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ABSTRACT 
  

This thesis describes research into effective voice biometrics (speaker recognition) 

under mismatched noise conditions. Over the last two decades, this class of 

biometrics has been the subject of considerable research due to its various 

applications in such areas as telephone banking, remote access control and 

surveillance. One of the main challenges associated with the deployment of voice 

biometrics in practice is that of undesired variations in speech characteristics 

caused by environmental noise. Such variations can in turn lead to a mismatch 

between the corresponding test and reference material from the same speaker. This 

is found to adversely affect the performance of speaker recognition in terms of 

accuracy.  

To address the above problem, a novel approach is introduced and investigated. The 

proposed method is based on minimising the noise mismatch between reference 

speaker models and the given test utterance, and involves a new form of Test-

Normalisation (T-Norm) for further enhancing matching scores under the 

aforementioned adverse operating conditions. Through experimental investigations, 

based on the two main classes of speaker recognition (i.e. verification/ open-set 

identification), it is shown that the proposed approach can significantly improve the 

performance accuracy under mismatched noise conditions.  

In order to further improve the recognition accuracy in severe mismatch conditions, 

an approach to enhancing the above stated method is proposed. This, which 

involves providing a closer adjustment of the reference speaker models to the noise 

condition in the test utterance, is shown to considerably increase the accuracy in 

extreme cases of noisy test data. Moreover, to tackle the computational burden 

associated with the use of the enhanced approach with open-set identification, an 

efficient algorithm for its realisation in this context is introduced and evaluated. 

The thesis presents a detailed description of the research undertaken, describes the 

experimental investigations and provides a thorough analysis of the outcomes.
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CHAPTER 1  

INTRODUCTION 
 

1.1 Voice Biometrics  

The ability to automatically, reliably and efficiently verify individuals‟ identities 

has nowadays become an essential requirement in many real-world applications. 

This is mainly attributed to the growing need to combat the alarming cases of 

identity theft, financial fraud and international terrorism. Examples of such 

applications include telephone banking, forensics, immigration control and online 

security. Traditionally, recognition systems have relied on what the individual 

knows, e.g. a password or a Personal Identification Number (PIN) and/or what the 

individual has, e.g. a key, token or a personal card [1-3]. However, such approaches 

have a number of limitations which are primarily due to the fact that they focus on 

identifying an object, phrase or set of numbers instead of the person.  As a result, 

security breaches can easily occur if a person‟s card or key is lost, stolen or copied. 

On the other hand, passwords and PINs can be forgotten by a legitimate user if they 

are too difficult, guessed by an impostor if they are too simple or even cracked 

using sophisticated software technologies. Moreover, such methods have limited 

use in surveillance applications which involve operating in a surreptitious manner 

and therefore do not require user cooperation during the authentication process. The 

use of biometrics offers an alternative to the conventional methods of 

authentication, which helps to avoid the aforementioned problems [1, 2, 4]. 

Biometrics or biometric recognition is best defined as the process of automatically 

authenticating individuals based on their physiological (e.g. fingerprint, face, iris) 

and/or behavioural characteristics (e.g. handwriting, keystrokes, gait). These two 

categories are also referred to as intrinsic and extrinsic biometrics. 

Voice biometrics or speaker recognition, is described as the process of recognising 

a person based on the unique characteristics of his/her voice. This can be 

considered as a hybrid type of biometrics since a speaker‟s voice is defined by the 

structure of the vocal tract (i.e. physiological component) as well as the way that 

person talks (i.e. behavioural component) [5-7]. These unique (speaker-specific) 
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characteristics are usually exploited by individuals to recognise their friends or 

families over the telephone; an intrinsic ability which can also be considered as a 

naïve form of speaker recognition. As such, voice biometrics applications are, in 

general, not regarded as intrusive and users are not usually reluctant to provide a 

speech sample for recognition purposes. Furthermore, systems based on voice 

biometrics do not require any specialised hardware for capturing the speech signal. 

For instance, telephone based applications only require the user to have a telephone 

handset or a mobile phone, while non-telephone based applications involve the use 

of microphones and soundcards: technologies which these days are readily 

available at a very low-price [5]. Furthermore, in some cases, depending on the 

nature of applications, voice biometrics may be the only feasible option which is 

available for recognising individuals. For instance, in telephone banking 

applications where users need to be remotely authenticated prior to allowing access 

to their bank details. For all these reasons, speaker recognition is usually considered 

as one of the most attractive forms of biometric authentication.  

1.2 General Approach  

 

In general, voice biometrics (speaker recognition) can operate in one of the two 

main modes of verification and identification. Speaker verification is defined as the 

task of determining whether a speaker is who (s)he claims to be, based on a given 

test utterance [5-7]. In other words, this process can be considered as a 1:1 

matching between a claimed identity and given voice sample. Such an identity 

claim may be made verbally, by typing-in a personal identity number, or by some 

other means. The speaker verification operation comprises two stages. These are 

the training (or enrolment) stage and the testing (or matching/recognition) stage. 

Figure 1.1 shows a block diagram of the general approach to speaker verification.  
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Figure 1.1: General approach to the speaker verification task. 

 

As illustrated in this figure, the first step in the training phase consists of extracting 

parametric speech features from the enrolment utterances of registered speakers. 

These parameters provide a more stable, robust and compact representation of the 

input speech signal in a form which is suitable for the subsequent stages. The 

second step involves creating reference models of the registered speakers using 

their extracted feature vectors. Details of the feature extraction and speaker 

modelling processes are presented in chapters 2 and 3 respectively. During the test 

phase, speech sample(s) are obtained from an unknown speaker together with a 

claimed identity. As in the training stage, speech feature parameters are extracted 

from the given test utterance(s). Then, the extracted speech parameters are tested 

against the claimed speaker model to obtain a match score. This score indicates the 

degree of closeness (similarity) between the test utterance(s) and the target speaker 

model. Following this, the match score can be fed into a complementary post-
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processing stage in order to increase robustness and reliability. One such post-

processing approach, which is commonly employed in speaker recognition, is that 

of score normalisation. This is carried out to alleviate the impact of adverse 

operating conditions. The score normalisation process is reviewed in more detail in 

the next two chapters. Finally, a decision to accept or reject the claimant is made, 

depending on whether the (normalised) score is higher or lower than a pre-defined 

threshold. 

Speaker identification, on the other hand, is defined as the process of determining 

the correct speaker from a population of registered speakers. To be precise, this can 

be considered as a 1: N process where an unknown speaker is compared against a 

database of N registered speakers to find the best matching speaker. If the process 

includes the option of declaring that the test utterance does not belong to any of the 

registered speakers, it is termed open-set speaker identification. Otherwise, it is a 

closed-set identification process [8-10]. In principle, the process of open-set 

speaker identification consists of two successive stages of identification and 

verification. In other words, first, it is required to identify the speaker model in the 

set, which best matches the given test utterance. Then, it must be verified whether 

the test utterance has actually been spoken by the speaker associated with the best-

matched model or by some unknown speaker outside the registered set. For this 

reason, open set speaker identification is usually considered as the most challenging 

subclass of speaker recognition. A modular representation of the open-set speaker 

identification process is shown in Figure 1.2. The feature extraction, reference 

speaker model generation, and post-processing modules are identical to the ones 

used for speaker verification.  

 

 

 

 

 

 



 Chapter 1: Introduction 

Voice biometrics under mismatched noise conditions                                                                      5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: General approach of the open-set speaker identification task. 

 

The speaker recognition process (speaker verification and speaker identification) 

can be further classified into text-dependent and text-independent tasks. In the 

former scenario, the utterance which is presented to the system is constrained to a 
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1.3 Challenges 

Over the past two decades, research into voice biometrics has attracted a great deal 

of interest from the research community [8, 11-16]. This, as discussed in Section 

1.1, is mainly attributed to the advantages that speaker recognition applications can 

offer. However, one of the major problems in speaker recognition remains that of 

variations in speech characteristics. Such variations can usually be divided into two 

categories: speaker dependent (or intra-speaker) and speaker independent 

variations. Speaker dependent variations occur due to various causes such as 

uncharacteristic sounds by the speakers (e.g. lip smacks, breaths, dry mouth) or 

physiological factors (e.g. illness, surgery, ageing).  

Conversely, speaker-independent variations arise primarily due to technological 

factors (e.g. channel conditions) and environmental factors (e.g. additive noise) 

which affect the characteristics of the speech signal when operating under practical 

conditions. To date, considerable research efforts have been put into developing 

effective approaches for dealing with variations due to the former. This has recently 

led to the introduction of methods that have the capabilities of explicitly modelling 

the effects of channel variability on the given utterances. These approaches 

therefore allow the effects of channel variations to be compensated during both the 

training and testing phases, resulting in significant improvements in performance 

when operating under such adverse conditions 

On the other hand, variations due to environmental (additive) noise occur when the 

background condition of the reference material is different from that of the test 

material. In practice, the latter problem is usually exacerbated by the mobile nature 

of many speaker verification applications which in general, considerably increases 

the likelihood that the speech material may be contaminated by various 

unpredictable and/or time-varying sources of noise. One typical example is when a 

user tries to automatically access his/her bank details (i.e. telephone banking) over a 

handheld device. In this scenario, environmental noises (e.g. phone ringing in the 

office or door closing in the car) which are not experienced during the training 

stage can be quite common. These can in turn significantly degrade the test 

utterances originating from true speakers.  
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The net result of such variations is a mismatch between the reference (training) and 

the test material of the same speaker, which can potentially lead to cases of false 

rejection/false acceptance and therefore affect the overall performance of speaker 

recognition applications in practice.   

 

1.4 Aim of the research 

The aim of this research is to develop effective approaches for speaker recognition 

under mismatched noise conditions. The theoretical and experimental efforts 

involved in achieving this goal are based on the specific objectives described 

below.  

The literature review which is carried out in the next chapter reveals that one of the  

most popular and widely used approaches in the field for dealing with the effects of 

environmental noise contamination is that of score normalisation. The literature 

also appears to lack sufficient information on the performance of this method on 

state-of-the-art speaker verification approaches, when there is a considerable 

difference between the types and levels of noise degradation in the training and 

testing data. Hence, the first objective in this study is to thoroughly investigate the 

effectiveness of score normalisation under these more realistic and practical 

operating conditions.  

Another major objective of the work described in this thesis is that of enhancing the 

effectiveness of score normalisation under various levels and types of mismatched 

noise conditions. This is carried out in the context of both text-independent speaker 

verification and open-set text-independent speaker identification (OSTI-SI). As 

mentioned earlier, the latter is considered as the most challenging class of speaker 

recognition because of its additional complexity. Due to the specific characteristics 

of OSTI-SI, the realisation of the above objective can become computationally 

expensive when the population of registered speakers grows significantly. Thus, 

although the main focus of the research work is that of enhancing the effectiveness 

of speaker recognition under mismatched noise conditions, investigations into 

approaches for retaining the computational efficiency of OSTI-SI will also be 

considered in this study.    
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1.5  Thesis layout 

The thesis is organised into seven chapters. A brief description of each of these 

chapters is given below 

Chapter 2: Literature Review 

In this chapter, a review of the literature in the area of automatic speaker 

recognition is presented. This includes a review of the various approaches proposed 

for feature extraction, speaker modelling and enhancing effectiveness under 

mismatched noise conditions. A description of the evaluation techniques together 

with the speech corpora used for the purpose of investigations in this study is also 

included.   

Chapter 3: Techniques for Speaker Verification 

This chapter focuses on the techniques which are important in the context of the 

present study and describes them in detail. This includes a description of the 

operations involved in the extraction of Linear Prediction-based Cepstral 

Coefficients (LPCC) together with the details of Gaussian Mixture Model (GMM) 

and Support Vector Machine (SVM) speaker modelling approaches. The latter part 

of the chapter also provides a thorough description of the most popular techniques 

for dealing with mismatched noise conditions. 

Chapter 4: Investigations into state-of-the-art Speaker Verification approaches  

In this chapter, the state-of-art-the-art techniques which are considered in this thesis 

(i.e. GMM-UBM and GMM-SVM) are investigated for their effectiveness. The 

Chapter starts with a description of these techniques and details complementary 

methods which help to enhance the speaker verification performance. Details of the 

experimental setup used for comparing the relative effectiveness of these speaker 

verification approaches are then given. This is followed by a description of the 

experimental investigations into the relative effectiveness of GMM-UBM and 

GMM-SVM under both matched and mismatched data conditions.  
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Chapter 5: Improving the Speaker Recognition accuracy under mismatch 

conditions 

This chapter proposes a new approach for speaker recognition operating under 

mismatched noise conditions. An account of the motivation behind the proposed 

approach for speaker verification is given together with details of the experimental 

investigations to examine its effectiveness in relation to state-of-the-art approaches 

in the field. Furthermore, the Chapter provides implementation details of the 

proposed approach and analyses its performance in the open-set text-independent 

speaker identification (OSTI-SI) context. 

Chapter 6: Multi SNR CT-Norm for Speaker Recognition 

This chapter presents a new approach for speaker recognition under significant 

mismatched noise conditions. The Chapter clearly explains the motivations behind 

this approach and demonstrates its effectiveness in relation to other important 

methods. The use of the proposed approach is then considered in the context of 

OSTI-SI. This includes the introduction of a fast realisation of the proposed method 

in order to enhance the computational efficiency in this case.  

Chapter 7: Summary, Conclusions and Future Work  

The final chapter summarises the main outcomes in this study and draws overall 

conclusions. A number of suggestions for future research in the field are also 

included in this chapter.   
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CHAPTER 2  

LITERATURE REVIEW 

 

Chapter Overview 

This chapter provides a background review of various approaches used for the 

speaker recognition task. It also includes details of techniques used for evaluating 

the recognition performance. The chapter starts with a brief description of the 

human speech production process which is considered to be useful in identifying 

the discriminative characteristics between different speaker voices. Section 2.2 

presents a detailed discussion of the commonly used speech features for 

distinguishing between speakers. The discussion in Section 2.3 is focused on the 

major speaker modelling and classification techniques currently used for automatic 

speaker recognition. Section 2.4 then presents a review of commonly used 

approaches in speaker recognition to achieve robustness against environmental 

noise. Finally, a description of the speaker recognition evaluation techniques and 

the speech corpora used in this study are given in sections 2.5 and 2.6 respectively.  
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2.1 Human speech production 

The human speech production system is a complex procedure consisting of closely 

intertwined psychological and physical aspects.  For simplicity, the psychological 

part can be considered as a three stage procedure. This process is initiated when a 

speaker decides to transmit a message to the listener(s). The message is then 

converted into a form (language) that can be understood by the listener(s). Finally, 

a set of neuromuscular commands is executed in order to control the physical 

structure shown below [17].  

 

Figure 2.1: Schematic view of the anatomy of the human speech production system [17]. 

Figure 2.2 illustrates a simplified version of the underlying mechanism involved in 

the physical aspect of the speech production system [17]. This process can be 

broken down into three components, namely: power production, tone production 

and tone resonance.    

The power production (or initiation) part is carried out through the respiratory 

system. During inhalation, the diaphragm is contracted and air is drawn inside the 

lungs. In order for speech to be produced, the diaphragm is relaxed causing the 
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lungs to recoil and as a result, air is forced out through the bronchi and trachea.  

The larynx which is made up of the vocal cords
1
 is then responsible for the tone 

production (or phonation) part. When the vocal cords are tensed, the airflow causes 

them to vibrate at a rate dependent on their length, thickness and tension. This 

results in a quasi-periodic speech waveform, known as voiced sounds. On the other 

hand, when the vocal cords are relaxed, the airflow passes through a constriction in 

the vocal tract which results in an aperiodic (random) speech waveform (commonly 

known as unvoiced sounds).  For voiced sounds, the generated pulse waveform is 

filtered in the vocal tract to have the harmonics near the natural resonance of the 

tract. Different sounds are produced by changing the shape of the vocal tract (e.g. 

by moving the tongue, lips, jaw and velum
2
) so that the natural resonances occur at 

different frequencies. These resonant frequencies are commonly known as the 

formants. Finally, the resultant acoustic wave is radiated from the lips. 

 

Figure 2.2: Mechanical representation of the human vocal tract [17]. 

                                                 
1
 This is also commonly referred to as the vocal folds 

2
 The velum, also referred to as the soft palate, can retract or elevate to separate the oral cavity from 

the nasal cavity. 
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The above described speech production process is identical for all speakers. In 

general, however, there are different factors that are based on the speaker‟s physical 

and behavioural characteristics, which allow speech waveforms to be discriminative 

between different speakers. Thus, various levels of information can be extracted 

from a speaker‟s utterance to represent these differences. For instance, information 

based on the natural anatomic variation of the components involved in speech 

production is considered to be low level. Conversely, information based on 

acquired traits such as learning and practical use of a language is usually classified 

as high level [18]. Figure 2.3 illustrates the different levels of information (from 

low to high) which are represented in a speech signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Description of the different levels of information which can be extracted from 

a speech signal. 

Acoustic:  

The acoustic parameters of the speech signal are related to the spectral content and 

are linked to the physical characteristics of the vocal tract. 

 

 

 

 

Low level 

High level 

Prosodic:  

Prosodic parameters are based on the intonation, accentuation as well elocution 

rhythm and pauses and the duration of the phonemes.  

 

 

 

 

Phonetic:  

The phonetic characteristics are linked to the way in which each phoneme is 

pronounced.  

 

 

 

 

Idiolect:  

Parameters based on idiolect are characterised by the distinctiveness in the way each 

individual uses different or recurring words while speaking. 

 

 

 

 

Dialogue/Conversational:  

 Conversational parameters define the way in which each speaker communicates. For 

example, this could be the frequency and duration that an individual speaks. 

 

 

 

 

Semantic:  

 Information based on semantics is attributed to the meaning of the word, phrase or 

sentence. For example, a topic of discussion which is frequently used by a speaker 

can give away his/her identity. 
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Since the early days [19-21], features based on the acoustic content of the speech 

waveform have been the predominant means for tackling the problem of automatic 

speaker recognition. Recent years have, however, seen the emergence of new 

speaker recognition systems which utilise high level features together with low 

level features [22-26]. Although, such systems have shown some relative 

improvements over traditional speaker recognition applications, they usually 

require heavy computational front-end processing. For this reason, speech features 

based on acoustical content, remain the most widely used parameters in most 

speaker recognition systems [14, 27-29] and are adopted in this research study. 

2.2 Speech features for Automatic Speaker Recognition 

As mentioned in the previous section, to date, the most commonly used speech 

features for speaker recognition are based on physical differences of the 

components involved in the speech production process. Based on the model shown 

in Figure 2.2, it can therefore be expected that the vocal cords and the configuration 

of the vocal tract should both contain speaker-dependent information which are 

useful for discriminating between different speakers. As such, it can be argued that 

the rate of vibration of the vocal cords, which is characterised by the fundamental 

frequency
3
, F0, of the voiced speech sounds for each individual speaker, should 

provide a strong set of speech features for speaker recognition. It has, however, 

been demonstrated in earlier studies that a speaker‟s pitch  can vary considerably 

due to non-physiological factors such as the emotional state or stress level of the 

individual [30].  In addition, it has also been reported that a reliable estimation of 

the fundamental frequency is very difficult to obtain because of its lack of 

robustness against noise corruption [17, 30]. 

The configuration of the vocal tract, on the other hand, contains important speaker-

discriminative characteristics which are represented in the form of frequency 

components in the speech spectrum of each speaker. As a result, parameters which 

represent the vocal tract structure are more robust to adverse factors when 

compared to those which characterise vocal cords vibrations. In general, in order to 

extract features which represent the vocal tract configuration, the speech signal is 

                                                 
3
 The fundamental frequency is also commonly referred to as the pitch.  
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examined within windows of short duration. The reason for this is the slow time 

varying aspects of the vocal tract which can be considered stationary during short 

period of time (between 5ms and 100ms) [17, 30]. 

As shown in Figure 2.4, the short-time spectrum of speech is made up of a 

convolution of two components. The first component is the spectral envelope which 

changes slowly as a function of frequency. This is associated with the resonances of 

the vocal tract as well as the radiation characteristics at the lips and nostrils. The 

second component which is the spectral fine structure changes rapidly and is 

associated with the excitation source (or vocal cords vibrations). The aim of most 

speaker recognition systems is therefore to extract the spectral envelope from the 

short-term speech spectrum [31].  

 

Figure 2.4: Structure of the short-term speech spectrum and the components within it [31]. 
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2.2.1 Commonly used features  

The most dominant spectral analysis techniques used to date for automatic speaker 

recognition are the linear predictive coding (LPC) [32], cepstral analysis and the 

filter-banks spectrum analysis model [17]. In the LPC analysis approach, the vocal 

tract is modelled as an all-pole filter. This is based on the assumption that for 

voiced sounds, the excitation can be represented as an impulse train generator 

which represents the series of nearly periodic glottal pulses generated by the vocal 

cords. For unvoiced sounds, a random noise generator is used to represent turbulent 

air flowing through a constriction along the vocal tract. Each given speech sample 

is then approximated as a linear combination of the past p samples. The output of 

the LPC analysis is then given by a vector of predictor coefficients (or LP 

coefficients), which represent the parameters of the vocal tract configuration for 

each speech frame. These are obtained by minimising the predictor error.  

As mentioned earlier, the speech signal is considered to be a convolution between 

excitation of the vocal cords (fine structure) and the impulse response of the vocal 

tract (spectral envelope). Cepstral analysis which is based on the principle of 

homomorphic
4
 signal processing provides an intuitive way of converting the 

convolutive relationship between the fast and slow varying aspects of the speech 

spectrum into a summation, thus, allowing easier separation of these two 

components. As such, the Linear Prediction-based Cepstral Coefficients (LPCC) 

which can be directly derived from the LPC analysis is widely used to characterise 

the vocal tract [17, 32].  

The Mel frequency-based cepstral analysis provides an alternative approach to 

obtaining cepstral features. These speech features are referred to as Mel Frequency-

based Cepstral Coefficients (MFCC). In this approach, a filter bank is used such 

that each filter is applied to a different frequency band of the given short-term 

speech spectrum. The logarithm of the energy in each filter is then computed and 

accumulated before the Discrete Cosine Transform (DCF) is applied to obtain the 

cepstral coefficients. There are two different types of cepstral features which can be 

                                                 
4
 This is a generalised term used to describe techniques which involve a non-linear mapping of the 

signal to a different domain in which linear filter techniques are applied. This is then followed by 

mapping to the original domain.  
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obtained using this approach. This depends on the configuration of the processing 

filters. When the bandpass filters are linearly distributed in frequency, the resulting 

parameters are known as Linear Frequency-based Cepstral Coefficients (LFCC). In 

the second, more popular approach, the arrangement of the filters is based on the 

human perception of speech. This involves the spacing of bandpass filters 

according to the Mel-scale. As shown in Figure 2.5, on this scale, there is a near 

linear correspondence between real frequencies and perceived frequencies up to 1 

kHz and a logarithmic correspondence for higher frequencies [32]. The feature 

parameters extracted using this approach are called Mel Frequency based Cepstral 

Coefficients (MFCC) [17]. 

 

Figure 2.5: Mel-scale representation [17]. 

 

Another method for generating perceptually motivated features is through 

perceptual linear prediction (PLP) [33]. This is carried out in a three-stage process. 

Similarly to the extraction of MFCC, the short-term speech spectrum is first 

processed according to the human perception of tones. In this case, however, the 

centre frequencies of the filters are spaced equally on the Bark scale [34]. The 

motivation behind the Bark scale is based on the masking phenomenon which is 

known to affect the hearing of a tone in the presence of another adjacent tone. In 

the second stage, the PLP analysis compensates for differences between the actual 
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and perceived loudness of tones which occur at different frequencies.  The final 

operation is then based on the all-pole modelling (using the autocorrelation method) 

of the resulting spectrum to obtain the PLP parameters. Similarly to the LPC 

approach, the PLP parameters can then be transformed into their cepstral 

derivatives by using the recursive relationship between the prediction coefficients 

and the cepstral coefficients [17]. These are known as Perceptual Linear Prediction 

Coefficients (PLPC) [34].  It should however be pointed out that the PLP analysis 

has been reported [30] to suppress essential speaker-specific characteristics from 

the speech spectrum and hence is not a popular choice for speaker recognition 

applications.  

To date, there is no agreement in the literature in relation to the choice of the best 

set of features for speech applications. This is because speech feature extraction 

techniques are highly dependent on the specific context in which the features are 

used. In general, MFCC and PLPC are widely used in speech recognition [35, 36] 

while LPCC and MFCC are popular choices in speaker recognition. Moreover, 

studies in speaker recognition have shown that LPCC exhibit better performance 

when compared to MFCC [13]. These observations are in agreement with the work 

carried out in [34]. For this reason, in this research work, LPCC is adopted for the 

parametric representation of speech.  A detailed description of the processes 

involved in obtaining the LPCC is therefore presented in the next chapter.  

2.3 Speaker modelling and classification techniques 

Given a sequence of feature vectors produced by an unknown speaker, the task of a 

speaker recognition system is to identify whether that sequence has originated from 

one of the registered speakers (i.e. speaker identification) or to verify if the 

sequence has been pronounced by the claimed speaker (i.e. speaker verification). 

To achieve either of these, speaker models are usually constructed, during the 

training stage, using the features obtained from the speech signal of the registered 

population of speakers. During the classification stage, the test utterance from an 

unknown speaker is then matched against the registered speaker model(s) to obtain 

an utterance score which indicates the degree of correspondence. This section 

presents a general description of the various modelling techniques used in speaker 

recognition systems.  
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2.3.1 Vector Quantisation (VQ) 

Vector quantisation, which is also known as a centroid model, can be considered as 

one of the simplest classification models for speaker recognition [37, 38]. The 

approach involves building speaker models by partitioning the feature vectors into 

K non-overlapping clusters which individually represent different acoustic classes. 

Each cluster is represented by a code vector which is the centroid (average vector) 

of that cluster. A speaker model in the VQ approach is therefore, a collection of 

centroid vectors which is commonly referred to as a codebook. This approach 

provides an effective way of reducing the data storage requirements while 

preserving the fundamental aspect of the original distribution [37]. The two most 

effective algorithms for generating the codebook are based on the Linde-Buzo-Gray 

(LBG) algorithm [39] and the Distortion Driven Cluster Splitting algorithm [34]. 

During the classification stage, the distance of each of the extracted feature vectors 

of the test utterance to its nearest codebook vector is accumulated to obtain an 

utterance score.  

2.3.2 Gaussian Mixture Model (GMM) 

A Gaussian Mixture Model is the representation of various acoustic classes in a 

speaker‟s voice using a linear combination of Gaussian Probability Density 

Functions (or components/mixtures). This can be considered as an extension of the 

VQ approach, in which the clusters are allowed to overlap with each other. Each 

speaker GMM is represented by the mean and covariance statistics of the mixture 

densities, and the weight associated with each of them. There are two commonly 

used approaches for obtaining these parameters from the registered speaker‟s 

training data. The first method is that of computing the model parameters using the 

iterative Expectation-Maximisation algorithm (EM) [40]. The second approach 

involves developing a Universal Background Model (UBM) and then adapting this 

using the given training data, and through a modified realisation of the Maximum a 

Posteriori (MAP) [12]. The UBM development is based on the EM algorithm and 

the use of utterances from a large population of speakers. During the classification 

(or testing) stage, the test data is compared to the claimed speaker model or the 

registered set of speaker models using the maximum likelihood rule. Over the last 

decade, the said technique, which is commonly referred to as GMM-UBM, has 
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been one of the predominant speaker modelling approach for text-independent 

speaker recognition [5, 6, 11, 12]. For this reason, the approach is adopted in this 

study. Further details of the GMM modelling approach are provided in the next 

chapter. 

2.3.3 Hidden Markov Model (HMM) 

The GMM approach described above can be considered as a static model which 

does not model variations in time. The Hidden Markov Model (HMM), on the other 

hand, has the additional capability of being able to model the temporal variations 

between the various acoustic classes [17]. A HMM may be described as a finite 

state generator. In speaker recognition, each of these states may represent phones or 

larger units of speech.  At discrete times, the system undergoes a change of state 

according to a set of probabilities associated with it. After each transition, an output 

is emitted from the current state. Although such outputs can be observed, the 

associated states are „hidden‟ and can only be inferred from the available outputs. 

The temporal information between the acoustic classes is encoded by moving from 

state to state along the allowed transitions. The amount of time spent in each state 

accounts for variability in speaking rate and is therefore dependent on the training 

data. For a thorough review of the theory and implementation of HMM, the 

interested reader is referred to [17].  

In general, HMM has been mainly used in speech recognition applications [17, 41-

44]. However, to date, several studies have considered the use of HMM for text-

dependent and text-independent speaker recognition [45-47]. The study in [48] has 

shown that in the text-independent scenarios, the sequencing of acoustic classes is 

not important since it contains limited speaker-dependent information. Such 

findings have also been confirmed in the experimental studies in [49] and [50] 

which have found that the text-independent performance is unaffected by 

discarding the temporal information in the HMMs.   

2.3.4 Artificial Neural Networks (ANN) 

An artificial neural network (ANN) [51-53] is a discriminative classifier which is 

made up of a collection of simple adaptive processing units (or nodes) that can 

collectively accomplish complex machine learning tasks. These nodes can be 
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considered as analogous to the neurones which are present in the human central 

nervous system, although as expected, the complexity of the artificial neural 

network is far less than that of the human brain.  Each processing unit computes the 

weighted sum of the inputs and passes the results through a sigmoid-like 

nonlinearity. ANN is a powerful tool which can be used for both regression and 

classification tasks. Although there are many different types of ANN, to date, the 

multi-layer perceptrons (MLP) has been the most commonly used architecture for 

speaker recognition [54-56]. As shown in Figure 2.6, an MLP is made up of a 

network (multi-layers) of simple nodes which are known as perceptrons. The 

underlying concept of the MLP is based on a two-stage process. First, a linear 

weighted sum of its input connections is computed. Second, a non-linear function 

(also known as activation function) is applied in order to compute the output of the 

node. It is generally acknowledged that, given a sufficiently large number of nodes 

in the hidden layer, an MLP with a non-linear activation function can approximate 

any non-linear mapping between the input and output [53-55]. For the speaker 

verification task, an MLP has only one output node. This is because in this case, the 

objective is to obtain a score over all the frames of the given test utterance.  

 

Figure 2.6: Multi-layer perceptron architecture. 
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2.3.5 Support Vector Machines (SVMs) 

The support vector machine (SVM) is another discriminative binary classifier 

which involves modelling the linear boundary between two classes as a separating 

hyperplane [57-59]. In speaker verification, one class consists of the target 

speaker‟s training vectors (labelled as +1) and the other class consists of training 

vectors from a large number of background speakers (labelled as -1). SVMs can 

also learn non-linear boundary regions between samples by mapping the input 

samples into a higher dimensional space. This is carried out through the use of 

kernel functions. A separating hyperplane is then chosen (in the higher dimensional 

space) in such a way as to maximise its distance from the closest training samples, 

known as support vectors. During the test stage, a classification score is then 

obtained by evaluating the distance of the test sample in relation to the hyperplane. 

This approach has been increasingly used in recent years for the speaker 

verification task [22, 60, 61] and has been shown to give the state-of-the-art 

performance. For this reason, SVM is adopted in this research work and a detailed 

description of its fundamental concepts is given in Chapter 3 

2.3.6 Hybrid modelling techniques 

In general, the underlying concept of generative approaches such as GMMs and 

HMMs is that of estimating probability densities to model the underlying 

characteristics of the speaker‟s voice based on the given training data. On the other 

hand, discriminative approaches such as SVMs and MLPs usually involve 

modelling the boundary between classes and discard any information which is not 

considered to be useful for classification. It has been reported in the literature [31, 

61] that generative modelling approaches have important features which 

discriminative modelling approaches do not possess and vice-versa. Table 2.1 

presents a comparison of those complementary features.  
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 Favourable Features Generative Model Discriminative Model 

1. Ability to deal with 

impostors not present 

during the training 

stage. 

Creates a full model of 

the registered speaker 

voice independent of 

the availability of 

impostor utterances. 

This allows the model 

to be more robust to 

impostor attacks.  

 

 

 

 

Discards information 

which is considered 

unnecessary for modelling 

the boundary. This 

process makes the model 

vulnerable to impostors 

not present during the 

training process. 

 

 

 

 

 

 

 

2. Ability to deal with 

data of arbitrary length 

A generative model is 

built by clustering 

feature vectors 

irrespective of the 

length of training data. 

 

 

Discriminative models 

cannot deal with 

sequences of varying 

length during the training 

or testing stages. 

 

 

 

 

3. Small storage 

capacities 

Obtaining a full model 

of a speaker‟s voice 

requires large storage 

capacities
5
. 

 

 

Modelling only class 

boundaries results in 

smaller more compact 

models. 

 

 

4. Modelling algorithm 

should NOT over-tune 

to the training data.  

Generative approaches 

attempt to model all the 

underlying variations of 

the training data.  

 

 

 

Discriminative models 

focus on modelling the 

boundary between classes.  

 

 

 

Table 2.1:  Advantages and disadvantages of the generative model and the discriminative 

modelling methods. 

It is therefore not surprising that a significant amount of work has been carried out 

over the last few years into approaches for combining the two modelling strategies 

to obtain a robust classification method. The most popular techniques to achieve 

this involve either a combination of a generative model with a discriminative 

classifier or using a discriminative objective function to adjust the parameters of a 

generative model. Such approaches include the Radial basis function (RBF) 

                                                 
5
  For GMMs, the storage requirements depend on the number of mixtures used for modelling the 

speaker‟s data. 
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networks [62], GMM/SVM combinations [28, 63] and HMM/MLP hybrids [64]. A 

brief description of each of the said approaches is provided below. 

a) Radial Basis Function (RBF) networks 

The RBF network combines the generative modelling strategy of GMMs with the 

discrimination capabilities of the MLP [53, 62]. Mathematically, an RBF network is 

almost identical to that of several GMMs. It has a two layer topology, similar to 

that of the MLP. The output layer of an RBF network is exactly the same as a MLP. 

In this case, however, the nodes of the hidden layer each consist of a unimodal 

Gaussian (or Gaussian basis functions). An example of an RBF with 1 output 

(applicable to the speaker verification task) is illustrated in Figure 2.7.   

 

Figure 2.7: A radial basis function (RBF) network with one output. 

There are two ways in which an RBF network can be trained. Firstly, it can be 

trained entirely by minimising the empirical risk using the gradient descent 

algorithm [53]. This results in a completely discriminative RBF model. Conversely, 

the network can also be trained using a combination of gradient descent and the 

expectation-maximisation algorithm. The former approach is used for learning the 

weights of the output layer while the latter technique is employed to obtain the 

means and covariances of each Gaussian. Thus, the second approach creates a 

network which benefits from the generative nature of the Gaussians while the 

preserving the discriminative nature of the output weights. 
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b) HMM/MLP  

The HMM/MLP hybrid, which has been proposed in [54, 64, 65], combines the 

efficient temporal processing features of HMMs with the discriminative capabilities 

of the MLP. It is shown in these studies that such a combination results in a system 

which yields better recognition performance than approaches based on only the 

MLP or HMM. This is because the MLP has limited segmentation capabilities 

which restrict its effectiveness for speech/speaker recognition tasks. Various 

approaches have been proposed in the literature to tackle this issue for both speech 

and speaker recognition systems [54, 64, 66]. The fundamental concept behind 

most of these techniques is to replace the HMM state observation probabilities (or 

likelihood) with scaled probabilities estimated using an MLP. In other words, the 

MLP is used to estimate posterior probabilities and these are then scaled by the 

prior probability for each of the HMM states (or GMMs) and incorporated into the 

training scheme.  During the classification stage, the posterior probability of the 

utterance is then obtained instead of the likelihood.  

c) GMM/ SVM  

To date, several approaches which combine the GMM and SVM modelling 

strategies [28, 63, 67-70] have been proposed in the literature. This section presents 

a review of two popular approaches which employ such combinative techniques for 

speaker recognition. The reason behind the first approach is based on the 

assumption that the conventional computation of the log-likelihood ratio [67] is not 

optimal because the probabilities cannot be estimated accurately. Thus, in this 

approach, during the training phase, the GMM log-likelihood scores which are 

obtained from the registered speaker and the UBM are fed as a two-dimensional 

vector into an SVM. Adjustable parameters are then obtained as the output of the 

SVM and these are then incorporated into the computation of the GMM log-

likelihood ratio to obtain a more reliable utterance score during the test phase.   

Another widely used approach proposed in [28] is based on the use of a 

concatenation of the means (known as supervectors) from the registered speaker‟s 

GMM and the GMMs for a large set of impostors to train the SVM speaker model. 

During the classification phase, a supervector of means is extracted from the test 
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model and this is then compared to the client‟s SVM model to obtain a 

classification score. This approach which is also known as SVM based on GMM 

supervectors of means has been shown to give the state-of-the art speaker 

recognition performance [14, 28, 71]. For this reason, this approach is adopted for 

the purposes of the work described in this thesis.  An account of the procedures 

involved in GMM/SVM approach is given in Chapter 3. 

2.4 Noise robustness techniques in speaker recognition 

A factor adversely affecting the accuracy of speaker recognition systems in practice 

is that of variations in speech characteristics. Such variations occur due to various 

causes such as environmental noise, channel effects, or uncharacteristic sounds by 

speakers (e.g. lip smacks). The net result is a mismatch between the corresponding 

test and reference material for the same speaker, which in turn reduces the accuracy 

in speaker recognition.  As mentioned in Chapter 1, the main focus of the work 

described in this thesis is to deal with mismatch conditions which result from 

environmental noise (additive noise). To date, several approaches have been 

proposed in the literature to tackle the impact of environmental noise on speaker 

recognition. An overview of the most commonly used approaches, which can be 

categorised based on the level at which they operate, is given in the next sub-

sections. For an extensive review of the techniques given in each category, the 

interested reader is referred to [72-74].  

2.4.1 Speech level approaches 

Approaches which operate at the speech or acoustical level have been originally 

proposed in the speech enhancement literature and later used in speaker recognition 

in order to achieve robustness under noise conditions [72]. Such approaches, which 

aim to improve the signal-to-noise ratio (SNR) of the input speech signal, can be 

further classified into single-channel methods and multi-channel methods. The 

former category assumes that the speech and noise data are available in a single 

mixed form (e.g. single microphone). On the other hand, the latter category, 

assumes that the speech and noise are available in various combinations due to the 

availability of multiple signal inputs. The primary focus of the work carried out in 

this thesis is that based on the assumption that the speech signal is captured using a 
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single microphone. As such, multi-channel approaches are considered to be outside 

the scope of this thesis.  

In general, research into single channel speech based approaches has targeted the 

impact of environmental noise on speaker recognition through filtering techniques 

[72, 75]. These approaches usually produce estimates of the „enhanced‟ short-time 

speech spectra by filtering out the noise components. This is carried out by using a 

priori knowledge of the statistics (e.g. power spectra or variances, or signal-to-

noise ratio) of the noise and clean speech signal. Some commonly used techniques 

in this category include spectral subtraction [76, 77], Wiener filtering [78, 79] or 

Kalman filtering [80-82]. Although these approaches have been reported to be 

effective when dealing with stationary and slowly-varying types of noise, they are 

usually less reliable for non-stationary noise.     

2.4.2 Feature level approaches 

Feature level approaches for tackling environmental noise are based on the general 

assumption that in practice, the features representing the speech signal can be 

divided into two different subspaces. The first, „noisy‟ speech subspace represents 

unreliable or missing features while the other, „speech‟ subspace, consists of 

reliable or present features. The aim of feature based approaches is therefore that of 

estimating or detecting those missing/unreliable features in order to compensate, 

discard or deemphasise them during the recognition process. To date, several 

feature level methods have been proposed for this purpose [76, 83-87]. Such 

approaches can be grouped into two main categories. The first category involves 

the estimation of the noise signal in order compensate for the unreliable features. 

Recently, a study of this category of approaches has also suggested that when 

knowledge of the noise is insufficient or cannot be reliably estimated for enhancing 

the speech data, an alternative approach is to completely ignore the severely 

corrupted speech data segments. The recognition process is then solely based on the 

portion of the speech signal which is considered to contain little or no 

contamination [85]. Other approaches have shown that, during the matching stage, 

only speech features vectors which generate reliable scores should be kept for 

computing the overall likelihood score to improve accuracy under noisy conditions. 

Commonly used feature-level approaches in each category include missing feature 
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theory [76, 83, 84, 88] and feature score pruning techniques [85, 86, 89] 

respectively. However, these approaches tend to be effective only when there is 

partial noise corruption of the signal and in some cases they can also lead to the 

removal of useful speaker discriminative information.  

2.4.3 Model level approaches 

In general, approaches which operate at the model level tackle the effects of noise 

conditions on speaker recognition by minimising the mismatch between the 

reference model for the target speaker and the test material such that they have the 

same noise characteristics. These techniques can be grouped into two categories. 

The first category includes approaches which are based on an estimation of the 

noise characteristics during the training and/or testing stages in order to minimise 

the mismatch. On the other hand, the other category consists of approaches which 

rely on multiple training which represent various noisy conditions to build several 

statistical models for the same speaker. During the test phase, the model which best 

matches the characteristics of the speech signal and therefore yields the highest 

likelihood score is chosen for recognition. Commonly used approaches in each 

group include parallel model combination (PMC) [90-92] and multi-SNR methods 

[87, 93, 94] respectively. Techniques in the former category have been reported to 

provide significant improvements in the relative effectiveness of speaker 

recognition applications when operating under mismatch conditions between the 

training and test material. For this reason, a PMC approach is adopted in this 

research study and further discussed in Chapter 3. 

2.4.4 Score level approaches  

In general, approaches which operate in the score domain aim to alleviate the 

effects of variations in the characteristics of the speech signal caused by 

environmental noise by reducing the overlap in the score distributions for the target 

speaker and impostors. To date, the most widely adopted approaches in this 

category have been based on score normalisation [5, 73, 95, 96]. Such approaches 

can be further divided into two distinct groups. 

 



 Chapter 2: Literature Review 

Voice biometrics under mismatched noise conditions                                                                      29 

 

The techniques in the first category are derived using the Bayesian equation for 

likelihood estimation. In this approach, the matching score obtained from a 

registered speaker model is normalised with the score obtained from a UBM [96] or 

a cohort of background speaker models [73, 97]. The second set of approaches is 

based on standardisation (or distribution scaling) of the score distribution. Two of 

the most popular techniques in this category are Zero Normalisation (Z-Norm) and 

Test Normalisation (T-Norm) [73, 96, 98].  

Score normalisation has been reported to be highly effective under practical 

operating conditions particularly when accurate information about the existence, 

level and nature of variations in speech characteristics is unavailable [73, 95, 99]. 

For this reason, this approach is adopted in this study and a mathematical 

perspective of the above score normalisation techniques is given in Chapter 3. 

2.5 Speaker Recognition Evaluation Techniques 

In Section 2.3, various techniques for obtaining registered speaker models from 

their training speech utterances have been reviewed. For speaker verification, 

during the classification stage, the pattern matching algorithm compares the test 

utterance against the claimed speaker model. A measure of similarity, which is 

usually given in terms of an utterance score, is then computed. This score is then 

used to decide whether to accept or reject the identity claim. In the speaker 

identification scenario, the test utterance is compared against all the registered 

speaker models in order to determine the identity of the speaker. 

In theory, the ideal speaker verification system needs to be able to accept all 

identity claims made by clients and reject all those made by impostors. In reality, 

however, due to various adverse factors (described in Chapter 1), this does not 

always occur. In fact, there are four different decisions which are usually made.  As 

shown in Table 2.2, based on statistical hypothesis testing, this can result in two 

types of errors: type I (False Acceptance) and type II (False Rejection).  
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Possible Decisions Type of Errors 

1. Accept a client 
                      N/A 

2. Accept an impostor  
Type I: False Acceptance (FA) 

3. Reject a client 
 Type II: False Rejection (FA) 

4. Reject an impostor 
         N/A 

  Table 2.2:  Speaker recognition decisions. 

The utterance scores of a client model are usually made up of two overlapping 

Probability Distribution Functions (PDF). The first PDF represents the scores 

obtained when the client targets his/her own model while the other represents 

scores obtained when impostors target the registered client model. A threshold must 

then be set such that it attempts to minimise the number of errors (FA or FR) made 

by the system.  

In order to quantify the system performance into a single measure, the verification 

performance is obtained in terms of Equal Error Rates (EER) [100]. This is the 

error rate that occurs when the threshold is set such that the rate of false-accepts 

(2.1) is equal to the rate of false rejects (2.2).   

                             
             

                         
                       (2.1) 

                            
             

                       
                            (2.2) 

 

The trade-off between FAR and FRR can be graphically represented by a Receiver 

Operating Characteristics (ROC) curve [101]. As illustrated in Figure 2.8, in this 

curve, the FAR is plotted on the horizontal axis while the true acceptance rate, 

(equivalent to the FRR subtracted from one hundred), is given on the vertical axis. 

The area under the curve is a measure of the performance of the system.  Another 

approach for illustrating the system performance is the Detection Error Trade-Off 

(DET) plot. An example of the DET plot is shown in Figure 2.9. In this case, the 

FAR is plotted on the horizontal axis while the FRR is represented on the vertical 

axis. The curves are plotted using the normal deviate scale [101]. As a result, 

approximately linear curves are produced, making it easier to visualise relative 
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differences between different classifiers. For this reason, the DET plot is adopted in 

this research study. 

 

Figure 2.8:  Illustration of ROC curves [101]. 

 

Figure 2.9: Illustration of DET plots [101]. 
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As discussed in Chapter 1, the speaker identification task can be subdivided into 

two categories of closed-set and open-set identification respectively. The closed-set 

identification is the process of identifying a person from a group of known 

(registered) speakers. On the other hand, in the open-set identification problem, the 

test utterance may or may not belong to one of the known (registered) speakers.  

Open-set identification consists of two stages of closed-set identification and 

verification. The performance of the verification stage is evaluated using the 

approach discussed above for speaker verification. In this case, the verification 

performance is expressed in terms of Open-Set Identification Equal Error Rate 

(OSI-EER) while the identification performance is expressed in terms of 

Identification Error Rate (IER).  

This is evaluated as follows: 

 

    
                                                

                       
       %                    (2.3) 

 

Finally, it should be noted that an estimate of the 95% confidence interval (CI95) is 

also presented for the various EERs and OSI-EERs obtained as a result of the 

experimental investigations in this study. This is given by [102] 

                                 ,                              (2.4) 

where   is the EER or OSI-EER in percentage and   is the number of true speaker 

tests.  

2.6 Speech and Noise databases 

This section reviews the two speech corpora which have been adopted for the 

purposes of the research study in this thesis. These are the NIST Speaker 

Recognition Evaluation (SRE) 2003 database [103] and the TIMIT database [104].  
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2.6.1   NIST SRE 2003 

The NIST SRE 2003 [103] is part of the ongoing evaluation databases developed 

for conducting yearly evaluations of the state-of-the art speaker recognition 

systems. A brief summary of the NIST SRE 2003 is given below: 

1. Each speech file is recorded on one side of a telephone conversation with a 

sample rate of 8 kHz. 

2. The database is made up of 11,839 speech utterances which amount to around 

forty-six hours of speech. 

3. The speech data was compiled from the LDC‟s CALLFRIEND, CALLHOME 

and Switchboard-2 corpora. 

4. The training utterances are about three minutes long while the test utterances 

are between three and thirty seconds in duration.  

2.6.2   TIMIT 

The TIMIT corpus [104] is designed to provide speech data for the development 

and evaluation of automatic speech recognition systems. The database has been 

recorded at Texas Instruments (TI), transcribed at Massachusetts Institute of 

Technology (MIT) and verified and prepared by NIST. The database can be 

summaries as follows: 

1. It contains recordings of 630 speakers of eight major dialects of American 

English. 

2. Each speaker pronounces ten phonetically rich sentences. 

3. The speech data have been recorded at a sampling rate of 16 kHz. 

4. All the utterances are gathered under clean (noise-free) environment.  

It is also important to point out that it would have been more beneficial to use a 

larger database for the purposes of the experimental investigations in this work. The 

main reason for using the TIMIT database is that it remains amongst the only 

widely used and readily available speech corpora which comprises speech 

utterances recorded under clean conditions (i.e. without noise contamination or 

handset variability) [88, 105, 106]. Thus, the TIMIT database offers the flexibility 

required for investigating the relative effectiveness of the proposed approach under 
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controlled noise conditions while enabling the fast and easy replication of the 

results. In addition, since the focus in this study is the effects of background 

(additive) noise on the speaker verification accuracy, the choice of dataset must be 

such that it allows freedom from convolutive noise (e.g. channel noise), which is 

the case with the TIMIT database. 

Moreover, in this thesis, the NOISEX 92 [138] and the BT Piper [34] databases are 

utilised for simulating the effects of mismatched noise conditions caused by 

additive noise on the speaker recognition accuracy. These databases contain various 

types of noises, recorded in real-life situations using either a land or a cellular 

telephone. The digitisation of these databases is based on the use of a sampling 

frequency of 16 kHz. The actual noise files deployed are car and office noise from 

the NOISEX92 database and factory noise from the Piper database. These provide a 

general representation of the stationary and non-stationary nature of additive noises 

which can be expected during either the training or test stages.   

2.7 Chapter Summary 

This chapter has presented an overview of the major techniques used in speaker 

recognition. A description of the human speech production mechanism is given, 

which provides an overview of the speaker-specific characteristics of voice. The 

literature review has revealed that most of the speech parametric representations are 

based on the short-term spectral analysis. The most appropriate parametric 

representations have been reviewed. The Linear Prediction-based Cepstral 

Coefficients (LPCC) approach is chosen in this study as a suitable representation.  

The literature review has also covered various approaches used for representing 

registered speakers and classifying the test utterance in speaker recognition. From 

the literature, it is clear that hybrid modelling approaches have become the most 

commonly used classifiers. Amongst these, the “SVM based on GMM supervectors 

of means” approach is found to be the most popular and effective. The literature 

review has also covered various techniques that are typically used for dealing with 

degradation in speech caused by environmental noise. It is also clear from the 

literature that model and score level approaches are amongst the most appropriate 

methods for introducing robustness when dealing with mismatched data conditions. 
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Finally, a description of the techniques which are commonly used for evaluating the 

performance of a speaker recognition system is presented. This is then followed by 

a review of the speech corpora used in this study. 
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CHAPTER 3  

TECHNIQUES FOR SPEAKER 

VERIFICATION 

 

Chapter Overview 

The previous chapter has presented a review of various important techniques in 

speaker recognition. This chapter focuses on the techniques which are important in 

the context of the present study and describes them in detail. It is clear from the 

literature review that the most popular parametric representation of speech for 

speaker discrimination is the cepstrum. The Chapter starts with a description of the 

pre-processing requirements for the purpose of speech feature extraction. The 

operations involved in the extraction of Linear Prediction-based Cepstral 

Coefficients (LPCC) which is the choice for parametric representation of speech in 

this study are then covered in Section 3.2. The discussions in Section 3.3 are 

focussed on the techniques used for speaker modelling and classification. This is 

followed by a description in Section 3.4 of the techniques adopted in this study for 

dealing with mismatched noise conditions in the context of speaker verification.  
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3.1 Front end processing 

As discussed in the previous chapter, the short-term spectrum is the most 

appropriate and widely adopted speech representation for use in speaker 

recognition. In general, most speaker recognition applications employ a front-end 

processing unit in order to characterise the speech signal in this manner. This, as 

shown in Figure 3.1, consists of a series of pre-processing steps followed by a 

speech feature extraction unit. This section focuses on the various operations 

involved in the extraction of Linear Prediction-based Cepstral Coefficients (LPCC), 

which is employed in the present study. The discussion starts with a brief 

description of the pre-processing stages. 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Steps involved in the LPCC feature extraction process.  
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3.1.1 Pre-processing 

It is known that, due to the physiological characteristics of the human speech 

production system, the speech signal experiences a spectral roll-off of about             

-20dB/decade [17]. It is, therefore, desirable to compensate for this degradation by 

pre-processing the speech signal.  This involves filtering the sampled speech signal 

using a first-order Finite Impulse Response (FIR) high-pass filter. The application 

of this filter results in a spectral lift of the short term spectrum of speech for the 

high frequency components. Additionally, another important motivation for the use 

of the said filter is the prevention of numerical instability in the LP analysis [107].  

The transfer function of the high-pass filter is given as [108] 

                                                     (3.1)                                                                                         

The constant   controls the degree of emphasis. A typical value of 0.95 is chosen in 

this study. 

In the next step, the speech samples are grouped into frames of about 10-30 ms 

where the signal is considered to be stationary. This operation is known as frame 

blocking and reflects the short-term nature of the speech signal under analysis. The 

frame blocking process can be considered as multiplying the speech signal by a 

rectangular window which is zero everywhere except during the analysis period. 

The problem with this approach is that it introduces discontinuities at the edges of 

the frame which in turn leads to the distortion of the short-term speech spectrum by 

unwanted high frequency components. In order to minimise these adverse effects, a 

better approach is to multiply the speech signal by a Hamming window [17]. This is 

defined as 

       
             

   

   
              

                                                                   

                      (3.2)                                                                                             

 

In this approach, however, a low weighting is applied to samples that lie near the 

ends of the Hamming window, regardless of whether they represent a significant 

speech event or not. In such cases, the speech events in question will not be 
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effectively featured in the speech analysis.  To overcome this issue, the adjacent 

segments are usually overlapped so that any event will be covered by at least two 

overlapping windows. The typical duration of overlap is 50% of the length of the 

window. It is clear that this approach allows a speech event which is at the edge of 

one window to be weighted appropriately in the following window.  

Finally, the last pre-processing step involves removing frames which contain 

silence from the input signal. This process, which is commonly known as Voice 

Activity Detection (VAD) [109, 110], is very important as it allows the speaker 

verification application to focus on speaker-dependent speech segments only and 

therefore and is not adversely affected by low energy frames or non-speech frames. 

In this work, an energy-based VAD which is detailed in [110] is utilised. 

3.2.2. Linear Prediction (LP) Analysis 

The LPC model is based on an all-pole implementation of the vocal tract response 

to an excitation of a series of nearly periodic glottal pulses generated by vocal cords 

(for voiced sounds) or turbulence flow of air passing through a constriction along 

vocal tract (for unvoiced sounds). In this model (Figure 3.2) the speech output at n
th

 

sampling instant is given by [17] 

 

                     

 

   

                                            

                                                                                    

where, p is the prediction order,    are the predictor coefficients (LPC 

coefficients),         are the past p samples, G is a gain term and      is the 

appropriate input excitation. 
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Figure 3.2: LPC model of speech. The excitation source for the voiced and unvoiced sounds is 

represented as an impulse train generator and a random noise generator respectively. [108] 

 

Applying the z-transform and rearranging the terms of the above equation yields the 

transfer function of the all-pole filter [17]. 

     
    

     
 

 

        
 
   

                                              

In general, for speech applications,      is estimated using the past p samples. This 

is given as 

                 

 

   

                                                 

                                                                                              

where       is the approximation of     . 

 

The prediction error,      between the actual speech sample,       and the 

predicted speech sample is then given as.  
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The aim of LP analysis is to obtain a set of predictor coefficients,    , directly from 

the short-term speech frame so that the spectral properties of the digital filter of 

Figure 3.2 match those of the speech frame within the analysis window. The 

approach to the computation of the LP coefficients is through the minimisation of 

the mean-squared prediction error, ε, for the frame under investigation. This is 

given as 

                     

 

   

 

      

   

                                         

where, N is the number of samples in the given speech frame and all the other 

symbols have the same meaning as in the above equations. 

The values of    that lead to the minimisation of   are then obtained by 

differentiating equation (3.7) with respect to each coefficient and equating the result 

to zero, i.e.  

  

   
                                                            

This yields the following set of p simultaneous linear equations 

 

   

 

   

             

     

   

                                      

     

   

 

 

It can be seen from the above expression that both the second and the third 

summation terms are equivalent the short-term autocorrelation values of      at 

lags      and     respectively. These are given by 
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Hence, substituting equations (3.10) and (3.11) into equation (3.9) gives 

         

 

   

                                                                

The above equation may also be expressed in the matrix form as [17] 

 
 
 
 
 

 

                   
                   
                   
     

                       

 

 
 
 
 
 

 
 
 
 
 
  
  
    
 
   

 
 
 
 

  

 
 
 
 
 
    

    

     
 

     
 
 
 
 

            

    

It can immediately be seen that this matrix is a Toeplitz matrix since it is 

symmetrical and has equal diagonal elements. This can be efficiently solved 

through a widely known procedure known as the Levinson-Durbin (L-D) recursion 

[17, 79].  

In speech analysis, the above method of computing the LPC parameters is known as 

the autocorrelation method. Other approaches such as the covariance method can 

also be used to compute these parameters. However, these approaches are not as 

computationally efficient as the autocorrelation method and do not offer the same 

inherent numerical stability [17]. 

The magnitude response of the LPC all-pole filter, gives a smoothed spectral 

envelope of the short term speech spectrum being analysed. The accuracy of this 

approximation is related to the number of poles p in equation (3.4). As illustrated in 

Figure 3.3, increasing p leads to a better approximation of the model but at the 

expense of increased memory requirements and computation. A typical choice for p 

is (F + 4), where F is the sampling frequency of the speech signal in kHz [111].  
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Figure 3.3: Illustration of the effect of increasing the number of LPC coefficients (with p =8, 16 

and 32) for a 30 ms speech frame sampled at 8 kHz.  

 

3.2.3 LP-Based Cepstral Analysis 

The speech production model in the previous section consists of a vocal tract filter 

which is driven by an impulse train generator (for voiced sounds) and a random 

noise generator (for unvoiced speech). Hence, for voiced sounds, the short-term 

spectrum of speech consists of both a slowly varying spectral envelope and a 

rapidly varying fine structure. The former corresponds to the vocal tract filter while 

the second component (for voiced sounds) corresponds to the periodic excitation 

and its harmonics. The observed output speech sequence is therefore a result of the 

convolution of these two components in the time domain. 

The objective of the cepstral analysis is to separate these two components by 

transforming their convolutional relationship into a summation. In the frequency 

domain, the convolution is transformed into a multiplication. This can in turn be 

transformed into a summation by using the logarithmic operation. A transformation 

back into a time-like domain, known as the quefrency domain (anagram for 

frequency), results in the cepstrum (anagram for spectrum). In this domain, the 

excitation and vocal tract components appear at high and low quefrencies 
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respectively. The vocal tract component which provides a useful speaker 

representation can then by separated by truncating the series of cepstral coefficients 

through a process known as liftering (an anagram for filtering). It should be pointed 

out the cepstral analysis process, which is shown in Figure 3.4, forms part of the 

family of homomorphic filtering techniques [79]. This, as mentioned in Chapter 2 

(Section 2.2.1), is a general term given to any technique which involves a nonlinear 

mapping to a different domain, followed by a reverse mapping to the original 

domain. 

 

 

 

 

Figure 3.4: Sequences involved in the cepstral analysis process [31] 

As shown in the above block diagram, the discrete Fourier transform (DFT) is 

applied to the incoming speech samples to obtain the short-term spectrum S(ω). The 

logarithm operation is then applied to the modulus of S(ω), and this is followed by 

the inverse Fourier transform (IDFT) operation. It should be noted that with the 

logarithm function being real and even (for the discrete case), the cepstrum can be 

computed using the Discrete Cosine Transform (DCT) instead of the IDFT [17, 20]. 

This results in the real cepstrum which is the most popular type for speech 

processing applications [79]. The cepstral coefficients obtained in this manner are 

known as fast Fourier transform derived cepstra (FFTC). 

The cepstral coefficients can also be obtained directly from the LPC coefficients. In 

this approach, the Z transform is applied to the speech signal modelled by the LP 

analysis. This is obtained as [112]. 

                  
                                           

  

   

 

The relationship between the parameters     and the LP coefficients     is found by 

taking the derivatives on both sides of Equation (3.14) with respect to z
-1
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equating the terms with equal powers of z
-1

. The resulting recursive relationship is 

shown below. 

                                                                                             

             
 

 
 

   

   

                                

        
 

 
 

   

   

                                                          

where p is the order of the LP analysis and    are the LPC coefficients. It should be 

noted that although the above recursion implies that the sequence of cepstral 

parameters is of infinite length, in practice, only the first p terms are used. This type 

of cepstral analysis is known as LPC derived cepstra (LPCC). Figure 3.5 shows the 

FFT, LPC and LPCC based spectra for a given speech frame. It can immediately be 

seen that the LPCC spectrum, which is a truncation of the cepstral sequence, results 

in a smoothing of the spectral envelope. 

 

Figure 3.5: Illustration of the cepstral analysis which results in a smoother spectral representation. 

3.2.4 Delta Cepstrum 

The LPCC coefficients are called static features because they give a representation 

of the properties of the spectral envelope for a fixed period in time. In order to 

include information about the slow-moving vocal tract dynamics, transitional 

cepstral coefficients, also referred as delta coefficients, can be computed. It has 
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been shown that such aspects can be useful in discriminating between different 

speaker utterances [113]. The delta parameters are approximated by the finite time 

difference [79]. This is given as 

                                                           

where        is the m
th

 coefficient of the i
th

 cepstral feature vector and   

represents the number of frames which are included in the analysis (backward and 

forward in time). A typical value for   is 1 or 2.  It is, however, argued in [114] that 

the delta features obtained using Equation (3.18) are inherently noisy. An 

alternative method based on fitting each coefficient‟s trajectory with a first or 

second order polynomial function over a finite length window has therefore been 

proposed [17].  

      

  
           

            
    

   
 
      

                              

where    is a symmetric window of length 2K+1 frames. A value of K=3 has been 

found to be appropriate for an estimate of the first order delta feature [17]. In 

general, LPCC coefficients are concatenated with the delta cepstrum to obtain a 

better performing feature vector [113].    

3.2.5 Cepstral Mean Normalisation (CMN) 

Cepstral Mean Normalisation (CMN), also known as Cepstral Mean Subtraction 

(CMS) is a feature normalisation approach which aims to reduce the effects of 

different communication channels on the speech signal [115]. This is carried out by 

estimating a mean vector for the extracted set of cepstral features and subtracting it 

from all the feature vectors. This is given as  

            
 

 
       

 

   

                                           

where    is the extracted cepstral vector, T is the total number of cepstral vectors 

and   is the frame index.  
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It has also been shown in [116] that CMN can also help reduce inter-session 

speaker variation for clean speech and does not necessarily discard important 

speaker-discriminative information. It should be noted that the reason for 

performing a subtraction in the cepstral domain is that, in this domain, the channel 

noise becomes additive.  

3.3 Speaker Modelling 

In speaker recognition, as explained in Chapter 1 and Chapter 2, the cepstral speech 

features (LPCC in this case) which are obtained from the registered speaker‟s 

training utterance(s) are used to obtain a speaker model. In the test phase, the 

speaker model is then compared against the test utterance to obtain a similarity 

score.  As discussed in the literature review, the most popular modelling 

approaches, to date, are based on GMM and SVM. A description of the said 

modelling strategies is presented in this section.  

3.3.1 Gaussian Mixture Model (GMM) 

A GMM is a weighted sum of C components (or mixtures) Gaussian Probability 

Density Functions (PDFs). This summation is given as [117, 118] 

             

 

   

                                                       

where   is a F-dimensional feature vector,   , i =1,…..,C, are the weights of each 

of the C components. These are constrained by      =1.            are the F-

variate Gaussian density functions given by 

            
 

    
 
      

 
 

     
 

 
      

   
                                 

for i={ 1,2,…,C }. |.| and (.)   indicate the determinant and transpose operation 

respectively.  

The weights, means and covariance parameters are collectively represented by the 

notation             . An example of a GMM (with four mixture densities) 

obtained using two-dimensional LPC-derived cepstral coefficients (LPCC) is 

shown in Figure 3.6.  
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Figure 3.6: Cross-section of 4 Gaussian mixture densities based on two-dimensional LPCCs.  

 

The GMM implemented in this work is based on diagonal nodal covariances. The 

reasons for this are three-fold. First, this is due to the use of cepstral feature 

parameters which are known to be highly uncorrelated. In other words, their 

covariances are negligibly small and the covariance matrix is diagonally dominant. 

Second, it has been found that the use of one covariance matrix per mixture 

provides better modelling capabilities, particularly for text-independent speaker 

recognition scenarios [118]. Finally, the use of diagonal matrices offers advantages 

in terms of smaller storage requirement, improved computational efficiency and 

simplicity. 

There are two commonly used methods for estimating the parameters of the GMM. 

The first method is that of computing the model parameters using the iterative 

Expectation-Maximisation algorithm (EM). This is an unsupervised procedure 

which is based on the Maximum Likelihood (ML) principle (usually referred to as 

decoupled-GMM modelling). A detailed description of the Maximum Likelihood 

principle and the EM approach is given in Appendix A. 
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The other more popular method for training speaker-dependent GMMs is based on 

the Maximum a Posteriori (MAP) adaptation of a speaker independent model. This 

approach, which is based on the Bayesian framework, is usually referred to as 

adapted-GMM modelling or GMM-UBM. In this case, the main difference from the 

Maximum Likelihood training lies in the assumption of a prior distribution of the 

model which is usually derived from speaker independent distributions. This is 

obtained from the EM approach by using a very large population of speakers, 

commonly known as world model or universal background model (UBM) [12].   

For the purpose of this research study, a modified version [12] of the original MAP 

approach is adopted. The approach which is hereafter referred to as mMAP is based 

on a single step adaptation process and has been shown to be more effective than 

the originally proposed approach in [119]. This can be described as follows.                  

Given a UBM,        and a set T training vectors, O= {o1, o2,…., oT} (extracted 

from a speaker‟s speech segment), the probabilistic alignment of the training 

feature vectors in relation to the C mixtures of the UBM is first determined. This is 

obtained by computing the a posteriori probability for acoustic class, i, given the 

observation,     

           
        

       
  

        

   
 
         

                                   

Next, the sufficient statistics for the weights, means and variances of each mixture i 

are computed as  follows[12] 

                                                                     

 

   

 

      
 

  
                                                            

 

   

 

    
   

 

  
                

                                          

 

   

 

where   ,       and     
   are the count, first and second moment of the training 

features respectively.  
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Based on the above statistics, the new estimates for each mixture of the adapted 

model are then obtained by combining them with the existing UBM parameters. 

This is given as [12] 

        
   

 

 
       

                                                   

        
 
            

 
                                                 

   
    

     
        

      
    

      
                      

where   is a scaling factor that ensures all the mixture weights sum to unity. The 

coefficients   
              are the data adaptation coefficients for the i

th
 mixture 

weight       mean    and variance   
 . These control the degree of adaptation of the 

UBM adaptation and are given as [12] 

  
  

  
      

                                                              

where    is known as the relevance factor for the parameter  . 

In general, a single adaptation coefficient      
    

 
   

  is used. In addition, 

it is also reported in  [12] that the adaptation of only the mean statistics yields better 

performance for speaker recognition when compared to the full adaptation of all the 

GMM parameters (i.e. weights, means and covariances) .  

Over the last decade, the adapted-GMM has become one of the dominant 

approaches for modelling a person‟s voice in speaker recognition applications [12, 

26, 73, 120].  This is mainly because this method has been shown to give better 

performance that the decoupled modelling approach [12].  

As mentioned above, the adapted-GMM approach involves the adaptation of a 

general model (or UBM), using each registered speaker‟s training material to obtain 

speaker specific GMMs. The UBM is usually trained using the Expectation- 

Maximisation (EM) approach on a large amount of development data. Hence, 

during the adaptation process, each speaker‟s model parameters are derived by 

updating the well-trained parameters in the world model according to the available 

training material. The adaptation process therefore results in a tighter coupling 



 Chapter 3: Techniques for Speaker Verification 

Voice biometrics under mismatched noise conditions                                                                      51 

 

between the speaker‟s model and the UBM. This is because mixture parameters 

(representing broad acoustic classes) which are not observed in the training speech 

of a particular speaker are simply copied from the UBM. Moreover, the tighter 

coupling provided by the adapted-GMM approach enables a fast-scoring technique 

to be implemented during the test phase without any significant loss in accuracy 

[12]. This approach is based on two practical observations. First, it is observed that 

for each feature vector (from a given test utterance), only a few of the mixtures 

contribute significantly to the overall likelihood value. Second, it is observed that 

feature vectors which are close to a particular mixture in the UBM tend to also be 

close to the corresponding mixture in the speaker model. Thus, the fast-scoring 

approach combines these two observations in the following manner: 

i. For each feature vector, the top Q scoring mixtures in the UBM are determined 

and the UBM likelihood is computed using only those mixtures. 

ii. Then, the feature vector is scored against the corresponding Q mixtures in the 

speaker model to evaluate the speaker‟s likelihood.  

Based on the above, if it is assumed that a UBM has C mixtures, the fast scoring 

approach would involve only C + Q computations for each feature vector instead of 

2C log-likelihood evaluation computations in the normal procedure. This is 

particularly important when the number of mixtures, C is large i.e. 1024 or 2048 

[12].  

a) Classification Stage 

For speaker recognition, once the speaker GMMs are obtained, the next step is to 

make use of the model for authenticating speakers based on their test utterances. In 

the speaker verification context, the task is one of evaluating the probability of a 

hypothesised (claimed) speaker model,   for a given observation, O. This is given 

as         and can be rewritten as follows by using the Baye‟s Theorem 

        
          

    
                                                        

where      is the a priori probability of the target speaker model. This probability 

is considered equal for all models and can be neglected.      is the unconditional 
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probability of the observation, O, being produced by any speaker. This can be 

assumed to be a constant. Equation 3.31 can be simplified and transformed into the 

log domain to give the log-likelihood function 

                                                                       

The speaker verification decision is then made based on whether      is above or 

below a pre-defined threshold.  

For the speaker identification scenario, the same principle is again used but this 

time to find the registered speaker model which produces the highest log likelihood 

against the given test segment. This is given as  

         
                  

                                                               

where N is the total number of registered speakers and S is the index of the most 

likely candidate in the set. 

3.3.2 Support Vector Machine (SVM) 

A SVM is a two-class discrimination technique which involves finding a 

hyperplane (boundary) for effective separation of the two classes considered. 

Although SVMs can perform binary separation in the input space for linearly 

separable cases, they usually operate in a higher dimensional space which is non-

linearly related to the input space. In the classification stage, the SVM discriminant 

function [59] is used to evaluate the given test data vector in relation to the 

separating hyperplane. The SVM discriminant function can be expressed as 

 

f ( ) =                    
   
                                                                                        

                
   
                                                                                             

where   is the test data vector, and  ( ) is a mapping function that transforms the 

data vector from its input space to a higher dimensional space.         is a kernel 

function which defines the inner product            and therefore eliminates the 

need for explicitly evaluating  ( ).    are the only training vectors which influence 

the definition of the said hyperplane. These are commonly known as support 
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vectors, and are obtained from the training process [121].    is the corresponding 

support vector‟s class label (    ∈ {-1,1}) while     is the number of support 

vectors. The values of    and the constant   are also obtained during the training 

stage. More details of the fundamental concept involved in the SVM approach are 

given in Appendix B. 

For speaker verification based on SVM, it is crucial to be able to compare the given 

utterances regardless of their duration [29, 60]. To date, one popular approach 

which is based on SVM only has been proposed to represent each utterance using a 

fixed dimensional vector [60].  This is known as the Generalised Linear 

Discriminant Sequence (GLDS) kernel. In this approach, given a set of T feature 

vectors, X= {x1, x2, …, xT}, where    is an F-dimensional feature vector, each 

feature vector is explicitly mapped into a higher dimensional feature space using a 

polynomial expansion,             For instance, a second order polynomial 

expansion of a three-dimensional vector              is given by          

                             
    

    
  .    

For each speaker, the mean of the expanded features is computed, resulting in a 

fixed dimensional feature vector which is independent of the duration. This is given 

by 

       
 

 
           

 

   

                                            

where the dimension of       is dependent on the dimension of the feature vector 

and the order of the polynomial expansion used. However, while this method was 

amongst one of the first approaches to use SVM and has been shown to give good 

speaker recognition performance, in some cases, the averaging process may lead to 

loss of useful speaker information [29, 60].  

a) GMM supervector approach 

More recently, it has been shown in  [14, 28, 29, 71]  that, using the GMM 

supervector approach with SVM can help overcome the above limitation and yield 

the current state-of-the-art speaker verification performance. The idea behind the 

GMM supervector  method is to allow each utterance, independent of its duration, 
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to be represented by a concatenation of the means obtained from an adapted GMM 

model [122]. The GMM supervector obtained in this way can be expressed as  

                                                      

 
 
 
 
 
  
 

 
  
 

 
   

   
 
 
 
 

                                                                                                                          

where   is the dimension of the feature vectors extracted from the given utterance 

 ,    
  are the means of the GMM obtained through the adaptation of the UBM, and 

  is the number of mixtures in the UBM.  

Some of the most commonly used kernels in the literature which are based on the 

GMM supervector approach are the Background data Scaling Linear (BSL) kernel 

[29], GMM supervector linear kernel [28, 71], the non-linear GMM-supervector-

kernel [14] and the Maximum Likelihood Linear Regression (MLLR) kernel [123]. 

A brief overview of the said approaches is given below. 

The Background data scaling linear kernel can be considered as one of the simplest 

approaches based on GMM supervector of means. In this approach, the input 

supervectors (in equation 3.36) are normalised such that they have unit variance in 

each dimension based on the statistics of a large number of background 

supervectors. The aim of the variance normalisation is to ensure that each 

dimension of the supervector contributes equally to the SVM training or testing 

process. This is given by [29] 

                                                                  

where      and      represent the GMM supervector of mMAP adapted means 

from utterances   and   respectively.   is the diagonal covariance matrix of the 

background supervectors.   

The GMM supervector (GSV) kernel which has been proposed in [28, 71], is 

derived by bounding the Kullback-Leibler (KL) measure between two GMMs (in 

terms of their supervector of means) [28, 71]. This distance is given by 



 Chapter 3: Techniques for Speaker Verification 

Voice biometrics under mismatched noise conditions                                                                      55 

 

                  

 

   

  
    

     
     

    
  

 
                   

where   
  and   

  are the speaker-dependent adapted mean vector using mMAP 

adaptation of the i
th

-mixture for utterances   and   respectively.    and    are the 

weights and covariance for the corresponding mixture. 

Based on the distance in equation 3.38, the kernel function can be formulated in 

terms of an inner product as follows [14, 28, 71] 

               
 

 

   

  
     

  
 
                                                       

          
  

 
 
     

       
  

  
 
 
     

   

 

   

           

where     are the speaker-dependent adapted mean vector using mMAP adaptation 

of the i
th

-mixture respectively. In other words, all the adapted mean vectors in 

equation (3.36) have to first be normalised by      
  

 

 
 
 before concatenating them 

to form the supervector of means. As with the BSL kernel, this process can also be 

considered as a form of variance normalisation [110].  

The non-linear GMM supervector kernel is also based on the KL divergence 

between GMMs. In this case, however, the kernel is obtained by taking the 

exponent of the negative of the distance function in (3.38) such that  

                                                                          ) 

As such, the non-linear kernel represents the normalised exponential of the GSV 

kernel. Moreover, unlike the GMM supervector linear kernel,                  

does not imply an explicit expansion of the input vectors into the feature space . In 

this case, the resulting kernel closely resembles that of the Gaussian kernel [14].  

Alternatively, the Maximum Likelihood Linear Regression (MLLR) kernel 

approach is based on adapting the means of the UBM using the MLLR approach 



 Chapter 3: Techniques for Speaker Verification 

Voice biometrics under mismatched noise conditions                                                                      56 

 

instead of the mMAP adaptation. This involves computing an affine transform (i.e. 

a linear transformation followed by a translation) of the UBM means as follows 

     
       

                                                        

where      
  and     

  are the speaker-dependent MLLR adapted mean vector and 

the UBM mean vector of i
th

- mixture respectively. The parameters   and   define 

the affine transform and are estimated by maximising the likelihood of the training 

data with a modified EM algorithm [123]. Once the MLLR adapted mean vectors 

are obtained, they are concatenated as in (3.36) to obtain the supervectors.  

b) SVM optimisation and classification 

The SVM optimisation (training) process then involves finding the support vectors, 

  , the Lagrange multipliers,    and the value of the offset   in Equation (3.34).  

For this purpose, each client supervector is assigned a label of +1 while a set of 

supervectors from a background dataset representing a large number of impostors 

are given a label of -1.  During testing phase, the exact procedure used in extracting 

supervectors as in the training stage is used (in this case, no labels are given to the 

supervectors). An inner product between the test supervector and the SVM model is 

then computed to obtain a classification score which represents the distance of the 

test vector to the SVM hyperplane. 

The experimental implementation of this approach together with other 

complementary techniques which have been shown to give the current state-of-the-

art speaker recognition performance are described in the next chapter.   

3.4 Tackling mismatch noise conditions 

As discussed in the literature review, variations in speech remain the major 

impeding factor for speaker recognition systems. These variations occur due to 

various causes such as environmental noise, channel effects, or uncharacteristic 

sounds by the speakers. The net result is a mismatch between the corresponding test 

and reference material for the same speaker, which in turn reduces the accuracy 

speaker recognition applications.  In this thesis, as mentioned in Chapter 1, the 

experimental investigations are focussed on the problem of speaker recognition 
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when the speech samples are distorted by environmental noise. The literature 

review in the previous chapter has shown that a number of techniques have been 

proposed to tackle this problem. Such techniques can be classified into four main 

categories, depending on the level at which they operate, namely: speech-level, 

feature-level, model-level, and score-level. The work presented in this study is 

focused on approaches in the latter two categories. These include Parallel Model 

Combination (PMC) and score normalisation. A detailed description of the said 

approaches is given in the next sub-sections.   

3.4.1 Parallel Model Combination 

The PMC technique which has originally been proposed in [124] for the speech 

recognition task is based on the use of HMM with single Gaussian output 

probability. The objective of the approach is to use an estimate of the test noise 

during the recognition stage for building noise compensated models from the 

reference material (clean speech models). To achieve this, a model of the 

background noise is generated using the available noise samples. The clean speech 

models and noise model are then combined in the log-spectral domain to obtain the 

best possible estimate of the corrupted-speech models. The reason for operating in 

this domain is because it allows the effects of the additive noise on the speech 

feature vectors to be approximated when the original training utterances are not 

available. To date, various approximations have been proposed for estimating these 

effects and computing the corrupted model parameters [32-35].  

On the other hand, when the original reference material is available,  it has been 

shown that the simple yet effective and efficient data-driven approach in [92], can 

be very useful in the context of speaker verification. The main advantage of this 

technique is that the approximations which are usually required for combining the 

models (noise and reference model) are eliminated by using the original training 

data. This is particularly important in order to accurately model the effects of the 

additive noise on the speech parameters and therefore enables a robust computation 

of the noise compensated model parameters. In addition, the use of the original 

reference material allows the temporal context of each speech frame to be retained. 

As a result, delta parameters which have been shown to improve the performance of 

speaker recognition can be accurately and easily computed.  
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Figure 3.7 provides an overview of the various steps which are carried out in order 

to obtain the noise compensated models. This technique forms the basis of the work 

carried out in Chapter 5 for dealing with mismatched noise conditions in speaker 

recognition. 

 

 

 

 

 

 

 

 

 

Figure 3.7: Illustration of the different steps involved in the data-driven PMC approach for speaker 

recognition operating under noise contaminated conditions. 

 

3.4.2 Score Normalisation Approaches 

As discussed in the literature review, a widely used approach for tackling the 

problem of mismatched noise conditions in speaker verification is that of score 

normalisation [73, 96, 99]. The approach is based on obtaining a normalisation 

factor(s) using the match score(s) computed for the test utterance against a set of 

background (competing) models or a single universal background model [12, 73]. 

The aim of score normalisation approaches is to alleviate the impact of noise 

mismatch by reducing the overlapping of the score distributions between client and 

impostors. These techniques can be classified into two main categories. 

 

 

A decoupled speaker GMM is obtained  

using the original training data. 

During the training process, the association between each feature vector and 

the Gaussian mixture which yields the largest a posteriori probability is 

stored. 

During the test phase, based on an estimation of the test noise, the training 

data is contaminated on a frame by frame basis. 

Once the training data is contaminated, a noise compensated speaker model 

is then obtained using the stored association.  
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a) Bayesian Solution 

The first category is based on the Bayes‟ theorem which is given by 

        
          

    
                                                     

As noted in Section 3.3.1,     ), the unconditional probability of the observation 

set O being produced by any speaker is a constant. This term can therefore be 

discarded. However, in order realise the full benefit of the Bayesian solution,    ) 

should be approximated and included. This probability can also be interpreted as 

the conditional probability of the observation set O, originating from a large 

speaker independent model of impostors, i.e.           The log-likelihood ratio is 

then given as [73]: 

                                                                     

where       is the model representing the target speaker model or the model which 

yields the highest maximum likelihood for the speaker verification and open-set 

speaker identification scenarios respectively.    represents an impostor model 

(which does not exist in practice).  

The main approaches for obtaining an appropriate approximation of this model are 

Universal Background Model Normalisation, Cohort Normalisation (CN) or 

Unconstrained Cohort Normalisation (UCN) [73]. 

(i) Universal Background Model Normalisation  

This technique approximates the impostor model,   , with a model generated using 

utterances from a large population of speakers,      . This is known as a Universal 

Background Model (UBM) or world model and is given as [73] 
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(ii)  Cohort Normalisation (CN) 

In this approach, each registered speaker model is associated with the most 

competitive speaker model cohort. The competitiveness of any two speaker models 

is in relation to their closeness in the speaker space.  The cohort selection is done a 

priori (offline) and the log-likelihood ratio for a cohort of K speakers is computed 

as [73] 

                           
 

 
                  

 

   

                       

where         for {k=1,2….,K} are the cohort speaker models associated with 

     . 

(iii)   Unconstrained Cohort Normalisation (UCN)  

The main difference between UCN and the two previous methods is that this 

approach does not require any additional process prior to the test phase. In other 

words, in UCN, the selection of the most competitive background speaker models is 

solely based on their closeness to the test segment. Here, the log-likelihood ratio is 

given by [73] 

                           
 

 
             

 

   

                          

where    for {k=1,2….,K} are the cohort speaker models which yield the next 

highest K likelihood scores to                . 

b) Standardisation of score distributions 

The second category of score normalisation is based on the standardisation of the 

target or impostor score distributions. In practice, however, the scaling is usually 

performed on the impostor score distributions. This is because the estimation of 

reliable normalisation parameters (i.e. mean and variance) requires large amounts 

of data and, currently, the available databases only contain enough data from 

impostors. Two of the most commonly used normalisation approaches in this group 

are Test normalisation (T-Norm) and Zero normalisation (Z-norm) [73].  
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(i)  Zero normalisation (Z-norm)  

The aim of Z-norm is to compensate for mismatches in speaker models that are 

generated under different training conditions [31]. Such mismatches, which are 

often referred to as model specific biases, can be represented by the mean and 

standard deviation of impostor scores generated against the associated model. Thus, 

each registered speaker model is tested against a set of example impostor utterances 

(during a development stage) and the log-likelihood scores are used to obtain the 

normalisation parameters. During the test phase, Z-norm is applied as follows 

     
                         

         
                                       

where   (.) and   (.) are the mean and standard deviation of the impostor score 

distribution associated to the speaker model      . It can be noticed that the above 

equation involves a posteriori probability. This implies that Z-norm has to be used 

in conjunction with other score normalisation methods. More details of the 

implementation of Z-norm can be obtained in [31]. 

(ii) Test normalisation (T-norm)  

In the T-norm approach, unlike the Z-Norm method, the computation of the mean 

and variance parameters is carried out dynamically during the test phase by using a 

cohort of impostor models. This, therefore, eliminates the risk of an acoustic 

mismatch between the test utterance and the normalisation parameters, which can 

arise with the Z-norm method. The computation of T-norm is given as 

     
                     

     
                                          

where       and       are the mean and standard deviation obtained from the log-

likelihood scores for a set of impostor speaker models during the test stage.  

To date, UCN and T-norm have been shown to be the most effective for the speaker 

recognition task [95, 99, 125]. In general, it is also demonstrated that the 

performance of these two normalisation techniques is very similar. More recently, a 

new variation of T-Norm, known as Adaptive T-Norm (AT-Norm) has been 
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proposed in the literature [126]. The approach involves assigning a specific (and 

smaller) set of background speaker models to each target speaker instead of using a 

general background cohort of speakers for all speakers. In this approach, the size of 

these speaker-specific sets is chosen to be a fraction of the entire background 

speaker population, but sufficiently large for computing the T-Norm parameters 

reliably. As expected, this approach has been shown to be more efficient that the 

conventional T-Norm method [126].  However, its effectiveness is usually 

dependent on the availability of adequately large and varied cohorts of background 

speaker models.  

For this reason, it is decided that only the T-norm approach should be adopted for 

all score normalisation purposes related to this study. This approach also forms the 

basis of the work carried out in Chapter 5 for tackling the effects of noisy operating 

conditions on speaker recognition. 

3.5 Chapter Summary 

This chapter has presented details of the techniques in speaker verification which 

have been adopted for the purpose of this study. The descriptions have included the 

operations involved in extracting LPCC features from the speech signal and 

techniques for modelling speakers using GMM and SVM. 

In the extraction of LPCC features, the importance of the various pre-processing 

stages is discussed. Pre-emphasis is shown to be useful for compensating the 

spectral roll-off in speech and improving the numerical stability in LP analysis. 

Subsequently, the operation of windowing is found to be useful in improving the 

spectral characteristics of the short-term speech signal. Finally, it is shown that a 

voice activity detection module is also crucial in ensuring that the speaker 

verification process focuses on speaker-dependent characteristics and not on silence 

segments.  

It is then shown that the LPC model results in a smoothed spectral envelope of the 

short term speech spectrum being analysed. The theory of the cepstral analysis 

technique which aims to separate the convolved components of the vocal tract and 

the excitation from the speech waveform is then discussed. A section on methods 

for capturing the transitional spectra (delta ceptrum) of the speech signal which can 
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be useful in discriminating between different speaker utterances is also included. 

Following this, the importance of using Cepstral Mean Normalisation (CMN) to 

reduce the effects of different communication channels on the speech signal is 

discussed.   

The GMM is one of the most popular approaches to modelling speech cepstra. The 

speaker model can be obtained using the Expectation Maximisation (EM) approach 

to obtain decoupled-GMMs or MAP principles to obtain adapted-GMMs from a 

Universal Background Model.  

The SVM is another popular approach for modelling speakers‟ utterances in 

speaker verification. The approach involves discriminating between two classes by 

finding a hyperplane for effective separation of the two classes considered. This 

makes it inherently suitable for the speaker verification task. However, one 

limitation of SVM is that the dimension of the input data has to be fixed regardless 

of the duration of the utterances. To tackle this problem, SVM based on GMM 

supervectors approach has been proposed and shown to give state-of-the-art speaker 

verification performance. A description of commonly used kernels which have been 

reported to give good performance using the said approach is then given. 

This chapter has also presented details of two effective techniques for minimising 

mismatch noise conditions, namely Parallel Model Combination (PMC) and score 

normalisation based approaches.  The objective of PMC is to use an estimation of 

the test noise during the recognition stage for building noise compensated models 

from the reference material (clean speech models). On the other hand, score 

normalisation approaches are based on obtaining a normalisation factor using the 

match score(s) computed for the test utterance against a set of background 

(competing) models or a single universal background model. The normalisation 

factor is then utilised to alleviate the impact of noise mismatch by reducing the 

overlapping of the score distributions between client and impostors.  
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CHAPTER 4  

INVESTIGATIONS INTO STATE OF THE 

ART SPEAKER VERIFICATION 

 

Chapter Overview 

In this chapter, the most popular techniques for speaker verification (i.e. GMM-

UBM and GMM-SVM) are investigated for their effectiveness. The chapter starts 

with a description of these techniques and details complementary methods which 

help to enhance the speaker verification performance. This is given in Section 4.1. 

Details of the experimental setup used for comparing the relative effectiveness of 

the said speaker verification approaches are given in Section 4.2. A description of 

the experiments, investigating the relative effectiveness of the GMM-UBM and 

GMM-SVM approaches, are then presented in Section 4.3.  This part of the study 

includes an analysis of the performance of the considered speaker verification 

methods under both matched and mismatched data conditions.  
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4.1  Classification Methods 

As discussed in Chapter 3, the most popular techniques for the speaker verification 

task are based on Gaussian Mixture Models (GMM) or Support Vector Machines 

(SVM) methodologies. Over recent years, the effectiveness of the above approaches 

has been considerably enhanced by the introduction of complementary techniques 

for dealing with variation in operating conditions [14, 15, 29, 127-130]. These 

include such methods as Nuisance Attribute Projection (NAP)  [71, 131, 132] and  

Model-normalisation (M-Norm) [14, 18, 133]. A short description of the above 

mentioned methods is provided in the following sub-sections.  

4.1.1 GMM-UBM 

The GMM-UBM approach for speaker verification can be considered as a four 

stage process. First, a gender-independent Universal Background Model (UBM) is 

generated. This is a Gaussian Mixture Model (GMM) built based on the 

Expectation-Maximisation (EM) algorithm and using utterances from a very large 

population of speakers [12, 118].  The speaker specific models are then obtained 

through the adaptation of the means from the UBM using the speakers‟ training 

speech and the mMAP approach [12, 31]. In the test phase, a fast scoring procedure 

is used in order to reduce the amount of computation [12].This involves 

determining the top few (e.g. 5) scoring mixtures in the UBM for each feature 

vector and then computing the likelihood of the target speaker model using only the 

scores for its corresponding mixtures. The scoring process is then repeated for all 

the feature vectors in the test utterance to obtain the average log likelihood score for 

each of the UBMs and the target speaker model. Finally, UBM-based normalisation 

is performed by subtracting the log likelihood score of the UBM from that of the 

target speaker model. This is firstly to minimise the effects of unseen data, and 

secondly to deal with the data quality mismatch [12, 73].   

 

 



 Chapter 4: Investigations into state-of-the-art speaker verification 

Voice biometrics under mismatched noise conditions                                                                      66 

 

4.1.2 GMM-SVM 

The GMM-SVM approach for speaker verification can also be considered as a 

process based on a set of consecutive stages. The first step is identical to the GMM-

UBM approach where a gender-independent Universal Background Model (UBM) 

is generated using the EM algorithm. Training utterances from the clients and a 

large number of impostors are then used to obtain adapted speaker models based on 

the mMAP adaptation of the means from the UBM. Once these are obtained, client 

and impostor supervectors are extracted by concatenating the means obtained from 

their corresponding adapted GMM models. This is then followed by SVM training 

in order to obtain the client model (in terms of the support vectors   ,    values and 

the constant b). For this purpose, each client training supervector is assigned a label 

of +1 while the impostor supervectors are assigned a label of -1. During the 

classification stage, based on the test utterance, the procedure used for extracting 

the test supervector is exactly the same as that in the training stage (in the testing 

phase, no labels are given to the supervector). Finally, the classification score is 

obtained by evaluating the distance of the test supervector in relation to the SVM 

model. This is given by [121]: 

f ( ) =                    
   
                                  (4.1) 

                
   
    ,                                   (4.2) 

where   is the test data vector, and  ( ) is a mapping function that transforms the 

data vector from its input space to a higher dimensional space.         is a kernel 

function which defines the inner product            and therefore eliminates the 

need for explicitly evaluating  ( ).    are the only training vectors which influence 

the definition of the said hyperplane. These are commonly known as support 

vectors, and are obtained from the training process [121].    is the corresponding 

support vector‟s class label (    ∈ {-1,1}) while     is the number of support 

vectors. The values of    and the constant   are also obtained during the training 

stage.  
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a) Nuisance Attribute Projection (NAP) 

The main objective of NAP [71, 131, 132], which is used in the SVM framework, is 

to project points from the feature (supervector) space to another subspace which is 

more robust to channel and session degrading factors. This is achieved by finding a 

projection matrix   , based on a background corpus which consists of many 

different speaker recordings (sessions) without explicit labelling. This is given as 

                      ,                                    (4.3)                                         

where    is the input supervector obtained during the training or testing stage,   is 

the identity matrix and     is the NAP supervector.   is a rectangular matrix whose 

columns  L , represent orthonormal eigenvectors that identify the subspace where 

the variations between different sessions are the largest and   denotes the transpose 

operation. In this work, a value of L=40 is chosen. This value which represents the 

40 eigenvectors with the highest eigenvalues has been reported to give good 

speaker recognition results [71, 130].  An efficient and relatively easy approach to 

finding the matrix S is described in [130].  

b) Model-normalisation (M-norm)  

The Model normalisation (M-norm) technique [18, 133] has been shown to 

complement the performance of the GMM-SVM approach [14]. The objective of 

M-norm, as shown in Figure 4.1, is to normalise the input supervectors at the model 

level, such that the distance between the M-normalised supervectors and the 

supervector extracted from the UBM is a constant (e.g. 1). This normalisation 

process can be interpreted as the elimination of the variations in distances relative 

to the UBM, which exist between different speaker models. The approach is 

motivated from the hypothesis that these differences, which can affect the overall 

effectiveness of the speaker verification system, arise due to the speaker non-

discriminative information present in the utterance(s) used to build the model. The 

removal of this degrading factor, therefore, allows the verification process to focus 

primarily on the speaker discriminative characteristics represented by the direction 

(with respect to the UBM) which the model takes in the model space [18].  

 

 



 Chapter 4: Investigations into state-of-the-art speaker verification 

Voice biometrics under mismatched noise conditions                                                                      68 

 

 This normalisation is given as 

                               

     
 

         
        

 

         
                                                                        

where           is the Euclidean distance between the GMM representing 

utterance   and the    ,       is a supervector of means extracted from the 

UBM and       is the M-normalised supervector. 

 

 

 

 

 

 

 

 

   

 

 

Figure 4.1: Illustration of the Model normalisation process in a two-dimensional space [18]. 

 

4.2 Experimental Investigations  

In this section, a number of experiments are conducted to investigate the 

effectiveness of the above mentioned speaker verification approaches. The aim of 

the first set of investigations is to implement benchmark methods which have been 

reported to give the current state-of-the-art speaker verification performance. The 

    

      

    

      

         

      

     

      

          

Original supervector,    

Model normalised 
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next set of experiments is then carried out to evaluate the performance and 

characteristics of such approaches under different experimental conditions. 

4.2.1 Speech Data 

The experiments in this study are conducted using the speech data obtained in 

telephonic audio conditions and clean audio conditions. For the telephonic 

conditions, a subset of the NIST-SRE 2003 [103] database is used. This involves 

142 registered speakers, a UBM trained by pooling two gender-dependent UBM 

(each trained using about 4 hours of speech from speakers other than the ones used 

for client training, true trials or out-of-set impostor trials), 1293 true trials and 1408 

impostor trials [31].  

For clean audio conditions, speech data from the TIMIT database [104] is 

considered. This set includes 100 registered speakers and 80 unknown speakers, 

each with 10 utterances. The individual utterances are about 3 seconds long. The 

training material for each speaker model is based on concatenating 5 utterances. 

This setup results in 500 client scores and 129,500 impostor scores. The speech 

material used for building the UBM consists of 10 utterances from each of 200 

speakers other than the ones registered or used as unknown speakers. It should be 

noted that the speaker set used for UBM and the sets of registered and unknown 

speakers are all gender-balanced.  

4.2.2 Feature Extraction  

For the purpose of the work described in this study, the t
th

 frame of the input speech 

data is represented as ct  {ct(1), ct(2),…, ct(K), ct(1), ct(2),…, ct(K)}, where 

c(k) is the k
th

 mean subtracted, linear predictive coding-derived cepstral (LPCC) 

parameter and c(k) is the k
th

 delta LPCC parameter. The extraction of LPCC 

parameters is based on pre-emphasising the input speech data using a first order 

digital filter, performing Voice Activity Detection and then segmenting it into 20 

ms frames at intervals of 10 ms using a Hamming window. As discussed in Chapter 

3, the value of K is dependent on the sampling frequency of the speech data and is 

chosen as (F+4), where F is the sampling frequency. The values for K used for the 

considered speech databases are given in Table 4.1. 
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Dataset Sampling Frequency Dimension of feature 

vector 

NIST SRE 2003 8 kHz 12 LPCC+ 12 Δ 

TIMIT 16kHz 20 LPCC+ 20 Δ 

Table 4.1: Dimensions of the feature vector for the two different datasets. 

 

4.2.3 GMM-UBM Baseline 

The baseline system used in this study is based on Gaussian mixture models 

(GMM). Each speaker model is adapted from a 128 mixture, gender-independent 

UBM using mMAP adaptation. The Gaussian mixture densities are parameterised 

with mean vectors and diagonal covariance matrices. As described in Section 4.1.1, 

during the test phase, a fast scoring procedure is carried out to obtain the log-

likelihood score of the test utterance with respect to the target model. The match 

score is then subjected to UBM-based normalisation. As mentioned in Chapter 3 

(Section 3.3.1), over the last decade, this approach has become one of the dominant 

approaches for modelling a person‟s voice in speaker verification applications [12, 

26, 73, 120]. For this reason, the baseline GMM-UBM approach is adopted as one 

of the state-of-the-art speaker verification system for the purposes of the 

experimental investigations described in Section 4.3.   

4.2.4 GMM-SVM speaker verification  

The structure of the GMM-SVM system used in this study is illustrated in Figure 

4.2. The GMMs are obtained from training, testing and background utterances 

using the same procedure as that in the GMM-UBM system. The GMM 

supervectors are then extracted, projected out using NAP to remove session 

variability, and then normalised using M-norm. Next, using the statistics obtained 

from the background dataset, the supervectors are scaled to unit variance. As 

mentioned in the previous chapter, this approach which is referred to as the 

background data scaling kernel (BSL), is carried out to allow each dimension of the 

supervector to contribute equally to SVM training and subsequent testing [29]. This 
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is followed by SVM training to obtain the client models. In the test stage, the 

computation of classification scores is based on equation (4.5).  

 

Figure 4.2: Illustration of the GMM-SVM Speaker verification system 
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It should be pointed out that the Background data Scaling Linear kernel is adopted 

in this study based on some preliminary investigations where it has been shown to 

give very similar performance to the GSV kernel, non-linear kernel or MLLR 

kernel. This could be attributed to the relatively small
6
 number of background 

supervectors (negative examples) which are utilised in the context of the present 

study when compared to other published studies [14, 15, 127, 134-136]. To be 

precise, while most other studies utilise a complete NIST database for this purpose, 

in this study, the background supervectors are obtained using the same data as that 

used for training the UBM training [29, 137]. It should also be noted that a 128 

mixture UBM is being used  to limit the size of the supervector and allow faster 

training and testing of the SVM models [27, 29].  

Table 4.3 shows the result obtained using the GMM-SVM method together with 

that for GMM-UBM. The comparison of the performance of these two approaches 

is further illustrated using the DET plots in Figure 4.3.  It can be seen from the 

results, that the GMM-SVM approach reduces the speaker verification error rate by 

over 27% when compared to the baseline GMM-UBM approach. This is in 

agreement with the results reported in [28, 71, 130]. In addition, it is observed that 

applying T-Norm on top of M-Norm in the GMM-SVM approach does not provide 

any significant reduction in EER. Based on the outcomes of the experimental 

investigations, the GMM-SVM approach is therefore adopted as the other state-of-

the-art speaker verification system for the purposes of the experimental 

investigation in the next section. 

 

  SV-EER (%) 

GMM-UBM GMM-SVM 
UBM  

Normalisation 
T-Norm 

Model 

Normalisation 
T-Norm 

10.47 ±0.85 9.68±0.82 7.51 ± 0.73 7.50 ± 0.72 

Table 4.2:  Relative effectiveness of the GMM-SVM approach based on the NIST SRE 2003. 

 

                                                 
6
 This is due to lack of available and appropriate data for this purpose in this study 
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Figure 4.3: Relative verification effectiveness offered by the GMM-SVM approach based on the 

NIST SRE 2003. 

4.3 Relative effectiveness of GMM-UBM and GMM-SVM  

To date, most of the investigations with the current state-of-the-art speaker 

verification techniques have been carried out using the NIST SRE databases. This 

means the investigations have been limited in terms of the difference between the 

levels of noise contamination in the training and testing data. This is a condition 

which cannot be considered realistic in many real-world applications.  For instance, 

the mobile nature of many speaker verification applications can result in noisy test 

data conditions which are not experienced in the training stage. These can 

potentially lead to severe degradation of the system performance. Up till now, the 

literature appears to lack extensive evaluations of the aforementioned techniques 

under unseen noisy conditions, which is believed to be crucial in establishing their 

effectiveness in more stringent and realistic scenarios.   

This section presents an evaluation of the GMM-UBM and GMM-SVM techniques 

for matched and mismatched levels of noise contamination during the training and 

testing stages. It should be noted that the said approaches implemented for this part 

of the study are the same as the ones described in the previous sections.   
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4.3.1 Matched Noise Conditions  

The first set of experiments evaluates the speaker verification performance of 

GMM-UBM and GMM-SVM using the TIMIT database when the quality of the 

speech data is the same during the training and testing phases.  For this purpose, the 

speech data is contaminated with different levels of Gaussian white noise. This 

provides a range of speech SNRs (15dB, 10dB, 5dB) in addition to uncontaminated 

speech for the purpose of investigations.  

Although it is known that conventional score normalisation techniques such as 

Test-Normalisation (T-Norm) [73] can offer good improvements with the GMM-

UBM approach, its potential benefits have not yet been thoroughly investigated in 

the GMM-SVM context. This approach is therefore deployed in this study by using 

the cohort of speakers available within the set of registered users during the test 

phase.     

Table 4.4 presents the experimental results for this part of the study, in terms of 

Speaker Verification Equal Error Rate (SV-EER) with a 95% confidence interval. It 

is observed that in clean conditions, the performance of GMM-UBM appears to be 

better than that of GMM-SVM. As expected, it is seen that there is a drop in 

accuracy for both approaches with decreasing Signal to Noise Ratio (SNR), 

although GMM-UBM yields better verification rates for a contamination level of 

10dB.  It is also observed that the use of score normalisation provides further 

improvements for both classification methods. This is particularly evident for the 

10dB scenario, where the error rate is almost halved with the inclusion of T-Norm 

in the GMM-SVM approach. The use of M-Norm for GMM-SVM, which involves 

scaling the GMM means in the supervectors with respect to the UBM in order 

combat variations, appears to have limited effects in this situation. In this setup, it 

can be argued that such a phenomenon arises, because all the models are adapted 

from a clean gender-balanced UBM regardless of the noise degradation of their 

speech feature vectors.      
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GMM-UBM                                                  GMM-SVM 

Table 4.3: Speaker verification results for GMM-UBM and GMM-SVM in matched data 

conditions. 

4.3.2 Mismatched Noise Conditions 

The purpose of the next set of experiments is to determine the effectiveness of 

GMM-UBM and GMM-SVM in the absence of information about the noise 

conditions during the test trials in relation to that in the training phase. In order to 

create such a condition, clean training data is used during the modelling process 

while degraded data is used in the test phase. Although different scenarios such as 

degraded training data/clean testing data or degraded training data/degraded testing 

data with mixed contamination levels can also be considered, it is believed that the 

setup chosen should provide a reasonably accurate indication of the problem of 

unseen data conditions. As before, speech data from the TIMIT database is used 

and Gaussian white noise is added to degrade the test data, achieving SNRs of 15 

dB, 10 dB and 5 dB respectively.  In addition, three examples of real-world noise, 

namely car noise, office noise, and factory noise, obtained from the NOISEX 92 

[138] and Piper [34] databases are also used in the experimental investigations. For 

each noise type, the test data is contaminated using a randomly selected segment 

(with the same duration as the test utterance) of the original noise file to achieve 

SNRs of 15dB, 10dB and 5dB.   

The experimental results given in Table 4.5 show that the verification EERs for 

GMM-UBM are higher for mismatched conditions with Gaussian white noise when 

compared to those for matched noisy conditions (Table 4.4).  Interestingly, it is 

     SV-EER (%) 

                          Test/Training Data                                            Test/Training Data 

Score 

normalisation 

Clean 

 

SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

Score 

normalisation 

Clean 

 

SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

Clean UBM 2.00 

±0.62 

5.60 

±1.02 

 

11.80 

±1.44 

28.52 

±2.02 
Without 

additional 

normalisation 

 

2.59 

±0.71 

6.92 

±1.13 

15.87 

±1.63 

29.60 

±2.04 

T-norm 1.60 

±0.56 

3.40 

±0.81 

7.21 

±1.16 

16.20 

±1.65 

 

T-norm 
 

1.60 

±0.50 

4.42 

±0.91 

8.23 

±1.23 

19.24 

±1.76 
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seen that such a trend does not apply in the case of GMM-SVM which yields 

comparable results to the matched conditions for SNRs of 15 dB and 10 dB 

although worse results are obtained for an SNR of 5 dB. The performance of the 

two classification methods in this scenario is seen to be very similar for SNRs of 15 

dB and 10 dB, while GMM-SVM performs slightly better than GMM-UBM under 

the worst condition considered (i.e. 5dB). In addition, it is observed that the use of 

T-Norm in this setup, unlike the previous scenario, does not have a significant 

effect on the performance of the two classification methods.   

 

                                                                   SV-EER (%)  

   GMM-UBM                                                 GMM-SVM 

                     Test Data                                                  Test Data 
Score 

normalisation 

SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

Score 

normalisation 

SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

Clean UBM 6.80 

±1.12 

 

16.60 

±1.66 

 

37.40 

±2.16 
Without 

additional 

normalisation 

 

6.24 

± 1.08 

15.20 

±1.61 

33.20 

±2.10 

T-norm 5.20 

±0.99 

15.53 

±1.62 

36.20 

±2.15 

T-norm 

 

5.40 

±1.01 

14.57 

±1.58 

33.40 

±2.11 

Table 4.4: EERs in speaker verification experiments with GMM-SVM and GMM-UBM under 

mismatched data conditions using Gaussian white noise. 

 

Table 4.6 presents the verification experiments involving mismatched conditions 

with a range of contaminated speech using real world noise. Although the 

degradation in performance for GMM-SVM and GMM-UBM with real-world noise 

is not as severe as that for Gaussian white noise, a considerable increase in SV-EER 

is still observed with decreasing SNRs. It is also observed that, in general, the 

difference between the effectiveness of the two methods is not significant for any 

type of real-world noise considered. Additionally, it is noted that again, the 

usefulness of T-Norm in reducing error rates is rather limited. 
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      SV-EER (%) 

                  GMM-UBM                                                GMM-SVM 

                                      Test Data                                                        Test Data 

Noise Score 

normalisation 

SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

Score 

normalisation 

SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

 

Car 
 

Clean UBM 

 

4.99 

±0.97 

 

7.80 

±1.19 

 

16.74 

±1.67 

 

Without 

additional 

normalisation 
 

 

5.20 

±0.99 

 

8.09 

±1.22 

 

16.60 

±1.66 

 T-norm 4.00 

±0.87 

7.20 

±1.16 

15.64 

±1.62 
T-norm 5.00 

±0.97 

7.40 

±1.17 

15.20 

±1.61 

 

 

Office 

 

 

Clean UBM 

 

4.84 

±0.96 

 

7.80 

±1.20 

 

18.60 

±1.74 

 

Without 

additional 

normalisation 
 

 

5.43 

±1.04 

 

8.79 

±1.27 

 

18.60 

±1.74 

 T-norm 3.84 

±0.86 

 

7.59 

±1.18 

 

18.20 

±1.73 

 

T-norm 5.20 

±0.99 

8.20 

±1.23 

18.16 

±1.72 

 

 

 

Factory 

 

Clean UBM 

 

4.60 

±0.94 

 

6.68 

±1.11 

 

17.60 

±1.70 

 

Without 

additional 

normalisation 
 

 

5.45 

±1.01 

 

8.12 

±1.22 

 

18.52 

±1.71 

 T-norm 4.60 

±0.94 

6.68 

±1.11 

17.60 

±1.70 
T-norm 5.00 

±0.97 

7.34 

±1.17 

17.24 

±1.69 

Table 4.5: EERs in speaker verification for GMM-SVM and GMM-UBM under mismatched data 

conditions   using real world noise. 

 

4.4  Chapter Summary 

In this chapter, the effectiveness of the current state of the art speaker verification 

approaches has been experimentally analysed. The first part of the experiments has 

provided investigations into the relative performance of the most widely used 

approaches for speaker verification using the NIST SRE 2003 database. It is shown 

that the SVM with GMM supervector approach coupled with the Nuisance 

Attribute Projection (NAP) and Model-normalisation (M-Norm) provides 

substantial improvements over the baseline GMM-UBM system. In the second part 

of the investigations, the relative effectiveness of the GMM-UBM and GMM-SVM 

approaches has been analysed under matched and mismatched data conditions. In 
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this study, the main limitations of the two classification approaches have been 

outlined. It is observed that when the test data is degraded with Gaussian noise or 

real-world noise, in general, the difference between the effectiveness of the two 

methods is not significant under either matched or mismatched data conditions. It is 

also noted that while T-Norm can be very beneficial in further improving the 

accuracy of both classification methods under matched data conditions, its 

usefulness in reducing error rate under mismatch conditions is rather limited. 
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CHAPTER 5  

IMPROVING THE SPEAKER 

RECOGNITION ACCURACY UNDER 

MISMATCH CONDITIONS 
 

Chapter Overview 

It is observed in the previous chapter that the problem of mismatched data 

conditions can severely affect the performance of state-of-the-art speaker 

verification techniques. In this chapter, a modified realisation of the parallel model 

combination (PMC) method is introduced and a new form of test normalisation (T-

norm), termed condition adjusted T-norm, is proposed to tackle this problem. An 

account of the motivation behind the modified PMC GMM-UBM approach, 

together with a description of its characteristics, is given in Section 5.1. This is 

followed by a set of experimental investigations to evaluate its effectiveness in 

relation to the full PMC GMM-UBM approach. Section 5.2 introduces the concept 

of condition-adjusted T-Norm, investigates its relative effectiveness under different 

mismatched data conditions and presents an analysis of the results. In section 5.3, a 

bilateral PMC GMM-UBM approach is proposed and its relative effectiveness 

investigated for speaker verification operating under conditions where the training 

and testing utterances are both contaminated with noise. Section 5.4 introduces the 

use of the modified PMC GMM-UBM with CT-Norm approach into the context of 

OSTI-SI. Based on the outcomes of the experimental investigations, it is 

demonstrated that the said approach can be of considerable value for both speaker 

verification and speaker identification.    
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5.1   Modified PMC Approach 

As discussed in Chapter 2, several speech-level [72, 77, 80] and feature-level 

approaches [76, 84-86] have been proposed in the literature for tackling the effects 

of variations between the training and test data caused by additive noise. These 

approaches usually focus on enhancing the quality of the test material before the 

testing process. In other words, they assume that the training material is free from 

any form of degradation. In many practical applications, however, the training and 

testing utterances can both be degraded. Since the characteristics of degradation in 

these utterances can be considerably different, the actual problem is one of 

minimising the data mismatch conditions and/or the effects of these. To address this 

problem, the use of a data-driven parallel model combination (PMC) has been 

proposed in [92]. The technique involves estimating the degradations in the testing 

and training material and using these to minimise the data mismatch conditions (by 

appropriately contaminating the reference model and test utterance in each trial).  

The investigations in [92], which have been based on the use of decoupled GMMs, 

provide a clear indication of the potential benefits of PMC.  In the case of GMM-

UBM, the direct use of PMC involves a complete reference model generation 

process in the test phase. Such a process includes rebuilding a UBM (with degraded 

speech material) as well as the adaptation of the new UBM using the degraded 

version of the training utterances for the target speaker. Repeating this whole 

process (in particular, rebuilding a new UBM) for each test trial can unduly 

increase the computational load of the GMM-UBM approach. Thus, in order to 

enhance the computational efficiency in the test phase, the use of a modified PMC 

procedure is proposed. As seen in Figure 5.1, during the test phase, an estimation of 

the test noise is used to contaminate the target speaker‟s training material. A noise 

compensated target speaker model is then obtained through the mMAP adaptation 

[12] of a UBM trained a priori (offline) using clean speech (based on the 

corresponding contaminated training material). Finally, the noise degraded test 

utterance is matched against the noise compensated target speaker model and the 

clean UBM to obtain a likelihood ratio score (i.e. UBM normalisation) which is 

then used to decide whether to accept or reject the claimant. 
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Figure 5.1: Illustration of the proposed procedure for obtaining compensated client models using 

PMC. 

5.1.1 Experimental Investigations and results 

In order to determine the effectiveness of the proposed approach relative to that of 

the direct use of PMC with GMM-UBM, a set of pilot experiments is carried out 

using car noise. For the sake of comparison, the speech dataset and speaker 

representation used for the purpose of the experiments in this study are identical to 

those in Chapter 4. A brief summary is provided in Table 5.1. 

Database :TIMIT  [9] Speech Feature Vectors: 20
th
 order LPCC + 

Delta 

Number of registered speaker :100  

Number of unknown speakers:80  

UBM Characteristics: Gender independent 

trained using 200 speakers 

Number of client scores: 500 scores  

Number of impostor scores: 129,500  

GMM-UBM based on modified MAP 

adaptation [2] 

Table 5.1: Summary of the experimental setup 

The procedure deployed for contaminating test utterances is the same as that 

described in Chapter 4. For the purpose of PMC, in each test trial, the first 200 ms 

of noise used for degrading the test utterance is considered as an estimate of the test 

utterance contamination. The results obtained for these two methods are presented 
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in Table 5.2 and Table 5.3. As before, all the results for this part of the 

experimental investigations are presented in terms of Speaker Verification Equal 

Error Rate (SV-EER) with a 95% confidence interval.   

It is observed by comparing the results in tables 5.2 and 5.3 with those obtained in 

Table 4.6, that whilst the direct use of PMC with GMM-UBM can significantly 

enhance the verification accuracy under the noise-mismatch condition considered, 

the results for the modified approach are not as impressive. This is further 

illustrated in Figure 5.2. The relative superior performance of the direct PMC 

GMM-UBM is due to building UBM using speech degraded based on an estimation 

of the test utterance contamination. In real applications, however, such rebuilding 

of UBM in each test trial may not be practical because of the additional 

computational cost involved.  

   SV-EER (%)  

      Modified PMC GMM-UBM 

                                                                                                              Test Data 
        Noise Score 

normalisation 

SNR: 15dB SNR: 10dB SNR: 5dB 

Car Clean UBM 5.94±1.05 7.74±1.19 10.66±1.30 

Table 5.2: Verification results for the proposed PMC GMM-UBM method in mismatched data 

conditions using car noise. 

 

     SV-EER (%) 

    Full PMC GMM-UBM 

                                                                                                              Test Data 
        Noise Score 

normalisation 

SNR: 15dB SNR: 10dB SNR: 5dB 

Car Appropriately 

degraded UBM 

2.60±0.71 2.83±0.74 5.20±0.99 

Table 5.3: Verification results for the direct PMC GMM-UBM method in mismatched data 

conditions using car noise. 
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Figure 5.2: Relative effectivess of  Modified PMC GMM-UBM approach for car noise  

 

5.2    CT-Norm for speaker verification 

It is seen in the previous section that although the modified PMC GMM-UBM 

approach offers enhanced computational efficiency, it is not as effective as the full 

PMC GMM-UBM method in dealing with the effects of mismatch noise conditions. 

This can be attributed to the mismatch between the clean UBM and the noise 

compensated target model which in turn, does not provide an effective means of 

score normalisation. Similarly, it has been observed in Chapter 4, that whilst T-

Norm can be very beneficial in improving the verification accuracy under relatively 

matched noisy conditions, its usefulness in reducing error rate under mismatch 

conditions is rather limited. Thus, in order to tackle this problem while retaining the 

computational efficiency of the modified PMC GMM-UBM method, a condition 

adjusted T-Norm (CT-Norm) approach is proposed. As shown in Figure 5.3, this 

approach involves adjusting the noise contamination of the target speaker utterance 

as well as background speaker utterances in accordance with the estimated test 

utterance degradation. Noise adjusted target and background speaker models are 

then obtained through the mMAP adaptation of a fixed clean UBM. During the 

matching phase, the degraded test utterance is scored against the condition adjusted 

speaker models (i.e. target and background). Following this, the required 

normalisation parameters (i.e. mean and variance) are computed, using the 

likelihood scores of the background speaker models, and Test-normalisation (T-

Norm) is applied.   
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Figure 5.3: Illustration of the proposed procedure for improving verification accuracy in 

mismatched data conditions. 

 

To examine the effectiveness of CT-norm, a set of experimental investigations is 

conducted with the modified PMC GMM-UBM, and using the three types of real 

world noise considered. The procedures used for the noise-based degradation of test 

utterances, and estimating the resulting contamination in the test phase are the same 

as those discussed in Chapter 4 and Section 5.1 respectively.  It should be noted 

that the implementation of CT-Norm is based on the training utterances from the 

cohort of speakers available within the set of registered users (i.e. 99 speakers on 

each occasion).  

Table 5.4 presents the results of this study. These results provide a clear indication 

of the effectiveness of CT-norm in reducing the verification error rates under 

different noise mismatch conditions. It can be seen by comparing the results in 

Table 4.6 with those obtained in Table 5.4, that the improvements achieved are 

particularly significant for the worst data conditions (i.e. 10dB and 5dB) where the 

minimum relative improvements in the case of factory noise are in excess of 61% 

and 69% respectively.  This is further illustrated in Figure 5.4. It is also noted that 

the results for car noise are comparable or better than those obtained with the direct 
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PMC GMM-UBM (Table 5.2). The relative effectiveness improvements offered by 

the CT-norm approach under mismatch conditions are further illustrated through 

the DET plots in Figure 5.5 (car noise), Figure 5.6 (office noise) and Figure 5.7 

(factory noise).  In all cases, the SNR for the test data is 10 dB. These Figures 

clearly show the advantages offered by CT-Norm over the standard T-Norm 

method. 

   SV- EER (%) 

      Modified PMC GMM-UBM 

                                                                                                              Test Data 

Noise Score 

normalisation 
SNR:15dB SNR:10dB SNR:5dB 

Car Clean UBM 5.94±1.05 7.74±1.19 10.66±1.30 

CT-norm 2.00±0.62 2.60±0.71 3.55±0.82 

Office Clean UBM 5.00±1.85 8.67±1.25 19.40±1.76 

 

CT-norm 2.60±0.71 3.53±0.82 7.20±1.15 

Factory Clean UBM 

 

6.04±1.06 8.60±1.25 19.08±1.75 

CT-norm 1.85±0.60 2.20±0.65 4.43±0.92 

Table 5.4: Effectiveness offered by CT-norm in speaker verification based on the modified PMC 

GMM-UBM approach. 

 

 

Figure 5.4:  Effectiveness of the CT-Norm approach compared to the standard GMM-UBM.  
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Figure 5.5: Relative verification effectiveness offered by the use of CT-norm with the modified 

PMC GMM-UBM approach in mismatched data conditions using car noise. 

 

 

 

Figure 5.6: Relative verification effectiveness offered by the use of CT-norm with the modified 

PMC GMM-UBM approach in mismatched data conditions using office noise. 
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Figure 5.7: Relative verification effectiveness offered by the use of CT-norm with the modified 

PMC GMM-UBM approach in mismatched data conditions using factory noise.  

In the case of GMM-SVM, the use of PMC will require a complete training 

procedure during each test trial, involving noise-adjusted models for the target and 

background speakers.  Because of the particular characteristics of the SVM 

procedure involved, this can result in a significant increase in computational load in 

the test phase.  This is because in this case, during each test trial, noise 

compensated target and background speaker models have to first be built (using the 

PMC GMM-UBM approach) before their corresponding supervector of means can 

be extracted for SVM training. Despite this, and for completeness, a set of 

verification experiments with modified PMC GMM-SVM is conducted using car 

noise. The investigations are carried out with and without using CT-norm.  The 

results of this study (Table 5.5) again show considerable improvements in 

verification accuracy when CT-norm is deployed. However, it is also observed that, 

in this case, the EERs are not as low as those obtained using the modified PMC 

GMM-UBM with CT-norm (Table 5.4).  

SV-EER (%)   

   Modified PMC GMM-SVM   

                                                                                                              Test Data 
Noise Score normalisation SNR: 15dB SNR: 10dB SNR:5dB 

 

Car 
No additional 

normalisation 

5.08±0.98 

 

7.12±1.15 

 

11.21±1.41 

 

CT-norm 3.00±0.76 4.60±0.94 6.60±1.11 
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Table 5.5: EERs in verification experiments for PMC GMM-SVM with and without using CT-

norm. 

5.3 Bilateral Parallel Model Combination 

In the previous section, the experimental investigations carried out with CT-Norm 

have been based on the assumption that the reference material of all the speakers 

are recorded under controlled conditions and kept free from any noise degradation. 

This is a favourable assumption which means the characteristics of the reference 

model for each speaker (client/background) are not influenced by the particular 

type of noise present at the time of enrolment. However, in practice, imposing such 

a stringent condition during the enrolment process is not always feasible. As a 

result, most speaker verification applications operate on a more realistic 

assumption; that is, the noise contamination of the training utterances used for 

speaker modelling is considered to be reasonably limited.  

The aim of the experiments presented in this section is to investigate the 

effectiveness of the CT-Norm approach when both the training and testing 

utterances are contaminated with environmental noise. Under this setup, two 

approaches for Parallel Model Combination (PMC) are investigated. The first 

method is based on the modified PMC GMM-UBM proposed in the previous 

section. The second method, on the other hand, involves a two-stage noise 

contamination process. The first stage involves contaminating the training 

utterances for each speaker (client and background) using an estimate of the test 

noise.  Noise-adjusted speaker models are then built by appropriately adapting a 

fixed (original) UBM. This is identical to the modified PMC GMM-UBM 

approach. In the second stage, the test utterance is also contaminated using an 

estimate of the noise present in the training utterance. The complete approach is 

hereafter referred to as Bilateral PMC GMM-UBM. 

The experimental setup for this part of the study is based on a highly unfavourable 

scenario. This involves contaminating the  training material with three examples of 

real-world noise (i.e. car noise, office noise, and factory noise), obtained from the 

NOISEX 92  [138]  and Piper [34] databases to achieve SNRs of 15dB. The test 

material is then contaminated using a different type of noise to the one used for 

contaminating the training utterances in each case in order to achieve a SNR of 
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5dB. For example if car noise is used to contaminate the training material, office or 

factory noises are then used to contaminate the test material.  The results for this 

part of the investigations are presented in Table 5.6.     

SV-EER (%) 

Training 

Data 

Noise 

Test Data       

Noise 
Normalisation modified PMC 

GMM-UBM  
Bilateral PMC 
GMM-UBM  

 

Car 

SNR 15dB 

Office 

SNR 5dB 

CT-Norm 6.89 

±1.13 

6.60 

±1.11 

Factory 

SNR 5dB 

 CT-Norm 6.20 

±1.07 

5.90 

±1.04 

 

Office 

SNR 15dB 

Car  

SNR 5B 

CT-Norm 3.60 

±0.83 

3.60 

±0.83 

Factory 

SNR 5dB 

CT-Norm 6.20 

±1.07 

6.20 

±1.07 

 

Factory 

SNR 15dB 

Car  

SNR 5B 

CT-Norm 3.94 

±0.87 

3.80 

±0.85 

Office 

SNR 5dB 

CT-Norm 7.00 

±1.14 

6.80 

±1.13 

Table 5.6: Relative effectiveness of the Bilateral PMC GMM-UBM approach when both the 

training and testing utterances are contaminated with real-world noise. 

 

It can be observed from Table 5.6 that, in general, the relative effectiveness of the 

Bilateral PMC GMM-UBM approach with CT-Norm is very similar to those 

offered by the modified PMC GMM-UBM method with CT-Norm. For instance, 

the best relative improvement obtained (out of the six different scenarios 

considered) with the Bilateral PMC GMM-UBM approach is only about 3%. This 

is obtained when the training material is degraded with factory noise and the test 

material is contaminated with car noise. Evidently, despite the added computational 

complexity associated with Bilateral PMC GMM-UBM there no significant 

advantages. Therefore, for the purpose of consistency, the experimental 

investigations in the remainder of this thesis are based on the use of clean training 

utterances.  

5.4   Performance of OSTI-SI under mismatched noise conditions 

As described in Chapter 1, the problem of automatic speaker identification can be 

defined as one of determining the speaker of a given test utterance, from a 

population of registered speakers [9]. If the process includes the option of declaring 
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that the test utterance does not belong to any of the registered speakers, it is termed 

open-set speaker identification. Otherwise, it is a closed-set identification process. 

In principle, the process of open-set speaker identification consists of two 

successive stages of identification and verification. In other words, first, it is 

required to identify the speaker model in the set which best matches the given test 

utterance. Then, it must be verified whether the test utterance has actually been 

spoken by the speaker associated with the best-matched model, or by some 

unknown speaker outside the registered set. When there are no constraints on the 

text content of test utterances, the process is referred to as open-set, text-

independent speaker identification (OSTI-SI) [9]. This is the most challenging class 

of speaker recognition with applications in various areas including document 

indexation, surveillance, and authorisation control in smart environments. 

As with the speaker verification scenario, a factor adversely affecting the accuracy 

of OSTI-SI in practice is that of variations in speech characteristics [9, 99]. Such 

variations result is a mismatch between the corresponding test and reference 

material for the same speaker, which in turn reduces the accuracy of OSTI-SI.  

Similar to the speaker verification scenario, a widely used approach for tackling the 

problem of mismatched noise conditions in speaker identification is that of score 

normalisation [73, 96, 99].  However, as seen in the previous chapter, in general, 

the effectiveness of score normalisation reduces considerably when the data 

mismatch, resulting from noise contamination in the test material, becomes 

significant [139]. As indicated in Section 5.2, the use of CT-Norm (condition 

adjusted T-Norm) can significantly reduce the adverse effects of data mismatch on 

the accuracy of speaker verification. However, as mentioned earlier, the problem in 

the second stage of OSTI-SI is more challenging than that of the standard speaker 

verification [9, 99, 140]. This is due to the fact that the requirement in the second 

stage of OSTI-SI is to discriminate each out-of-set speaker from its best matched 

speaker in the registered set. Therefore, it may not be possible to fully predict the 

effectiveness of CT-Norm in this case, based on the results obtained for SV [139]. 

Moreover, the benefits of using the computationally efficient PMC GMM-UBM 

approach for speaker identification also need investigating. The aim of this part of 

the study is therefore to complement the experiments in the previous sections by 
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investigating the effectiveness of the efficient PMC GMM-UBM approach and CT-

Norm in the context of open-set speaker identification. 

It is important to point out that, according to the study in Section 5.2, despite its 

enhanced efficiency, the use of the modified PMC with the GMM-SVM approach 

can result in an undesirably high level of computational cost. This, as discussed in 

Section 5.2, is mainly due to the specific characteristics of this SVM-based 

approach which could make the incorporation of the modified PMC unsuitable for 

most practical applications. For this reason, the GMM-SVM [28] classification 

method is not considered in this part of the study.  

Figure 5.8 illustrates the use of the modified PMC approach with GMM-UBM for 

OSTI-SI.  As shown in this Figure, an estimate of the test utterance degradation is 

used to contaminate the training utterances of the registered speakers. The noise-

adjusted registered speaker models are then built by appropriately adapting the 

fixed (original) UBM using an mMAP estimation [12, 99]. Once the new models 

are obtained, the test utterance is matched against all the registered speaker models 

and the model that yields the largest score is retained. This process is based on the 

fast scoring procedure using the top five scoring UBM mixtures identified for each 

test feature vector [12]. As indicated in Figure 5.8, the score for the speaker model 

selected as above is then subjected to normalisation using T-Norm.  
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Figure  5.8 :  OSTI-SI based on the modified PMC GMM-UBM approach. 

 

Figure 5.9 illustrates the incorporation of CT-Norm (instead of T-Norm) in the 

OSTI-SI framework presented in Figure 5.8. As observed, the method in Figure 5.9 

involves an additional procedure for adjusting the noise contamination of 

background speaker utterances (and hence their models), in accordance with the 

estimated test utterance degradation. The determination of the normalisation 

parameters is then based on these contaminated background speaker models.  
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Figure 5.9: OSTI-SI based on the modified PMC GMM-UBM approach with CT-Norm. 

 

5.4.1 Experimental investigations 

The speech dataset used for the purpose of the experimental investigations is 

extracted from the TIMIT database. 100 registered speakers and 80 unknown 

speakers are used, each having 10 utterances. Utterances from 200 speakers, other 

than the ones registered or considered as unknown speakers, are used for training a 

UBM. As before, it should be noted that the speaker set used for UBM and the sets 

of registered and unknown speakers are all gender-balanced. In order to facilitate 

the experimental investigations, in each test trial, the implementation of CT-Norm 

(or T-Norm where appropriate) is based on the use of the training utterances from 
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the cohort of speakers available within the set of registered users (i.e. 99 speakers 

on each occasion).  

The aim of the first set of experiments is to determine the effectiveness of GMM-

UBM for OSTI-SI in the absence of information about the relative noise conditions 

in the test and training phases. For this purpose, clean training data is used in the 

modelling process while degraded data is used in the test phase. As before, three 

examples of real-world noise (i.e. car noise, office noise, and factory noise), 

obtained from the NOISEX 92 [138] and Piper [34] databases, are used to degrade 

the test data; achieving SNRs of 15dB, 10dB and 5dB. It should be noted that the 

experimental setup is identical to the one used for evaluating the proposed approach 

in the speaker verification context.  

5.4.2 Results and discussions 

Table 5.7 presents the results in terms of identification error rate (IER) and open set 

identification equal error rate (OSI-EER) with a 95% confidence interval. It is 

observed that for all the real world noise types considered, there is a substantial 

increase in error rates (OSI-EERs and IERs) with decreasing SNR. This is 

particularly significant for the IERs where a difference in performance of over 50% 

is observed for data SNRs of 10dB and 5dB. To further illustrate the effects of 

mismatch conditions on the accuracy of OSTI-SI, the results in Table 5.7 should be 

compared with those in Table 5.8 which are obtained under clean matched data 

conditions. These results clearly outline the negative impacts on both the OSI-EERs 

and IERs, which occur from varying levels of noise degradation between the 

training and testing data. It is also noted that, similar to the results obtained for 

speaker verification, the benefits of T-Norm are very limited in the case of 

considerable mismatched data conditions.  
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                                                             OSI-EER (%)  

    GMM-UBM 

                                                                                                   Test Data                                                         
Noise Score normalisation SNR: 

15dB 

SNR: 

10dB 

SNR: 

5dB 

 

Car 
Clean UBM 20.50±1.94 26.50±2.29 31.13±3.29 

 
T-norm 17.25±1.82 24.38±2.23 30.38±3.24 

IER (%)  14.20 26.00 59.60 

Office 
Clean UBM 19.38±1.91 23.88±2.25 31.75±3.57 

 
T-norm 17.50±1.84 22.75±2.21 31.13±3.24 

IER (%)  15.20 28.00 66.00 

 

Factory 

Clean UBM 20.37±1.94 23.75±2.16 37.50±3.79 

 
T-norm 18.25±1.85 22.37±2.12 33.50±3.68 

IER (%)  13.40 22.60 67.200 

Table 5.7: Accuracy of OSTI-SI under mismatch conditions. 

  OSI-EER (%) 

GMM-UBM 

UBM 13.50 ±0.62 

  T-Norm 8.00±0.56 

IER (%) 5.20  

Table 5.8: Performance of OSTI-SI under clean match conditions. 

 

5.4.3 Performance of the condition adjusted normalisation approach 

To examine the relative effectiveness of the modified PMC-GMM-UBM with CT-

Norm approach for OSTI-SI, a set of experimental investigations is conducted 

using the setup described in Section 5.4.1. As before, the same set of real world 

noise is used to degrade the test data and a 200 ms segment of noise is used as the 

estimation of test utterance contamination. The results for this part of the 

experimental study are presented in Table 5.9. 
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OSI-EER (%) 

Modified PMC GMM-UBM 

                                                                                                   Test Data                                                         
Noise Score 

normalisation 

SNR:  

15dB 

SNR:  

10dB 

SNR:  

5dB 

 

Car 
Clean UBM 23.88 

±1.96 

26.75 

±2.04 

31.25 

±2.23 

 
CT-norm 12.62 

±1.53 

17.87 

±1.76 

22.00 

±1.99 

IER (%)  5.40 5.80 13.60 

 

Office 

Clean UBM 20.13 

±1.86 

26.38 

±2.11 

37.50 

±2.63 

 CT-norm 13.00 

±1.56 

18.25 

±1.85 

23.00 

±2.29 

IER (%) 
 

6.60 12.60 32.20 

 

Factory 

 

Clean UBM 
22.50 

±1.91 

27.63 

±2.06 

36.50 

±2.32 

 CT-norm 13.63 

±1.58 

15.75 

±1.68 

23.00 

±2.03 

IER (%) 
 

4.80 5.80 14.00 

Table 5.9 : Performance the condition adjusted T-Norm approach. 

 

There are a number of interesting observations which can be made from Table 5.9. 

Firstly, as expected, it is noted that the use of the modified PMC GMM-UBM on its 

own does not have any considerable benefits on the accuracy in the second stage of 

OSTI-SI. It is, however, seen that the said process is considerably beneficial to the 

accuracy in the first stage, leading to significant improvements in IER for all types 

of noise considered. For instance, when the test data quality is reduced to 5 dB 

using factory noise, the improvement achieved in IER (relative to that in Table 5.7) 

is in excess of 79%. In addition, it is observed that CT-Norm is considerably more 

effective than T-norm in reducing OSI-EER. Considering all types of noise and 

degradation levels in this study, the average improvement achieved in OSI-EER 

relative to the best results in Table 5.9 is about 25%. The relative improvements 

offered by the CT-Norm approach under mismatch conditions are further illustrated 

through the DET plots in Figure 5.10. In all cases, the SNR for the test data is 5dB. 
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Figure 5.10 : Relative verification effectiveness offered by the use of CT-norm in mismatched data 

conditions using (a) car noise (b) office noise (c) factory noise. 

It is also important to compare the results in Table 5.9 with the corresponding 

results obtained under the same experimental conditions for speaker verification 

(Table 5.4).  As shown in Figure 5.11, such a comparison clearly shows that the 

adverse effects of mismatch data conditions are more significant in the second stage 

of OSTI-SI than in standard SV. It also appears that the proposed method is more 
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effective in standard speaker verification than in the second stage of OSTI-SI. 

These further highlight the additional challenges in the second stage of OSTI-SI. 

 

 

Figure 5.11: Relative effectives of the CT-Norm approach for speaker verification and OSTI-SI.  

 

5.5     Chapter Summary 

In this chapter, a modified data-driven parallel model combination (PMC) approach 

is proposed for tacking the effects of mismatched data conditions (caused by 

environmental noise) on speaker verification. Based on the experimental results, it 

is found that the modified PMC, which offers the advantage of computational 

efficiency when compared to the direct use of PMC with GMM-UBM, cannot be as 

effective as the latter. The attempt to further improve the verification accuracy of 

the modified PMC GMM-UBM under such conditions has led to the introduction of 

CT-norm (condition adjusted T-norm). It is shown experimentally that this 

normalisation method can considerably enhance the verification accuracy in 

mismatched noise conditions. Based on investigation carried out using car noise, it 

is demonstrated that the combination of CT-norm with modified PMC GMM-UBM 

provides a higher accuracy than that obtainable with the direct PMC GMM-UBM. 

Moreover, it is shown that the performance of GMM-SVM can also be improved 

considerably using modified PMC together with CT-norm. However, the added 
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computational cost in this case suggests that such a combined approach is currently 

unsuitable for most practical applications.  

As part of the study, a Bilateral PMC GMM-UBM approach for speaker 

verification operating in conditions where the training and testing utterances are 

both contaminated is also proposed and investigated. Based on the outcomes of the 

investigations, it is shown that, there are no significant advantages to be obtained 

by using the said approach when compared to the modified PMC GMM-UBM. 

For the purpose of completeness, an investigation into the relative effectiveness the 

modified PMC GMM-UBM with CT-Norm approach for OSTI-SI has also been 

presented. It has been shown that the performance of OSTI-SI is severely affected 

when the level of degradation in the test material is different from that in the 

training utterances. The outcomes of the experimental investigations have clearly 

demonstrated that in these adverse scenarios, deploying the modified PMC GMM-

UBM approach can significantly improve the accuracy of the first stage of the 

OSTI-SI process (up to 79% for severely degraded data conditions). It is also 

shown that that the use of CT-Norm with the said approach is of considerable 

benefit to the verification stage. In this case, the average accuracy improvement 

relative to conventional GMM-UBM is found to be around 25%.  
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CHAPTER 6    

MULTI-SNR CT-NORM FOR SPEAKER 

RECOGNITION 
 

Chapter Overview 

This chapter presents a new approach to condition-adjusted test-normalisation 

(CT-Norm) for speaker verification under significant mismatched noise conditions. 

The experimental investigations are conducted using GMM-UBM and examples of 

real-world noise. Based on the outcomes, it is demonstrated that the proposed 

approach effectively outperforms CT-Norm in extreme cases of noisy test data. This 

is attributed to the greater ability of the proposed method to reduce the mismatch 

between the training and testing material, and also to the fact that the approach 

lends itself more effectively to the fast-scoring principles in the GMM-UBM 

paradigm. Section 6.1 describes the motivations for this study. The proposed 

method and its characteristics are detailed in Section 6.2. The experimental 

investigations and an analysis of the results are then presented in Section 6.3.  

In Section 6.4, the use of the proposed approach for OSTI-SI is considered, and a 

new method termed Multi-SNR Fast CT-Norm is introduced to retain its 

computational efficiency in this case. The experimental investigations are detailed 

in Section 6.5.  
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6.1 Motivations for proposed approach  

In Chapter 5, it is demonstrated that T-Norm becomes highly effective when the 

target and the background speaker models are adapted to the noise condition in the 

test data. Figure 6.1 summarises the approach proposed for this purpose (the 

technique is referred to as Condition adjusted T-Norm: CT-Norm). As indicated in 

the Figure, the method involves first contaminating the speech material for the 

target and background speakers according to an estimate of noise in the given test 

utterance.  The resulting (contaminated) speech utterances are subsequently used to 

adapt a clean UBM in order to generate the required speaker models (i.e. target and 

background). It has been pointed out that although it is more appropriate to use a 

noise-adjusted UBM, creating this in the test phase is not viable due to the 

associated increase in computational cost . However, according to the study in the 

previous chapter, the adverse effects of using a clean UBM become more noticea-

ble with the increased severity of noise contamination in the test utterance.   

 

 

Figure 6.1: CT-Norm approach. 
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6.2 Multi-SNR CT-Norm  

In order to tackle the problem highlighted in the previous section, a departure from 

the original approach to CT-Norm is proposed with the view to achieve improve-

ments in the verification accuracy (especially, for severely contaminated test 

utterances), whilst the computational efficiency in the test phase is largely retained. 

The idea involves replacing the single clean UBM used in the original method with 

a set of degraded UBMs. Each such UBM is built by first contaminating the given 

training utterances using white noise to achieve a specific level of SNR (signal-to-

noise-ratio). In the verification phase, first an estimate of the noise in the test 

utterance is used to contaminate the whole of training material for the target and 

background speakers. Then, the test utterance is scored against each of the available 

degraded UBMs. Finally, the UBM which yields the highest likelihood is selected 

for obtaining adapted target and background speaker models using the degraded 

reference material resulted in the first step. This reinforces the closeness of the 

degradation condition in the target and background models to that in the test 

utterance. This method, which is referred to as Multi-SNR CT-Norm in the 

remainder of this chapter, is illustrated in Figure 6.2. 

 

Figure 6.2: Multi-SNR CT-Norm approach 
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It should be noted that a Multi-SNR GMM approach has previously been proposed 

in the literature [93]. In that study, each registered speaker is represented by 

multiple decoupled GMMs, each built (a priori) using training utterances which are 

contaminated with      noise to achieve different SNRs (note: the noise is defined 

in terms of its spectrum     , where   is the frequency and   is an adjustable 

parameter which controls the noise spectrum). In the test phase, the degraded target 

model which best matches the test utterance is chosen for the purpose of 

verification.  

The technique proposed in this chapter operates in the GMM-UBM paradigm, and 

its novelty is that it attempts to reduce the mismatch between the training condition 

of the UBM and the test condition. This results in a twofold advantage. First, it 

facilitates an improved adjustment of the target and background speaker models 

(which are obtained by UBM adaptation) to the noise condition in the test utterance. 

Secondly, it matches the fast-scoring principles in the GMM-UBM paradigm [12] 

more closely than the original CT-Norm method, and thereby offers enhanced 

verification score accuracy, particularly, in the case of more severely contaminated 

test utterances.  

Suppose that the multi-SNR UBMs are represented as 

                                
        

 where            and      are the weight, 

mean and covariance associated with the m
th

 mixture of the i
th

-degraded UBM, M is 

the total number of mixtures in each UBM and I is the total number of UBMs. 

Additionally, suppose that condition adjusted speaker models are denoted as 

             , where     is the target speaker model and the rest are the background 

speaker models. In the Multi-SNR CT-Norm approach, the verification score is 

obtained as  

                  
 
                                                          

where                is the test vector sequence, and  
 
    and

 
      are the 

mean and standard deviation of                                   . Here,            

for               are computed in the following manner: (the procedure below is 

an adaptation of the fast scoring technique proposed in [12]. 
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In equations (6.3) – (6.5),           represents a multivariate Gaussian 

probability density function with mean   and covariance  . In (6.6),    

                          are the set of contaminated training vectors associated with 

the n
th

 speaker,   is the relevance factor for the mean statistics [12], and             

is the probability of       belonging to the m
th

-mixture of the chosen UBM (i.e.    -

UBM).  
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This probability is estimated in the following manner [12] 

 

            
                        

     
 
                     

                                        

 

It is important to note that          (Equation (6.6)) need to be evaluated only when 

required, and all the computed values of           can be cached for reuse. In other 

words, there is no need to perform a full target/background speaker model 

adaptation in the test trial. Instead, the requirement for mean adaptation can be 

identified and then fulfilled as part of the scoring process to save computation. To 

be specific, the procedure deployed in the scoring process can be expressed as 

follows. For each test vector, first determine the top K mixture densities through 

equation (6.5). Then, for each such density, check the cache for the availability of 

the adapted mean, or the lack of it. In the case of the latter, adapt the corresponding 

UBM mean using equation (6.6) and place the result in the cache. Using the 

adapted means available in the cache for the remainder of the scoring process (in 

the same test trial) can significantly reduce the computational cost. The exact extent 

of the computational saving achieved in this way varies from trial to trial, as it 

depends on the acoustic content of the test utterance.  

The Multi-SNR CT-Norm technique is also well suited for both distributed 

computing and multi-core processor environments as the intense parts of the 

calculations can be divided into concurrent tasks. Based on these observations, a 

computationally efficient realisation of the proposed approach, as shown in Fig.6.3, 

can be considered. 
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Figure 6.3: Implementation of Multi-SNR CT-Norm approach. 
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6.3 Experimental Investigations 

 

6.3.1 Speech Data, speaker representation  

The speech dataset used for the purpose of the experimental investigations is 

extracted from the TIMIT database [104]. The set includes 100 registered speakers 

and 80 unknown speakers, each with 10 utterances. The individual utterances are 

about 3 seconds long. The training material for each speaker model is based on 

concatenating five utterances. This setup results in 500 client scores and 129 500 

impostor scores. The speech material used for building the UBM consists of ten 

utterances from each of 200 speakers other than the ones registered or used as 

unknown speakers. As in the experimental setup described in the previous chapters, 

it should be noted that the speaker set used for UBM and the sets of registered and 

unknown speakers are all gender-balanced.  

The implementation of CT-Norm (or T-Norm where appropriate) is based on the 

training utterances from the cohort of speakers available within the set of registered 

users (i.e. 99 speakers on each occasion). 

6.3.2 Experimental Results and Discussions 

The previous investigations into CT-Norm [139] have involved both GMM-UBM 

and GMM-SVM methods. For the purpose of consistency, that study has been 

based on the use of a UBM of size 128 mixtures for both classifiers.  However, it 

has already been established that the use of a higher order UBM with the GMM-

UBM technique can, in general, lead to a higher accuracy in speaker recognition 

[12]. Knowing that the use of a high-order UBM with CT-Norm increases the 

computational load considerably, it is necessary to determine the level of accuracy 

benefit offered by such a UBM in this case. For this purpose, two sets of 

experiments with CT-Norm are conducted under mismatched noise conditions. The 

first set involves a UBM of size 128 mixtures whereas the UBM used in the second 

set of experiments is of 1024 mixtures. Three examples of real-world noise (i.e. car 

noise, office noise, and factory noise) obtained from the NOISEX 92 [138] and 

Piper [34] databases are used. As before, for each noise type, the test data is 

contaminated using a randomly selected segment (with the same duration as the test 
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utterance) of the original noise file to achieve SNRs of 15 dB, 10 dB and 5 dB. The 

training data and UBMs are based on clean speech. The experimental results for 

this investigation (and other experiments in this study) are presented in terms of 

Equal Error Rate (EER) with a 95% confidence interval.  

The outcomes of this comparative study are presented in tables 6.1 and 6.2.  It is 

noted that, in general, there are no advantages to be gained in terms of accuracy by 

using a UBM of 1024 mixtures. Given the computational efficiency offered by 

using a smaller UBM, it is therefore decided to adopt a UBM of 128 mixtures for 

the purpose of investigations in this study. 

EER (%) 

Clean UBM 

                                                                                        Test Data 
Noise Score 

normalisation 

SNR :15dB SNR :10dB SNR: 5dB 

Car CT-Norm 2.00 ± 0.62 2.60 ± 0.71 3.55 ± 0.82 

Office CT-Norm 2.60 ± 0.71 3.53 ± 0.82 7.20 ± 1.15 

Factory CT-Norm 1.85 ± 0.60 2.20 ± 0.65 4.43 ± 0.92 

Table 6.1: EERs in speaker verification (under various mismatched noise conditions) conducted 

using modified PMC-GMM-UBM with and without CT-Norm and a UBM of order 128. 

 

EER (%) 

Clean UBM 

                                                                                        Test Data 
Noise Score 

normalisation 

SNR :15dB SNR :10dB SNR: 5dB 

Car CT-Norm 2.25 ± 0.66 2.66 ± 0.71 3.60 ± 0.83 

Office CT-Norm 2.40 ± 0.68 3.80 ± 0.85 6.63 ± 1.11 

Factory CT-Norm 2.60 ± 0.71 2.43 ± 0.68 3.61 ± 0.83 

Table 6.2: EERs in speaker verification (under various mismatched noise conditions) conducted 

using modified PMC-GMM-UBM with and without CT-Norm and a UBM of order 1024. 

 

The aim of the next set of experiments in this study is to compare the relative 

effectiveness of Multi-SNR CT-Norm and CT-Norm. In this setup, the degraded 

UBMs which are employed in the proposed approach are built by contaminating the 

allocated training data with Gaussian white noise to achieve SNRs of 15dB, 10dB, 
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5dB and 0dB. It is important to point out the 5 dB SNR interval used for degraded 

UBMs is chosen based on the outcome of a preliminary set of investigations 

showing that a smaller interval (e.g. 1 dB) significantly increases the computational 

load in the test phase, without offering any relative improvements in accuracy. The 

estimation of test utterance degradation in the verification phase is based on the use 

of the first 200 ms of the contaminating noise. This is then used for contaminating 

the speech material for the target and background speakers. Furthermore, it should 

be pointed out that in this part of the study, for each noise type, the test data is 

contaminated to achieve SNRs of 15dB, 13dB, 10dB, 8dB, 5dB and 3dB. The 

reason for using three additional SNR levels is to evaluate the effectiveness of the 

proposed method when the contamination level of the test utterance does not 

exactly match that of one of the stored degraded UBMs, as well as when it does. 

The experimental results for this investigation are presented in tables 6.3 and 6.4.  

EER (%) 

Clean UBM 

                                                                                        Test Data 
Noise Score 

normalisation 

SNR : 

15dB 

SNR: 

13dB 

SNR : 

10dB 

SNR: 

 8dB 

SNR: 

 5dB 

SNR: 

 3dB 

 

Car CT-Norm 2.00 

±0.62 

2.50 

±0.69 

2.60 

±0.71 

3.40 

±0.79 

3.55  

±0.82 

4.20 

±0.89 

Office CT-Norm 2.60 

±0.71 

2.65 

±0.71 

3.53 

±0.82 

3.72 

 ±0.84 

7.20  

±1.15 

12.20 

±1.46 

Factory CT-Norm 1.85 

±0.60 

2.10 

±0.64 

2.20 

±0.65 

4.02 

±0.88 

4.43  

±0.92 

12.45 

±1.47 

Table 6.3: Effectiveness of CT-Norm for speaker verification. 

 

EER (%) 

Multi SNR UBMs 

                                                                                        Test Data 
Noise Score 

normalisation 

SNR : 

15dB 

SNR: 

13dB 

SNR : 

10dB 

SNR: 

 8dB 

SNR: 

 5dB 

SNR: 

 3dB 

 

Car CT-Norm 1.98 

±0.62 

2.20 

±0.65 

2.41 

±0.69 

2.60 

±0.71 

2.80 

±0.73 

3.40 

±0.81 

Office CT-Norm 1.60 

±0.56 

2.30 

±0.67 

2.26 

±0.66 

3.10 

±0.77 

3.40 

±0.81 

6.23 

±1.08 

Factory CT-Norm 2.00 

±0.63 

2.00 

±0.63 

2.29 

±0.67 

2.60 

±0.71 

3.00 

±0.76 

6.13 

±1.07 

Table 6.4: Effectiveness of the Multi-SNR CT-Norm approach for speaker verification. 
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The above results clearly indicate that, whilst the Multi-SNR CT-Norm offers better 

overall performance, its superiority becomes highly significant for more severely 

degraded test utterances (i.e. 3dB and 5dB). In these cases, the average relative 

improvements offered by the proposed method are in excess of 24%, 103 % and 

75% for car, office and factory noise respectively. Evidently, the relative 

improvements achieved are more considerable when the additive noise is of a less 

stationary nature (e.g. office noise).   

The next set of experiments compares the effectiveness of the proposed Multi-SNR 

with CT-Norm with an appropriate realisation of the Multi-SNR GMM method 

[93]. It should be noted that, as indicated earlier, the original version of Multi-SNR 

GMM method is based on the use of decoupled GMMs. Therefore, for the purpose 

of comparison, a modified version of the said technique is implemented in the 

GMM-UBM context. This is referred to as Multi-SNR GMM-UBM in the rest of 

this chapter. In this approach, for the purpose of consistency, the adaptation process 

is based on the same set of degraded UBMs used in the Multi-SNR CT-Norm.  The 

difference, however, is that in the Multi-SNR GMM-UBM approach, the target and 

background speaker models are adapted offline using training data contaminated 

with white noise. Moreover, in the case of this method, since the speaker models 

are not adjusted to the condition of the test utterance, the experiments conducted 

here are based on the use of conventional T-Norm (i.e. using the set of background 

speaker models which are subjected to the same level of degradation as the selected 

degraded target model). The experimental results for this part of the study are 

presented in Table 6.5.  

EER (%) 

Multi SNR GMM-UBM 

                                                                                                      Test Data 
Noise Score 

normalisation 

SNR: 

15dB 

SNR: 

13dB 

SNR: 

10dB 

SNR: 

8dB 

SNR:  

5dB 

SNR: 

3dB 

Car T-Norm 3.19  

±0.79 

3.40 

±0.81 

3.60  

±0.83 

3.83 

±0.85 

5.00 

±0.97 

8.00 

±1.21 

Office T-Norm 2.20 

±0.66 

2.60 

±0.68 

2.90 

±0.74 

3.32 

±0.80 

4.73  

±0.95 

10.00 

±1.34 

Factory T-Norm 3.00  

±0.81 

2.60 

±0.72 

3.40 

±0.81 

4.20 

±0.89 

8.27 

±1.3 

16.18 

±1.64 

Table 6.5: Effectiveness of the modified Multi-SNR GMM-UBM approach for speaker verification. 
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Comparing the results in tables 6.4 and 6.5, it can immediately be noticed that, 

under all the different data conditions considered, Multi-SNR CT-Norm is more 

effective than Multi-SNR GMM-UBM. These results clearly help to establish the 

enhanced capabilities of the former approach when dealing with unknown noise in 

the test stage.  Additionally, it is again observed that the superior performance of 

Multi-SNR CT-Norm is highly significant for more severely contaminated test 

utterances (i.e. 5dB & 3dB). The relative effectiveness improvements offered by the 

Multi-SNR CT-norm approach under mismatch conditions are further illustrated 

through the DET plots in Figure 6.4 (car noise), Figure 6.5 (office noise) and Figure 

6.6 (factory noise).  In all cases, the SNR for the test data is 3 dB. According to 

these DET plots, the proposed approach not only helps in reducing the overall EER 

but also decreases the relative miss probability and false alarm probability across all 

operating points.   

 

Figure 6.4: Relative verification effectiveness offered by the use of Multi-SNR CT-Norm under 

mismatched data conditions using car noise. 
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Figure 6.5: Relative verification effectiveness offered by the use of Multi-SNR CT-Norm under 

mismatched data conditions using office noise. 

 

Figure 6.6: Relative verification effectiveness offered by the use of Multi-SNR CT-Norm under 

mismatched data conditions using factory noise. 
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6.4 Multi SNR CT-Norm for OSTI-SI 

As indicated in Chapter 5, the nature of the problem in the second stage of open-set, 

text-independent speaker identification (OSTI-SI) makes it more challenging than 

that of conventional speaker verification. This problem can be re-expressed as a 

special (but unlikely) scenario in speaker verification in which each impostor 

targets the speaker model in the system for which (s)he can achieve the highest 

score [9].  As such, it may not be possible to foresee the effectiveness of the Multi-

SNR CT-Norm approach proposed in Section 6.2 based on the results obtained for 

speaker verification.  

Figure 6.7 illustrates the use of Multi-SNR CT-Norm approach for OSTI-SI. As 

shown in this Figure, in the verification phase, first, the test utterance degradation is 

used to contaminate the training utterances of all the registered speakers. Then, the 

test utterance is scored against each of the available degraded UBMs. The UBM 

which yields the highest likelihood is selected for obtaining noise-adjusted 

registered speaker models based on the mMAP adaptation of the means. As in the 

speaker verification context, the adaptation process is given by  

         
             

     
              

   

            
     
     

                                     

 

            
                        

     
 
                     

                                        

 

where all the symbols have the same meaning as in Section 6.2. 
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Figure 6.7: Multi-SNR CT-Norm for OSTI-SI 

 

Based on equations (6.8) and (6.9), it is clear that on-the-fly model adaptation, 

especially in the case of a large number of registered speakers, can become 

computationally intensive. This is because the probabilistic alignment of each 

contaminated feature vector with respect to the individual mixtures in the degraded 

UBM will have to be computed before the new mean statistics can be obtained. 

It should be pointed out that this can also become a problem in the speaker 

verification context, when the number of background speakers used for CT-Norm is 

increased. However, it has already been shown in the literature that this can be dealt 

with efficiently and effectively by assigning a specific (and smaller) set of 

background speaker models to each target speaker based on the Adaptive T-Norm 

(AT-Norm) method [126]. In this approach, the size of these speaker-specific sets is 

chosen to be a fraction of the entire background speaker population, but sufficiently 

large for computing the T-Norm parameters reliably.  

On the other hand, in the open-set speaker identification scenario, the problem is 

somewhat different because the number of registered speakers cannot be reduced to 

retain the computational efficiency. To address this problem, a new approach is 

proposed here for reducing the number of computations in the test phase. This is 

based on the assumption that the probabilistic alignments of artificially degraded 
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feature vectors and those of their corresponding real-world noise contaminated ones 

(at a specific SNR) are not significantly different.  

Under the above assumption, it may be possible to significantly reduce the 

computational load involved in building noise adjusted registered models through 

the UBM adaptation process. This is carried out as follows. First, the training 

utterances used for building registered speaker models and the UBM are 

contaminated with Gaussian white noise to achieve a set of equally spaced Signal to 

Noise Ratios (SNRs) at 15dB, 10dB, 5dB and 0dB. Under each SNR condition, the 

probabilistic alignments (Equation 6.7) of the degraded feature vectors of each 

registered speaker (with respect to the mixtures of the correspondingly degraded 

UBM) are computed and stored offline. In other words, in this scenario, each 

registered speaker model is associated with four sets of probabilistic alignments.  

In the test phase, a short segment (e.g. 200 ms) of the noise contaminating the test 

utterance is used to degrade the clean reference material from all the registered 

speakers. The test utterance is then scored against each of the available degraded 

UBMs. The UBM which yields the highest likelihood score as well as the set of 

stored probabilistic alignments (for each speaker) which corresponds to the SNR of 

the above selected UBM are then selected for obtaining noise-adjusted registered 

speaker models. In this case, however, the probabilistic alignments are not 

computed online but simply imported from the stored set of alignments to compute 

the adapted mean vectors (Equation 6.8). As a result, the computational efficiency 

during the test phase in relation to the Multi SNR CT-Norm approach is enhanced 

substantially. It is important to point out that, without this approach, it would be 

required to compute Equation (6.9) about (Tave  (B+1)  C) times in each test trial, 

where Tave is the average number of feature vectors for each given utterance, B is 

the number of background speaker utterances, and C is the number of mixtures in 

the UBM.   Once the noise adjusted models are obtained, the procedure is identical 

to the conventional Multi-SNR CT-Norm approach for OSTI-SI described above, 

i.e. the test utterance is matched against all the registered speaker models and the 

model that yields the maximum likelihood score is retained. Finally, the score for 

the speaker model selected as above is subjected to normalisation using T-Norm. 

The process is summarised in the following algorithm. 
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Algorithm 1 

Training stage 

for x= 0,5,10,15 do 

Contaminate registered speakers‟ clean training utterances and clean  

training utterances for training UBM with Gaussian white noise to achieve 

Signal to Noise Ratio (SNR) of x dB. 

   Train contaminated UBMs using the Expectation Maximisation (EM) algorithm 

   and store. 

end 

for i=1 to nb_registered speakers do 

Compute and store the probabilistic alignments for each set of  

degraded registered speaker utterances (eq.6.9). 

end 

 

Test stage 

  Match test utterance against each of the available degraded UBMs 

  Select UBM which yields the highest likelihood score  

  Contaminate registered speakers‟ clean training utterances using estimated test   

  noise 

for all registered_speakers 

  Estimate adapted mean vectors,     (eq. 6.8) using the set of stored probabilistic   

  alignments which corresponds to the SNR of the above selected UBM  

  Compute log-likelihood scores and retain speaker model which yields the  

  maximum likelihood score 

  end 

  Compute CT-Norm on the selected score as in [10] 

 

It can be seen in the above algorithm that the proposed computationally efficient 

approach involves the calculation, storage and use of all the probabilistic 

alignments for each feature vector with respect to the mixtures in the UBM. In 

practice, however, this may not be a necessity. Based on the study in [12], it can be 

argued that in the mMAP-based model adaptation, each feature vector of the given 

utterance exhibit strong alignments only to a small subset of the mixtures in the 

UBM. This point is further illustrated by the example in Figure 6.8 which shows the 

probabilistic alignment values (arranged in descending order) for a given feature 

vector, with respect to the mixtures in a UBM of 128
th

 order. As observed in this 

figure, the main alignments of the feature vector are only with about 5-6 mixtures 

in the UBM, which then contribute strongly to the model adaptation.   



 Chapter 6: Multi-SNR CT-Norm for speaker recognition  

Voice biometrics under mismatched noise conditions                                                                      117 

 

 

Figure 6.8: Example of the probabilistic alignment values of a feature vector with respect to a 128
th

 

order UBM, rearranged in descending order. Only the top 20 (out of 128) mixtures are shown here.  

 

The above is believed to provide a useful basis for further modifying the proposed 

approach in order to retain the computational efficiency of Multi-SNR CT-Norm. 

As with the previous approach, for each chosen SNR, the probabilistic alignments 

of the degraded feature vectors (of each registered speaker) with respect to their 

corresponding degraded UBM are computed in the training phase. In this case, 

however, for each feature vector, only the top N alignment values together with the 

corresponding mixture indices are stored. This is shown in Figure 6.9. It should be 

noted that in this study, a value of N = 5 which is in agreement with the study in 

[12], is found to give the optimum performance. 

During the verification phase, the procedure is similar to the one described earlier. 

The only difference is that instead of using the full set of alignments for each 

feature vector to compute the adapted means, only the top 5 alignments are utilised. 

As such, the proposed approach, which is hereafter referred to as Multi-SNR Fast 

CT-Norm can considerably enhance the computational efficiency in relation to the 

Multi-SNR CT-Norm approach during the test phase. It should be noted that term 

„Fast‟ in this case does not refer to the GMM-UBM fast scoring procedure [12] but 

to the use of only the top 5 probabilistic alignments in the model adaptation stage.  
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Note :          is the i
th

 sorted alignment probability of the t
th

 feature vector with respect to the 

corresponding mixture index     
  

Figure 6.9: Probabilistic alignment selection in the Multi-SNR Fast CT-Norm approach 

6.5  Experimental Investigations  

6.5.1 Experimental setup  

For the sake of comparison and consistency, the speech dataset and speaker 

representation used for the purpose of the experiments here are identical to those in 

used in Chapter 5 in the context of OSTI-SI. To be precise, the speech dataset used 

is extracted from the TIMIT database [104]. 100 registered speakers and 80 

unknown speakers are used, each having 10 utterances. Utterances from 200 

speakers, other than the ones registered or considered as unknown speakers, are 

used for training a UBM. In order to facilitate the experimental investigations, in 

each test trial, the implementation of CT-Norm (or T-Norm where appropriate) is 

based on the use of the training utterances from the cohort of speakers available 

within the set of registered users (i.e. 99 speakers on each occasion). As before, 

three examples of real-world noise (i.e. car noise, office noise, and factory noise), 
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obtained from the NOISEX 92 [138] and Piper [34] databases, are used to degrade 

the test data; achieving SNRs of 15dB, 13dB, 10dB, 8dB, 5dB and 3dB.  

6.5.2 Experimental Results and Discussions 

The aim of the first set of experiments is to compare the relative effectiveness of 

Multi-SNR CT-Norm and CT-Norm in the context of OSTI-SI. The second set of 

experiments then compares the effectiveness of Multi-SNR CT-Norm with that of 

the proposed Multi-SNR Fast CT-Norm approach. The experimental results for 

both sets of investigations are presented in terms of Identification Error Rate (IER) 

and Open-Set Identification Equal Error Rate (OSI-EER) in tables 6.6 and 6.7 

respectively. 

IER (%) 

Noise SNR 

(dB) 

CT-Norm Multi-SNR   

CT-Norm 

Multi-SNR 

Fast CT-Norm 

 15 5.40 5.40 5.80 

 13 6.80 5.40 5.80 

Car 10 5.80 6.40 6.20 

 8 7.40 7.20 8.20 

 5 13.60 11.20 11.80 

 3 17.00 13.00 18.40 

 15 6.60 4.80 5.00 

 13 8.00 5.40 5.60 

Office 10 12.60 8.20 8.40 

 8 17.40 10.80 11.80 

 5 32.20 18.60 18.00 

 3 50.80 32.40 41.00 

Factory 15 4.80 5.00 6.20 

 13 5.80 5.60 6.20 

 10 5.80 5.80 7.40 

 8 11.40 7.60 10.00 

 5 14.00 9.80 18.20 

 3 45.20 20.00 39.20 

Table 6.6: Relative effectiveness of CT-Norm, Multi-SNR CT-Norm and Multi-SNR Fast CT-

Norm in terms of IER (%)  

It can be observed from the results in Table 6.6 that, in general, the effectiveness of 

the Multi-SNR CT-Norm approach in terms of IER is better than that obtained for 

the CT-Norm method. Such an improvement in accuracy is seen to become more 

considerable in cases where the test utterances are severely contaminated (i.e. 3dB 

& 5dB) with noise types which are less stationary in nature (e.g. office & factory 
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noise). In these cases, the average relative improvements in IER offered by the 

Multi-SNR CT approach are in excess of 38% and 39% respectively. 

Furthermore, by comparing the results for Multi-SNR CT-Norm and Multi-SNR 

Fast CT-Norm, it is noticed that the performance of the two approaches does not 

appear to be significantly different when the SNR of the test data is between 15dB-

10dB. However, it is seen that when the test data is further degraded (e.g. SNR = 3-

8 dB), there is a substantial drop in the accuracy of the latter approach for all the 

types of noise considered.  

OSI-EER (%) 

Noise SNR 

(dB) 

CT-Norm Multi-SNR   

CT-Norm 

Multi-SNR 

Fast CT-Norm 

 
15 12.62±1.53 12.20±1.49 12.25±1.49 

Car 13 14.62±1.64 12.25±1.51 12.37±1.51 

 10 17.87±1.76 14.37±1.62 13.37±1.57 

 8 20.25±1.87 14.87±1.65 14.62±1.65 

 5 22.00±1.99 17.63±1.81 20.12±1.92 

 3 23.37±1.99 18.25±1.85 20.50±1.92 

Office 15 13.00±1.56 12.75±1.53 12.13±1.50 

 13 13.87±1.56 14.75±1.63 12.63±1.53 

 10 18.25±1.85 15.63±1.69 13.62±1.59 

 8 19.12±1.93 17.28±1.79 16.25±1.79 

 5 23.00±2.29 21.12±2.02 20.75±2.02 

 3 26.37±2.78 24.37±2.33 25.75±2.54 

Factory 15 13.63±1.58 10.37±1.41 10.75±1.43 

 13 13.13±1.58 11.13±1.44 11.50±1.47 

 10 15.75±1.68 13.37±1.57 13.37±1.57 

 8 17.00±1.78 14.25±1.63 14.25±1.63 

 5 23.00±2.29 19.50±1.86 20.00±1.98 

 3 26.63±2.61 24.00±2.14 26.63±2.59 

Table 6.7: Relative effectiveness of CT-Norm, Multi-SNR CT-Norm and Multi-SNR Fast CT-

Norm  in terms of OSI-EER(%). 

It is observed from Table 6.7 that, in terms of OSI-EER, the overall effectiveness of 

the Multi-SNR CT-Norm approach is again better than that of the original CT-

Norm. As before, it is also seen that the superior performance of the said approach 

becomes considerable when the test data is significantly contaminated with real-
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world noise. Similar to the investigations with CT-Norm for OSTI-SI, it also 

appears that the Multi-SNR CT-Norm is more effective in standard speaker 

verification (Table 6.4) than in the second stage of OSTI-SI. This again highlights 

the additional challenges in the second stage of OSTI-SI.  

Interestingly, taking into account the confidence intervals, it is observed that the 

difference in the results obtained using full mMAP adaptation (i.e. Multi-SNR CT-

Norm) and those obtained using the approximated mMAP adaptation (i.e. Multi-

SNR Fast CT-Norm) is not considerable. Put another way, whilst the use of Multi-

SNR Fast CT-Norm considerably reduces the number of computations during the 

test phase and the storage requirements when compared to storing the complete set 

of probabilistic alignments for each speaker, the variation in the level of accuracy is 

almost negligible. In fact, the enhancement in the computational efficiency offered 

by said approach (in the adaptation process) is in excess of 95% in relation to the 

both CT-Norm and Multi-SNR CT-Norm where a full mMAP adaptation is carried 

for each speaker. This level of enhancement is for the case of using a 128-mixture 

UBM.  In fact, the percentage of enhancement in computation efficiency, V = [(C - 

N) / C ] x 100 ), where C is the number of mixtures in the UBM and N is the 

number of stored probabilistic mixtures increases linearly with the size of UBM. 

Hence, depending on the application in which Multi-SNR Fast CT-Norm is 

deployed, it can be argued that the method provides a reasonable trade-off between 

computational efficiency, storage requirements and accuracy. 

 

6.6    Chapter Summary 

An approach to enhancing the effectiveness of CT-Norm for speaker verification 

under severe noise-mismatched conditions has been investigated. The method, 

which is termed Multi-SNR CT-Norm, aims to provide a closer adjustment of the 

target and background speaker models to the noise condition in the test utterance, 

than that obtainable with the standard CT-Norm method. This is achieved by means 

of multi-SNR UBMs which also offer the additional advantage of supporting the 

fast-scoring procedure in the GMM-UBM paradigm.  Based on experimental 

investigations, it has been shown that through the use of the Multi-SNR CT-Norm 

method, the verification accuracy can be significantly improved for severe noise-

mismatched conditions. Additionally, it has been observed that Multi-SNR CT-
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Norm offers considerable improvement in the verification accuracy when the noise 

in the test data is of a more non-stationary nature. For the purpose of completeness 

the performance of the proposed method is also compared with that of a relevant 

realisation of the Multi-SNR GMM approach. The results have clearly confirmed 

that Multi-SNR CT-Norm is more effective than the latter approach for all types 

and levels of noise considered.  

The Multi-SNR CT-Norm approach is then investigated in the open-set, text-

independent speaker identification (OSTI-SI) scenario. An analysis of the 

implementation requirements of the said approach in this context has revealed that, 

for a large number of registered speakers, it can become computationally intensive. 

This is mainly attributed to the need in performing a full mMAP adaptation in order 

to obtain noise-compensated models for each registered speaker. To tackle this 

problem, a Multi-SNR Fast CT-Norm approach is proposed. The technique is based 

on the assumption that the probabilistic alignments of artificially degraded feature 

vectors and those of their corresponding real-world noise contaminated ones (at a 

specific SNR) are not significantly different. In addition, for each speaker, only the 

top probabilistic alignments are stored and utilised during the test stage for model 

adaptation purposes. This is because each feature vector (from a given training 

utterance) usually exhibits strong alignments only to a small subset of the mixtures 

in the UBM. Based on the outcomes of the experimental investigations, it is showed 

that the overall performance of Multi-SNR CT-Norm is better than that of the 

original CT-Norm approach. Interestingly, it is observed that whilst the use of 

Multi-SNR Fast CT-Norm reduces the computational cost and storage requirements 

considerably, the variation in performance when compared to Multi-SNR CT-Norm 

(in terms of OSI-EER) is almost negligible. 
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CHAPTER 7  

SUMMARY, CONCLUSIONS AND FUTURE 

WORK 
 

The aim of this research has been to develop effective approaches for voice 

biometrics (speaker recognition) under mismatched noise conditions. To this end, 

the research study has been focussed on minimising the noise mismatch between 

reference speaker models and the given test utterance when using the state-of-the-

art speaker recognition approaches. This work has been carried out in the context of 

both text-independent speaker verification and open-set text-independent speaker 

identification (OSTI-SI). The summary and overall conclusions of this research 

together with some suggestions for future work are presented in sections 7.1 and 

7.2 respectively.  

7.1 Summary and conclusions 

For over two decades, the field of automatic speaker recognition has been receiving 

a great deal of attention from the research community. This is mainly attributed to 

the need for robust operation under real-world conditions.  One of the important 

facets of the extensive research in this field is that related to the robustness against 

background noise. The literature review, detailed in Chapter 2, has shown that a 

highly effective and widely adopted approach for this purpose is that of score 

normalisation. To date, however, most of the investigations with score 

normalisation techniques have been carried out using the relevant NIST databases 

[73, 103, 125]. This means the investigations have been limited in terms of the 

difference between the levels of noise contamination in the training and testing 

data; a condition which cannot be considered realistic in many real-world 

applications. 

In order to further study the performance of score normalisation, a set of 

experimental investigations has been conducted as detailed in Chapter 4. This has 

involved evaluating the effectiveness of test-normalisation (T-Norm), which is a 

highly effective and widely deployed score normalisation method, with the state-of-
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the-art speaker verification techniques (i.e. GMM-UBM and GMM-SVM). The 

experiments have been conducted under both matched and mismatched noise 

conditions. Based on the results obtained, it has been observed that T-Norm can 

provide considerable improvements to the verification accuracy of both approaches 

under matched data conditions. In general, however, its effectiveness has been 

found to reduce drastically when the data mismatch, resulting from noise 

contamination in the test utterance, becomes significant.  

In order to tackle this problem, a modified realisation of the parallel model 

combination (PMC) method for GMM-UBM has been introduced in Chapter 5. 

This is considered one of the major contributions to knowledge resulting from the 

study undertaken. As detailed in that chapter, in the case of GMM-UBM, the direct 

use of PMC involves the computationally expensive (and inefficient) process of 

rebuilding a UBM with degraded speech material during each test trial. The 

modified PMC approach involves the use of a fixed UBM built offline using clean 

speech to enhance the computational efficiency.  The problem with this approach, 

however, is that it reduces the effectiveness of the UBM normalisation technique. 

This can be attributed to the mismatch which is introduced between the clean UBM 

and the noise compensated target model which in turn, does not provide an 

effective means of score normalisation. Thus, in order to maximise the 

effectiveness of the modified PMC GMM-UBM approach, the concept of 

Condition adjusted T-norm (CT-norm) is proposed in Chapter 5. The method 

involves contaminating the speech material for background speakers (as well as the 

target speaker) according to an estimate of noise in the given test utterance.  The 

resulting (contaminated) speech utterances are subsequently used to adapt a clean 

UBM in order to generate the required speaker models. During the matching phase, 

the degraded test utterance is scored against the condition adjusted speaker models 

(i.e. target and background). Following this, the normalisation parameters (i.e. 

mean and variance) are computed (based on the likelihood scores for the 

background speaker models) and used to perform Test-normalisation (T-Norm).   

This approach has been shown to outperform the standard T-norm method under 

various noise-mismatched conditions. Based on the experimental results, it is 

observed that the relative improvement achieved for GMM–UBM (under the most 
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severe mismatch condition considered) is in excess of 70%. Moreover, it has been 

found that, while the accuracy performance of GMM–SVM can also considerably 

benefit from the use of these techniques, the additional computational cost involved 

in this case can severely limits the use of such a combined approach in practice. 

An investigation into the relative effectiveness of the modified PMC GMM-UBM 

with CT-Norm approach for OSTI-SI has also been presented in Chapter 5. It is 

argued that the problem in the second stage of OSTI-SI is more challenging than 

that of the standard speaker verification. This is due to the fact that the requirement 

in the second stage of OSTI-SI is to discriminate each out-of-set speaker from its 

best matched speaker in the registered set. Hence, making it unrealistic to fully 

predict the effectiveness of the proposed approach in the context of OSTI-SI, based 

on the results obtained for SV. The outcomes of the experimental investigations 

have clearly demonstrated that under mismatched noise scenarios, deploying the 

modified PMC GMM-UBM approach can significantly improve the accuracy of the 

first stage of the OSTI-SI process (up to 79% for severely degraded data 

conditions). It is also shown that that the use of CT-Norm with the said approach is 

of considerable benefit to the verification stage. In this case, the average accuracy 

improvement relative to conventional GMM-UBM is found to be around 25%. 

Another key original aspect of this research work is the introduction of an approach 

to enhancing the effectiveness of CT-Norm for speaker verification under severe 

noise-mismatched conditions (Chapter 6). This is motivated by the outcomes of the 

study in Chapter 5 indicating that the adverse effects of using a clean UBM become 

more significant when the severity of noise contamination in the test utterance 

increases. To tackle this problem, the proposed method (termed Multi-SNR CT-

Norm) aims to provide a closer adjustment of the target and background speaker 

models to the noise condition in the test utterance, than that obtainable with the 

standard CT-Norm method. This is achieved by means of a multi-SNR UBM 

approach which also offers the additional advantage of supporting the fast-scoring 

procedure in the GMM-UBM paradigm.  Based on experimental investigations, it 

has been shown that through the use of the Multi-SNR CT-Norm method, the 

verification accuracy can be significantly improved for severe noise-mismatched 

conditions. Additionally, it has been observed that Multi-SNR CT-Norm offers 
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considerable improvement in the verification accuracy when the noise in the test 

data is of a more non-stationary nature. For the purpose of completeness, the 

performance of the proposed method is also compared with that of a relevant 

realisation of the Multi-SNR GMM approach. The results obtained have clearly 

confirmed that Multi-SNR CT-Norm is more effective than the latter approach for 

all types and levels of noises considered.  

The proposed Multi-SNR CT-Norm approach is also investigated in the open-set, 

text-independent speaker identification (OSTI-SI) scenario. An analysis of the 

implementation requirements of the said approach in this context has revealed that, 

for a large number of registered speakers, it can become computationally intensive. 

This is mainly attributed to the need for performing a full mMAP adaptation in 

order to obtain noise-compensated models for each registered speaker. To tackle 

this problem, a Multi-SNR Fast CT-Norm approach is proposed. The technique is 

based on the assumption that the probabilistic alignments of artificially degraded 

feature vectors and those of their corresponding real-world noise contaminated ones 

(at a specific SNR) are not significantly different. Under this assumption, it is 

shown that the probabilistic alignments of each degraded feature vector (with 

respect to the mixtures of the correspondingly degraded UBM) can be computed 

offline and simply imported during each test trial to compute the adapted mean 

vectors. In addition, for each speaker, only the top probabilistic alignments are 

utilised for model adaptation purposes. This is because each feature vector (from a 

given training utterance) usually exhibits strong alignments only to a small subset 

of the mixtures in the UBM. Based on the outcomes of the experimental 

investigations, it is demonstrated that the overall performance of Multi-SNR CT-

Norm is better than that of the original CT-Norm approach. Interestingly, it is also 

observed that whilst the use of Multi-SNR Fast CT-Norm reduces the 

computational cost and storage requirements considerably, the variation in 

performance when compared to Multi-SNR CT-Norm (in terms of OSI-EER) is 

almost negligible. 
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7.2   Suggestions for future work 

This section briefly discusses some avenues for future research which could be used 

to extend the work presented in this thesis. 

The investigations presented in this thesis can be extended to complement other 

techniques which have been proposed in the speaker recognition literature to 

minimise the effects of mismatch data conditions caused by communication 

channel effects [15, 71, 128, 131, 132, 134, 135]. One such approach, which is used 

within the SVM framework, is that of Nuisance Attribute Projection (NAP) [71, 

131, 132]. This approach has been experimentally investigated in this thesis and 

found to give good improvements in accuracy when the data is also affected by 

channel mismatch (i.e. on the NIST SRE database). More recently, a Joint Factor 

Analysis (JFA) approach has been shown to give promising results when dealing 

with the adverse effects channel mismatch [15, 128, 135, 141]. This is mainly 

attributed to the ability of JFA to explicitly model inter-session variability (i.e. 

channel/intra-speaker variations between the enrolment and test stages). To date, 

one important limitation of such approaches is that they rely on the availability of 

large labelled
7
 development databases that characterise all the different 

communication channels which are expected during the test trials in order to be 

effective [110]. However, given that the JFA methodology is still in the 

development stages and is constantly being refined to improve its effectiveness, it 

can be expected that this limitation will also be addressed to enable the deployment 

of the said approach in practical situations. Further investigations will therefore 

need to be carried out to develop effective and efficient approaches of combining 

the methods proposed in this thesis with such emerging methods in order to 

enhance the overall speaker recognition accuracy under adverse operating 

conditions.  

The investigations carried out in this study have been based on the assumption that 

relatively short utterances are obtained during each test trial (i.e. about 3 seconds). 

This is considered to be a reasonable assumption which also adds to the challenge 

of many speaker recognition applications in practice. Nevertheless, in many real-

                                                 
7
 Each speaker‟s development utterances (recorded under different channel conditions) are clearly 

labelled such that they can be grouped together in the database.  
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world speaker recognition applications, the user is not constrained to provide short 

test utterances. Although it has been shown that approaches proposed in this thesis 

can deal with non-stationary type of noises, in such cases, it may not be appropriate 

to perform the noise compensation process using only a short estimation of the test 

noise (obtained in a non-voice segment at the beginning of the utterance). This is 

because in many operating environments, the characteristics of the noise 

contamination can vary drastically. Further research is therefore required to develop 

robust noise estimation approaches, which have the ability of identifying segments 

within the test utterance where changes occur in the characteristics of the 

background noise. In such a scenario, the noise contamination process may need to 

be carried out dynamically such that, whenever the characteristics of the 

background noise appear to have changed, new condition adjusted speaker models 

can be trained using the noise estimates. During the matching process, each noisy 

segments from the test utterance can be matched against the corresponding noise 

compensated speaker models (of the same noise characteristics) to generate more 

robust likelihood scores. The final speaker recognition decision can then be based 

on the score-level fusion of the said likelihood scores. There are various fusion 

methods such as logistic regression and support vector machines [3, 142, 143] that 

can be investigated in this context. This is however, just one possible approach 

which will need to be investigated thoroughly together with other potential 

techniques before an effective solution can be found.  

The work reported in this thesis has been focussed on minimising the effects of 

mismatched noise conditions on speaker recognition by enhancing the effectiveness 

of score normalisation approaches. The proposed approaches have been thoroughly 

investigated on the TIMIT database with artificially added real-world noise. As 

discussed in Chapter 2, the main reason for using the TIMIT database is that it 

remains amongst the only widely used and readily available speech corpora which 

comprises speech utterances recorded under clean conditions. As such, real-world 

phenomena such as the Lombard effect, [144] which is the involuntary increase in 

the intensity of one‟s voice when speaking in loud noise, have not been considered. 

Future research should therefore be concentrated on investigating the effectiveness 

of approaches proposed in this thesis under these conditions. In order to isolate and 

quantify the adverse effects of such phenomena, it is strongly believed that newer 



 Chapter 7: Conclusions and future work  

Voice biometrics under mismatched noise conditions                                                                      129 

 

and larger databases for investigating noise contamination under real-world 

conditions should be collected and made available to the speech research 

community.  
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APPENDIX A 

MAXIMUM LIKELIHOOD TRAINING 
 

The Maximum Likelihood (ML) based GMM model training process is considered 

as the process of clustering the speaker‟s training feature vectors into C clusters (or 

mixtures) within the feature space. It should be pointed out that this process is 

called „unsupervised‟ (also known as the incomplete data problem [40] ) due to the 

fact that the acoustic class of each feature vector is not available a priori.  

Given a set of T training vectors, O= {o1, o2,…., oT} , the aim of the ML estimation 

is to find the model parameters              
 , which maximise the likelihood 

function of the GMM. This is given as 

                                                                    

 

   

 

As mentioned earlier, diagonal nodal covariance matrices are used during the 

training process. This implies that only the variances parameters are utilised
8
.  

Hence, here,   
  is the variance vector for the c

th
 Gaussian component. Maximising 

the above function involves differentiating it with respect to the parameter set  

           
  , for i=1,…..,C and equating to zero as follows [40]  

         

  
                                                               

The problem, however, is that obtaining a closed-form solution for evaluating the 

above expression is difficult to obtain. To overcome this issue, an iterative process 

based on the Expectation-Maximisation (EM) algorithm is deployed [11]. This 

process guarantees a monotonic increase in the likelihood function. In other words 

after each iteration, the probability of the estimated model in relation to the 

distribution of the training feature vectors is expected to increase. The EM 

algorithm is a two-step process. This consists of the expectation step (or E-step) 

                                                 
8
 The diagonal elements of a covariance matrix are the variances of the vector. 
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where a new estimate of the parameters is computed based on the initial (or current) 

parameter estimates and the given training data.  In this step, since the acoustic 

class correspondence of the feature vectors is unknown, it is estimated using the a 

posteriori probability for acoustic class, i, given the observation,     

 

           
        

       
  

        

   
 
         

                                  

Based on the above a posteriori probability, the GMM parameters for each mixture 

component can be estimated as follows [118]  

    
 

 
                                                               

 

   

 

 

      
            

 
   

           
 
   

                                                    

 

   
   

            
      

   
   

           
 
   

                                       

where the notation ^ represents an estimated parameter.  

In the M-step, the model parameters are updated with those computed during the E-

step, and the iteration is repeated until the likelihood function converges (i.e. 

                 .  

During the implementation of the ML algorithm, there are three important factors 

that need to be taken into consideration. These include the approach chosen to 

obtain the initial estimates of the GMM, the number of mixtures in the GMM and 

variance limiting: 

 There are several ways in which the initial estimate of the GMM parameters can 

be obtained. This can be done randomly or by some form of clustering of the 

training data such as the VQ [118], LBG [39] or distortion driven cluster 
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splitting (DDCS) [31]. The latter approach has been reported to provide faster 

convergence speed and higher model likelihood during the ML procedure and is 

therefore adopted for the purpose of this work. 

 

 The determination of the optimum number of mixtures is very important for the 

performance of the speaker recognition system. Choosing a GMM with a limited 

number of mixtures can produce speaker models which do not accurately model 

the inter-speaker characteristics from the training data. Conversely, choosing too 

many mixtures (especially when there is limited training material) can result in 

over fitting of the training data .Hence, the speaker GMM loses the ability to 

generalise to unseen data. In general, it is found that the best trade-off is that the 

model order M should not exceed  ~T/100 where T is the number of training 

vectors [145]. Obviously, this rule of thumb only applies when there is a 

sufficiently large number of training vectors. When the number of training 

vectors is limited, it appears from the study in [118], that the minimum number 

of mixtures to adequately model speaker voices appears should be 16. 

 

 It is also observed that in some cases, the variances of the mixture densities 

which are estimated during the ML procedure can become very small in 

magnitude (negligible). This can result in a singularity of the likelihood function. 

To avoid this problem, variance limiting can be imposed during the training 

process [118]. In this work, a value of 0.01 is used. This value has been shown 

to be dependent on the type of speech cepstral features used [11].  
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APPENDIX B 

SUPPORT VECTOR MACHINES: 

FUNDAMENTAL CONCEPTS 
 

The discussion about Support Vector Machines (SVMs) in this appendix starts with 

a trivial linearly separable example. It is then shown in the subsequent sections how 

the same principle can be extended for more complex non-linearly non-separable 

problems. It should be noted that this discussion closely follows the tutorial in [59] 

and the introduction to SVMs in [58].  

B.1 Linearly separable case 

Figure B.1 illustrates a linearly separable example with training instances from two 

classes in a two-dimensional space. In this example, the dark line represents a 

separating hyperplane
9
 which divides the space into two distinct classes. This is 

commonly given as 

                                                                                                                                                                                                

      

 

   

                                                        

where x = (x1 ,……,    )  are the training data points and    is the number of 

training instances.       denotes an inner product. The vector   defines a region 

perpendicular (normal) to the hyperplane while varying the value of   moves the 

hyperplane parallel to itself. These two quantities are usually referred to as the 

weight and the bias respectively. Hence,       , when the separating hyperplane 

correctly separates the two classes without errors.  

                                                 
9
 In this two-dimensional scenario the hyperplane is simply a line 
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Figure B.1: Illustration of a separating hyperplane for a two-dimensional training set 

However, it can immediately be seen from Figure B.1 that there are an infinite 

number of separating hyperplanes which can be found (few shown in dotted lines), 

all of which have zero error.  An intuitive choice for the best decision boundary is 

therefore the hyperplane with the maximum margin. In other words, it is the 

hyperplane which is exactly half way between the two classes. In order to maximise 

the margin, two parallel lines to the hyperplane, which also separate the two classes 

without errors, should be considered. This is shown in Figure B.2. The idea behind 

this approach is to keep the lines parallel to each other while allowing them to 

rotate and move as far apart as possible without (either line) making an error. The 

chosen boundary is then the line that splits the margin into half.  

 

Figure B.2: Margin maximisation  

Margin 

Hyperplane 
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As shown in Figure B.3, it can be assumed that any training instances which lie on 

the margin boundary (H1) will be +1 while those lying on the margin boundary 

(H2) will be -1. This is given by the following inequality 

                                             

                                                                                                      

                                                

                                                                                                     

where yi  is a label which corresponds to the class of    and    ϵ {-1,+1} 

Equations (B.2) and (B.3) can be combined to give the following inequality 

constraint   

                                            

                                                                 

                                                 

In order to find the perpendicular distance H1 and H2, the distance between H and 

H1 is first computed. This is given by
10

  

                                                       

         

      
 

 

      
 

 

     
                                            

                                                    

where ||.|| represents the Euclidean norm. 

The margin width (distance between H1 and H2) is then given by: 

                                                  

 

     
 

 

     
  

 

     
                                                 

 

                                                 
10

 Recall that the distance from a point (x0,y0) to a line Ax+By+c=0, is equal to |Ax0 +B y0 + c| / sqrt 

(A
2
+ B

2
) 
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Figure B.3: Calculating the margin size 

It is seen from that above that the decision boundary can be found by maximising 

Equation (B.6). Such a process is also equivalent to minimising the reciprocal of 

Equation (B.6). In other words, the margin can be maximised by minimising  

      

 
  while ensuring that there are no data points between H1 and H2. This is 

known as an optimisation problem and it is subject to the inequality constraints 

given in (B.4). It should also be noted that         instead of       to eliminate the 

square root function (which is an increasing function) without affecting the 

solution. This results in a quadratic programming problem (the objective function 

has quadratic terms while being constrained by linear inequalities) which is given 

by 

   
   

     
      

 
                                                                        

                                                                                 

                                            

Based on optimisation theory, the above problem which is in its primal form can be 

reformulated in its dual form by using Lagrangian multiplier. This is given as 
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Equation (B.4) can then be rewritten by multiplying the constraint equations using 

positive Lagrange multipliers and subtracting it from the objective function as 

follows 

 

           
 

  
                            

 

   
                       

                                                    

where               are the positive Lagrange multipliers. 

In order to simplify Equation (B.9),   can be assumed to be fixed while minimising 

with respect to        . This can be rewritten as 

 

   
   

                                                                                    

 
 

                                                              

 

   
      

   
 

 

  
     

 
                               

 

   
                       

 

   

        

 

From equation (B.10), it can be seen that when    
 
        the objective 

function is   . Based on equation (B.8), it can immediately be seen that this case 

is not helpful if the overall aim is to maximise the function for      On the other 

hand, when     
 
        it can be seen that the new objective function does not 

contain b. This is an interesting property which allows the said function to be 

minimised with respect to   only. To achieve this, the partial derivative of   is set 

to zero, such that 
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This gives 

        

 

   

                                                     

The above equation can now be substituted in Equation (B.9) to obtain the dual 

optimisation problem  

          
 

 
                 

 

     

                     

 

   
 

 

     
                          

                                          

    

 

   
 
 

 
                                                     

 

     
 

subject to        for all i and       
 
                                      

                                  while             are their corresponding 

class labels and Lagrange multipliers respectively. 

There are a few important observations which can be made from Equation B.13. 

These can also be seen as the motivations behind the use of the Lagrangian dual for 

solving the original problem. First, it is seen that the constraints in Equation B.4 are 

replaced by constraints on the Lagrange multipliers instead. Second, it is seen that 

the optimisation problem in Equation B.13 is formulated only in terms of   to 

obtain  . Both these properties make the Lagrangian dual easier to handle and 

solve. Finally, it can also be noticed that the training points appear only in the form 

of inner products. This, as will be seen later, is a very important factor which allows 

the concept of the maximum margin linear classifier to be used in non-linear 

scenarios. It should also be pointed out that the value of b does not appear in the 

dual problem (Equation (B.13)) and must therefore be computed from the primal 

equation once w has been computed using standard techniques [146].  In the 

solution, all training points for which      are called support vectors and lie on 

one of the hyperplanes H1 or H2 in Figure B.3, while all other training points have 

    . The support vectors therefore lie closest to the decision boundary and they 

are the critical elements of the training set. The other points have no influence on 
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the final solution. Hence, if they were removed or moved around (but did not cross 

H1 or H2) and the training was repeated, the same separating hyperplane would be 

found.   

The decision boundary      can also be reformulated by substituting (B.12) into 

(B.1) to give         

                                                         

   

   

        

where, x is the vector to classify, xi are the support vectors obtained during the 

training stage and     is the total number of support vectors. As before, the 

equation is constrained by       
 
    = 0 and     . All the other symbols have 

the same meaning as in the above equations.  

B.2 Linearly Non-separable 

The linearly separable maximal margin classifier, discussed in the previous section 

provides the fundamental concepts of SVMs. In real-world applications, however, it 

is very unlikely that the data will be linearly separable in the input space [58]. Thus, 

in order to overcome this problem while using the same underlying concepts as 

before, the linear constraints in equations (B.2) and (B.3) need to be relaxed. This 

approach, which is shown in Figure B.4, allows more training points are allowed to 

lie within the margin (or even be misclassified) during the optimisation stage rather 

than relying only on those which lie closest to the boundary. This is commonly 

known as a soft margin. This is done by introducing slack variables     ,i = 1,…,   

in the original constraints, which then becomes 

 

                                                                                                                                        

                                      

                                                                                                    

where ξi  ≥ 0  ∀ i 
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As before, the above equations can be combined to give the following 

constraint 

                                                               

 

 

Figure B.4: Linear separating hyperplanes for the non-separable case.  

 

It can be seen from Equation (B.17), that for an error to occur, ξi must be greater 

than 1. The resulting primal problem then becomes 

   
   

                     
      

 
             

 

                                         

                                                                                           

where the parameter C allows the user to trade off training errors vs. model 

complexity.  

Similarly to the linearly separable case discussed above, Equation (B.18) can be 

more easily solved by using the Lagrangian dual which can be simplified to give 

 

w 

b 
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subject to 

0          

     
 

   
   

It can immediately be seen that the above solution is equivalent to the optimal 

hyperplane for the linearly separable case in (B.13). The only exception in this case 

however, is that the Lagrange multipliers,    , are upper bounded by C. Thus, small 

value for C will increase the number of training errors, while a large C will lead to a 

similar behaviour to that of a hard-margin SVM [147]. This is because αi is now 

upper bounded by C and choosing a very large of C (e.g. infinity) will lead to the 

original constraints of     ≥ 0 of the hard margin. 

B.3  Non-linear SVM 

The discussion in the two previous sub-sections has been restricted to finding a 

linear separating boundary (hard margin or soft margin) in the input space. For 

more complex cases where the decision boundary is not a linear function of the 

input data, the above methods can be generalised such that a non-linear relationship 

can be found using a linear machine. This can be achieved by computing a fixed 

non-linear mapping of the input space to obtain a higher dimensional feature space, 

in which a linear boundary can be used.  

In order to understand this concept clearly, the example illustrated in Figure B.5 is 

considered. In this case, the input vectors are in a two dimensional space. This is 

often referred to as the input space. It can be clearly seen that a linear boundary 

cannot be found in this space. Thus, a non-linear transformation can be applied 

such that the data is mapped to a three dimensional space, known as the feature 

space. In other words, a vector x which comprises of two data points x1 and x2 can 

be mapped such that 
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where       is a mapping function such that  : R
d
 → H . R is the input space, d is 

the dimension of the input space (2 in this case) and R is the feature space.  

In this scenario, once the data is mapped to a three-dimensional space, a linear 

boundary can be found using the same approach as in the previous subsections. 

However, in practice, explicit knowledge of the dimensionality of the feature space 

is not a necessity. This is because, as seen in equations (B.13), the objective 

function is formulated such that the input vectors only appear as inner products 

pairs. As a result, it might be possible to directly compute the inner product of the 

vectors in the feature space in terms of the vectors in the input space. This concept 

can be easily understood by considering the inner product (in the feature space) of 

two training vectors based on the previous example. This is given as 

             

  
  
    

   

  
  
    

                                                

 Based on the above equation, it can immediately be seen that for this example, the 

inner product in the feature space is equivalent to sum of the inner product in the 

input space with another term (also defined in terms of the input vectors). This can 

be written in terms of a kernel function such that 

                                                                 

Equation (B.22) therefore implies that the inner products in the objective function 

can be replaced with a kernel function without explicit knowledge about the non-

linear mapping between the input space and the feature space. Mathematically, this 

is given as 

                                                                   

This is usually known as the „kernel trick‟ and provides significantly improvement 

in the efficiency of the optimisation algorithm. Thus, given a valid kernel function, 

the SVM output function (decision boundary) for non-linearly separable data is 

given as 
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where all the symbols have the same meaning as in the above equations.  

 

 

 

 

 

 

 

Figure B.5: Illustration of transformation to a higher dimensional space to obtain a linear boundary  

[147] 

Examples of commonly used kernels are: 

1. Linear kernel :              

2. Quadratic kernel :                  , in this case   =2 but it can also be 

increased to obtain a polynomial kernel. 

3. Gaussian Radial Basis Function:            
        

      where σ is the 

standard deviation which defines the kernel width. 

 

 

 

 

 

(a) (b) 

Not separable by a linear boundary Linearly separable 
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