
INTELLIGENT CO-OPERATIVE PROCESSOR-IN-MEMORY
ARCHITECTURES

Reza Sotudeh*, Zaki Ahmad, Faycal Bensaali
School of Electronic, Communication and Electrical Engineering

University of Hertfordshire

ABSTRACT
Advances in VLSI technology are enabling the processor-memory
integration to bridge the processor-memory performance gap. It is
also a key driver in the innovation of a new concept called
Processor-In-Memory (PIM). The work described in this paper
capitalises on the extensive work carried out on PIMs in general
and develops a road map for an intelligent revision of a PIM
architecture referred to as Co-operative Intelligent Memory
(CIM). The journey made to reach the goal of achieving a CIM is
taken via the route of developing a Cooperative Pseudo Intelligent
Memory (CPIM), as proof of concept and mid point in the
ratification of the intelligence needed for a full CIM
implementation. Both architectures use a hierarchical two level
CPU structure referred to as major and minor CPUs. By
partitioning computation through dividing workload between
major and minor CPUs in an intelligent manner and without any
pre-processor compilation or kernel task scheduling, the PIM
system can be made more efficient and co-operative for class of
tasks, which are heavily reliant on memory-to-memory iterative
processes. The proposed architectures exploit the key feature in
the iterative process by using vectors that characterize the
iteration. The process of identifying intelligently these vectors is
described in this paper. In addition, the performance of the
proposed architectures has been evaluated

Keywords
Processor-In-Memory, Co-operative Pseudo Intelligent Memory,
Co-operative Intelligent Memory, Major CPU, Minor CPU.

1. INTRODUCTION
Current high performance computer systems use interface to the
main memory through a hierarchy of caches and interconnect
systems. This approach invests many resources to bridge the
performance gap between CPU and main memory. The processor-
memory performance gap has been and continues to be the
primary obstacle to improving computer system performance [1,
2]. This gap was also the key motivation behind the concept
called processor-in-memory (PIM) or intelligent memory. This
concept capitalizes on merging the processing unit with its
memory unit on the same chip [3].
This approach has led to much innovative architectures, which
include Intelligent RAM [3], Computational RAM [4], Raw [5],
Smart Memories [6], all of which strive to remove expedite
processor-memory performance [7, 8].
All the above are based on concepts that treats the processor and
memory unit as a complete architecture, as a main processing unit
in the system. In contrast, architectures such as Active Pages [9],
FlexRAM [10], and DIVA [11], are designed to be used as a co-

processor in memory that executes code when signaled by the
host (main) processor. Using an explicit job partitioning technique
for the co-processor and the main processor, the memory-
intensive or data-intensive functions are assigned to the co-
processor and computationally intensive functions to the main
processor. These architectures can be classified based on the role
of the PIM chips: main processor or co-processor.
Data intensive applications require demandingly high number of
memory accesses, which have operational characteristics that
include a significant amount of memory-to-memory type of
instructions. This is in contrast to the usual statistically distributed
register-to-register, memory-to-register and memory-to-memory
instructions that are found in most programs.
It is important to be able to expedite process with data-intensive
computation loops, inherent in many applications, especially
image processing [12, 13]. These applications usually input and
output significant amounts of data which are processed with
relatively simple operations. The algorithms deployed in these
applications involve data intensive, iterative and most often,
highly parallel tasks.
The work described in this thesis capitalises on the extensive
work carried out on PIMs in general and develops a road map for
an intelligent revision of a PIM architecture referred to as Co-
operative Intelligent Memory (CIM). The journey made to reach
the goal of achieving a CIM is taken via the route of developing a
Cooperative Pseudo Intelligent Memory (CPIM), as proof of
concept and mid point in the ratification of the intelligence needed
for a full CIM implementation. Both architectures use a
hierarchical two level CPU structure referred to as CPU_major
and CPU_minor. The CPU_major has a conventional architecture
while CPU_minor is a task specific processor dealing with highly
iterative memory-to-memory processing. CPIM uses a pre-
compilation task optimization process to determine the division of
work between CPU_major and CPU_minor. However, by
partitioning computation through dividing workload between
major and minor CPUs in an intelligent manner and without any
pre-processor compilation or kernel task scheduling, the PIM
systems can be made more efficient and co-operative for class of
tasks, which are heavily reliant on memory-to-memory iterative
processes. These tasks include those of image processing
algorithms deployed in real time image visualization applications.
The proposed architectures exploit the key feature in the iterative
process by using three vectors, Vector Starting Address (VSA),
Vector Job Size (VJS) and Vector Job Nature (VJN) that
characterize the iteration. These vectors denote the static program
execution profile (a small window mapped on the overall dynamic
program profile) on a range of memory locations where the
corresponding data are stored. This relates to a single multi-
iteration loop in a locality chart that cache memory exploits.

*Corresponding author: r.sotudeh@herts.ac.uk

Hence, these vectors form the basis for an architecture that
complements the main CPU’s activities and co-operates in
expediting the overall task. An additional vector is introduced
(Vector Instruction Block (VIB)) to facilitate the migration from
CPIM to CIM and enable intelligent acquisition of run time
parameters. The process of dividing the task intelligently between
major and minor CPUs and the identification of the described
vectors is investigated in this thesis. The work presented is backed
by theoretical analysis and performance measures against
conventional taxonomies, hierarchical memory, and the aspects of
the proposed architecture are analyzed in hardware through use of
FPGA as proof of fundamental concepts.
The structure of this paper can be split into four parts. In the first
and second parts the proposed CPIM and CIM with their
descriptions and performance analysis are presented respectively.
A comparison matrix is given in the third part. Part four concludes
the paper.

2. CO-OPRETAIVE PSEUDO
INTELLIGENT MEMORY (CPIM)
A co-operative processing policy is adopted in this section. The
core of this policy is the exploitation of the heterogeneity of the
system by partitioning an application into two parts: one that
benefits mostly for the high capability of the CPU_major and
other that benefits from the processors in the PIM chips that
provide high bandwidth and low latency access to memory. Task
partitioning in CPIM is based on scanning the assembler output
file by a program called “Task Optimizer”. It extracts the vectors
that characterize the iteration. These vectors are portraying the
number of iterations in the loop, starting address of the operand
block and the job nature of loop. Loops are then replaced with the
corresponding vectors and as a result, a new assembler file
emerges. Once the re-assimilated code is linked and executed by
the CPU_major, it continues on its non-iterative job. When the
by-passed part in the re-assimilated code is encountered, the
vector components will be loaded into the CPIM registers. Once
all the registers have been initialized, CPIM controller, an
additional hardware unit, manages the transfer of related data
from main to corresponding CPIM memory which initializes the
task represented by the by-pass. Thereafter, CPIM will take care
of the respective iterative loop by continuous reference to its own
registers.Any reference to intelligence in the context of our
proposed architecture is limited to the definition that an Intelligent
System (IS) is a system which learns how to act towards a certain
situation in order to reach its objectives by using experiences and
knowledge gained previously.
From the above statement, we can conclude that an IS has two
fundamental characteristics learning and serving. Typically, an IS
achieves its objective through knowledge and experience which is
something that has happened to the IS during some moment of its
existence. It includes the situation that occurred, the action done,
and the results, acquired through a learning process.
Vector loading into the CPIM registers demonstrates a learning
stage, where the CPIM trained for a particular situation. Due to re-
initialization of CPIM registers during the course of executing the
same program, serving stage, with same data set shows that the
system is unable to use experience and knowledge gained
previously. However, in the presence of new data set, when a
taught situation is detected (iterative loop), it partially (re-
initialization of CPIM registers) behaves like an intelligent
system, with a new set of results. This new set of results or output
partially exhibits the use of experience and knowledge gained
previously for a particular situation.

2.1 Task partitioning
The strategy for the distribution of workload is based on parsing
the assembler output file for program flow-control instructions.
The “Task optimizer” scans the assembler output file and figures
out the iterative part of the job, extracting the vectors that
characterize the iteration. The process of vector identification is
shown in Figure 1 with each job comprising of few or many
instructions that can be algorithmically described working on data
entities. The vector components are then extracted from the
Intensity and address range axes. Figure1 depicts a typical static
program execution profile on a range of memory locations where
the corresponding data are stored. This relates to multi-iteration
loops that cache memory exploit. This program behavior supports
the need of tasks-partitioning between iterative and non-iterative
jobs. Hence alleviating the major CPU of mundane repetitive
tasks. This can be done by extracting the vectors, starting address,
job size and Job nature that describes the iteration.

Figure 1. Locality chart

Figure 2 shows the sequence of extracting vector components and
identification of task by parsing the assembler output file and
locating flow control instructions defined in a database. Analysis
of the flow control instructions that portray loops of iteration will
result in identification of Intensity and address range vector
components (stage 1). Further analysis of the iteration will yield
the algorithm that is used to define the job (stage 2).

 Address
Range

Stage 1

Stage 2

Assemly file
(.asm - linear
and iterative)

New .asm file

Flow Control
Instruction Database

C Source file

Job
Nature

Intensity

Cross Compiler

Figure 2. Code optimization process

The following actions are carried out by the task optimizer as
shown in Figure 3:

• Extracting information that includes address range for the
operands, the loop Intensity and finally the nature of job

including its granularity. This allows the formation of a
bypass.

• Re-assimilating the .asm file to generate a new .asm file
which includes the vector component information by
replacing or bypassing its corresponding iterative loop.

Figure 3. Re-assimilation process

2.2 Proposed CPIM Architecture
The simplified model of the proposed CPIM is shown in Figure 4.

Figure 4. Proposed CPIM architecture

The CPU_major has a conventional architecture and poses no real
design constraint on the CPIM architecture. It is backed up by a
deep cache hierarchy and suffers high latency to access memory.
The augmented system, which includes CPIM, introduces a new
block of memory, which is shared through arbitration between the
CPU_major and CPU_minor, an iteration control unit and
CPU_minor. The arbitration circuitry optimizes for individual
CPU accesses by offering cycle stealing to CPU_major and burst
transfer to CPU_minor. CPU_minor is a task specific processor
that consists of a small computational unit performing iterative
processing. The CPU_major provides high Instruction Level
Parallelism (ILP), and the processors in the CPIM chips provide
high bandwidth, low latency access to the memory.

Our proposed architecture has the following characteristics:
• The memory capacity is large enough to hold large data

frames synonymous with high-resolution image frames.
• The overhead associated with the time used to fetch and

execute the instruction in a specific program loop is
eliminated.

• No need for special instructions as required in the case of
coprocessor.

• CPU_major can continue with other operations while the
CPIM is completing its allocated task.

The CPIM’s basic building blocks are described below.

2.2.1 Arbiter
Computer systems contain a number of buses at various levels to
facilitate the transfer of information between components. In a
shared memory multiprocessor system, more than one processor
may request access to the memory simultaneously or at close
intervals through the system bus. An arbitration mechanism is
used to select those requests which can be honored, rejecting
others requests. Rejected requests are generally re-submitted on
subsequent processor cycles. The number of re-submission before
a request is finally accepted is an important consideration and is
dependent upon the arbitration protocol. A high level of system
performance is achieved by choice of an efficient protocol.
Different protocols give different system performance depending
on the system demand, processor-memory interconnection
network, and number of processors in the system, accepted traffic
intensity. At this stage of research, a simple communication
protocol is considered, once a CPIM vector registers or its
memory (Shared memory) fills with fresh entries (active mode),
the corresponding CPU_minor has the priority to communicate
with its own local memory, otherwise is free for the others (sleep
mode). In active mode, all components of the CPIM are active. In
sleep mode, only memory part is active and external devices can
access the memory for read-write operation.

Linear + Iterative Separating linear
from iterative

Vector component

2.2.2 Shared memory
A SRAM type memory, holding data related to the iterative job,
having enough capacity to hold large frames synonymous with
high-resolution image frames. In the context of the proposed
architecture, shared memory holds true to the code
optimization/task partitioning phase only and thereafter it
becomes exclusive to minor CPUs.

2.2.3 Iteration Control Unit (ICU)
The ICU provides an instruction set for CPU_minor. It consists of
three registers, namely address register (Ra), job size register
(Rjs), and job nature register (Rjn). The initialization of the
vectors needs the following aspects:

• A m-bit register (Ra) is required to hold the start address
of the operand block. Once initialized, a counter will then
increment the pointer, pointing to the next operand
required by the task. This increment step size could reflect
data granularity.

• A n-bit register (Rjs) is initialized with the total number of
operands needed by the job (the number of iterations
involved in the by-passed iterative loop), which is the
number of data grains in the memory block on which the
job is carried out.

• A k-bit register (Rjn) is initialized, representing the nature
of job. Assumed 4-bits for the job definition (op-codes).
The remaining bits could be used for byte, word and long
word setup. In addition bits could be used for advanced
operations. For example, bits can be used as status flags
indicating CPIM module is busy with the task.

2.2.4 Minor CPU (CPU_minor)
It is a task specific processor that communicates with the shared
memory. It consists of a dedicated computational unit, performing
simple and iterative processing.

extraction
Re-assimilation of
linear with vector

components

CPIM

Iteration Control Unit

Major
CPU

Local
Memory

Shared
Memory

Address Register (Ra)

Job Size Register (Rjs)

Job Nature Register (Rjn)

Arbitrer
Minor
CPU

2.3 Execution
Once the re-assimilated code is linked and executed by the
CPU_major, the by-pass is enforced as a series of memory store
instructions, initializing CPIM registers as a single pass and hence
reducing the time that would normally have taken to execute the
replaced iteration. Hence execution of linear code without any
diversion that flow control instructions pose will improve the
CPU_major performance.
The CPU_minor commences the designated task once all 3
registers have been initialized and can interrupt (or otherwise
indicate) the CPU_major upon completion of its task.
Assuming that the CPU_major has equally sized instruction grains
(instruction length and execution cycle) yielding instruction
execution cycle time. Figure 5 shows the program execution
profile with and without bypass where N is the number of
iterations in the bypassed iterative part, and is instruction
execution time in CPU_minor.

tΔ

'tΔ

Figure 5. Program execution profile:
 (a) without bypass (b) with bypass

The rendezvous time at t3 for CPU_major +CPU_minor scenario
is therefore far earlier than CPU_major on its own. The difference
is and given as: '3t

)32()2('3 tttNtt Δ+Δ−Δ+Δ=

tNt Δ−=)3('3
and as N ∞ then . This reduces the arrival time at ttNt Δ→'3 4

for CPU_major significantly and hence contributing to the overall
speedup.

2.3.1 Memory access bandwidth
The CPU_minor offers speed enhancement over CPU_major by
highly optimized job processing algorithm as well as its ability to
be clocked at a higher speed. Additionally as the job performed by
the CPU_minor is repetitive, therefore it has equal quanta or
computational grain that lends itself to synchronous transactions
in contrast to the CPU_major’s asynchronous memory access
needs. The latter then requires an arbitration mechanism,
switching from cycle-stealing to burst-transfer (synchronous
to). This accommodates seamless transition from
asynchronous to synchronous memory access at time t

'tΔ
3 in Figure

6.

2.4 Performance Analysis
With all possible kinds of parallelism, a framework is needed to
describe particular instances of parallel architectures. The Flynn’s

stream approach was found to be suitable for describing the
performance of the CPIM at this evolutionary stage [14].
CPIM based system requires a setup time for code optimization
and CPIM registers initialization. The setup time includes:

1. Additional time
W

ST : required for code optimization

and CPIM registers initialization.
2. Data transfer time : transfer time of data related to

the iterative loop from main to shared memory.
DTT

The additional time for the code optimization is required only
once during the re-assimilation process (see Figure 3). The CPIM
registers initialization time becomes negligible as the number of
iterations increases. The data transfer time between main and
shared memory makes processing time longer during first
execution cycle only, which is a single learning phase to acquire
the knowledge about the Static-Locale-Dynamic-Content type of
data structure. Therefore, the impact of setup time has no
considerable effect on the performance of CPIM based system in
the serving stage during the course of executing the same
program. t Δ

t 0 t 1 t 2 t 3 t 4 t 5

t Δ t Δ

N

t N t t Δ + Δ = 2 3

CPU_major

t Δ t Δ t Δ

t 0 t 1 t 2 t3 t4 t5

tΔ tΔ

3

ttt Δ+Δ= 323

CPU_major

t Δ t Δ

t Δ
'tΔ

N3
CPU_minor

(a) (b)

2.4.1 CPIM vs. SISD
The following notations are used in the performance analysis:
N = number of iterations in the loop.
=sT Total time to finish a task on SISD machine.

Sf = Machine cycle frequency for SISD machine.

=CPIMf Machine cycle frequency for CPIM.

cycleM = Machine cycle.

=
W

ST Time required for vectors extraction and the initialization

of cpu_minor registers.
=DTT Data transfer time.

=CPIMT Total time to finish a task on CPIM.
S = Speedup of CPIM over an equivalent function SISD machine.

The following calculations are based on the assumption that one

 is equal to one clock cycle. cycleM
In an SISD machine, a processor fetches instructions and data
from a memory, operates on the data, and writes the results back
into memory.
The number of machine cycles involved in SISD to complete one
instruction cycle are as follows:

− 1 for the instruction fetch; cycleM

− 1 for the instruction decode; cycleM

− 2 for the operand fetch (operand 1, operand 2) ;

and
cycleM

− 1 for the instruction executes and writes back

into memory.
cycleM

Given the time period:
S

S f
1

=τ ,

Then:

=sT ScycleNM τ5 (1)

The number of machine cycles involved in the CPIM to complete
one cycle are as follows:

− for the operand fetch (operand 1, operand 2)

; and

2 cycleM

− 1 for the instruction execute and write back into

memory.
cycleM

Given the time period:
CPIM

CPIM f
1

=τ ,

Then:

=CPIMT CPIMcycleDT
W

S NMTT τ3)(++ (2)

Therefore, the speedup of a CPIM over a SISD machine can be
calculated as follows:

CPIM

s

T
TS = (3)

Substituting (1) and (2) in (3),

CPIMcycleDT
W

S

Scycle

NMTT
NM

S
τ

τ
3)(

5
++

= (4)

If , ∞→N

W
ST considered to be negligible. Then

CPIMcycleDT
W

S NMTT τ3)(++ Approaches to

CPIMcycleDT NMT τ3+ .

Therefore,

CPIMcycleDT

Scycle

NMT
NM

S
τ
τ

3
5
+

= (5)

Assuming that both systems are clocked at the same rate
then CPIMS ττ = .
Thus,

NT
NS

DT 3
5
+

= (6)

The data transfer time has no considerable effect on CPIM

performance because it is only involved during the first execution
cycle.

DT
T

Therefore, Equation 6 can be written as,

66.1
3
5

==
N
NS (7)

Equation 7 indicates that the CPIM architecture can provide better
result over a conventional SISD machine for highly iterative
memory-to-memory tasks. However, the dramatic increase in the
system performance on known program execution profile will be
observed in each serving stage during the course of executing the
same program.

2.4.2 CPIM vs. SIMD
SIMD machines typically are used to process array. There are
multiple Processing Elements (PEs) supervised by the same
control unit but operate on different data sets from distinct or
multiple data stream. Multiple CPIMs, when work in a group and
has the same tasks to do, function like an array processor with
behavioral difference. This is due to the sequential activation of
different PEs (CPIMs) in the learning phase of the proposed
architecture instead of parallel activation of processing elements
in SIMD machine. Multiple CPIM modules initialize with the
same instruction, which is the vector job nature, and operate on
the related data sets on distinct or multiple data stream.

 The speedup of SIMD machine over a functionally equivalent
SISD machine is given as [15]:

 ∑∑
==

=
n

i

i
a

n

i
in m

NtNtS
11

 (8)

Where,
 m = Number of PEs in an array processor.

at = Time required by a PE to compute the execution of a
broadcast instruction from the control unit.

iN = Length of vector operand (number of operand) in the ith
instruction.
S = Speedup of an array processor with ‘m’ PEs.

nt = Time required by a SISD (assumed to be independent of
instruction types).

The following additional notations are used in the performance
analysis:

N = Number of iterations in the loop.

=arrayf Clocking frequency of the PEs.

=CPIMT Time required by a CPIM to compute the execution.

=CPIMTotal Total time required to finish the task in multi-
CPIM based system.

=SetupT Setup time (initialization of individual CPIM modules

involved in the specific task.
T = Total time required to finish the job in SIMD system.

=1S Speedup ratio between CPIM and SIMD based processing.

Assuming there are ‘m’ CPIMs corresponding to the ‘m’ PEs in
SIMD machine.

Therefore,

=CPIMT CPIMicycleSetup
W

S NMTT τ3)(++ (9)

Thus,

=CPIMTotal]
3

[)(
m

M
NTT CPIMcycle

iSetup
W

S
τ

++ (10)

Given the time period:
array

array f
1

=τ

Then,
arraycyclea Mt τ3= (11)

Equation 11 shows that two machine cycles are required to fetch
two operands and one machine cycle for instruction execute and
write back.

][3
m
NMT i

arraycycleτ= (12)

The speedup ratio between the two systems is:

CPIMTotalTS /1 = (13)

Substituting (10) and (12) in (13),

CPIMicycleSetup
W

S

i
arraycycle

NMTT
m
NM

S
τ

τ

3)(

][3
1 ++
= (14)

Assuming the activation time ‘ ’ between the two CPIM
modules is the same. Then, .

tΔ
tNTSetup Δ=

If , ∞→N
W

ST considered to be negligible. Therefore

]
3

[)(
m

M
NTT CPIMcycle

iSetup
W

S
τ

++ approaches to

])
3

[(
m

M
NtN CPIMcycle

i
τ

+Δ .

Thus, speedup becomes

]
3

[

][3
1

m
M

NtN

m
NM

S
CPIMcycle

i

i
arraycycle

τ

τ

+Δ
= (15)

Equation 15, speedup ratio , shows the processing time of
CPIM based system during its learning phase extended due to
sequential activation of logically related CPIM modules.
However, after learning phase on current execution profile the
setup time becomes negligible.

11 <S

tNΔ
Then,

1
]

3
[

][3
1 ==

m
M

N

m
NM

S
CPIMcycle

i

i
arraycycle

τ

τ
 (16)

Therefore, the system enjoys the benefit of CPIM on known
execution profile in serving stages with the computational result
obtained in the learning phase described.

2.4.3 CPIM vs. MIMD
An intrinsic MIMD computer implies interaction among the ‘n’
processors because all memory streams are derived from the same
data space shared by all processors. If the ‘n’ data streams were
derived from disjointed subspaces of the shared memories, then
we have the multiple SISD operation, which is nothing but a set of
‘n’ independent SISD computer [15].
CPIM inherently acts as a SISD machine. However, when it
works in a group (multiple SISD) and each module has the same
or different job to execute, it behaves like a MIMD machine.
In MIMD, several processors are fetching their own instructions
and operating on the data those instructions specify. In CPIM,
once the re-assimilated code is linked and executed by the

CPU_major, all the functionally active CPIM registers will be
initialized sequentially.

Let assume that:

=sT Total time required to execute different tasks on ‘m’ SISD

computer. Or

=sT Total time taken by the MIMD system.

=CPIMT Total time taken by the CPIM based system.

Then,

=sT)5(scycleNMm τ (17)

=CPIMT ()3() CPIMcycleDT
W

S NMmTT τ++ (18)

The speedup ratio between them,

)3()(
)5(

CPIMcycleDT
W

S

scycle

NMmTT
NMm

S
τ

τ
++

= (19)

If ∞→N ,
W

ST considered to be negligible.

Then,

)3(
)5(

CPIMcycleDT

scycle

NMmT
NMm

S
τ
τ

+
= (20)

Assumed both systems are clocked at the same rate then:

CPIMs ττ = .

Therefore, speedup becomes

NTNS DT 3/5 += (21)

Since data transfer time stretches processing time during the
first execution cycle only. Therefore, Equation 21 can be written
as:

DTT

66.1
3
5

==
N
NS (22)

Equation 22 indicates that the CPIM architecture exhibits better
performance over its equivalent MIMD counter part. The
computational results obtained during the first execution cycle,
learning phase, increase the system performance drastically.

2.5 Implementation Scenarios
Two simple test benches have been implemented using the
model in Figure 6 CPU model:

Minor
CPU

ACC

DS (arbiter in burst transfer mode)

Figure 6. CPU model

The speedup is then measured against a SISD without
significant performance acceleration methods (by modern
standards) to ensure a speedup assessment is obtained
against base-line architecture.

2.5.1 Scenario 1
Cumulative successive addition (Non-destructive): an array of ‘y’
numbers is added and the result is stored in the defined memory
location. ‘x’ represents the result location in the shared memory.

RTL:]1[]0[MMACC +←

]2[MACCACC +←

 …………………………..

]2[−+← yMACCACC

]1[][−+← yMACCxM

Figure 7 shows the cumulative successive addition pipeline. Both
edges of the clock are used in each cycle. In the figure, the
processor machine cycles are defined as follows:

− OF1= Operand 1 Fetch;
− OF2=Operand 2 Fetch;
− IE=Instruction Execution; and
− WBA=Write Back Accumulator.

Figure 7. Cumulative successive addition pipeline

2.5.2 Scenario 2
Non-cumulative successive addition (Non-destructive): Data in
consecutive memory locations are added and the result is stored in
a defined memory location starting at M[x]. The last location for
storing data is M[x+(y-1)] covering a range of addresses signified
by jobsize, where y=jobsize.

RTL:]1[]0[][MMxM +←

]3[]2[]1[MMxM +←+

 ……………………………….

]1[]2[)]1([−+−←−+ yMyMyxM

Figure 8 shows the non-cumulative successive addition pipeline.
Both edges of the clock are used in each cycle. In the figure, the
processor machine cycles are defined as follows:

− OF1= Operand 1 Fetch;
− OF2=Operand 2 Fetch;
− IE=Instruction Execution;
− WBA=Write Back Accumulator; and
− WBM=Write Back Memory.

Stage

OF1

OF2

IE

WBA

CLK ti ti +1 ti +2 t i +3 t i +4 ti +5 ti +6

Edge + - + - + - + - + - + - + -

WBM

Figure 8. Non-cumulative successive addition pipeline

For the proof of concept, the architecture in Figure 4 has
been used to implement the above two scenarios. The only
difference between the mappings of the described scenarios
is the functionality of the task specific processor
(CPU_minor). The CPIM in Figure 4 has been
implemented on a SPARTAN II, XC2S300E-6PQ208C
FPGA using the Nexar 2004 EDS environment. The
performance curves of the two scenarios under the
proposed architecture, illustrated in Figure 9, show 18 fold
increases in speed for iterative task compared to a non-
pipelined SISD machine.

0

5

10

15

20

25

1 4 16 64 25
6

10
24

40
96

16
38

4

Iteration

Sp
ee

du
p

Speedup (CSA)
Speedup (NCSA)

CSA stands for Cumulative
successive addition.
NCSA stands for Non-
cumulative successive addition.

Stage
OF1
OF2
IE
WBA
CLK t i t i +1 t i +2 t i +3 t i +4 t i +5 ti +6

Edge + - + - + - + - + - + - + -

Figure 9. Performance curve

3. CO-OPRETAIVE INTELLIGENT
MEMORY (CIM)
A Learn and Serve policy is introduced in this paper. During
learning stage, CPU_major works on both iterative and non-
iterative parts of the task to gather intelligence on current program
execution profile. During serving stage, CIM serves the system
through the knowledge gained during the learning stage.

3.1 Learning Stage
The strategy for the distribution of workload or task partitioning is
conducted by the hardware based on the knowledge that the
system gained from the learning stage rather than pre-processed
by the software. An additional hardware unit responsible for the
detection of iterative loops called Observer will monitor the
activities operating on the address and data buses. When a task
shows iterative behavior, after a qualifying threshold, which is the
optimum number of iterations, the observer records the vectors
that characterize the iteration. The following vectors, VSA, VJN
and VJS can be used in CIM to improve the performance of
conventional architectures for highly iterative memory-to-memory
tasks. They allow specific logic block, which is the CPIM (the
main building block of CIM), to work in parallel with the
CPU_major then releases the burden of simple iterative tasks from
CPU_major. Migration from CPIM to CIM needs an additional

vector, VIB. It corresponds to the start and end address of the by-
passed loop. To enhance the capability of the CPIM, another
additional vector, Vector Distribution Block (VDB) is also
required. It corresponds to the start and end address of the
memory locations, where the computed values are stored with
additional bits for step-size.
A key feature in an iterative loop is that it mostly exhibits equal
steps, often with the same offset as a step size. When this offset
changes, then the observer recognizes that the loop is completed
or terminated. The observer records the vectors in specific
registers allocated for this specific loop. Once learning stage is
completed, Information Transfer Control (ITC), a sub part of the
observer initializes the corresponding CPIM block, and removes
the detected loop from the instruction memory by storing the NOP
type instruction code into the related instruction memory block.
All this instruction does is increment the Program Counter (PC) so
that the next instruction is ready to execute.
Figure 10 shows the sequence of extracting vector components
and identification of task. Analysis of the read activity on the data
will result in identification of the starting address of the operand
block, total number of operand with step-size vector components
(stage1). Further analysis of read-write activity will yield the
algorithm that is used to define the intensity (number of iterations
in the loop) and nature of job (stage2). It must be pointed out that
granularity of algorithm detected is limited to simple tasks in this
initial stage of the proposed architecture, but the system can be
scaled up to cope with coarser granularity.

Figure 10. Activity on data memory

Figure 11 shows the identification of starting and ending
instruction addresses of the corresponding iterative loop. An
iterative part of the program mostly starts from CMP (compare
source to destination) type instruction and ends on BRA (branch
always) type instruction. Whenever the observer detects these
instructions, records their locations (physical address) into two
separate registers. Once the observer recognizes after a qualifying
threshold the loop is terminated. It records the currently available
CMP and BRA addresses, which are the starting and ending
instruction addresses of the corresponding iterative loop.

Figure 11. Activity on instruction memory

3.2 Serving Stage
Whenever the CPU_major encounters a process that it has already
been executed in the course of executing the same program and it
approaches the part in the program at which the first iterative task
was located, it encounters NOP codes for the execution instead of
the iterative loop described. Thus, the proposed CIM architecture
does not need a set of instructions during its serving stage and
complements the CPU_major activities by having acquired the
knowledge about the current program execution profile during the
learning stage. This intelligent characteristic makes proposed
architecture more efficient and co-operative in expediting the
overall task.

3.3 Extraction and Initialization of Vectors
Figure 12 illustrates the extraction of VSA and VJS.

Start

Initial / Previous Address
I/PA=A

Starting Address
Register= I/P A

Current Address
CA=A

Step Size= CA - I/PA

Load the vectors
into the allocated

registers

Step size
buffer

(Default
value=0)Increment Job Size

Counter(JSC)

Data Memory Address (A)

1st Address? No Yes

Compare

Threshold value

Figure 12. Extraction of VSA and VJS

The CPU_major generates the address of a data word to be read.
This address is subtracted from the previous address to get the
step size. In case of iteration, there should be a fixed addressing
increment. A job size counter, counting the number of operand
advances one-step on successive operand address. Once the step
size changes after a defined threshold, which is the minimum limit
for bypassing the iterative loop from the main stream, start
address, address from where the iteration commences, and total
number of operands are stored in the allocated registers. However,
if step size changes before the minimum limit which tells that the
activity is not suitable to bypass then the observer initializes the
counter and loads the current address. The content of the counter
and the initial address acts as a VJS and VSA respectively.The
extraction of VJN and VDB is shown in Figure 13. During the
read activity of the learning cycle, the two consecutive operands
are inputted into different “functional units” and the results of
these functional units are compared with the actual result
materializes during write activity period of the learning cycle. The
outputs of “comparators” appear at the input of the encoder that
generates a specific code related to the action. This code acts as a

Read/Write
Control

Data Memory
Clock

 Memory
Address Lines

Data Memory
Output

Data Memory
Input

Clock Splitter
Read

Write
Stage 1

Step
Size

Stage 2

Starting Add. of
Operand Block

Job
Size

Job Nature Intensity (number
of iterations)

Read/Write
Control

Instruction
Memory Clock

 Instruction Memory
Address Lines

Instruction
Memory Output

Clock Splitter
Read

Write

Identification of
Instruction CMP

Identification of
Instruction BRA

Recording of corresponding
physical address

=
 JSC

Loop Terminated Step size buffer =
Step Size

CA= I/P A

No

Yes

Equal

Not Equal

Vector Job Nature (VJN). The data memory addresses, during
write period of the learning cycle can be used as a Vector
Destination Block (VDB).

Figure 13. Extraction of VJN and VDB

Figure 14 illustrates the extraction of VIB. An iterative part of the
program mostly starts from CMP (compare source to destination)
type instruction and ends on BRA (branch always) type
instruction.

Figure 14. Extraction of VIB

Whenever the observer detects these instructions, records their
locations (physical address) into two separate registers. Once the
observer recognizes after a qualifying threshold the loop is
terminated. It records the currently available CMP and BRA
addresses, which are the starting and ending instruction addresses
of the corresponding iterative loop. These addresses can be used
as a VIB.
The initialization of vectors needs the following aspects:

• A register Ra is initialized with the start address
(VSA) of the operand block.

• A register Rjs is initialized with the total number of
operands (VJS) needed by the job, which is the
number of data grains in the memory block on which
the job is carried out.

• A register Rjn is initialized with an m-bit value. n bits
are used to represent the nature of job (VJN), where
2n is the number of functional units used (see Figure
6). The remaining bits of the register could be used
for byte, word and long word setup. In addition bits
can be used as status flags indicating the CPIM is
busy with its task.

• Two registers, Rsai and Reai, are required to hold the
start and end addresses of the instruction block (VIB).

• Two registers, Rsdi and Redi, are required to hold the
start and end addresses of the destination block
(VDB) with step-size.

Functional

Unit #1
Functional

Unit #2
Functional

Unit #3

Functional
Unit #N

Comparator

Comparator

Comparator

Comparator

Encoder
Op-code

Op1
Op2

Result

3.4 Information Transfer
Once all vectors are extracted and memory block is free meaning
no read/write activities, the ITC transfers all the recorded
information with the related set of data involved in the iteration
into the CPIM placed in the memory system. The observer during
transfer of information carries out the following actions (see
Figure 15).

• Senses data memory is free which means no
read/write operation or a flag that indicates the
completion of learning phase.

• Interrupts the CPU_major for the control of the buses
and wait for the acknowledgement.

• Issues the load commands for the specific logic block
(CPIM) registers to copy the extracting vector
components.

• Re-issues the address range of iteration and generate
read-write cycles for reading the data from data
memory (DM) and writing into the shared memory
(SM) of the CPIM.

• Re-issues the address range of instruction block of the
loop and generates write cycles that replaced the
original code with NOP instruction code.

• Generates Data Transfer Complete (DTC) signal that
indicates the ITC no longer requires the control of
buses.

Figure 15. Information transfer stages

3.5 Intelligent in the Context of the
Proposed CIM Architecture
Any reference to intelligence in the context of our proposed
architecture is limited to the definition; an Intelligent System (IS)
is a system, which learns how to act towards a certain situation in
order to reach its objectives by using experiences and knowledge
gained previously.
From the above statement, we can conclude that an IS has two
fundamental characteristics learning and serving. Typically, an IS
achieves its objective through knowledge and experience acquired
through a learning process, which is something that has happened
to the IS during some moment of its existence. It includes the
situation that occurred, the action done, and the results.
The distinction of the CIM from the existing PIM systems is its
run-time learning capability to gather knowledge on current
program execution profile. During the first execution cycle, the
observer collects information about the desired loop. Eventually
information related to the vectors. The information collected
cover the address range that includes: starting address, ending
address, addresses where the computed results to be stored and

Instruction
Memory

Load command

Load command

Address Bus
Comparator

Comparator

Data Bus

out0

out1
Register

Start address of
instruction block

Start address of
instruction block

out0
out1 Sense data

Memory is free
Interupt
CPU_major
for the control
of the buses

Transfer vectors
into corresponding
CPIM

 Register
T
da

ransfer of
ta from DM

to SM
Replace the iterative
loop code with NOP
code
(Destructive Mode) Release

the control
of buses

addresses of instruction block that corresponds to the situation
with the vectors job size, job nature and the number of iteration in
the loop. Once the task is completed the vectors component
loaded into CPIM registers and the related data transferred from
main to corresponding CPIM memory. The vector instruction
block is used to apply bypass. The bypass effectively removes the
set of instruction related to the iterative loop. The bypass provides
a significant difference in problem solving approach among
conventional architectures and the proposed intelligent
architecture. Conventional computers use an algorithmic approach
i.e. the computer follows a set of instructions to solve the
problem. On the other hand, the proposed CIM architecture learns
by observation/experience. It does not need a set of instructions
during serving stage to perform a specific task.
Vector loading into the CIM registers demonstrates a learning
stage, the CPIM trained for a particular situation. During the
course of executing the same program, serving stage, due to use of
bypass with same data set or in the presence of new data set
system demonstrates the ability to use experience and knowledge
gained previously. Thus, the proposed system obeys the basic
rules developed for an IS.

3.6 Co-operative in the Context of the
Proposed Architecture
Any reference to co-operative in the context of our proposed
architecture is limited to the definition; a co-operative system is
the one which performs its functions through co-operation from
all the components of that particular system. In the context of the
computer a time sharing system is a co-operative system in which
CPU performs a specific task through the co-operation of
memory, bus and the peripherals.
In co-operative systems the task is split hierarchically into
independent subtasks and co-ordination is performed when
assembling partial results from these subtasks. Co-ordination is a
synchronous activity which is the result of a continued attempt to
construct and maintain a shared conception of a problem.
From the above statement, we can conclude that a co-operative
processing is computing which requires two or more distinct
processors to complete a single task. Co-operative processing is
related to distributed processing where two or more distinct
processors are requested to complete a single task.

3.6.1 Co-operative in the Context of Processing
In the proposed architecture, we have a heterogeneous mixture of
processors: CPU_major and memory processor which is the
CPU_minor. The main processor is a conventional processor. It is
backed up by a deep cache hierarchy and suffers a high latency to
access memory. The memory processor is tailored to the specific
needs of the inner most loop of the program being executed makes
it more powerful from the organizational point of view for
specific needs as compare to CPU_major.
We think the best way to exploit the term co-operative in the
processing scenario is to exploit the heterogeneity of the system
by partitioning an application into two parts: one that benefits
mostly from the high capability of the main processor, and other
that benefits mostly from the low latency high bandwidth access
to the memory (memory-intensive). We call this approach co-
operative processing. In previous work on these systems [3, 4, 5,
6, 9, 10, 11, 16], the programmer is expected to identify and
isolate the code sections to run on the memory processors. In
addition, previous works have largely focused on executing
sections of code on only a set of identical memory processors.
Such an approach is often not much different from running code
on a conventional parallel processor.

The proposed architecture uses automatic task partitioning
between iterative and non-iterative tasks to intelligent memory
systems to exploit the heterogeneity of the processors in the
system. This task partitioning forms the basis for an architecture
that complements the main CPU’s activities and co-operates in
expediting the overall task, while encouraging the overlap
execution of CPU_major and CPU_minors.

3.6.2 Co-operative in the context of memory
The possibility to integrate memory and logic on the same chip
(intelligent memory architecture) has a large impact on system
integration and performance, memory sizes, on-chip memory
interfaces and memory structures. Most important is that the
fabrication of the chip can be optimized for the most suitable
process and designer can adjusted the bandwidth and memory size
to its application.
The possible cases in which memory is wasted, when the memory
system is composed of commodity devices are,

1) The granularity of the memory devices forces more
memory.

2) The memory bandwidth forces parallel access to
memory devices.

Memory bandwidth of a commodity device can be
calculated as,

deviceBW

IOwidthdevice fIOBW ×= (23)

Where is the width of the memory device and is the
data IO frequency. However, IO frequency affected by the two
factors, one is page miss penalty and other is load capacitance.
Page miss penalty is directly related to the application and load
capacitance is related to the length of the off-chip buses. A
reported difference of a factor of 10-50 exists between on and off-
chip load drives [17]. Merging logic and related data on the same
chip, reduces the need of the off–chip buses that reduces load
capacitance of the system (shorter wire lengths that connect the
logic and related data) effectively increases data IO
frequency

widthIO IOf

IOf . Another factor, which influences the memory

bandwidth, is the width of the memory device . In
commodity devices, the IO width is limited to certain number (16-
24) of pins due to packaging. Since the memory interface is on-
chip, the total pin count of the chip is not limited, likely reduction
in the pin count, and pad-limited designs may be transformed into
non-pad limited ones. Obviously intelligent memory architecture
can offer a finer granularity in memory sizes and required
bandwidth than commodity device. Low power is another
important issue, which can be positively influenced by intelligent
memory. Power can be mainly optimized by minimizing IO
power or deactivating idle memory banks. In addition, inductivity
caused by the package and the tracks is also eliminated, thus
system noise immunity is enhanced.

widthIO

3.7 Proposed CIM Architecture
The basic CIM is shown in Figure 16. The architecture differs
from CPIM in terms of approach; instead of von Neumann where
instruction and data are stored in a single memory, it requires a
Harvard approach towards memory where separate memories are
used for instruction and data storage. This approach may simplify
read/write mechanism, particularly as programs are normally read
during execution, while data might be read or altered. Also
establish a path for the extraction of vector components by
monitoring the activities operating on the address and data buses.

Figure 16. CIM architecture

Our proposed architecture has the following characteristics:

• The shared memory capacity is large enough to hold large
data frames synonymous with high resolution image
frames.

• The overhead associated with the time it takes to fetch and
execute the instruction in a specific program loop is
eliminated.

• No need for special instructions as required in the case of
coprocessor.

• CPU_major (Major CPU) can continue with other
operations while the CPIM is completing its allocated
task.

The major characteristics that make CIM distinctive from the
existing PIM systems, is its run-time learning capability to get
intelligence for the current program execution profile.

The CIM’s additional building blocks are described below.

3.7.1 Observer
The detection of iterative loops is conducted by the observer
having additional knowledge of the location of the CPIM with
reference to their operational capability. The observer performs
the following jobs:

• Extraction of vectors that characterize the iteration
using the three different extraction units.

• Transfer of vector components with the related set of
data into the CPIM. This is done using the ITC.

• Removal of selected/corresponding iterative loop from
the main stream.

3.7.2 Iteration Control Unit (ICU)
The ICU provides an instruction set for CPU_minor. It consists of
five different registers registers, namely address register (Ra), job
size register (Rjs), job nature register (Rjn), start address
instruction block register (Rsai), end address instruction block
register (Reai), start address destination block register (Rsdi) and
end address destination block register (Redi).

Figure 17 and 18 demonstrate the CIM system activity during
learning and serving stage respectively.

CPIM
Iteration Control Unit

Major
CPU

Data

Figure 17. Inter-block communication in learning stage

Figure 18. Inter-block communication in serving stage

Memory

Shared
Memory

Address Register (Ra)

Job Size Register (Rjs)

Job Nature Register (Rjn)

Arbitrer
Minor
CPU

Instruc-
tion

Memory

Observer

CIM

Loop detection

Monitoring activities
during task execution

Task Execution

CPU_major Executes
the task

Start Address Instruction
Block Register (Rsai)

End Address Instruction
Block Register (Reai)

Start Address Destination
Register (Rsdi)

End Address Destination
Register (Redi)

VJN and VDB
Extraction

Unit
VSN and VJS

Extraction
Unit
VIB

Extraction
Unit
ITC

CPIM

Task completed

Grant interrupt
request

Loop Detected?

Temporarily record
the vectors that

caracterise iteration

Loop terminated

Number of iterations =
threshold

Hold the
vectors

Record the vectors
in the allocated
register.

Register Initialization

Initialize the registers holding the vectors

Interupt CPU_major for the
control of buses

Initialisations of corresponding
application specific block (CPIM)

Apply by-pass

By-passed the chosen loop from the
main stream

Release buses

Generate a data transfer complete
signal for main processor

Information transfer

Yes

No

Yes

No

Buses

Main Processor
(CPU_major)

CPIM Observer

Busy

Ready

Request / Grant

s Release buse

Task Execution

CPU_major Executes
the task

Task completed

Grant interrupt
request

Data set changed

Grant

Loading the shared
memory with the

new data set

Release the buses

Yes

No

Request / Grant

Buse

Main Processor
(CPU_major)

CPI Observer

Busy

Ready

s

M

Release buses

Flag: New data set is present

Interrupt CPU_major
for the control of

buses

Shared me y filled
with new mor

 data

No

Execute the task

Ready f =1 lag

Busy flag=1
Yes

Sleep mode

3.8 CIM Computation Time
Assuming that the program execution profile exhibits equally
sized grains of computation, then the CPU_major will be
presented with equal sized instruction block to execute. The
instruction execution cycle time for each job is assumed to be the
same and denoted by . Figure 19 illustrates the learning stage.
In the presented scenario, Job4 is the only iterative loop with N
iterations and no data dependency is considered.

tΔ

In conventional architecture, CPU_major ends its task, comprising
of job1 to Job6, at t6. Hence

tNtt Δ+Δ= 56 (24)

In the proposed architecture, the completion time of the said task
extended to which is the information transfer time during
its learning stage. Therefore,

tXΔ

tXtNtt Δ+Δ+Δ= 56 (25)

The impact of on system performance is reflected during a
single learning stage. Rest of the time, the application specific
block takes care of the by-passed iterative loop by continuous
reference to its own registers and memory. Then,

tXΔ

tNtt Δ+Δ= 56 (26)

During serving stage, Figure 20 shows the same task is repeated
and finished at t5.

Hence

tt Δ= 55 (27)

The completion time for the task at t5 is therefore far shorter than
during the learning stage. The time difference shows that
the proposed architecture reduces the completion time for the task
significantly and hence contributing to the overall speedup.

tNΔ

Figure 19. Learning stage: Identification of loop and data
transfer

Figure 20. Serving stage

4. COMPARISON MATRIX
The global comparison matrix shown in Table 1 provides a way to
demonstrate the facts that the proposed architecture is different
compared to the previously proposed/existing architectures, where
PIM chips act as a co-processor in memory, which executes codes
when signaled by the host or CPU_major.

Table 1: Comparison matrix (● Validity-○ Non-validity)

FEATURES/ISSUES CO-
PROCESSOR

CPIM CIM

Has its own specialized instruction set ● ○ ○

Tailored to the specific needs ● ● ●

Compatibility ● ○ ○

Software overhead for the distribution
of workload

○ ● ○

Hardware overhead for the distribution
of workload

○ ○ ●

Communication policy between main
CPU and corresponding machine

I) Request and service

II) Learn and serve

●

○

○

●

○

●

Mode of data/information transfer

I) Cycle stealing

II) Burst transfer

●

●

○

●

○

●

Implementation issue merged logic and
memory on the same chip with special
emphasis on cost, performance/speed
and density

○ ● ●

tXt Δ+6

N

job4

Observer

CPIM

Interupt CPU_major
to gain the control of
the buses.
Transfer information.
Release the control of
buses Sense DN

is free
t X Δ

t 0 t 1 t 2 t 3 t 4 t 5

N CPU_major

t 6
job1 job2 job3 job4 job5 job6

t 0 t 1 t 2 t 3 t 4

Observer Recording
vectors

t 5

5. CONCLUSION
Memory systems are primary bottleneck in the performance of
high speed computers. Advances in VLSI technology are enabling
the processor-memory integration to bridge this gap, is also a key
driver in the innovation of a new PIM concept.
In this paper, CPIM and CIM architectures have been proposed as
a viable solution to address this problem. The CPIM is used as the
basic building block of the CIM. A Learn and Serve policy
forms the basis for the proposed intelligent CIM
architecture. The major characteristics that make proposed
CIM architecture distinctive from the existing PIM systems
is its run-time learning capability to gather knowledge on
current program execution profile. Real time task
partitioning is conducted by the hardware on the basis of
the knowledge that the system acquired from the learning
cycle rather than pre-processed by the software.

t 0 t 1 t 2 t 3 t 4 t 5

CPU_major

job1 job2 job3 job5 job6 The general method behind the implementation of
intelligent memory architectures is to associate a large
number of processing hardware components with the data
storage hardware elements of the memory. The proposed
CIM system achieves this for the memory intensive
applications by integrating processing logic close to the
related data into the CPIM module.

REFERENCES
[1] W. Stallings, “Computer Organization and Architecture”,
Prentice Hall, 6th Edition, 2003.
[2] J. Hennesy and D. Patterson, “Computer Architecture: A
Quantitative Approach”. Morgan Kaufmann Publishers Inc., CA,
2003.
[3] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas and K. Yelick. “A Case for Intelligent
RAM: IRAM”, IEEE Micro, Vol. 17, No. 2, pp. 34-44, April
1997.
[4] D. Elliot, M. Stumm, W. M. Snelgrove, C. Cojocaru and R.
McKenzie, “Computational RAM: Implementing Processor-in-
Memory”, The IEEE Design and test of Computers, Vol. 16, No.
1, pp. 32-41, March 1999.
[5] E. Waingold et al., “Baring it All to Software: Raw
Machines”, IEEE Computer, Vol. 30, No. 9, pp. 86-93, September
1997.
[6] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally and M.
Horowitz “Smart Memories: A Modular Configurable
Architecture”, The 27th International Symposium on Computer
Architecture, pp. 161-171, British Columbia, Canada, June 2000.
[7] A. Saulsbury, F. Pong, A. Nowatzyk, “Missing the Memory
Wall: The Case for Processor/Memory Integration”, Proceedings
of the 23rd International Symposium on Computer Architecture,
pp. 90-90, Philadelphia, PA, USA, May 1996.
[8] W. Wulf and S. Mckee, “Hitting the Memory Wall:
Implication of the Obvious”, ACM Computer Architecture News,
Vol. 23, March 1995.
[9] M. Oskin, F. T. Chong and T. Sherwood, “Active Pages: A
Computation Model for Intelligent Memory”, The 25th IEEE
International Symposium on Computer Architecture, pp. 192-203,
July 1999.
[10] Y. Kang et al., “FlexRAM: Toward an Advanced Intelligent
Memory System”, The IEEE International Conference on
Computer Design, pp.192-201, October 1999.
[11] J. Darper et al., “The Architecture of DIVA Processing-in-
Memory Chip”, The 16th ACM International Conference on
Supercomputing, pp. 14-25, June 2005.
[12] Y. Kang, J. Torrellas and T. S. Huang, “An IRAM
Architecture for Image Analysis and Pattern Recognition”, The
14th International Conference on Pattern Recognition, Vol. 2, pp.
1561-1564, August 1998.
[13] J. Parker, “Algorithms for Image Processing and Computer
Vision”, John Wiley and Sons Inc., 1997.
[14] Z. Ahmad, “Cooperative Intelligent Memory”, PhD thesis,
University of Hertfordshire, April 2007.
[15] K. Hwang and A. Briggs, “Computer Architectures and
Parallel Processing”, McGraw-Hill Book Company, London,
1984.
[16] R. Manohar and M. Heinrich, “A Case for synchronous
Active Memories”, ISCA 2000 Solving the Memory wall Problem
Workshop, pp. 1-10, June 2000.
[17] D. Keitel and N. Wehn, “Issues in Embedded DRAM
Development and Applications”, The 11th International
Symposium on System Synthesis, pp. 23-28, December 1998.

	
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. CO-OPRETAIVE PSEUDO INTELLIGENT MEMORY (CPIM)
	2.1 Task partitioning
	2.2 Proposed CPIM Architecture
	2.2.1 Arbiter
	2.2.2 Shared memory
	2.2.3 Iteration Control Unit (ICU)
	2.2.4 Minor CPU (CPU_minor)
	2.3 Execution
	2.3.1 Memory access bandwidth
	2.4 Performance Analysis
	The additional time for the code optimization is required only once during the re-assimilation process (see Figure 3). The CPIM registers initialization time becomes negligible as the number of iterations increases. The data transfer time between main and shared memory makes processing time longer during first execution cycle only, which is a single learning phase to acquire the knowledge about the Static-Locale-Dynamic-Content type of data structure. Therefore, the impact of setup time has no considerable effect on the performance of CPIM based system in the serving stage during the course of executing the same program.
	2.4.1 CPIM vs. SISD
	2.4.2 CPIM vs. SIMD
	2.4.3 CPIM vs. MIMD
	2.5 Implementation Scenarios
	2.5.1 Scenario 1
	2.5.2 Scenario 2
	3. CO-OPRETAIVE INTELLIGENT MEMORY (CIM)
	3.1 Learning Stage
	3.2 Serving Stage
	3.3 Extraction and Initialization of Vectors
	3.4 Information Transfer

	3.5 Intelligent in the Context of the Proposed CIM Architecture
	3.6 Co-operative in the Context of the Proposed Architecture
	3.6.1 Co-operative in the Context of Processing
	3.6.2 Co-operative in the context of memory

	3.7 Proposed CIM Architecture
	3.7.1 Observer
	3.7.2 Iteration Control Unit (ICU)

	3.8 CIM Computation Time
	4. COMPARISON MATRIX
	5. CONCLUSION
	REFERENCES

