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ABSTRACT
We compare the spatial distribution of stars which form in hydrodynamical simulations to
the spatial distribution of the gas, using the Q-parameter. The Q-parameter enables a self-
consistent comparison between the stars and gas because it uses a pixelated image of the gas
as a distribution of points, in the same way that the stars (sink particles in the simulations) are
a distribution of points. We find that, whereas the stars have a substructured, or hierarchical
spatial distribution (Q ∼ 0.4-0.7), the gas is dominated by a smooth, concentrated component
and typically has Q ∼ 0.9. We also find no statistical difference between the structure of
the gas in simulations that form with feedback, and those that form without, despite these
two processes producing visually different distributions. These results suggest that the link
between the spatial distributions of gas, and the stars which form from them, is non-trivial.
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1 IN T RO D U C T I O N

The physics of star formation results in stars grouped together in
regions that exceed the mean density of the Galactic disc by several
orders of magnitude (Blaauw 1964; Lada & Lada 2003; Porras
et al. 2003; Bressert et al. 2010). Furthermore, there is growing
evidence that star formation is hierarchical from the interstellar
medium (ISM) down to sub-pc scales (Hoyle 1953; Scalo 1985;
Efremov 1995; Elmegreen et al. 2006; Bastian et al. 2007; Kruijssen
2012), and that there is no preferred spatial scale for a given star
formation ‘event’.

Understanding this complex hierarchical picture of star formation
requires analysis of the spatial distribution of gas from the ISM
down to the giant molecular clouds (GMCs) from which stars form,
to the substructure of the clouds and then of the spatial distribution
of the stars themselves. In particular, do stars exhibit the same
spatial distribution as the ISM (e.g. as argued by Gouliermis, Hony
& Klessen 2014, for the NGC 346 star-forming region) and if so,
does this provide information on the physical processes from the
ISM down to individual star formation? Answering this question
requires the study of star-forming regions at the earliest possible
stages, since the gas structure is likely to be disrupted by feedback
and the stellar structure by dynamical interactions. Either or both
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of these processes can in principle erase any spatial correlation
between gas and stars on short time-scales.

In order to address these questions, analysis of both gas in the ISM
and GMCs, and stars in young regions, must be undertaken using a
self-consistent method. In recent years, structural analysis of stars in
young regions has been performed using the powerful Q-parameter
(e.g. Cartwright & Whitworth 2004; Schmeja, Kumar & Ferreira
2008; Bastian et al. 2009; Sánchez & Alfaro 2009; Gregorio-Hetem
et al. 2015), which combines information on the minimum spanning
tree (MST) of a distribution with the typical separation between the
points in the distribution. This technique has also been developed
to study the gas distribution in images, by appropriately weighting
the flux from pixels in an image to create a distribution of points
(Lomax, Whitworth & Cartwright 2011).

It is not clear to what extent and for how long the spatial distri-
bution of stars should follow the same distribution as the gas from
which they form, and this has yet to be addressed observationally.
However, detailed hydrodynamical simulations of star formation
provide both information on the spatial distribution of gas, and on
the distribution of stars (sink particles). In this paper, we examine
the hydrodynamical simulations of star formation by Dale et al.
(2014) and measure the spatial distribution of both the gas (from
pixelated images) and the distribution of the sink particles, using the
Q-parameter. The suite of simulations by Dale et al. include control
runs without feedback from photoionization and stellar winds, and
so we also search for differences in the gas distributions for clouds
that are influenced by feedback mechanisms, and those that are not.

C© 2015 The Authors
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The paper is organized as follows. In Section 2, we describe
the implementation of the Q-parameter on gas distributions, in
Section 3 we present our results, in Section 4 we provide a discussion
and we conclude in Section 5.

2 M E T H O D

The simulations of Dale et al. use a smoothed-particle hydrodynam-
ics (SPH) code to model the evolution of GMCs of a range of sizes
and masses and are seeded with Burgers turbulence such that their
initial virial ratios are either 0.7 or 2.3. The formation of stars is
followed using sink particles (Bate, Bonnell & Price 1995) which,
in the simulations analysed here, have accretion radii of 0.005 pc
and can be regarded approximately as individual stars.

Dale et al. allow their simulations to evolve until three objects
exceed 20 M� at which point each calculation is forked into a
control run and a feedback run. The control runs evolve purely
hydrodynamically as before, while the feedback runs are impacted
by the ionizing radiation and/or stellar winds of the massive stars,
modelled respectively by the algorithms presented in Dale, Ercolano
& Clarke (2007), Dale, Ercolano & Bonnell (2012) and Dale &
Bonnell (2008). All runs are continued for as near as possible to
3 Myr to evaluate the effects of pre-supernova feedback on the
clouds and clusters.

For the analysis presented here, pixelated column-density maps
are constructed by drawing a pixel grid over the simulation, placing
each SPH particle on the grid and column integrating through its
smoothing kernel on to all grid cells whose centres it overlaps.
Since the maps presented here have a lower resolution than the
local resolution of the hydrodynamic simulations, particles which
are too small to overlap the centre of any grid cells have their mass
smeared out over the area of the cell in which they lie.

We use the Q-parameter (Cartwright & Whitworth 2004;
Cartwright 2009) to quantify the spatial distribution of both stars
and gas in the hydrodynamical simulations of Dale et al. (2014).
The Q-parameter is determined by constructing an MST of all of
the points in a distribution and then dividing the mean MST branch
length, m̄ by the mean separation between points, s̄:

Q = m̄

s̄
. (1)

Determining Q for the stars (i.e. sink particles) in the simulations is
trivial, but determining Q for the gas is more involved (Cartwright,
Whitworth & Nutter 2006). Lomax et al. (2011) provide a method
for converting the flux distribution in a pixelated image into a dis-
tribution of points, from which the Q-parameter can then be calcu-
lated. We refer the interested reader to Lomax et al. (2011) for full
details of the method, including examples of its use on synthetic
images, but briefly summarize the method here. In the simulations
of Dale et al. (2014), we use gas column density as the flux.

For an Npix = I × J array of pixels, the total flux received from
the pixels, Ftot is

Ftot =
i=I∑
i=1

j=J∑
j=1

Fij . (2)

In order to convert the flux distribution into a distribution of points,
Lomax et al. (2011) then define the flux quantum as

�F = Ftot

Npix
. (3)

We start by choosing a pixel, Rij at random. If Fij ≥ �F, then the
flux in that pixel is reduced

Fij → Fij − �F (4)

and we place a point at r ij + �r rnd, where r ij is the centre of
pixel Rij and �r rnd is a small random displacement an order of
magnitude smaller than the pixel size, to prevent the final point
distribution from having a gridded appearance.

If Fij < �F, then we consider a patch of n pixels (see fig. 1 in
Lomax et al. 2011). n is increased until the flux from the patch is
equal to, or exceeds �F:

Fn-patch =
∑

n-patch

Fij ≥ �F. (5)

The flux from each pixel is then uniformly reduced

Fij → Fij

(
1 − �F

Fn-patch

)
, (6)

and a point is placed at position rpnt which is equal to the weighted
centre of the removed flux, plus a small random displacement:

rpnt =
∑

n-patch

{
Fij r ij

Fn-patch

}
+ �r rnd. (7)

This process is repeated Npix times, whereafter the total flux is now
zero.

We now have a distribution of Npix points with which we calculate
the Q-parameter for the gas distribution. The Q-parameter provides
a measure of the degree to which a distribution is substructured, or
concentrated. Cartwright & Whitworth (2004), Cartwright (2009)
and Lomax et al. (2011) provide calibration data for synthetic mod-
els, so for a given Q-parameter one can assign a fractal dimension
(in the substructured case), or the radial density profile exponent (in
the smooth, concentrated case).

However, as mentioned by Lomax et al. (2011), the Q-parameter
varies slightly depending on the number of points in the distribution.
This is usually not a problem when comparing, e.g. the outcome
of simulations to real star-forming regions, as the numbers of stars
are similar (between 100 and 1000). However, when constructing a
point distribution from pixels, in order to properly sample the gas
distribution we find at least 64 × 64 = 4096 pixels are required, but
128 × 128 = 16 384 pixels are desirable.

In Fig. 1, we show the dependence of Q on the number of points,
N. The coloured lines from top to middle indicate a smooth, con-
centrated distribution with power-law density profile n ∝ r−2.9 (solid
purple), r−2.5 (dashed raspberry), r−2.0 (dot–dashed pale blue), r−1.0

(dotted orange) and r0 (solid magenta). From bottom to middle,
the lines indicate a substructured fractal distribution with fractal
dimension D = 1.6 (solid black), 2.0 (dashed red), 2.6 (dot–dashed
green) and 3.0 (dotted dark blue). The error bars indicate the in-
terquartile range from 100 statistically identical realizations of the
same cluster for a given number of points. Q tends to more extreme
values with increasing N if a distribution is highly substructured, or
highly concentrated, but remains roughly constant for more moder-
ate distributions. In order to check that these results are not simply
due to sampling too few points, we created each data set with 104

points and then randomly chose N from this distribution and found
very similar results.

3 R ESULTS

We analyse five sets of SPH simulations from Dale et al. (2014).
These simulations follow the evolution of GMCs as they form stars

MNRAS 451, 3664–3670 (2015)
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Figure 1. Dependence of the Q-parameter on the number of particles in a
distribution. From top to middle, the lines indicate a smooth, concentrated
distribution with power-law density profile n ∝ r−2.9 (solid purple), r−2.5

(dashed raspberry), r−2.0 (dot–dashed pale blue), r−1.0 (dotted orange), r0

(solid magenta); and from bottom to middle the lines indicate a substructured
fractal distribution with fractal dimension D = 1.6 (solid black), 2.0 (dashed
red), 2.6 (dot–dashed green), 3.0 (dotted dark blue). The error bars indicate
the interquartile range from 100 identical realizations of the same cluster
for a given number of points.

without feedback from photoionization and stellar winds (‘control
runs’) and simulations in which feedback is switched on (‘dual-
feedback runs’). In earlier work (Parker & Dale 2013; Parker, Dale
& Ercolano 2015), we showed that the presence (or not) of feedback
can affect the long-term spatial evolution of a star-forming region
and here we investigate whether the spatial distribution of the gas
is influenced by feedback, and if the spatial distribution of the gas
follows that of the stars.

The results from the control Run I simulation 2.2 Myr after
the epoch when the calculation is split into parallel control and
dual-feedback incarnations are shown in Fig. 2. In Fig. 2(a), we
show the surface density distribution of the gas. We also show the
positions of the sink particles (the white points), which have Q =
0.72, suggesting a slightly substructured distribution. In Fig. 2(b),
we show the distribution of points from the pixel distribution of gas
column density, determined using the method from Lomax et al.
(2011). This gas distribution has Q = 1.01, suggesting a smooth,
concentrated distribution.

We show the results at the same timestep of the dual-feedback
Run I calculation from Dale et al. (2014) that includes the effects
of photoionization feedback and stellar winds in Fig. 3. The sink
particles (shown by the white points in Fig. 3 a) haveQ = 0.49, sug-
gesting a substructured distribution. From inspection of Fig. 3(b),
the distribution of gas also appears substructured; however, the Q-
parameter is 0.88, indicating a smooth, concentrated distribution.

The results for all five sets of simulations are summarized in
Table 1 (all five sets have very similar morphologies). We present
the Q-parameter for a pixelated map of the gas distribution for
each simulation using 64 × 64 and 128 × 128 pixels (differences
between the two are minimal). In the 128 × 128 pixel case, we also
present theQ-parameter for cold gas only (i.e. ionized particles have
been removed), and for cold gas above a column-density threshold

of >1 × 10−4 g cm−2 (this process sets the column density of
around 25 per cent of the pixels to zero). Finally, we give the Q-
parameter for the sink particles, and the number of sink particles in
each simulation.

For one simulation set (Run I), we also present the Q-parameter
for the simulation at the point before feedback is switched on. The
gas distribution in this simulation is (as we might expect) similar to
the end of the control run (Qgas = 1.02), but theQ-parameter for the
sink particles is similar to the value at the end of the dual-feedback
run Qsinks = 0.42. This is likely due to the simulated cluster being
substructured early on, and the control run erasing some of that
substructure due to dynamical evolution (as discussed in Parker &
Dale 2013).

Two main results are apparent in our analysis. First, the Q-
parameter for the sink particles is systematically lower than the
Q-parameter of the gas distribution. (Note that this is not due to
the differences in the numbers of particles used to determine the Q-
parameter, as highlighted in Fig. 1; this effect is only important if
both Q-values are in the same regime (i.e. substructured, or concen-
trated)). Typically, Qgas ∼ 0.9 (indicating a smooth, concentrated
distribution), whereas the sink particles tend to have Q-parameters
between 0.4 and 0.7 (indicating a substructured, or hierarchical
distribution).

Secondly, and perhaps most strikingly, differences between the
gas distributions in the simulations with and without feedback are
minimal in most cases (despite the apparently substructured gas
distribution for the runs in which feedback is switched on). If we
compare the value of Qgas for the control run simulations, the range
of values is 0.86–1.01 for the 128 × 128 pixel maps. The dual-
feedback simulations range from Qcoldgas,128 × 128 = 0.78 − 0.92.
However, individual simulations often exhibit almost identical val-
ues for Qgas (e.g. the feedback runs from simulations J, UF and UP
have Q values higher than, but very similar to, the control runs).
Furthermore, differences in Q of as little as 0.1 should not be taken
as being significant (e.g. Parker et al. 2014) and based on the ap-
parent visual structure in the feedback runs, we would expect Q
values of less than 0.8. Given the apparent differences between the
column-density images in Figs 2 and 3, this result seems counter-
intuitive.

Cartwright (2009) and Lomax et al. (2011) provide a further
diagnostic of the underlying spatial distribution in relation to the Q-
parameter by plotting m̄ against s̄. In Fig. 4, we show the expected
values of m̄ and s̄ for distributions of N = 10 000 points with
various morphologies, sampling 100 versions of each morphology.
Anti-clockwise from the bottom: fractals with fractal dimension
D = 1.6 (the black crossed circles), D = 2.0 (the red hashtags),
D = 2.6 (the green dotted circles), D = 3.0 (the dark blue crosses);
then radially smooth clusters with power-law density profiles n ∝ r0

(the magenta plus symbols), n ∝ r−1.0 (orange asterisks), n ∝ r−2.0

(blue plus symbols), n ∝ r−2.5 (raspberry hexagrams) and n ∝ r−2.9

(purple compressed squares). Q = 0.8 is shown by the solid line.
We plot the values of m̄ and s̄ for the pixel-point distributions

of the gas in each of our simulations; the control runs are shown
by the open symbols, and the dual-feedback runs are shown by the
filled symbols. Run I is shown by the triangles, Run J by the cir-
cles, Run UF by the stars, UP by the squares and Run UQ by the
diamonds. The values of m̄ and s̄ for the control runs sit mainly
around (but not on) the parameter space of the smooth, concen-
trated profiles with n ∝ r−2.0 (the blue plus symbols). These fake
profiles typically have Q-parameters between 0.9 and 1.0, which is
roughly consistent with the values in the simulations (0.86–1.01).

MNRAS 451, 3664–3670 (2015)
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Figure 2. The spatial distribution of stars and gas in the control Run I simulation from Dale et al. (2014) 2.2 Myr after the point where the calculation is
forked into separate dual-feedback and control runs. In panel (a), we show the surface density distribution the gas, and the sink particles are shown by the white
points. In panel (b), we show the pixel-point distribution for the gas. The sink particles have Q = 0.72 and the gas distribution has Q = 1.01.

Figure 3. The spatial distribution of stars and gas in the dual-feedback Run I from Dale et al. (2014), 2.2 Myr after the enabling of photoionization and winds
from the O-type stars. In panel (a), we show the surface density distribution of the gas, and the sink particles are shown by the white points. In panel (b), we
show the pixel-point distribution for the gas. The sink particles have Q = 0.49 and the gas distribution has Q = 0.88.

The runs with feedback have more scatter, and most sit roughly
between the smooth, concentrated profiles with n ∝ r−2.0 and
n ∝ r−1.0 (orange asterisks). The n ∝ r−1.0 profiles have Q-
parameters between 0.8 and 0.9, again similar to the simulation
values of 0.78 – 0.91.

Despite Q, m̄ and s̄ indicating a smooth, concentrated distri-
bution, the pixel-point distributions for the gas in the simulations
with feedback appear (at least to the eye) substructured. In or-
der to test whether this is due to a failing of the Q-parameter in
determining the structure of complex distributions, we perform two

MNRAS 451, 3664–3670 (2015)
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Table 1. Measured Q-parameters for the gas distributions in the simulations from Dale et al. (2014). The columns display the
run ID, whether feedback was switched on, the Q-parameter for the gas distribution using 64 × 64 pixels, the Q-parameter for
the gas distribution using 128 × 128 pixels, the Q-parameter using 128 × 128 pixels for cold gas only, the Q-parameter using
128 × 128 pixels for cold gas with a column density above 1 × 10−4 g cm−2, the Q-parameter for the sink particles and the
number of sinks.

Run ID Feedback Qgas,64 × 64 Qgas,128 × 128 Qcold gas,128 × 128 Qcold gas, flux limited,128 × 128 Qsinks Nsinks

I Off 1.03 1.01 1.01 0.96 0.72 186
I Dual 0.87 0.88 0.83 0.81 0.49 132
I Before 1.02 0.99 0.99 0.95 0.42 44

J Off 0.91 0.89 0.89 0.89 0.49 578
J Dual 0.87 0.90 0.91 0.92 0.70 564

UF Off 0.88 0.86 0.86 0.84 0.77 66
UF Dual 0.83 0.85 0.88 0.89 0.49 93

UP Off 0.92 0.88 0.88 0.86 0.49 340
UP Dual 0.87 0.88 0.92 0.88 0.64 343

UQ Off 0.91 0.86 0.86 0.88 0.70 48
UQ Dual 1.07 0.83 0.78 0.77 0.45 77

Figure 4. The m̄-s̄ plot (Cartwright 2009) for different morphologies con-
taining N = 10 000 points. We create 100 realizations of each morphology.
Anti-clockwise from the bottom: fractals with fractal dimension D = 1.6
(the black crossed circles), D = 2.0 (the red hashtags), D = 2.6 (the green
dotted circles), D = 3.0 (the dark blue crosses); then radially smooth clusters
with power-law density profiles n ∝ r0 (the magenta plus symbols), n ∝ r−1.0

(orange asterisks), n ∝ r−2.0 (blue plus symbols), n ∝ r−2.5 (raspberry hexa-
grams) and n ∝ r−2.9 (purple compressed squares). We overplot the m̄ and s̄

values for the pixel-point distributions for the gas in the simulations. Control
runs are shown by the open symbols, dual-feedback runs are shown by the
filled symbols. Finally, values for m̄ and s̄ corresponding to a Q-parameter
of 0.8 are shown by the solid black line.

simple Monte Carlo tests in an attempt to mimic the spatial distri-
bution in Fig. 3(b).

First, we create a smooth, concentrated distribution of 10 000
points with radius 10 pc and a radial density profile n ∝ r−2.5, as
shown in Fig. 5(a). This has a Q-parameter of 1.1. We then remove
all points within 2 pc of the origin, and move them to the outskirts of
the distribution (thereby maintaining the same number of points and
the same density profile) andQ = 0.75 (Fig. 5b). We then repeat this
process, but remove everything within 5 pc of the centre, and Q =
0.60 (Fig. 5c). This is intended to mimic in an approximate fashion

the sweeping up of gas and clearing out of bubbles, which is the
main visible effect of feedback. However, we keep the distribution
of points smooth. Whilst the result is very similar in appearance to
the gas distribution from the dual-feedback run (Fig. 3b), it clearly
has a very different underlying spatial distribution according to the
Q-parameter.

Secondly, we create a ‘broken ring’ of 2000 points, which has
Q = 0.3. This is designed to represent more faithfully the bro-
ken and irregular inner walls of the feedback–driven bubbles. We
then embed this in a uniform field of a further 1000 points (with
Q = 0.7), representing the smooth and largely undisturbed back-
ground gas, and then finally, place a further 3000 points in a smooth,
concentrated sphere (with an n ∝ r−2.9 density profile – Q = 1.7).
This material represents the very dense clumps of gas found in
the feedback runs. This final distribution, which incorporates all
three components, is shown in Fig. 6 and has an overall Q = 0.9.
Clearly, the concentrated clump in the centre of the distribution is
dominating the overall Q-parameter.

In order to test this in the SPH simulation data, we take the pixel-
point distribution for the dual-feedback run shown in Fig. 3(b) and
remove the region of highest density centred on {3,4} pc. This
distribution is shown in Fig. 7. When we remove this region, the Q-
parameter is reduced from 0.88 (indicating a smooth concentrated
distribution) to 0.76, which is in the slightly substructured/uniform
field regime. The remaining ‘background’ of points, which are trac-
ing low-density gas in the simulation, are still contributing to the Q
value, hence the distribution still does not appear very substructured.

Our interpretation is therefore that the gas distribution in the dual-
feedback runs – whilst visually appearing to be very different from
the control runs – is actually very similar, and both are dominated
by a smooth, concentrated component.

4 D I SCUSSI ON

We set out to examine the extent to which the structure of the gas
and stellar distributions in a set of hydrodynamic simulations are
similar using an objective quantitative criterion: the Q-parameter.
This is in contrast to many other studies where the surface density
of either the stellar mass or the star formation rate are compared
with the surface density of the gas, which can only offer qualitative
conclusions.

MNRAS 451, 3664–3670 (2015)
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Figure 5. The effects on the spatial distribution of a smooth, concentrated cluster with density profile n ∝ r−2.5 when removing centrally located points. In
panel (a), we show the original distribution, which has Q = 1.1. In panel (b), we have removed everything within 2 pc of the centre and placed it at larger radii,
following the underlying radial profile, and Q = 0.75. In panel (c), we have removed everything within 5 pc and placed them at larger radii, and Q = 0.60.

Figure 6. Three different spatial distributions overlaid within the same
field. We show a broken ring of 2000 points within a uniform distribution
of a further 1000 points. In the centre is a centrally concentrated sphere
of a further 3000 points with an n ∝ r−2.9 density profile. In isolation, the
broken ring has Q = 0.3, the uniform field has Q = 0.7 and the sphere has
Q = 1.7. The combined distributions have an overall Q-parameter of 0.9.

If our results can be taken at face value, they suggest that the
spatial distribution of stars is very different to that of the gas from
which they form. In one sense, this is not surprising; the initial
conditions of the simulations of Dale et al. (2014) are smooth,
concentrated gas clouds, whereas stellar distributions, particularly
in the early stages of star formation, are expected to be highly
substructured. However, once the cloud has evolved and formed
stars in a substructured distribution, we might expect the gas from
which they form to also exhibit substructure. This is not the case, and
the gas distribution remains dominated by a smooth concentrated
component. This is particularly evident in Run I where the largest
subcluster is fed by a set of smooth accretion flows which do not
themselves fragment into clumps or stars.

The presence (or not) of feedback was shown in Dale et al. (2012)
and Parker & Dale (2013) to have a minimal effect on the spatial
distribution of stars at the end of the feedback calculations, when

Figure 7. The gas pixel-point distribution for the dual-feedback Run I
simulation 2.2 Myr after feedback is enabled (Fig. 3b), but with the pixel
points from the most dense region of gas removed. Removing this region of
points reduces the Q-parameter from 0.88 to 0.76.

compared with the control runs – all the simulations from Dale
et al. (2012), Dale, Ercolano & Bonnell (2013) and Dale et al. (2014)
form stars with a substructured distribution, and other authors report
similar conclusions (e.g. Bate 2012; Girichidis et al. 2012; Kruijssen
et al. 2012). From visual inspection, it appears that feedback results
in a very different spatial distribution for the gas (compare Figs 2b
and 3b). However, most of the gas remains in a dense, concentrated
distribution(s) in these pixel-point maps. The difference in fact is in
the relative positions of the stars and gas. In the control simulations,
the densest concentrations of gas and stars are spatially coincident.
In the feedback simulations, the accretion flows feeding the clusters
are destroyed or deflected and the clusters and their environs are
cleared of gas. Much of the gas is swept up into relatively dense
concentrations, but these form stars inefficiently, so that the main
effect of feedback is to spatially separate some of the stars from
dense gas (this can readily be seen by comparing the positions of
the sink particles to the gas in Fig. 3a). However, in most of the runs,
even in the presence of feedback many of the sink particles are still

MNRAS 451, 3664–3670 (2015)
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coincident with the dense gas in 2D projection, even if they not still
genuinely embedded in three dimensions. This is particularly true
of Run J, where large quantities of dense gas remain projected at
the location of most of the stars, even though in three dimensions
the main concentration of stars has been largely cleared of gas. This
effect blurs out the dynamical influence of feedback when seen in
projection.

One caveat is that the Q-parameter may not be an ideal method
for measuring the spatial distribution of gas, as we first need to
convert a pixelated image into a distribution of points. However,
Lomax et al. (2011) show that the underlying spatial distribution
is always recovered in synthetic data sets, and in the Monte Carlo
experiment shown in Fig. 6 we also recover the underlying spatial
distribution.

5 C O N C L U S I O N S

We measure the spatial distributions of gas and stars in hydro-
dynamical simulations of star formation using the Q-parameter
(Cartwright & Whitworth 2004; Lomax et al. 2011). We compare
Q for simulations which form under the influence of feedback from
photoionization and stellar winds, and corresponding control run
simulations. Our conclusions are as follows.

(i) The spatial distribution of the gas is different to that of the
stars in all simulations. The gas has a spatially smooth, concentrated
distribution (Q ∼ 0.9), whereas the stars have a substructured dis-
tribution (Q ∼ 0.4-0.7).

(ii) The presence of feedback clears out cavities, or bubbles in
the simulations, which are visible to the eye. However, statistically
these distributions are similar to the control run simulations without
feedback. The reason for this is that in all simulations, a significant
dense, concentrated gas component dominates the spatial distribu-
tion.

(iii) The combination of points (i) and (ii) suggests that a direct
link between the spatial distribution of young stars, and the gas
from which the stars form should not necessarily be expected in
observations.

These results also highlight the pitfalls in trying to measure quan-
titatively something previously judged by eye. The column density
images shown in Figs 2(a) and 3(a) and the corresponding pixel-
point distributions could scarcely look more different, yet the Q-
parameter analysis reports that they are statistically indistinguish-
able. The root cause of the similarity is that they are both dominated
by the same kinds of structures, the visual difference being due to
how those structures are arranged.

There is growing evidence in the literature that suggests star
formation is hierarchical, with no preferred spatial scale (Efremov
1995; Elmegreen et al. 2006; Bastian et al. 2007; Kruijssen 2012).
Because of this, it is tempting to link different regimes together, such
as the spatial distribution of gas in the ISM with the spatial distribu-
tion of stars in clusters (e.g. Gouliermis et al. 2014; Gregorio-Hetem
et al. 2015). Our results suggest that – whilst star formation in nu-
merical simulations also produces a hierarchical spatial distribution
of the stars – the distributions of gas and stars may be linked in a
highly non-trivial way.
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