig. 4. Total decomposition tree of wavelet packet transform analysis. 124 

 125 

Let h  and g  denote the high-pass filter and the low-pass filter, the remaining wavelet 126 

packet functions for p = 2, 3 …can be defined by the following recursive relationships:  127 
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where the integers j and k are the index scale and translation operations, respectively. The 129 

index p is an operation modulation parameter or oscillation parameter. By iterating Eqs. (4) and 130 

(5) along the branches of the wavelet packet tree will compute the full wavelet packet 131 

decomposition. Then the wavelet packet component signal can be obtained with quadrature 132 

mirror filters. Different quadrature mirror filters can lead to different wavelet packet 133 

decompositions. 134 

In the present study, both conformal mapping and WPT are applied to all experimental ice 135 

shapes to yield the corresponding wavelet packets coefficients. Since the order of the magnitude 136 

of the input data is large, normalization is implemented to make sure the input data within an 137 



appropriate range. After that, both the wavelet packet coefficients and the normalized icing 138 

conditions are used as the input to train the neural network. Once the target network is obtained, 139 

a group of data can be acquired as a function of the predicted icing condition, which will 140 

reconstruct an ice shape through the following reconstruction algorithm: 141 

* 2 * 2 1

, 1, 1,( ) ( 2 ) ( ) ( 2 ) ( )p p p

j k j k j k

k k

f t h t k f t g t k f t

                            (6) 142 

where *h and *g are the reconstruction filters associated with the decomposition filters.  143 

2.3. Artificial neural networks (ANN) 144 

Artificial neural network (ANN) is a mathematical algorithm that highly interconnected the 145 

input and output parameters, learning from examples through iteration, without requiring a prior 146 

knowledge of the relationship of the process parameters. ANN is not new in concept, but 147 

research interest in this research area has increased significantly in the last two decades. The 148 

major reason for this interest is the short computing time and a high potential of robustness and 149 

adaptive performance. An artificial neural network is a computing system made up of simple 150 

interconnected processing elements called neurons. The neurons are interconnected by weighted 151 

links over which signals can pass and operate only on their local data and on the input they 152 

receive via the connections. The restrictions to local operations can often be relaxed during the 153 

learning process. ANNs should have specific training rules whereby the weights of connections 154 

are adjusted based on learning data. In other words, an ANN learns from examples (of known 155 

input/output sequences) and exhibits some capability for generalization beyond the training data. 156 

A network normally has great potential for parallelism, since the computations of the 157 

components are largely independent of each other. The function of each element is determined 158 

by its structure, connection strengths, and the processing performed at computing elements or 159 

nodes. The trained network is utilized in output prediction corresponding to a set of new inputs. 160 



A sufficiently trained network is expected to produce outputs that are satisfactorily close to 161 

actual outputs. 162 

In the current study, the available published experimental ice shapes from NASA icing wind 163 

tunnel will be used to train the neural network. During the training process, the network learns 164 

the wavelet packet coefficients of an ice shape as a function of the corresponding atmospheric 165 

and flight conditions. Fig. 5 shows an illustration of a typical multilayer feed-forward neural 166 

network. A total of five normalized icing condition variables (velocity, temperature, LWC, MVD 167 

and exposure time) are used as the input and decomposed ice shape as the output. If the wavelet 168 

packet decomposition process is taken for j times, there would be 2 j  independent arrays, the 169 

length of which will be the 2 j th of the original length. In order to increase the training 170 

efficiency of the network, these 2 j  groups of the wavelet packet coefficients are separated into 171 

2 j
 different training sets. Once all the trainings are converged, the target network can be used to 172 

predict the ice shape through Eq. (6). For the purpose of balancing the efficiency and the 173 

accuracy, a parametric study to determine an optimum number of j is implemented. Four-level 174 

wavelet packet decomposition is recommended for the current study. 175 
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 Schematic diagram of the artificial neural network structure. 177 

 178 

In the current study, three different structures of ANN are selected to implement the 179 

prediction. They are back-propagation (BP) network, radial basis function (RBF) network and 180 

generalized regression neural network (GRNN). A comparative study is carried out in order to 181 

select an adequate neural network. The ANN is trained with the data from the experiments of the 182 

NASA Icing Research Tunnel (IRT) at NASA Glenn and the LEWICE validation report [23]. 183 

Four typical icing conditions that selected from the work of Ogretim et al. are listed in Table 1. 184 



 185 

Table 1  186 

Ice accretion input test data for ANN application. 187 

Ice type IRT run number 
Velocity 

(m/s) 

Static 

Temperature(K) 

LWC 

(g/m3) 

MVD 

(microns) 

Icing Time 

(min) 

Rime1 July 1996 20735 102.8 256.49 0.34 20 11.5 

Rime2  July 1991 27-6-36 58.1 256.19 1.30 20 8 

Glaze1 July 1996 21236 102.8 262.04 0.44 30 8.75 

Glaze2 July 1996 21336 102.8 262.04 0.48 40 8 

 188 

 189 

2.4. Error analysis 190 

To evaluate the accuracy of the proposed algorithm, the quantitative comparison between the 191 

predicted ice shapes and the experimental results are conducted. The predicted results are also 192 

compared with that of LEWICE and the work of Ogretm et al. The relative cross-section area 193 

error is selected as the main criteria. The data points in the    plane are utilized to represent 194 

the ice thickness since the perturbation ( )f   is a single-value function. The relative 195 

cross-section area error can be calculated by: 196 

           %
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where the subscript e  denotes the experimental ice thickness and the subscript p  denotes 198 

the predicted ice thickness, N  is the total number of data points, 
i ie p if f    is the area of the 199 

i -th rectangular element between the experimental and the predicted ice shape, 
ie if   is the 200 

absolute cross-section area of the i -th rectangular element for the experimental ice shape. The 201 



selected method of the error calculation can successfully reflect the general performance of the 202 

prediction methods. 203 

3. Results and discussion 204 

3.1. Software interface for ice shape prediction 205 

MATLAB Neural Network and Wavelet Toolboxes are used to build the network as well as 206 

an in-house ice prediction program is developed. Fig. 6 shows the screen shot of the developed 207 

software for predicting the ice shape based on WPT and ANN. Fig. 6 mainly consists four parts: 208 

flight conditions on the upper right, WPT and ANN option in the middle, data setting on the left, 209 

and results display window on the lower right. In the current study, five flight conditions, i.e. V∞, 210 

T∞, LWC, MVD and Time, need to be given before running the software. Then selecting the type 211 

of the database (“IceShape”) and the number of the wavelet packet decomposition layers 212 

(“WPDecLayer”), followed by activating the ice accretion prediction button. When clicking the 213 

“PredictExam”, the number of samples need to be selected as the target output. After running the 214 

simulation, the predicted ice shape will be plotted together with the experimental results and 215 

LEWICE for comparison, as illustrated in Fig. 6. 216 



 217 

Fig. 6. The interface developed for the prediction of the ice shape. 218 

 219 

To comprehensively evaluate the performance of the proposed methodology, the simulation 220 

will be conducted using both the separated-specimen method and the whole-set method [12]. The 221 

separated-specimen method is used to divide the ice shape database into the rime ice and the 222 

glaze ice, and the prediction will be carried out for each set. It is generally considered that the ice 223 

shape can be predicted using separated-specimen method with higher accuracy and efficiency. 224 

While the whole-set method will incorporate the whole set of specimens into the developed 225 

software and determine whether it is rime ice or glaze ice by the predicted results, which is 226 

thought more practical. For the purpose of comparison, in the current work, both the 227 

separated-specimen method and whole-set method will be tested. 228 

3.2. Analysis with separated specimens 229 

It is recognized that either rime ice or glaze ice has its unique characteristics. As is always the 230 

case, horns and excessive ice roughness normally show the behavior of glaze ice, whereas 231 

smooth geometry denotes rime ice. Since the current work only focuses on predicting the outer 232 



ice shape profile, the classification is taken in terms of the outer ice shape which is is similar to 233 

the work of Ogretim et al [12].  234 

Figs. 7-10 show the comparison of the ice shapes (rime and glaze) of the experimental, 235 

LEWICE and present BP, RBF and GRNN result. It can be seen clearly from both Figs. 7 and 8 236 

that the ice extension and ice shape of the leading edge is predicted better by both the BP and 237 

GRNN than that predicted by LEWICE. Although the maximum thickness of GRNN result for 238 

the second rime case is under-predicted, the location of the maximum thickness is fairly well 239 

predicted. A quantitative comparison of the neural network and LEWICE prediction results to 240 

the experimental results in terms of the relative cross-section area error is given in Table 2. 241 

Herein N.N. stands for the work of Ogretim et al. (combination of the Fourier expansion and 242 

ANN). From Table 2, it is observed that small fluctuation appeared in the BP network results. 243 

This may be attributed to the over-fitting, which could lead to a serious distortion when the 244 

whole set of the specimens are applied in training BP neural network. In contrast, both the RBF 245 

and GRNN network predicted ice shapes with smooth geometry. 246 

Table 2  247 

Summary of errors when using the separated specimens. 248 

Ice type Data file number 

LEWICE 

Area 

error(%) 

N.N. 

Area 

error(%) 

BP 

Area 

error(%) 

RBF 

Area 

error(%) 

GRNN 

Area 

error(%) 

Rime ice1 JULY 1996 20736 35.40 12.43 18.10 24.00 18.51 

Rime ice2  JULY 1991 27-6-36 27.70 22.95 21.42 27.03 24.31 

Glaze ice1 JULY 1996 21236 28.43 32.32 33.20 24.17 24.57 

Glaze ice2 JULY 1996 21336 28.23 32.43 34.58 29.06 29.76 

 249 

 250 



 251 

Fig. 7. Comparison of the rime ice1 shapes of the experimental, LEWICE and  252 

present BP and GRNN result. 253 

 254 

Fig. 8. Comparison of the rime ice2 shapes of the experimental, LEWICE and  255 

present BP and GRNN result. 256 



 257 

Fig. 9. Comparison of the glaze ice1 shapes of the experimental, LEWICE and 258 

present RBF and GRNN result. 259 

 260 
Fig. 10. Comparison of the glaze ice2 shapes of the experimental, LEWICE and 261 

present RBF and GRNN result. 262 

 263 



Figs. 9 and 10 show a similar comparison for the case of glaze ice conditions. It is clearly 264 

observed that both the RBF and GRNN are able to satisfactorily predict the ice shape in terms of 265 

the location and height of the ice horns as well as the surface roughness. The extent of the ice 266 

shape on the lower side is also fairly well predicted. For the glaze ice cases, the ice mass 267 

predicted by GRNN and RBF are similar and both over predicted the experimental result. As an 268 

overall evaluation, the GRNN network demonstrates a better performance in predicting the ice 269 

shape for both the rime ice and glaze ice is clearly classified. 270 

3.3. Analysis with the whole set of specimens 271 

In this section, the whole set of the ice shape samples are implemented into the neural 272 

network as the input data. It is always not possible to know the type of the prediction ice 273 

conditions before ice accretion simulation since there is a considerable conditions in nature that 274 

cannot be simply determined. As a matter of fact, given the whole set of the specimens, the 275 

GRNN can keep the same accuracy compared to the predicted results using the 276 

separated-specimen method, whereas the RBF network even achieves better performance, as 277 

shown in Figs. 11-14. In general, the predicted ice horns are accurately captured and the surfaces 278 

of the predicted glaze ices are obviously rougher than that of the rime ices. 279 



 280 

Fig. 11. Comparison of the rime ice1 shapes of the experimental, LEWICE and 281 

present RBF and GRNN result. 282 

 283 

Fig. 12. Comparison of the rime ice2 shapes of the experimental, LEWICE and 284 

present RBF and GRNN result. 285 



 286 

Fig. 13. Comparison of the glaze ice1 shapes of the experimental, LEWICE and 287 

present RBF and GRNN result. 288 

 289 

Fig. 14. Comparison of the glaze ice2 shapes of the experimental, LEWICE and 290 

present RBF and GRNN result. 291 

 292 



For rime ice cases, as shown in Figs. 11 and 12, the overall shape and the extent of the ice 293 

accretion are both well predicted except for the ice mass which is slightly small. A close look at 294 

the glaze ice shape in Figs. 13 and 14, the angles of the upper and lower ice horns are fairly well 295 

captured. The distribution of the ice thickness over the surface is also reasonably predicted and 296 

the roughness of the experimental ice is well agreed. From the quantitative comparison shown in 297 

Table 3, it can be seen that the RBF should be considered as a first attempt at applying this 298 

technique to ice shape prediction when using the whole set of specimens. 299 

Table 3  300 

Summary of area-weighted errors when using the whole specimens. 301 

Ice type Data file number 
LEWICE 

Area error(%) 

RBF 

Area error(%) 

GRNN 

Area error(%) 

Rime ice1 JULY 1996 20736 35.40 24.83 18.51 

Rime ice2  JULY 1991 27-6-36 27.70 21.74 24.31 

Glaze ice1 JULY 1996 21236 28.43 21.56 24.57 

Glaze ice2 JULY 1996 21336 28.23 27.34 29.76 

 302 

 303 

4. Conclusions 304 

In the present study, a combined wavelet packet transform (WPT) and artificial neural 305 

network (ANN) method is proposed for predicting the ice accretion on the surface of NACA0012 306 

airfoil. Three different neural networks are proposed to predict the ice shape, and they are the 307 

commonly used back-propagation network (BP), radial basis function network (RBF), and 308 

generalized regression neural network (GRNN). Compared with the other two networks (BP and 309 

RBF), the GRNN can achieve overall better performance when the separated-specimen method 310 

is considered. Whereas the RBF network achieves better performance for the case of using the 311 

whole set of specimens. Results also show that the WPT-based method is in better qualitative 312 



agreement with the experiments than the LEWICE and Fourier-expansion-based method 313 

regarding the ice horns and the surface details of the glaze ice. It needs to be stressed that the 314 

database does not need to be separated in advance, since the neural network shows the same or 315 

even better performance when given the whole set of specimens for prediction. The proposed 316 

approach/software can be easily performed once the experimental data are available. Future work 317 

will extend the input parameter set to account for different variables, such as the chord length 318 

and angle of attack.  319 
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