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Highlights

• We generate optimal Minkowski partitions at various values of the expo-
nent p.

• We define the Minkowski profile based on the average similarity between
partitions.

• Minkowski profile is highly correlated with ARI vectors related to the
ground truth.

• We define the central Minkowski partition which can serve as a consensus
partition.

• The Silhouette width should be used for selecting the optimal Minkowski
exponent.
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Abstract

The Minkowski weighted K-means (MWK-means) is a recently developed clus-
tering algorithm capable of computing feature weights. The cluster-specific
weights in MWK-means follow the intuitive idea that a feature with low variance
should have a greater weight than a feature with high variance. The final cluster-
ing found by this algorithm depends on the selection of the Minkowski distance
exponent. This paper explores the possibility of using the central Minkowski
partition in the ensemble of all Minkowski partitions for selecting an optimal
value of the Minkowski exponent. The central Minkowski partition appears to
be also a good consensus partition. Furthermore, we discovered some striking
correlation results between the Minkowski profile, defined as a mapping of the
Minkowski exponent values into the average similarity values of the optimal
Minkowski partitions, and the Adjusted Rand Index vectors resulting from the
comparison of the obtained partitions to the ground truth. Our findings were
confirmed by a series of computational experiments involving synthetic Gaussian
clusters and real-world data.

Keywords: Clustering, Central clustering, Feature weighting, Minkowski
metric, Minkowski ensemble.

1. Introduction

Clustering algorithms aim at revealing the class structure of a dataset.
Many of them do it by partitioning a given dataset Y into K clusters, S =
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{S1, S2, ..., SK}, so that each cluster Sk ∈ S contains similar entities. Cluster-
ing algorithms have been used in many practical applications, including those
in the fields of banking, bioinformatics, computer vision, marketing, security,
and general data mining [1, 2, 3].

The K-means algorithm [4, 1, 3] is arguably the most popular clustering
method nowadays. To test this claim, we used three most popular search
engines, i.e., Google, Bing and Yahoo, to assess the numbers of web pages they
return with respect to queries of six popular clustering methods or approaches,
including K-means [4], Hierarchical clustering [5], Neighbor-joining [6], Spectral
clustering [7], Single linkage [8], and Agglomerative clustering [5]. The results
reported in Table 1 do show the prevalence of K-means over other clustering
techniques. Implementations of K-means can be easily found in various

Table 1: Counts of relevant web pages returned by the most popular search engines with re-
spect to queries of the named methods obtained on November 15, 2015 at Birkbeck University
of London.

Search engine Google Bing Yahoo
K-means 2,070,000 481,000 537,000
Hierarchical clustering 677,000 251,000 268,000
Neighbor-joining 591,000 146,000 148,000
Spectral clustering 202,000 71,500 78,100
Single linkage 140,000 30,900 32,800
Agglomerative clustering 130,000 33,100 33,000

software packages frequently used in data analysis, such as MATLAB [9], R
[10], SPSS [11], and SciPy [12]. Given a dataset Y composed of N entities (i.e.,
objects) yi, each described over the same V features (i.e., variables), K-means
generates a pre-specified number K of disjoint clusters, so that Sk ∩ Sl = ∅
for k, l = 1, 2, ...,K and k 6= l, covering the entire dataset. The traditional
K-means algorithm runs update-centers/update-clusters iterations as described
below.

K-means algorithm

1. Assign the values of K entities of Y , selected at random, to the initial
centers c1, c2, ..., cK . Set Sk ← ∅.

2. Assign each entity yi ∈ Y to the cluster Sk whose center, ck, is the nearest
to yi. If there are no changes in S, stop and output clusters S and their
centers C.

3. Update each center ck with respect to the vector of component-wise means
of its cluster Sk. Go to step 2.

This method is known to alternatingly minimize the following least-squares
criterion:

W (S,C) =

K∑

k=1

∑

i∈Sk

V∑

v=1

(yiv − ckv)2, (1)
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where ck ∈ C is the center of cluster Sk ∈ S, with respect to two groups of
variables, clusters S = {S1, S2, ..., SK} and centroids C = {c1, c2, ..., cK}.

Despite its popularity K-means has several important weaknesses, among
them:

1. The number of clusters, K, must be known beforehand;

2. This is a local search algorithm that usually gets trapped in a local mini-
mum;

3. The resulting clustering, S, heavily depends on the initial centers;

4. All features equally contribute to the solution, regardless of their individ-
ual degree of relevance.

In this paper, we are mostly concerned with the last item of this list. Until
recently, the issue of taking into account the extent of relevance of any specific
feature was difficult to address because the traditional K-means algorithm and
its objective function (Equation 1) lack an explicit feature weighting step. This
step has been introduced in several works, thus transforming the two-step it-
erations of K-means into three-step iterations [13, 14, 15, 16]. The additional
third step assigns weights to features in such a way that feature’s weight gets
greater when the feature better accords to the current partition. As we have
recently shown, the weights are most naturally fit into the Minkowski distance
framework: they are associated with feature scale factors in this perspective
[16]. Our algorithm, Minkowski weighted K-means (MWK-means) [16], au-
tomatically calculates cluster specific weights for each feature and applies the
Minkowski distance to ensure these weights can be seen as feature rescaling
factors (more details are given in Section 2). However, the quality of cluster
recovery of MWK-means is subject to the selection of a suitable Minkowski dis-
tance exponent p. This selection depends on the data structure of Y , making
it impossible to have a single value of p that provides optimal clustering in all
cases. The issue of finding a proper value of p can be addressed in the framework
of semi-supervised clustering [16], yet it is of interest to try tackling it in the
unsupervised clustering perspective.

Here we propose an approach associated with the structure of the Minkowski
partition ensemble, that is, the set of partitions Sp found at different Minkowski
exponent values p ≥ 1. This ensemble resembles partition ensembles used in
consensus clustering, a research direction which became popular in the past
decade. It involves a representative set of partitions found by various algorithms
or various combinations of parameters (partition ensemble) and a rule for finding
an “average” partition according to the ensemble (see, for example, [17, 18, 19]).
The average partition is supposed to be close to the ground truth partition
behind the dataset from which partitions in the ensemble are obtained. Yet,
there are properties of the Minkowski partition ensemble that distinguish it from
the others considered so far:

1. Completeness. Usually, the elements of a partition ensemble are ob-
tained as results of different runs of the K-means clustering algorithm
at different initializations, sometimes with additional randomization steps
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[18, 20]. In such a process, one is never able to know how well such a
random sample reflects the landscape of possible partitions. In this re-
gard, the Minkowski partition set is complete by the virtue of taking into
account MWK-partitions at all possible p. One even may speculate on the
nature of Minkowski partitions, as they correspond to the full spectrum
of Minkowski distances, from the city-block distance that sums all the
component-wise differences between entities at p = 1 to the Tchebychev
distance that takes into account only the maximum of the differences (at
p tending to infinity).

2. Refinement. Unlike in the conventional approaches, each of MWK-
means partitions results from multiple runs of K-Means rather than from
a single run. In practice, the optimal Sp partition is the best out of parti-
tions found at a hundred runs of MWK-means. Moreover, one should not
forget that the result is found at features weighted according to their rele-
vance to the partition. That means that the Minkowski partition ensemble
is a much more refined set of partitions.

3. Natural diversity. There is a claim that a partition ensemble to be suc-
cessful in recovering the ground truth partition should have a significant
level of diversity [18]. This claim generated a series of publications which
established that the claim is not quite sound, yet the extent of diversity
can be put under control [19]. In our view, the extent of diversity of a
partition ensemble should not be considered separately from the structure
of the dataset under consideration. For example, if a dataset consists of a
set of well-separated compact clusters, then any run of K-means, with an
appropriate K, will result in the same partition so that the resulting par-
tition set will consist of many copies of the same partition – the minimum
diversity, yet perfectly reflecting the structure of the dataset. Therefore,
the extent of diversity of an admissible partition ensemble should depend
on the cluster structure of the dataset: the more confusing is the struc-
ture, the greater the diversity of the partition ensemble. The Minkowski
partition ensemble fully accords with the principle.

These properties of the Minkowski partition ensemble lead us to hypothe-
size that there exists a “central” partition such that it accords most with both
the appropriate Minkowski exponent and the ground truth partition. If true,
this hypothesis would also mean that the central partition may well serve as a
consensus partition without further elaborations. The goal of this paper is to
test this hypothesis in different practical situations. We provide computational
evidence that our hypothesis is correct for a large variety of datasets, both syn-
thetic and real. Moreover, we find an empirical signal indicating whether the
hypothesis is correct for a given dataset. Also, we show that similar construc-
tions for other partition ensembles cannot warrant that their central partitions
have anything to do with the ground truth.

To implement our framework computationally, we define the Minkowski par-
tition ensemble by using a discrete series of values of p, from p = 1 to p = 5 with
a step of 0.1, so that the ensemble consists of the selected MWK-means parti-
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tions Sp corresponding to p = 1.0, 1.1, 1.2, ..., 5.0. The upper boundary value,
p = 5, according to our experience is quite large, so that larger values of p bring
no different partitions. As a measure of similarity between partitions we use the
popular Adjusted Rand Index (ARI) [21]. This index is usually chosen, over
other indices such as Normalized Mutual Information (NMI), by many authors
because, first, its intuitive clarity and, second, its propensity for “picking up”
right choices in computations, as mentioned for example in [18]. We use ARI
to define what is referred to as Minkowski profile further on.

The Minkowski profile is defined as a mapping of the Minkowski exponent
values p = 1.0, 1.1, ..., 5.0 into the average similarity values of the corresponding
MWK-means partition, Sp, to the other Minkowski partitions. Thus defined, the
Minkowski profile can be considered as a concept detailing the notion of diversity
of a partition ensemble used in [18, 20, 19] in two different formulations. The
diversity-one with respect to the ensemble is defined as the average value of all
the pairwise partition-to-partition dissimilarity values; the dissimilarity being
defined as unity minus the average ARI index value [18]. The diversity-two is
defined with respect to any “central” partition, S, as the average dissimilarity
with S. Thus, the values constituting the Minkowski profile are the diversity-two
characteristics of each specific partition Sp taken as S. On the other hand, the
average value of the entire Minkowski profile subtracted from 1 is the diversity-
one characteristic of the Minkowski partition ensemble.

Our experiments with synthetic datasets entailing Gaussian clusters of sim-
ple structure do show that the central Minkowski partition indeed can be used
as a statistical tool for finding both an appropriate Minkowski exponent and a
meaningful consensus clustering for a given dataset.

The remainder of the paper is organized as follows. Next section describes all
the details regarding the MWK-means algorithm as it is implemented and ap-
plied in this study. Section 3 introduces the concepts of the Minkowski partition
ensemble and Minkowski profile. The following section describes our experimen-
tal findings. Our experiments on testing collinearity between the Minkowski
profile and the quality of cluster recovery are described there too. Section 4
recalls the concept of consensus partition, defines the central Minkowski parti-
tion, tests experimentally how well this partition works as a consensus partition
and points out to an optimal value of the Minkowski exponent. The Conclusion
section reviews our findings and describes possible extensions of this work.

2. Minkowski weighted K-means

The Minkowski weighted K-means (MWK-means) algorithm involves both
the Minkowski distance and cluster-based feature weights [16]. These feature
weights follow the intuitive idea that a given feature v may have different de-
grees of relevance at different clusters Sk ∈ S (k = 1, 2, ...,K). The more
a feature is dispersed within a cluster, the lower its weight at this cluster is.
The Minkowski distance between an entity yi and a centroid ck is defined by
dp(yi, ck) = (

∑V
v=1 |yiv − ckv|p)1/p, where p is the Minkowski exponent.

6
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Any distance measure in the framework of the K-means general scheme in-
troduces some bias to the shapes of clusters to be found. Assuming a two-
dimensional space for an easier visualization, the Euclidean distance used in (1)
makes K-means biased towards circular clusters. At values of p equal to one,
two and tending to ∞, the Minkowski distance is referred to as the Manhat-
tan, Euclidean and Tchebychev distances, respectively. For instance, a value
of p located between one and two leads to a bias towards a shape between a
rhombus and a circle. In general, we can set the shape bias of the Minkowski
distance towards any interpolation between a rhombus (at p = 1) and a square
(at p→∞). In fact, the Minkowski distance introduces a bias towards a shape
similar to that of a Lamé curve (also known as Superellipse), whose precise
shape depends on the selected value of p (see Figure 1). In the MWK-means al-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

p=1
p=2
p=3
p=4
p=5

Figure 1: Fragments of Minkowski plane circles at p = 1.0, . . . , 5.0. The blue line represents
the case p = 1, green curve - p = 2, red curve - p = 3, purple curve - p = 4, and black curve -
p = 5.

gorithm, the Minkowski distance depends on the feature scales. Assuming that
the objective is to minimize the sum of distances between entities and their
respective centroids, as typical for K-means (1), one can introduce a rescaling
factor wkv for each feature v at each cluster Sk ∈ S. This rescaling factor within
the Minkowski K-means framework can be interpreted as the feature weight, and
the weighted Minkowski distance can be defined as follows:

dp(yi, ck) = (
V∑

v=1

wp
kv|yiv − ckv|p)1/p. (2)

Provided that cluster Sk and its center ck have been pre-specified, the op-
timal weight wkv of feature v within cluster Sk is inversely proportional to
the dispersion Dkv of v at Sk. The dispersion Dkv is defined by equation
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Dkv =
∑

i∈Sk
|yiv − ckv|p. Then, the optimal weight wkv is given by:

wkv =

(∑

u∈V
[Dkv/Dku]1/(p−1)

)−1
. (3)

The MWK-means algorithm carries out a series of iterations, each involving
three steps specifying how each of the three items, the centroids, the clusters,
and the weights, are updated, provided that two of them are given (i.e.,
optimized at the previous steps).

MWK-means

1. Parameter setting. Choose the number of clusters, K, and the Minkowski
exponent, p. Set S ← ∅, and wkv = 1/V for k = 1, 2, ...,K and v =
1, 2, ..., V .

2. Setting the centers. Assign the values of K entities from Y , selected at
random, to be the initial cluster centers c1, c2, ..., cK .

3. Cluster update. Assign each entity yi ∈ Y to the cluster Sk represented by
the nearest ck as per (2), generating the clustering S′ = {S′1, S′2, ..., S′K}.
If S′ = S, then go to Step 6 to end the computation.

4. Center update. Update each center ck ∈ C to the component-wise
Minkowski center of yi ∈ Sk.

5. Weight update. Update each weight wkv using Equation (3). Set S ← S′,
then go to Step 3.

6. Output. Output the clustering S = {S1, S2, ..., SK}, centers C =
{c1, c2, ..., cK}, and feature weights w.

The central value ck in Step 4 is given by the component-wise median, mean
and mid-range of yi ∈ Sk, at p = 1, 2 and ∞, respectively. At other values of p,
subject to p ≥ 1, γv(µ) =

∑
i∈Sk
|yiv − µ|p is a U-shape curve with a minimum

located in the interval [mini(yiv),maxi(yiv)] [16, 22]. The center in this case is a
minimizer of γv(µ). In our previous work [16], a gradient method for finding this
minimum has been applied. Here we use a much simpler and faster procedure
involving no derivatives. We begin by setting µkv = |Sk|−1

∑
i∈Sk

yiv, i.e., the
mean value, and then iteratively change it using a pre-specified step size, say
0.001, i.e., adding or subtracting it depending on the side on which the value of
γv is minimized.

The MWK-means algorithm alternatingly minimizes the following objective
function:

Wp(S,C,w) =
K∑

k=1

∑

i∈Sk

V∑

v=1

wp
kv|yiv − ckv|p, (4)

subject to
∑V

v=1 wkv = 1 and wkv ≥ 0 for k = 1, 2, ...,K and v = 1, 2, ..., V ,
in the framework of a crisp clustering in which each entity yi is assigned to a
single cluster Sk.

Note that the objective function (4) involves p-th power of Minkowski dis-
tance rather than the distance itself. This choice is analogous to the use of the
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squared Euclidean distance, rather than Euclidean distance, in K-means. This
objective function also supports cluster-specific feature weights. It shows indeed
that the interpretation of weights as the rescaling factors is meaningful because
the same exponent p is applied to both the distance and the weights. We have
recently shown that using these factors to rescale datasets does improve the like-
lihood that cluster validity indices return the correct number of clusters [22].
The interpretation of feature weights as feature re-scaling factors is not valid in
other feature weighting algorithms such as Weighted K-Means [23], Attribute
Weighting K-Means [24], or Improved K-Prototypes [25].

Clearly, the final clustering given by MWK-means depends on the initial
centroids chosen in Step 2. When using K-means, this issue is often addressed
by running the algorithm a hundred or more times [26] and by selecting the
clustering S that provides the best value of the objective function (1). This
strategy can still be followed within MWK-means for a given value of p. How-
ever, it cannot be used for finding an optimal value of p within MWK-means
because the values of the objective function (4) are not comparable at different
values of p. However, any cluster validity index that does not depend on p can
be used in this case to select the best partitioning.

3. Minkowski partition ensemble, Minkowski profile, and their use

Consider the set of partitions Sp minimizing the objective function (4) at
any given value of the exponent p ≥ 1. It is clear that there can be only a finite
number of different partitions Sp because the number of objects is finite. We
refer to this set of partitions, SM = {Sp} at various p ≥ 1, as the set of optimal
Minkowski partitions. Of course, finding the set of optimal Minkowski partitions
in its entirety is almost unfeasible because the task of minimization of criterion
(4) is computationally hard. In practice, there are different options one might
wish to explore. Here, we experimented with three of these. For a considered
value of p, we carried out MWK-means 100 times, each with a random start.
We then took as Sp the partition providing either (i) the minimum value of the
objective function Wp (Equation 4), or (ii) the maximum value of the Silhouette
width (SW) [27], or (iii) the maximum value of the Calinski-Harabasz index
(CH) [28].

No sole cluster validity index is clearly superior to all the others in all cases.
However, the Silhouette width (SW) and the Calinski-Harabasz index (CH) tend
to be among the top performers according to several comprehensive simulation
studies [29, 30, 31]. There are other potentially valuable alternatives, based for
example on the stability-based approach, and we direct interested readers to
[29, 32, 33] and references therein.

The Silhouette width for a clustering is defined as follows:

SW =
1

N

N∑

i=1

b(yi)− a(yi)

max{a(yi), b(yi)}
, (5)
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where a(yi) is the average distance between yi ∈ Sk and {yj : yj ∈ Sk}, and
b(yi) is the lowest average distance between yi and {yj : yj ∈ Sl}, where l 6= k.
The Calinski-Harabasz index is defined as follows:

CH =
B

W
× (N −K)

(K − 1)
(6)

where W is the overall within-cluster variance, B is the overall between-cluster
variance, N is the number of entities, and K is the number of clusters.

We think that there is no need in using values of p outside of interval [1, 5]
in our simulations, since the best partitions have never appeared at p greater
than 5 in our previous computations [16, 34, 22]. In fact, the higher the value
of p, the more uniform the weights are, thus voiding any advantage provided
by the use of feature weights. Therefore, we consider a set SM = {Sp} of 41
Minkowski partitions Sp found at p = 1.0, 1.1, ..., 5.0, each of them optimising
one of the three above-discussed indices (SW, CH, and Wp) over a series of
100 random starts. This set represents an empirical estimate of the set of
all optimal Minkowski partitions and constitutes a version of the Minkowski
partition ensemble.

Let us now define the concept of Minkowski profile for a given Minkowski
partition ensemble. As explained above, we use the Adjusted Rand Index (ARI)
[21] to capture the extent of similarity between two partitions. This index is
based on the proportion of entity pairs that are consistent between the two
partitions, i.e., belong or not to the same cluster in both compared partitions.
The ARI index is computed from the confusion table between two cluster parti-
tions, Sp = {Sp1, Sp2, . . . , Spmp} and Sq = {Sq1, Sq2, . . . , Sqmq}, where mp and
mq are the numbers of clusters in Sp and Sq, respectively. The confusion table
has rows corresponding to classes of Sp and columns to classes of Sq; its entry
(k, l) is the number of objects in the intersection of Spk in Sp and Sql of Sq,
Nkl = |Spk

⋂
Sql|. The confusion table is referred to as the contingency table in

statistics. Let N be the total number of entities, Nk - the number of entities in
k-th cluster of Sp, and Nl - the number of entities in l-th cluster of Sq. Then,
ARI can be defined as follows:

φ(Sp, Sq) =

∑
k,l

(
Nkl

2

)
− CpCq

/(
N

2

)

1
2 (Cp + Cq)− CpCq

/(
N

2

) , (7)

where Cp =
∑

k

(
Np

k

2

)
and Cq =

∑
l

(
Nq

l

2

)
. The values of ARI vary between

−1 and 1, and ARI = 1 if and only if the two compared partitions coincide, i.e.,
Sp = Sq.

For each partition Sp ∈ SM , we can define a characteristic of its similarity
to all the partitions in SM , i.e., the average similarity:

φ(Sp) =
∑

q

φ(Sp, Sq)/|SM |. (8)
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Then, the Minkowski profile φ(SM ) is defined as a mapping p→ φ(Sp) of the set
of all considered values of p, into the set of the corresponding average similarity
values φ(Sp), p = 1.0, 1.1, ..., 5.0.

We can now define the central Minkowski partition as the partition Sp ∈ SM

corresponding to that p at which the maximum of the Minkowski profile is
reached. This means that Sp maximizes the average similarity to SM over all
considered values of p.

Given a partition ensemble, the problem of finding its consensus partition
has attracted considerable attention (see, for example, [17, 18, 35, 2] and [36]
for the latest references). Most algorithms use the so-called consensus, or co-
association, matrix between objects for finding and extending common frag-
ments. There are mathematically deeper approaches using Bayesian or mixture
of distributions modeling. In this paper, we do not use any of them, because the
concept of Minkowski partition ensemble assumes that there are no meaningful
partitions outside of it. Therefore, consensus partition should be one of those
constituting the Minkowski partition ensemble. Indeed, we have tried building
consensus partitions by using an algorithm from [2, 37], which is a version of
the approach described in [17]. This usually led to different partitions indeed,
but with quite a mediocre cluster recovery results.

Thus, we propose the following routine to select an optimal value of the
Minkowski exponent p and determine a Minkowski central partition to be used
as a consensus partition:

Choosing an optimal exponent p and central partition Sp

1. Computing the optimal Minkowski partitions. For each value of p =
1.0, 1.1, ..., 5.0, run MWK-means 100 times saving only the run that ei-
ther (i) maximizes the value of the selected cluster validity index (CH
or SW), or (ii) returns the minimum value of Wp. This generates the
Minkowski partition ensemble of 41 clusterings.

2. Computing the Minkowski profile. Calculate ARI between each pair of
Minkowski partitions and define the Minkowski profile as the set of average
ARI values between each of the partitions in the Minkowski profile and
the rest.

3. Computing the central Minkowski partition. Output the central Minkowski
partition as a clustering whose average ARI is among the partitions of the
Minkowski profile. If there are several partitions of the Minkowski profile
that provide the highest value of ARI, select among them the partition
that corresponds to the minimum value of the Minkowski exponent p (such
a strategy provided the best results in our simulations).

4. Setting an optimal Minkowski exponent and a consensus partition. The
central Minkowski partition allows one to determine both an optimal ex-
ponent p and a consensus partition.

For comparison, we also carry out experiments with the conventional K-
means algorithm. There is obviously no need to select a distance exponent in
K-means, but one still has to choose here the best partition out of a set of 100

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Real-world datasets from UCI repository used in our experiments.

Dataset Entities (N) Features (V ) Clusters (K)
AustraCA 690 14 2
Heart 270 13 2
Hepatitis 155 19 2
Iris 150 4 3
Pima Indians 768 8 2
Wine 178 13 3

partitions obtained after 100 random starts. To do so, we carry out the above-
described routine, but instead of the 41 optimal MWK-means partitions (one
for each value of p) we consider the 100 K-means partitions. We compute the
ARI between each pair of these 100 K-means partitions, define the profile of the
ensemble by computing for each of them the average ARI to the rest, and output
the clustering that maximizes the profile. As in [16], in all of our experiments
we first consider clustering solutions that have the expected number of clusters.
When no such correct clusterings are found by using K-means or MWK-means,
we accept those partitions that have been found by these partitioning algorithms
regardless of the number of clusters.

We run computational experiments with both real-world and synthetic data.
The real-world datasets are those six datasets from the UCI repository that have
been used in our previous studies [16], see Table 2.

Among these datasets, there are some with rather clear cluster structure,
such as Iris and Wine, as well as some complex datasets for which no conven-
tional classifiers have provided good accuracy results so far, such as Hepatitis
and Pima Indians.

We also carry out simulations with synthetic data structures, akin to those
presented in our previous works (see for example [16, 22]). Our synthetic data
are composed of spherical Gaussian clusters so that the covariance matrices are
diagonal, with the same diagonal value σ2 generated randomly at each cluster,
and varying between 0.5 and 1.5. All centroid components are generated in-
dependently using the standard normal distribution. Cluster cardinalities are
generated using a uniform distribution, with a constraint that each generated
cluster comprises at least 20 entities. The following GMMs configurations, dif-
ferent in terms of the number of features and clusters, are tested in our study:

• 1000 entities over 8 features constituting 4 clusters (1000x8-4);

• 1000 entities over 10 features constituting 5 clusters (1000x10-5);

• 1000 entities over 12 features constituting 5 clusters (1000x12-5);

• 1000 entities over 20 features constituting 6 clusters (1000x20-6);

• 1000 entities over 30 features constituting 10 clusters (1000x30-10);
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• 1000 entities over 40 features constituting 8 clusters (1000x40-8).

It should be noted that not only the feature space dimensions are relatively
small at the first three sets of parameters, 8, 10, and 12, but also their re-
lation to the number of clusters is not high either. The space dimension to
the number of clusters ratios for these sets are: 8/4=2, 10/5=2, and 12/5=2.4,
respectively. This contrasts with the higher ratios at our other parameter combi-
nations: 20/6=3.33, 30/10=3, and 40/8=5. We will see that the cluster recovery
results at the latter datasets are much better. For each of these configurations,
we generate a hundred different datasets. All results presented further on are
the averages taken over the 100 results obtained for each of our configurations.

We standardize each feature by subtracting its mean and dividing it by its
range, as shown below:

yiv =
yiv − ȳv

max(yv)−min(yv)
. (9)

Often clustering experiments are carried with data standardized using the pop-
ular z -score normalization. We think that the above-presented standardization
could be a good alternative normalization option [2]. Consider a dataset with
two features: a unimodal feature v1 and a multimodal feature v2. The standard
deviation of v2 will be higher than that of v1, leading to lower z -score values of
v2 in comparison to v1. This means that v1 would have a higher contribution
to clustering in spite of the fact that v2 has a clearer cluster structure.

Moreover, we carry out additional experiments with the standardized
datasets after adding to them noise features. As in our previous studies [16],
the values of the noise features are distributed uniformly in the unity range. For
all datasets, the number of noisy features inserted is half of the number of the
original features.

4. Experimental results

4.1. Relationship between the Minkowski profile and the similarity to ground
truth

It appears that the Minkowski profile is closely related to the pre-specified
cluster structure of a dataset when the MWK-means partitioning algorithm is
used. Specifically, on many real datasets the Minkowski profile closely follows
the cluster structure recovered by MWK-means.

For instance, Figure 2 presents the behaviour of the Minkowski profile and
that of the ARI index resulting from the comparison of 41 optimal partitions
Sp (at p = 1.0, 1.1, ..., 5.0, obtained using MWK-means) to the known ground
truth partition for the Australian Credit Approval dataset analyzed in many
works on data clustering, including [23] and [16]. The striking similarity of the
two presented curves is reflected in a very high value of the linear correlation
coefficient between them, 0.991.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Values of p

A
R

I

Figure 2: Adjusted Rand index (ARI) of MWK-means applied to the Australian Credit Ap-
proval dataset. The dashed line represents the ARI in relation to the ground truth. The solid
line represents the Minkowski profile of this dataset. The optimal Minkowski partition at each
value of p was selected using the Silhouette width.

Table 3 reports the correlation results obtained for the six benchmark
datasets from the UCI repository listed above. This table allows us to com-
pare the correlations obtained with traditional K-means and those obtained
with our MWK-means algorithm using the Silhouette width (SW) [27], the
Calinski-Harabasz (CH) [28]) index, and the Minkowski objective function Wp

(Equation 4). For each value of p considered in this study, the MWK-means
algorithm was carried out 100 times starting at random partitions. Then, the
partition maximizing the value of the selected cluster validity index (SW or CH)
or minimising the objective function (Wp), at a given value of p, was chosen for
calculating the Minkowski profile. The column KM in Table 3 presents the re-
sults found by running the conventional K-means algorithm 100 times, also with
random initializations (see Section 3). Afterwards, we computed the correlation
between the MWK-means (or K-means) profile and the ARI vector resulting
from the comparison of the 100 obtained partitions to the ground truth parti-
tion. Observing the results presented in Table 3, one can notice that both the
traditional K-means and MWK-means used along with the SW cluster validity
index provide, in most of the cases, a high correlation between the profile vector
and the vector of ARIs resulting from the comparison of the obtained partitions
to the ground truth. However, this is not the case of the MWK-means results
found using CH and Wp. With the latter partitions, even negative correlation
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Table 3: Correlations between the Minkowski (or K-means) profiles and the ARI vectors,
resulting from the comparison of the obtained partitions to the ground truth, computed for
six benchmark datasets from the UCI repository. In the case of K-means, we used a set of
100 partitions obtained from 100 random starts of the algorithm; in the case of MWK-means,
we considered a set of 41 optimal partitions (according to the Silhouette width (SW), the
Calinski-Harabasz index (CH), and the Minkowski objective function Wp).

KM MWK
SW CH Wp

AustraCA 0.862 0.991 0.991 -0.830
Heart 0.911 0.966 0.899 0.579
Hepatitis 0.886 0.855 0.626 0.928
Iris 0.844 0.984 -0.905 0.961
Pima Indians 0.998 0.949 -0.063 -0.099
Wine 0.738 0.594 0.489 0.957

results were obtained for some datasets.
Table 4 reports the average correlation values, obtained for each of the six

parameter configurations listed above, between the Minkowski (or K-means)
profiles and the ARI vectors resulting from the comparison of the obtained par-
titions to the ground truth. The obtained standard deviations are also indicated
here.

The correlation values presented in Table 4 suggest that the best correlation
results have been obtained using MWK-means and the minimum of Wp (Equa-
tion 4). This trend is particularly noticeable for GMMs with noisy features.
One can also observe that the correlations obtained with MWK-means and SW
generally follow those obtained with MWK-means and Wp at datasets of larger
dimensions. In the GMMs with and without noise, the Wp criterion seems to
work better than CH and SW at low-dimensional datasets. Another conclusion
which can be drawn from these results is that the second triplet of parameters,
1000x12-5, clearly leads to the increase in the obtained correlations. In general,
Table 4 shows quite high correlation values, especially under the SW and Wp

scenarios, for both K-means and MWK-means. However, both algorithms fail
at small space dimensions under the noise conditions, except for the Wp scenario
of MWK-means. At larger space dimensions, the MWK-means results for noisy
data show remarkably high correlations under all the three scenarios.

Moreover, we carried out experiments with the Rand, Mirkin, Hubert, and
Jaccard, partition similarity indices (for details see [21] and references therein),
which were used instead of ARI within MWK-means. In these experiments the
optimal Minkowski partition at each value of p was selected using Wp. The
former three indices are linearly related, which implies that they lead to the
same correlation values (see Table 5). The use of the Wp criterion leads to
the high correlation values for all of the considered partition similarity indices.
Figure 3 shows the Minkowski profile (solid line) of each index as well as the
index value when comparing the partition corresponding to the minimum of Wp
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Table 4: Correlations between the Minkowski (or K-means) profiles and the ARI vectors,
resulting from the comparison of the obtained partitions to the ground truth, computed for
synthetic data. In the case of K-means, we considered a set of 100 partitions obtained from
100 random starts of the algorithm; in the case of MWK-means, we considered a set of 41
optimal partitions according to the SW, CH, and Wp criteria.

KM MWK
SW CH Wp

N
o
n
o
is
e

1000x8-4 0.315/0.65 0.898/0.19 0.868/0.17 0.938/0.12
1000x10-5 0.465/0.48 0.938/0.11 0.929/0.10 0.964/0.05
1000x12-5 0.684/0.35 0.957/0.07 0.953/0.06 0.978/0.02
1000x20-6 0.799/0.32 0.987/0.03 0.985/0.03 0.986/0.02
1000x30-10 0.807/0.22 0.994/0.02 0.991/0.02 0.990/0.02
1000x40-8 0.852/0.23 0.999/0.00 0.997/0.01 0.998/0.00

W
it
h
n
o
is
e

1000x8-4 -0.088/0.41 -0.281/0.55 -0.438/0.41 0.613/0.38
1000x10-5 -0.044/0.40 0.258/0.50 -0.063/0.47 0.827/0.19
1000x12-5 0.077/0.48 0.733/0.37 0.475/0.46 0.902/0.12
1000x20-6 0.608/0.32 0.942/0.06 0.930/0.08 0.930/0.12
1000x30-10 0.616/0.23 0.972/0.06 0.929/0.07 0.984/0.03
1000x40-8 0.701/0.30 0.958/0.04 0.969/0.03 0.968/0.04

to the ground truth (dashed line). This figure presents the results of a randomly
chosen dataset under the configuration 1000x8-4.

Overall, these results do show a remarkable affinity between the two series
of values associated with elements of the Minkowski partition ensemble chosen
under the Wp scenario: (1) the average similarities to the ensemble and (2) the
similarity to the ground truth. A similar affinity can be seen at K-means parti-
tion ensembles when they are representative of the dataset structure; the effects
of noise, however, destroy the balance and K-means partition ensembles fail in
this regard under the noise. In contrast, the Minkowski partition ensembles
remain representative, especially when the number of clusters is not that high
in comparison to the feature space dimension. Therefore, the central Minkowski
partition indeed is indicative of both an optimal value of the exponent p and
the consensus partition.

4.2. The central Minkowski partition at the UCI repository data

Good affinity between the similarity of a Minkowski MWK-partition to the
ground truth and to the Minkowski ensemble is not necessarily an indicator
that the central partition is close enough to the ground truth partition. This
is illustrated by the results in Table 6 reporting the average ARI values for
the six UCI repository datasets with and without noise features. For example,
the results obtained using the Wp criterion are rather mediocre here, except
those found for the Iris and Wine datasets. The application of our central
consensus strategy to traditional K-means when the data were not affected
by noise allowed us to generate equal or higher ARI values for five of the six
real datasets. Furthermore, in the framework of the MWK-means analysis,
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Table 5: Correlations between the Minkowski profiles and the vectors obtained using Jaccard,
Hubert, Mirkin and Rand indices, resulting from the comparison of the obtained partitions
to the ground truth, computed for synthetic data. The optimal partitions were generated
using MWK-means and Wp. We considered 41 optimal partitions (those corresponding to the
minimum value of Wp, one for each of the 41 values of p, were selected).

Jaccard Hubert/Mirkin/Rand

N
o
n
o
is
e

1000x8-4 0.920/0.12 0.931/0.13
1000x10-5 0.959/0.05 0.958/0.06
1000x12-5 0.976/0.03 0.977/0.03
1000x20-6 0.981/0.03 0.984/0.03
1000x30-10 0.985/0.02 0.989/0.02
1000x40-8 0.996/0.01 0.997/0.01

W
it
h
n
o
is
e

1000x8-4 0.529/0.38 0.559/0.40
1000x10-5 0.793/0.19 0.774/0.29
1000x12-5 0.890/0.12 0.873/0.23
1000x20-6 0.915/0.11 0.930/0.14
1000x30-10 0.981/0.02 0.982/0.03
1000x40-8 0.949/0.05 0.970/0.04

the consensus strategy produced competitive or better results in five of the six
possible cases when SW was used, and was generally equivalent to the traditional
approach when CH was used. When 50% of noise features were added to each
dataset, our consensus method using the SW and CH indices generally yielded
more stable results than the traditional K-means and MWK-means approaches.
The most evident cases of the improvement provided by the consensus MWK-
means over the traditional MWK-means include the AustraCC, Hepatitis and
PimaIndians datasets when the SW cluster validity index was used. The use of
the Wp criterion did not provide any visible improvement in this case.

4.3. Central Minkowski partition at the synthetic data

The tables presented in this section (Tables 7, 8, 9, and 10) are similar to
Table 6. They report the ARI values for the generated clusterings in relation to
the known ground truth labels. The tables are composed of two main columns.
Under “CVI-based”, we provide the ARI values for a given partitioning algo-
rithm (K-means or MWK-means) by simply applying the selected clustering
validity index to all of the obtained partitions, and choosing the partition that
maximizes the selected CVI. We carried out K-means 100 times per dataset, and
MWK-means 100 times for each value of p per dataset. The column “Central”
presents the ARI results obtained by applying our central Minkowski partition
consensus rule.

Tables 7, 8, and 9, report the results of experiments with MWK-means when
using respectively CH, SW, and Wp to choose the optimal Minkowski partition
for a given value of p.

The experiments conducted without adding noise features demonstrates that
the results generated by the consensus and traditional MWK-means approaches,
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Figure 3: ARI, Rand, Mirkin’s, Jaccard, and Hubert’s indices of MWK-means clusterings
for a randomly chosen dataset under the configuration 1000x8-4. The dashed lines represent
the partition similarity indices in relation to the ground truth. The solid lines represent the
Minkowski profiles. The correlation between the values of the two lines is of: 0.9951 (ARI),
0.9946 (Rand), 0.9946 (Mirkin’s), 0.9982 (Jaccard), and 0.9946 (Hubert’s). Here we used the
minimum of the Minkowski objective function, Wp, to select an optimal partition for each
value of p.

based on CH and SW, are generally similar (Tables 7 and 8). For instance,
with the SW index, the traditional method provides slightly better results in
the case of lower numbers of clusters and features, while our central consensus
method slightly outperforms the original MWK-means algorithm in the case of
higher number of clusters and features. However, when 50% of noise features
are added to the synthetic datasets our central consensus strategy, applied in
the framework of MWK-means, clearly outperforms the original MWK-means
strategy in the case of both CH and SW cluster validity indices. Also, the SW
index provides better performances than CH in the context of both original
and central consensus clustering strategies. The average optimal value of p
usually varies between 2 and 3 in the case of both CH and SW. The results
obtained when the minimum of the Minkowski objective function, Wp, was used
to select optimal partitions show that the Wp criterion clearly outperforms the
SW and CH-based central consensus strategies when applied to noisy data,
but slightly underperforms when the data do not include noise features (Table
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Table 6: Results of the experiments with real-world datasets without noise features and with
50% added noise features. The table presents the measures of cluster recovery in terms of
Adjusted Rand Index against the known ground truth. The ARI measurements under ’CVI-
based’ are those for which the resulting clustering was selected based solely on the cluster
validity index, where W accounts for the K-means least-squares criterion (Equation 1), SW
for the Silhouette width, and CH for the Calinski-Harabasz index. The ARI measurements
under ’Central’ are those obtained using our central Minkowski (or K-means central) consensus
rule.

CVI-based Central
KM MWK KM MWK

W SW CH SW CH SW CH Wp

N
o
n
o
is
e

AustraCA 0.504 0.499 0.499 0.001 0.504 0.499 0.504 0.504 -0.007
Heart 0.385 0.423 0.404 0.404 0.404 0.423 0.433 0.376 0.181
Hepatitis 0.160 0.190 0.141 0.396 0.122 0.268 0.396 0.122 0.355
Iris 0.716 0.716 0.716 0.716 0.716 0.716 0.745 0.745 0.886
Pima Indians 0.102 0.011 0.102 0.008 0.096 0.104 0.100 0.100 0.069
Wine 0.868 0.868 0.868 0.850 0.867 0.915 0.835 0.837 0.787

W
it
h
n
o
is
e

AustraCA 0.504 0.499 0.499 0.001 0.504 0.499 0.504 0.504 -0.007
Heart 0.394 0.423 0.404 0.404 0.376 0.423 0.394 0.367 0.026
Hepatitis 0.150 0.243 0.122 0.036 0.122 0.293 0.407 0.122 0.417
Iris 0.529 0.730 0.730 0.445 0.730 0.716 0.445 0.730 0.716
Pima Indians 0.000 0.011 0.103 0.002 0.104 0.103 0.099 0.100 0.036
Wine 0.884 0.869 0.847 0.867 0.819 0.882 0.867 0.867 0.788

9). Moreover, we conducted similar experiments with the traditional K-means
algorithm (Table 10). The results presented in this table suggest that our central
consensus rule does not bring any visible advantage in the case of traditional K-
means. Here, the classical K-means algorithm is generally more accurate than
our consensus strategy, especially when the SW index is used.

The results presented in Tables 7, 8, 9, and 10, as well as the overall simula-
tion graphs in Figures 4 and 5 suggest that the MWK-means algorithm generally
outperforms classical K-means, and it tends to do so with a higher discrimina-
tion when the consensus clustering based on our central consensus rule is used.
Figures 4 and 5 summarize the results of our simulations obtained for synthetic
data. The presented curves are the averages taken over the correlation (Table 4)
and ARI (Tables 7, 8, 9, and 10) values obtained for original and noisy datasets.
Figures 4 shows that the use of the Wp function allows one to obtain very high
correlations (Figures 4a) and good ARI performances (Figure 4b) even for low-
dimensional data. Moreover, very high (i.e., close to 1) correlations between the
Minkowski profile and the ARI vectors, resulting from the comparison of the
optimal Minkowski partitions to the ground truth, can be obtained by using the
central consensus strategy with any of the three considered optimization criteria
(i.e., CH, SW, or Wp) for datasets with large numbers of features (≥ 20 in our
case) and clusters (≥ 6 in our case), even in the presence of noise. In terms of
ARI (Figure 5), the proposed central consensus MWK-means algorithm outper-
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forms conventional MWK-means with respect to both cluster validity indices
(CH and SW) used in this study. However, it is not the case of traditional
K-means.

Table 7: Results of the experiments with MWK-means on synthetic datasets without noise
features and with 50% of added noise features. The Calinski-Harabasz (CH) index was used
here as CVI. The table presents the measures of cluster recovery in terms of Adjusted Rand
Index against the known ground truth and the related average values of the exponent p. The
standard deviations of both ARI and p are indicated after a slash.

CVI-based Central
ARI p ARI p

N
o
N
o
is
e

1000x8-4 0.607/0.20 2.306/0.21 0.606/0.20 2.856/0.34
1000x10-5 0.660/0.18 2.212/0.17 0.664/0.18 2.804/0.39
1000x12-5 0.776/0.16 2.162/0.16 0.776/0.16 2.904/0.26
1000x20-6 0.926/0.11 2.050/0.12 0.934/0.08 2.798/0.34
1000x30-10 0.990/0.01 2.024/0.14 0.986/0.02 2.468/0.47
1000x40-8 0.995/0.02 2.006/0.06 0.994/0.02 1.838/0.77

W
it
h
n
o
is
e

1000x8-4 0.072/0.15 2.524/0.45 0.105/0.17 3.294/0.57
1000x10-5 0.114/0.15 2.712/0.45 0.183/0.17 2.940/0.71
1000x12-5 0.288/0.26 2.740/0.52 0.434/0.25 2.392/0.53
1000x20-6 0.729/0.19 2.226/0.33 0.914/0.12 2.122/0.57
1000x30-10 0.801/0.10 2.270/0.29 0.903/0.12 2.054/0.54
1000x40-8 0.993/0.01 1.930/0.18 0.981/0.03 2.222/0.53

Table 8: Results of the experiments with MWK-means on synthetic datasets without noise
features and with 50% of added noise features. The Silhouette width (SW) was used here as
CVI. The table presents the measures of cluster recovery in terms of Adjusted Rand Index
against the known ground truth and the related average values of the exponent p. The
standard deviations of both ARI and p are indicated after a slash.

CVI-based Central
ARI p ARI p

N
o
n
o
is
e

1000x8-4 0.675/0.19 2.558/0.67 0.665/0.19 2.870/0.39
1000x10-5 0.712/0.16 2.564/0.65 0.706/0.17 2.936/0.30
1000x12-5 0.833/0.11 2.404/0.59 0.814/0.14 2.836/0.30
1000x20-6 0.930/0.07 2.608/0.73 0.933/0.08 2.822/0.30
1000x30-10 0.974/0.02 2.638/0.75 0.979/0.02 2.538/0.42
1000x40-8 0.988/0.02 3.382/1.06 0.996/0.01 2.014/0.80

W
it
h
n
o
is
e

1000x8-4 0.117/0.20 3.314/0.88 0.152/0.21 3.064/0.48
1000x10-5 0.246/0.25 3.026/0.72 0.331/0.25 2.688/0.56
1000x12-5 0.530/0.35 2.528/0.72 0.606/0.29 2.298/0.47
1000x20-6 0.865/0.14 1.882/0.42 0.893/0.13 2.358/0.36
1000x30-10 0.939/0.08 2.378/0.53 0.962/0.08 2.356/0.47
1000x40-8 0.983/0.03 1.870/0.50 0.970/0.04 2.198/0.59
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Table 9: Results of the experiments with MWK-means on synthetic datasets without noise
features and with 50% of added noise features. The minimum of the Minkowski objective
function Wp was used here for selecting an optimal partition for each considered value of p.
The table presents the measures of cluster recovery in terms of Adjusted Rand Index against
the known ground truth and the related average values of the exponent p. The standard
deviations of both ARI and p are indicated after a slash. Unlike the previous tables, here
we do not report results under ’CVI-based’ because the criterion output is not comparable
at different values of p. We report solely the results obtained using our central Minkowski
consensus rule.

No Noise With Noise
ARI p ARI p

1000x8-4 0.604/0.20 3.208/0.43 0.518/0.25 2.650/0.52
1000x10-5 0.635/0.17 3.146/0.45 0.610/0.23 2.398/0.44
1000x12-5 0.743/0.16 3.083/0.35 0.738/0.16 2.462/0.40
1000x20-6 0.882/0.14 2.924/0.43 0.880/0.11 2.548/0.37
1000x30-10 0.944/0.09 2.522/0.49 0.940/0.08 2.416/0.50
1000x40-8 0.970/0.08 2.128/0.74 0.969/0.04 2.258/0.59

Table 10: Results of the experiments with K-means on synthetic datasets without noise and
with 50% of added noise features. The Silhouette width (SW) and the Calinski-Harabasz (CH)
index were used here as CVI. The table presents the measures of cluster recovery in terms of
Adjusted Rand Index against the known ground truth and the related standard deviations.
The results reported under ’CVI-based’ are those for which the resulting clustering was selected
based solely on CVI. The results reported under ’Central’ are those obtained using our K-
means Central consensus rule.

CVI-based Central
SW CH

N
o
n
o
is
e

1000x8-4 0.649/0.19 0.596/0.20 0.583/0.20
1000x10-5 0.685/0.18 0.650/0.19 0.619/0.19
1000x12-5 0.817/0.13 0.769/0.16 0.768/0.16
1000x20-6 0.933/0.09 0.913/0.12 0.889/0.15
1000x30-10 0.964/0.07 0.956/0.08 0.932/0.11
1000x40-8 0.992/0.01 0.980/0.07 0.942/0.12

W
it
h
n
o
is
e

1000x8-4 0.053/0.13 0.053/0.12 0.058/0.13
1000x10-5 0.078/0.11 0.069/0.10 0.064/0.10
1000x12-5 0.198/0.25 0.152/0.19 0.155/0.20
1000x20-6 0.445/0.25 0.424/0.22 0.413/0.22
1000x30-10 0.810/0.12 0.730/0.11 0.746/0.11
1000x40-8 0.859/0.18 0.789/0.19 0.802/0.22
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Figure 4: Average correlation (a) and ARI (b) results obtained by the K-means and MWK-
means algorithms for our synthetic data composed of spherical Gaussian clusters. The averages
were taken over the results generated for both original and noisy datasets. Our central consen-
sus strategy is represented by open circles (SW-based MWK-means consensus strategy), open
triangles (CH-based MWK-means consensus strategy), open rhombuses (Wp-based MWK-
means consensus strategy), and open squares (K-means central consensus strategy).
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Figure 5: Average ARI results obtained using SW (a) and CH (b) by the K-means and
MWK-means algorithms for our synthetic data composed of spherical Gaussian clusters. The
averages were taken over the results generated for both original and noisy datasets. Our
central consensus strategy is represented by open circles (SW-based MWK-means consensus
strategy), open triangles (CH-based MWK-means consensus strategy), and open squares (K-
means central consensus strategy). The CVI-based strategies of MWK-means and K-means
are represented by gray circles (SW-based MWK-means strategy), gray triangles (CH-based
MWK-means strategy), and gray squares (traditional K-means).

5. Conclusion

In this paper, we presented a new way of generating a partition ensemble
by employing the framework of Minkowski weighted K-Means clustering. In
contrast to conventional approaches, the Minkowski partition ensemble satisfies
the properties of Completeness, Refinement and Natural diversity discussed in
the Introduction section. This allows us to shift the focus from diversity to
representativeness: a good partition ensemble should follow the data structure
rather than just being simply diverse. The concepts of the Minkowski profile
and the central Minkowski partition are introduced to point to a suitable value
of the Minkowski exponent p and to a good consensus partition.
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In our simulations (see Table 4), we were able to obtain strikingly high
correlations between the Minkowski profile and the ARI vector resulting from
the comparison of the obtained partitions to the ground truth. For instance,
the average correlation for the 100 datasets under the 1000x40-8 configura-
tion was 0.998, when using the Wp criterion (Equation 4) to select the optimal
Minkowski partition for a given value of p. When adding noise features to the
same datasets the correlation was still high, with a value of 0.968. This means
that the Minkowski profile can be used for predicting the resemblance of the p-
specific partitions to the ground truth and, thus for selecting the optimal value
of the Minkowski exponent, p, in the framework of the MWK-means analysis.
The resulting central Minkowski partition is defined through a central consensus
rule. Furthermore, we showed that the high correlation property also holds for
the conventional K-means algorithm, although to a lesser extent, i.e., only for
large ratios of the space dimension over the number of clusters.

The results of our simulations, conducted with the Silhouette and Calinski-
Harabasz cluster validity indices as well as the Minkowski objective function Wp,
original and consensus MWK-means and K-means algorithms, and datasets of
different sizes with and without noise features, suggest the central Minkowski
partition can potentially provide a good guidance regarding the recovery of an
optimal Minkowski exponent and the ground truth clusters, especially in the
case when noise features are present in the data, which is typical for most of
the real-world data.

Kuncheva and Vetrov [35] looked at the relationship between stability and
accuracy with respect to the number of clusters, when investigating whether
stability can be used as a CVI. These latter authors proposed a combined sta-
bility index, based on the ARI computation, and defined as the sum of the
pairwise individual and ensemble stabilities. This index was shown to correlate
well enough with the ensemble accuracy [35]. It would be interesting to see in
the future whether our Minkowski profile and central Minkowski partition can
be used for the same purposes. Thus, the maximum of the Minkowski profile
computed over a given interval of values of p and a given interval of numbers
of clusters, K, could be viewed as both the ensemble validity estimate and the
indicator of the true number of clusters. On the other hand, the middle of the
longest constant interval of values of p (i.e., most stable interval; see for example
the interval [3.7,4.2] in Figure 2) could be also used to determine the number of
clusters in a dataset.

Of course we feel that the empirical regularity discovered in this paper should
be converted into a theoretical one by introducing an adequate mathematical
model to both explain the phenomenon and to determine conditions at which
it holds.
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