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Abstract 

 

In present finite element study, the dynamics of incompressible isothermal flows of 

Newtonian and two generalised non–Newtonian models through complex mixing–

separating planar channel and circular pipe filled with and without porous media, 

including Darcy’s term in momentum equation, is presented. Whilst, in literature this 

problem is solved only for planar channel flows of Newtonian and viscoelastic fluids. The 

primary aim of this study is to examine the laminar flow behaviour of Newtonian and 

inelastic non–Newtonian fluids, and investigate the robustness of the numerical 

algorithm. The rheological properties of non–Newtonian fluids are defined utilising a 

range of constitutive equations, for inelastic non–Newtonian fluids non–linear viscous 

models, such as Power Law and Bird–Carreau models are used to capture the shear 

thinning behaviour of fluids.  

To simulate such complex flows, steady–state solutions are sought employing time–

dependent finite element algorithm. Temporal derivatives are discretised using second 

order Taylor series expansion, while, spatial discretisation is achieved through Galerkin 

approximation in combination to deal with incompressibility a pressure–correction 

scheme adopted. In order to achieve the algorithm of semi-implicit form Darcy’s–

Brinkman equation is utilized for the conversion in Darcy’s terms and diffusion, while 

Crank–Nicolson approach is adopted for stability and acceleration. Simple and complex 

flows for various complex flow bifurcations of the combined mixing–separating 

geometries, for both two–dimensional planar channel in Cartesian coordinates, as well as 

axisymmetric circular tube in cylindrical polar coordinates system are investigated. These 

geometries consist of a two-inverted channel and pipe flows connected through a gap in 
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common partitions, initially filled with non-porous materials and later with homogeneous 

porous materials. Computational domain is having variety it has been investigated with 

many configurations. These computational domains have been appeared in industrial 

applications of combined mixing and separating of fluid flows both for porous and non-

porous materials. Fully developed velocity profile is applied on both inlets of the domain 

by imposing analytical solutions found during current study for porous materials.  

Numerical study has been conducted by varying flow rates and flow direction due to a 

variety in the domain. The influence of varying flow rates and flow directions are 

analysed on flow structure. Also the impact of increasing inertia, permeability and power 

law index on flow behaviour and pressure difference are investigated. From predicted 

solution of present numerical study, for Newtonian fluids a close agreement is realised 

between numerical solutions and experimental data. 

During simulations, it has been noticed that enhancing fluid inertia (flow rates), and 

permeability has visible effects on the flow domains. When the Reynolds number value 

increases the size and power of the vortex for recirculation increases. Under varying flow 

rates an early activity of vortex development was observed. During change in flow 

directions reversed flow showed more inertial effects as compared with unidirectional 

flows. Less significant influence of inertia has been observed in domains filled with 

porous media as compared with non-porous. The power law model has more effects on 

inertia and pressure as compared with Bird Carreau model. Change in the value of 

permeability gave significant impact on pressure difference. 

Numerical simulations for the domain and fluids flow investigated in this study are 

encountered in the real life of mixing and separating applications in the industry. 
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Especially this purely quantitative numerical investigation of flows through porous 

medium will open more avenues for future researchers and scientists. 
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Chapter 1. Introduction 

 

1.1   Historical Background 

Over last 50 years, in computational fluid dynamics it is witnessed that the laminar flow 

of various fluids passing through complex channels and pipes filled with porous material 

and without porous material have persisted a very important and an interesting topic of 

industrial significance, particularly in many fields of processing industries. Normally, due 

to complex flow phenomena of non–Newtonian fluids that displays very complex 

rheological behaviour and complexity of domain makes industrial problems much 

vigorous to handle. Therefore, presence of these complications give impetus and many 

challenges to mathematicians and scientists. Numerous industrial examples can be 

described, however, only few applications are highlighted, such as crude oil extraction 

and enhanced oil recovery in petroleum industries, ceramic, chemical, cosmetic, drying, 

filtration, food and pharmaceutical processes industries, various reactors and many other 

applications [(Walters and Webster et al, 1982), (Baloch, et al. 1995a) , (Tanner, 2000), 

(Xia and Sun, 2002), (Al–Nimr and Aldoss, 2004), (Hossain, et al., 2009),(Afonso, et al., 

2011) , (Echendu, et al., 2011), (Zhou, et al., 2012), and (Hossain, et al., 2013)]. 

 

Incompressible laminar flows of fluids have been investigated in complex domains filled 

with or without porous media [(Baloch, et al,. 1995a), (Alazmi and Vafai, 2001), (Al–

Nimr and Aldoss, 2004) and (Echendu, et al., 2011)]. In the last few decades, 

development in modern high-speed computers has advanced to develop numerical 

algorithms that are sophisticated in design. The complex flow physics using computer 

simulations in a domain filled with porous material has been implemented practically and 
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recognized and further developed by the institutes of the world (Al–Nimr and Aldoss, 

2004). An anticipated characteristic of the Computational Fluid Dynamics (CFD) 

approach due to the performance capability in parameter based simulations. Since last 

three decades, a significant progress has augmented the evolutionary knowledge related 

to numerical instabilities and nature of flow, like turbulence and unsteadiness. 

Mathematical modelling of the flow phenomena through combined mixing and separating 

along with other modifications, see the initial work of [(Cochrane, et al., 1981 and 1982) 

and (Walters and Hafez, 1982)], solved experimentally and numerically adopting finite 

difference method, followed a few two dimensional analysis by (Baloch et al., 1995a) 

employing finite element algorithm and (Afonso et al,. 2008) used finite volume 

technique.  

 

Flow in mixing and separating along with other modifications in a rectangular channels 

and pipes filled with or without porous media, presents many an interesting flow 

phenomena, such as, presence singularities at sharp corners, development of trailing edge, 

lip and longitudinal vortices, flow transition, meandering effects and turbulence all arise 

in the same domain  [Cochrane et al., 1981), (Baloch et al., 1995a) and (Afonso et al., 

2008) and  (Echendu et al., 2011)]. 

 

(Baloch et al., 1995a), also simulated mixing and separating flow utilising time dependent 

finite element technique for the solution of highly elastic flows. For elastic flows a so 

called Taylor-Petrov-Galerkin algorithm is used. The method known as pressure–

correction is applied for achieving the incompressibility with accuracy in second order. 

For Newtonian fluid flows, these authors, an equal flow rates in both arms of a channel 
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had adopted. For viscoelastic simulations, a class of shear thinning Phan–Thien and 

Tanner (PTT) (Phan–(Thien and Tanner, 1977 and 1978), constitutive model has been 

used to display shear–thinning effects numerically and the impact of variations in gap 

width between inserted parallel plates. Also different material parameters and flow 

conditions investigated.  

 

(Afonso et al., 2011) calculated the lower values of inertia effect on the flow rate using 

the same geometry, even the creeping flow or limited vanishing inertia. In the latest study 

by (Echendu et al., 2011), for both Newtonian and viscoelastic fluids, a numerical study 

has also been performed for same flow domain. 

 

1.2   Motivations 

The fundamental motivation of the current study is designing, predicting, and 

analysing the numerical algorithm to address the phenomena of complex flow within 

Newtonian and non–Newtonian fluids; this is considered to be one of the challenging 

problems in the past for computational rheologists (Walters and Webster, 2003). This is 

due to industrial importance of many complex problems, rheological behaviour of non–

Newtonian fluids and flow though porous materials in many processing industries. 

1.3 Aims and objectives 

The aims and objectives for the current research are given in this section for the 

Newtonian and non-Newtonian fluid flows of combined mixing and separating in a 

channel and circular pipes filled with porous and without porous media. 
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1.3.1 Aims 

The aim of this research work is the further development of the sophisticated 

numerical model for both Newtonian and non–Newtonian fluids in combined flow mixing 

and separating within the circular pipes and rectangular channels in non – existence and 

existence of homogeneous of porous material. 

1.3.2 Objectives 

1. To analyse the past literature on numerical solutions and experiments relevant to the 

current aim and objectives 

2. To validate the model and predictions made in the current study against past 

researches, numerical solutions, and experiments. 

3. General discussions on flow behaviour of predicted steady–state solution of 

isothermal complex laminar flow of Newtonian and non–Newtonian fluids will be 

presented. 

For Newtonian and non–Newtonian fluids, research into the laminar flow through 

channels and pipes filled with porous material the flow structure, development of eddies 

and pressure drop is a field of importantance for scientists and engineers. In this light, 

current study has been stimulated to explore insight mathematical influence of the inertia 

(Reynolds number) and pressure drop on the flow phenomena in both rectangular 

channels and circular pipes filled with homogeneous porous materials. In many research 

papers in the past, mixing and separation of fluids in channels and pipes has been 

considered as the primary aim of the studies. Due to relevance to many industrial 

applications, this classical problem has fascinated significant consideration, because of 

its complex flow arrangement. Recently, this problem is considered as benchmark 
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problem for comparison and validation purpose, due presence of singularities at sharp 

corners and development of complex flow structure, present challenges to both 

experimental and numerical analysts which facilitates experimental calibrations or 

numerical implementations. Within these channels, nonetheless, the flow phenomena is 

very complex. 

 

This study, identify a critical inertial value (Reynolds number), at which inertia influence 

on the development of embryo vortices and with increasing inertia, become more visible, 

demonstrate the presence of inertial effects on vortex enhancement and pressure 

difference. Secondly, this study intends to illustrate the effects of Reynolds numbers 

generates the onset of instability. On the two–dimensional flows in a rectangular channel, 

the numerical simulations have been lead to study the flow structure, vortex enhancement 

and appreciates the impact at various Reynolds number values. Research investigations 

in the literature shows only few results for different configurations for mixing and 

separating flow problem obtained with experimental and different numerical schemes. 

There is still need to consider variety of combinations along with changing fluid 

materials, flow directions and flow rates.  

 

In this study a numerical investigation of mixing and separating flows in channels and 

pipes filled with homogeneous porous media will be addressed for its importance in the 

physical applications like [(Neale and Nader 1974), (Adler, 1992), (Abu-Hijleh and Al-

Nimr, 2001), (Alazmi and Vafai, 2001), (Alkam et al., 2001) and (Al-Nimr and Aldoss, 

2004)]. Adopting a finite element technique, a steady two–dimensional flow structure, 

development of vortices and flow bifurcation in rectangular channels at different flow-
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rates will be investigated. Effects of the inertia on the size of recirculation, location and 

number of vortices will be determined along with flow patterns. Numerical predicted flow 

structure will be compared with the other numerical as well as experimental flow structure 

as reported by former investigators. Furthermore, this research work also investigates new 

features of the vortices enhancement and structure by changing in flow rates. The 

distinctive feature of flow structure will be displayed. The study investigates the varying 

flow rates for the inertia force and its effect. The influence of the Reynolds number value 

changes on the flow of the entire domain and flow patterns were studied.  

 

In the current study, isothermal laminar flow of Newtonian and non–Newtonian fluids 

passing through complex geometry has been considered. Many other complex flow 

domains also very important to address, however, due to occurrence of singularities at 

sharp corners where fluid entre in the vicinity of these sharp corners, such as, entry flow 

geometries are practically very important. The geometry of mixing and separation has 

same phenomena of flow in context of the development of complex vortices. The 

comprehensive deliberation is intentionally restricted to those investigations which are 

directly relate to the mixing and separating geometry experiments and numerical results. 

The research study selected specify a promising agreement between experiment and 

simulation. However, at the end of this research study as a matter of fact with the pleasure 

it is acknowledge that still there are too many problematic questions persist to be focused 

in future work. 
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1.4 Layout of the dissertation 

This report consists of ten chapters. Chapter–01, comprises an introduction with historical 

background of the research.  Motivations got from the history for selecting this research 

project. In the end aims and objectives are set.  

 

Chapter–02, depicts theory of porous media with its basic equations. In the end literature 

review with crtical approach is given. Table has been given for identified research gaps 

along with summary. 

 

Chapter–03, details the governing system of equations along with their dimensionless 

forms. This chapter also provides initial and boundary conditions used for the domain 

with and without porous media. The chapter also gives description of the rheometry and 

material functions for steady shear flows.   

 

Chapter–04, details and analyses the theoretical and practical application of cylindrical 

co-ordinate and Cartesian through numerical scheme. Explicit and implicit schemes used 

in current work are given in detail. Finite element discretization, solutions methods for 

resultant system of equations/Mass matrix construction, theory for stream function are 

also given. 

 

Chapter–05, details and analyses the Newtonian fluid’s simulated results of varying flow 

directions and rates within the channel filled with non-porous media. In all numerical 

simulations the effects of inertia on vortex development, influence of relative flow rates 

on flow structure with changing in flow directions, effects on pressure and mixing 
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separating effects all are discussed in detail. Possible comparisons are made against 

available experimental and numerical data available in an open literature. 

 

Chapter–06, presents numerically simulated solutions of flow passing through   mixing–

separating planar channel filled with porous material of Newtonian fluids. Impact of 

change in material parameters and its influence on inertia has been analysed to see the 

effects of Darcy’s number in Darcy’s–Brinkman’s transport momentum equation. Effects 

of inertia with changing flow rates and flow directions are examined on the flow domain 

and maximum pressure. The study analyses the Newtonian fluid flows for the effects of 

mixing and separating using the varied permeability values in the domain. 

 

Chapter–07, reports Newtonian flows in circular pipes filled with a porous and non-

porous media using cylindrical coordinates system. The chapter discusses the inertia 

effects on the structure and pattern of flow due to flow rate changes.  

 

Chapter-08, analyses the application of non-linear viscous models within the flow of non–

Newtonian fluid employed for the models; Bird Carreau and Power law in the cylindrical 

pipes, which is demonstrated through change of the flow rates and power law index with 

and without porous media.  

 

Chapter–09, covers general discussions on the accuracy and stability of numerical scheme 

used and results produced from chapter five to eight for both channel and pipe flows. 

Here comparisons are made when Newtonian and non-Newtonian fluid flows are passing 
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through a channel and pipe filled with and without porous media. Numerical results are 

also compared with experimental results.  

 

Finally Chapter–10, summarises the main findings from the overall study including 

novilities of this research project.In the end some recommendations have been made for 

the future research in this area. 
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Chapter 2. Theory of Porous Media and Literature Review 

 

2.1 Introduction 

In the field of computational fluid dynamics, the prediction of the non–linear system of 

Partial Differential Equations (PDEs) govern the simple as well as complex flows of both 

compressible or incompressible fluids, whereas fluids are Newtonian or non–Newtonian 

have been given considerable attention in the open literature  [(Chorin,  1968), (Whitaker, 

1986), (Bear, 1988), (Kakac, 1991), (Anderson, 1995), (Temam, 1995), (Ingham, 1998), 

(Nield, 1999), (Löhner, 2001), (Walters and Webster, 2003),(Versteeg and Malalasekera, 

2007) and (Vafai, 2010)]. 

 

During recent years, research in flow of fluids through porous material has received 

significantly high interest and attracted the attention devoted by engineers and scientists, 

due to its many industrial and real life applications. These are exemplified in diversified 

subjects, such as, applied mathematics, chemical processing industries (chemical 

reactors), civil (ground water hydrology, snow and soil mechanics), petroleum (reservoir 

engineering), environmental, mechanical, biological and biomedical (haemodynamic), 

and nuclear engineering, geothermal physics, food science and many other applications. 

There are several studies based on the porous media and flow rates of fluids. It is 

therefore, appropriate and timely to undertake a new critical estimation of modern 

evidences (Ingham, 1998). 

 

Porous materials are defined as solids containing pores or as bulk material containing of 

solid particles in between presence spaces. Mainly, it is characterised by its porosity and 
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ratio between spaces to the bulk material. Permeability, the measure of the flow 

conductivity, also characterised porous materials. In real life application, such as, 

purifying drinking water, filtration process, also use porous media, for example, activated 

carbon or porous ceramics, eliminating slit and sand particles (Kōzō Ishizaki, et al. 1998). 

 

In chemical, cosmetic and food processing industries, many processes, include fluid 

passing through complex tubes, conduits, and other processing type of equipment. In 

processes, flow become laminar which characterises the fluid move with small velocity, 

where inertial force is relatively small compared to viscous force. In many cases it arises, 

such as, sinking films, in thin capillaries, flow through porous material, flow around 

immersed bodies, and highly viscous diffusion dominant fluids. To describe the diffusion 

of fluid in porous media is through tortuosity, which is a property of curve being tortuous 

(twisted: with numerous turns), and several attempts have been made to compute the 

property (Heldman, 2003).  

 

There are many examples of porous medium, such as, porous soil, porous or fissured 

rocks, fibrous aggregates, loaf of bread, ceramics, sand filters, and filter paper are just 

few. Somewhat less obvious but still part of this group is also a good example of porous 

material which is large geologic formations of caustic limestone, where open passages 

such as solution channels or caverns may be of substantial size and far apart. All of these 

materials have some characteristic in common that permit them to be grouped and 

classified as porous medium (Bear, 1988). 
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In figure 2.1(a) and 2.2 (b), different rick spaces and natural porous materials are specified 

as examples. Various other images of porous media taken from Google images are also 

given in Figure[2.3(a–d)]. Advancements in flow through porous material lead to 

extended sophisticated models for the Darcy’s law, Darcy’s–Brinkman equation is 

applicable for large flow velocities and Darcy’s–Brinkman–Forchheimer’s equation takes 

into account the microscopic behaviour at low inertial values and boundary effects. 

 

Figure 2.1 (a): Normal porous material: (A) Shore Sand, (B) Stone, (C) Mineral, (D) 

Dough, (E) Timber, and (F) Lungs (Nield, 1999).  
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Figure 2. 2 (b): Diagram showing several types of Rock interstices (A) well sorted 

sedimentary deposit having high porosity; (B) poorly sorted sedimentary deposit having 

low porosity; (C) well sorted sedimentary deposit consisting of pebbles that are 

themselves porous, so that the deposit as whole have high porosity; (D) well sorted 

sedimentary deposit whose porosity has been diminished by the deposition of mineral 

material in the interstices; (E) Rock rendered porous by solution; (F) Rock rendered 

porous by fracturing Bear (1988). 

  

(a)     (b) 
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(c)      (d) 

Figure 2.3(a–d): Images of Prorous Media (Taken from google images). 

2.2 Representative Elementary Volume (REV) 

The regular mathematical equations were employed to develop macroscopic variables and 

governing laws via normal approach. It is achieved through means of macroscopic 

equations with three dimensional volume above the mean value as well as for the two-

dimensional areas with several pores. For obtaining mean, there are couple means, one is 

spatial way, while, other is through statistical approach. For special method, a 

macroscopic variable is described as a proper average over an adequately substantial 

illustrative elementary volume (Aboubacar, et al., 2004). This approach is used to produce 

value at the REV centroid for the variable, considering the results are independent of the 

REV size. The Figure 2.3 evidences the measure of REV length with the ample higher 

values of the macroscopic flow field in the pore gauge. The figure illustrates the 

comparison of the flow magnitude areas and gaps with transitional size. Employing 

statistical technique, an average is over a collection of probable nature of pore, which is 
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macroscopically similar. Usually, the collection of the statistical data is applied for the 

complete sample or all data collected. This is likely when statistical uniformity is 

presumed (Nield, 1999). If anyone who is interested only in evolving the relationship 

between the space–averaged measures is not apprehensive regarding their variation, then 

the solutions acquired by adopting both approach is necessarily similar. In this case, 

simpler approach based on the (REV) may be adopted. In recent years, various problems 

have been simulated adopting a statistical approach (Nield, 1999). 

 

Figure 2.4: The representative elementary volume (REV) (Nield, 1999). 

In various fields of engineering and applied sciences, alike, bio– and chemo–fluid and 

solid mechanics, one has frequently tackle continuum mechanics problems that cannot be 

categorised exclusively. In fact, the problems can be characterised, that necessitate a 

cohesive behaviour of volumetrically coupled solid collections. Fundamentally, plunge 

into the kinds of both blends of porous material. Considering the subsequent arguments 

the engineering problem can be analysed from various perspectives for example the 
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deformation of the coupled solid analysis. Also, analysing the literature on porous media 

is reflected mostly towards the bio–mechanical research problems; thus, comparative 

studies on intervertebral disk, cartilage, study of bones, etc. (Ehlers and Bluhm, 2002). 

 

2.3 Basic equations of porous materials 

The field of porous media is explored due to global interests in the problems, such as, 

surface environment, sub–surface groundwater pollution and energy problems. Fields of 

an application, includes numerous examples, such as, the insulation of buildings, 

chemical reactors, recovery methods, petroleum reservoirs, and etc. (Nield and Bejan, 

2006). Porous material is comprising of solids with gaps. It is presumed the solids are 

either inflexible (in normal conditions) or goes under slight deformation. The gaps (the 

pores) allows to pass the single or many fluids through the media. In the single phase, two 

phase and three–phase flows, the void may be saturated by a single (simple), two (liquid 

and gas share the void space), and three (void spaces share oil, water and gas) fluids. In 

nature, porous material is non–homogeneous. 

2.3.1 Porosity 

The Porosity (  ) represents the bulk volume as a part of a porous matrix in the empty 

spaces, whereas (1  ) remains the solids part of the material. Isotropic medium remain 

unidirectional in the “surface porosity”, normally, homogeneous ( )  or the porosity is 

fraction of pore volume to the total volume (Nield and Bejan, 2006). Total porosity is 

defined as the ration of the entire pore space in a rock to its bulk volume. I-e,  Porosity  = 

pore volume/bulk volume and can be expressed in terms of symbol as below: 
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 In this procedure, describing ' ' , by assumption that all the void spaces are connected. 

One has to face the situation where few pores are disconnected from the rest. An 

“effective porosity” is introduced, which is the ratio between linked spaces to bulk 

volume. Effective porosity is defined as total porosity less the fraction of the pore space 

occupied by shale or day. In a very clean sands, total porosity is equal to effective 

porosity.For normal materials, ' '  does not more than 0.6.  The value of ' '  is varied 

between 0.2595 (rhombohedral packing) to 0.4764 (cubic packing) values within the solid 

sphere beds having uniform diameter, or values are between rhombohedral and cubic 

packing.  In artificial materials, such as, metallic foams ' '  may reach to one (Nield and 

Bejan, 2006).  

 

2.3.2 Darcy velocity 

The construction of continuum model is considered for the REV approach centred on the 

porous media (Nield, 1999). For consistent volume means to be obtained, they introduced 

a Cartesian frame of reference and considered suitably large volume of elements against 

the pore volumes. Alternatively, one can say that, means are insensitive on element 

choice. This approach is unique because it compares the elements’ volume mpv  for the 

matrix and fpv   for the fluid only by its’ means. Here, ( , , )u v wv  denotes the fluid’s 

mean flow velocity as illustrated.  This quantity of fluid velocity has been given a variety 

of names by different authors like seepage velocity, superficial velocity, volumetric flux 

density, filtration velocity, and Darcy velocity. But the Darcy velocity is preferred, as it 

is unique and brief. The v represents the relationship of the fluid velocity fpv with 
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intrinsic velocity pV  means with the help of the procedure derived by Dupuit-

Forchheimer, as illustrated below (Nield and Bejan, 2006):  

      pVv                                                                                                         (2.1) 

 

2.3.3 Momentum equation: Darcy’s Law 

Firstly, in absence of the porous media the equation for time dependent momentum is 

employed. For steady-state unidirectional flow, a Navier-Stokes equation is used. Whilst, 

for flow through homogeneous porous matrix a Darcy’s–Brinkman transport equation is 

adopted and are given in this section below. At this stage, body forces such as gravity; 

has been neglected and these appropriate terms added easily at the later stages. 

 

2.3.4 Darcy’s law: Permeability 

To investigation has been made in hydrology of water supply of Dijon (Darcy’s, 1856) 

and his experiments on steady-state and homogeneous medium of unidirectional flows on 

the computational domain. A proportionality has been obtained between rate of fluid flow 

and pressure applied. This relationship in Cartesian coordinates is given by (Nield and 

Bejan, 2006): 

 

p
u

x






 


                                                                                                           (2.2)  

 

Here the coefficient   is independent of fluid properties, however, it is related to allow 

ability of the medium, it has dimensions of (length) 2 and is called the specific 

permeability or intrinsic permeability of the medium, in case of single phase flow, it is 
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known as simple permeability. While,   is the dynamic viscosity of the fluid and
p

x




is 

the pressure gradient in the flow direction. 

In three dimensions, above equation  can be generalised (Nield and Bejan, 2006) as:  

 

1 P  v                                                                                                           (2.3) 

 

Generally, the permeability   is a second-order tensor, while, in case of isotropic media 

it is a scalar quantity and Equation- (2.3) is simplified as below:  

 

 P



  v                                                                                                                    (2.4) 

 

In geophysics unit of permeability is Darcy, which equivalent to 0.987 x 2 210 m , while, 

in other fields it varies. By the outcomes of many experiments Darcy’s law has been 

proved. By various ways its theoretical backing has been obtained with the help of either 

statistical models or deterministic. 

 

2.3.5 Darcy’s Brinkman’s equation 

This model is generally expressed as the Brinkman’s equation. In the absence of inertial 

terms it takes the form (Nield and Bejan, 2006) as: 

 

2P





    v v                                                                                                 (2.5)     
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Equation-(2.5) has two viscous terms. The first term is Darcy and the other is equivalent 

to the Laplacian term as seems in Navier-Stokes equation. The coefficient of second term

  represents effective viscosity.  Brinkman’s sets   and    equal to each other. 

Equation (2.5) with parameter  (the permeability) reduces to the form of the Navier-

Stokes equation as     and to Darcy equation as 0  .  Equation- (2.5) is also said 

to be Brinkman’s extension to Darcy’s law and it has been used in current research study 

for the fluid flows in channel and pies filled with porous media. 

 

2.4 Pseudo-plastic (shear-thinning) fluids  

Pseudo-plastic fluids show no yield value and the typical flow curve for these materials 

indicates that the ratio of shear stress to the rate of shear, which is known as viscosity, 

falls progressively with the shear rate and the flow curve becomes linear at only very high 

rate of shear. The logarithm plot of shear stress and shear rate for these materials is often 

found to be linear over many decades of shear rate, with a slope between zero and unity. 

As a result, an empirical function known as the power law is widely used to represent 

fluids of this type. This relation is written as (Tanner, 2000): 

 
( 1)

( )
n

k   



                                                                                                (2.6)       

Where, k  and  n  are constants ( 1)n  for particular fluids. k is a measure of the 

consistency of the fluid, higher is the value of k  the more viscous is the fluid; n  is the 

measure of degree of non-Newtonian behaviour, the greater is the value of the n  more 

pronounced are the non-Newtonian properties of the fluid. Over decades this index n   



Chapter 2. Theory of Porous Media and Literature Review 

21 

 

may often be regarded as constant of shear rate.  

2.5 Literature review 

Combined mixing-separating of Newtonian and non-Newtonian flows occurs as an 

important unit operation in many engineering and industrial application. This study has 

reported these applications in different sections of this thesis in detail. As the focus of this 

research is to model and simulate numerical results of Newtonian and non-Newtonian 

fluid flows in the channel as well as in circular pipes passing through non-porous and 

porous media. To further analyse the position literature review on various studies has 

been provided in the next section.  

2.5.1 Channel flows 

In this section, initially the literature focused on the experimental and numerical 

computations and experiments on the method of finite difference (Cochrane, et al., 1981). 

The authors have analysed the flow of different fluids and illustrated variation and 

bifurcation in in flow structure in order to examine the effects of inertia under several 

situations. They employed only two inlets, i.e., both left bottom inflow and top right 

reversed flow (Cochrane, et al.,  1982) happen at the same time. For both fluids, i.e., 

constant viscosity Newtonian and shear–rate dependent inelastic fluids, this standard 

problem established to investigate flow various features. They also employed viscoelastic 

fluid adopting an upper convicted Maxwell model, however, in the numerical 

predictions show the limitation of inertial and elastic parameters.   
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For all the numerical simulations conducted in the research, there is no evidence of the 

presence of porous media. Study employes low Renolds number fluid flows and only 

liquids like Boger fluids Furthermore, the same study was extended by (Cochrane et al., 

1982) using a steady-state advanced numerical scheme by utilising a finite difference 

discretisation. Geometry as shown in Figure 5.) in chapter five.  Flow occurrence is 

presented in chapter five for further details.  

 

In the study of (Walters and Wwebster, 1982), thinner plates with sharp re-enterant 

corners were used, they considered three different plate separation gap widths and two 

different flow rate configurations. One of biased unequal flow rates in the various inlet 

and outlet channel arms and the other with balanced flow rates. These researchers found 

the flow conditions, material parameters, and gap width for variation effects through 

experiment and numerical computation. They also considered low Reynold numbers only 

for channel flows with finite difference technique. In this research study they used 

Maxwell model. They also used rectangular Cartesian coordinates and square elements 

for mesh. 

 

Later, (Baloch, et al., 1995a) numerically simulated adopting finite element technique 

through so called, time–dependent Taylor-Galerkin/Pressure-Correction (TGPC) 

algorithm. The algorithm adopted in their research work was a semi–implicit form for 

constant viscosity fluid. For viscoelastic fluid; a Taylor–Petrov–Galerkin approximation 

along with linear constitutive Phan–Thein-Tanner (PTT) model was employed. In these 

flows, thin insert plates with sharp edges has been used. This study addressed the equal 
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flow rates and gap width variation for the centre and middle inserted plates. In their 

research study triangular elements were used. 

 

After that, for low Reynolds number, (Afonso, et al., 2011) investigated this flow 

problem, and simulated only creeping flow using finite volume method. For viscoelastic 

simulations, an upper-convected Maxwell (UCM) model had been used numerically. The 

simulated results acknowledged a new study bi-stable bifurcation pattern at low inertia 

and high stability. In that numerical study, they focused on the effects of dimensionless 

Deborah number, gap size between plates and inertia. They simulated  only channel flows 

without porous media.  

 

The latest study conducted by (Echendu, et al., 2011), the numerical simulations were 

done for viscoelastic and constant viscosity fluid, when passed through combined mixing 

and separation flows within the configured channel. The investigation presented to realise 

the validities of a fractional staged finite element algorithm. For the complex inelastic 

flows, same scheme employed in the semi-implicit form of (TGPC) scheme. This study 

adopts the approach in arrangement with an executed viscous regularisation on the 

Herschel-Bulkley fluid model and its changes. The researchers found the outcomes based 

on pressure outlines, streamline forms, and velocity profiles. In that study pwer law and 

bingham models were used with fixed geometric gap widh and only equal flow rates in 

both situations. 

 

Contemporary literature tells interesting description of the rheological complex fluid 

behaviour in flow through a variety of porous media. From these analyses, numerous 
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correlations of flow phenomena of constant viscosity fluid and the rheology of functional 

viscosity of inelastic fluids have been attempted. The phenomenological aspects of these 

effects mainly have been focused (Savins, 1969).  

 

Under different flow conditions in porous structures different complexities occurs and 

seem to be coupled with the unusual rheological behaviour of complex inelastic fluids. In  

the further study of [(Oden, 1970) and (Neale and Nader, 1974)], it has been observed 

that when various flows of fluid passed the shallow of porous domain, where the fluid has 

been flowing parallel to the shallow, the special effects of viscous shear in the free fluid 

will enter below the permeable surface to form which effects the boundary layer area in 

the porous media. The  experimental data relating to steady, incompressible laminar flow 

through a two dimensional parallel channel have been reported by them (Neale and Nader, 

1974) . 

 

The inertia effect of microscopic coefficient and Darcy number value is more significant 

than the completely developed region as passing within the channel porous domain is 

decreased in the pore velocity magnitude. It has been found that forced conventions can 

be significantly enhanced by putting of porous inserts on impermeable heated walls, 

provided that high active thermal conductivity and thick porous matter are used. 

 

In the article of (Abu-Hijleh and Al-Nimr, 2001) the transient hydrodynamics behaviour 

of the fluid flows in a parallel plate channels partly filled with porous media was 

examined numerically again. Through the momentum equation, the study found local 

inertia effect with changes in the Newtonian flows of the channel imposed with pressure 
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gradient. The non-dimensional system of coupled partial differential equations is solved 

using the finite difference method on a uniform grid. It is found that the local inertial term 

is insignificant when Darcy number is less than 10-06, over the entire range of dynamic 

viscosity ratio between 0.1 to 10; Forchheimer coefficient between 0 to 10000 and all 

porous substrates thicknesses. The study also found that there is a deviation in the quasi- 

steady and transient models for the porous domain and decreased time.  

 

In another numerical study of the transient hydrodynamics behaviour of inelastic non-

Newtonian unidirectional flows of fluid in a parallel plate and horizontal channels through 

porous material has been conducted by (Al-Nimr and Aldoss, 2004).  The effect of the 

macroscopic local inertia term in the porous region, momentum equation has been 

examined. They have solved the one-dimensional unsteady governing equations by finite 

volume method. The study found that there is no significant effect of the local inertial 

terms on the behaviour of the channel hydrodynamics with the value 0.5 power law index 

and for the complete ranges of Forchheimer and Darcy numbers. Furthermore, it is found 

that local inertia of microscopic level has significant effect if the Darcy and Forchheimer 

numbers used for the greater values of the power law index, predominantly for the lower 

Forchheimer numbers and high values of the Darcy numbers. 

 

2.5.2 Pipe flows 

In the experimental study of (Escudier et al., 2005), he detailed mean velocity profile data 

for fully developed pipe flow of a wide range of shear thinning liquids together with two 

Newtonian control liquids. By using laser Doppler anemometry (LDA) as measurement 

technique all the experimental data were collected in unrelated research programs in UK, 
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Australia and France. The experimental velocity profile data, which have been presented, 

reveal to varying degrees’ leavings from axisymmetry in fully developed circular tube 

flow of a wide range of inelastic non-Newtonian liquids with rheological characteristics 

including shear thinning viscosity, yield stress and viscoelasticity. In the majority of the 

cases, axisymmetric flow is observed for the laminar and turbulent flow conditions. The 

researchers found the way for symmetrical velocity profiles acquired considering the 

streams (laminar and turbulent) of all non-Newtonian fluids through the information 

gathered from each of the three labs prompt to state irregular results are concerns for the 

fluid dynamic device, it is as yet having not been perceived, as opposed to constraints in 

the stream. 

 

In another experimental study by (Peixinho et al., 2005), detailed measurement were 

given in all laminar, transitional and turbulent circular tube flow of yield stress fluids. All 

three flows are conducted in cylindrical pipe, the length of the tube is considered 5.5m, 

while, inner diameter of tube is 30mm. The study examined the flow by using the Doppler 

approach with pressure quantities and axial velocity. The inertia value which is critical is 

solved through experiment through application of the laminar solutions; that are linked 

with phenomenological procedure as well as delimited. The first normal stress differences 

are similar for two non-Newtonian fluids. In laminar flow, the experimental velocity 

profiles and friction factors are well described by the theoretical solution.  

 

Solution presented that the yield stress fluids adds to stabilise the flow and the transition.  

It has been noticed a growth of root mean square of the axial velocity outside a domain 

nearby the axis, while, it remains laminar level inside this area. When inertia increases, 
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the fluctuation increases within the whole segment because of the turbulent spots’ 

apparition. For constant viscosity and shear–rate dependent inelastic fluids, depiction of 

the turbulent flow displays that the root mean square of axial velocity profile is alike 

excluding near the wall where the turbulent power is higher against constant viscosity 

fluids. 

 

(Nield and Kuznetsov, 2007)’s simulations carried out for observing the influence of flow 

pulsation over the transport process in the laminar regime of developing parallel-plate 

channel or a circular pipe. For forced convection, a perturbation analytical solution is 

obtained of primitive variables velocity, pressure and temperature. For non–isothermal 

transient analysis approach is adopted using Nusslet number. That was created through 

applied pressure gradient that varies with small amplitude harmonically in time about a 

non-zero mean. It has been observed that oscillating quantity of the Nusslet number 

altered in degree and phase as the non–dimensional frequency increased. Nusslet number 

is based on the twice the initial length of the tube radius, following the pulsation cycle. 

The pulsation has no positive influence in augmentation of heat transfer within the 

examined range of pulsation frequency and amplitude. 

 

2.6 Research gaps 

In the following table research gaps are evident in the support and motivation of current 

study for the modelling of combined mixing and separating flow domains. 

Researc

h study 

Metho

d  

Materia

l  

domai

n 

Gaps Gaps 

Covered by 
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current 

study  

Cochrane 

(1981) 

Finite 

diffrenc

e 

and 

upper 

convect

ed 

maxwell 

model 

Newtonia

n and 

non-

Newtonia

n 

Channe

l   

➢ Channel 

filled 

without 

porous 

media 

➢ Circular pipe 

flows with 

and without 

porous 

➢ limitted 

varietry of 

flow 

bifurcations 

➢ Changing 

flow rates 

➢ Low 

Reynolds 

number 

 

✓ Y

e

s 

 

 

 

 

✓ Y

e

s 

 

 

✓ Y

e

s  

 

 

✓ Y

e

s 

 

✓ Y

e

s  

Walter 

(1982) 

Finite 

differen

ce and 

upper 

Newtonia

n and 

non-

channel ➢ channel 

without 

porous 

➢ no pipe flows 

➢ only equal 

low rates 

✓ Yes  

 

✓ Yes 

 

✓ Yes 



Chapter 2. Theory of Porous Media and Literature Review 

29 

 

convect

ed 

maxwell 

model 

newwtoni

an 

➢ Low Renolds 

number 

 

 

 

✓ Yes 

 

✓ yes 

Baloch 

(1995a) 

Finite 

element 

with 

(TGPC) 

method 

both channel ➢ channel 

without 

porous 

➢ no pipe flows 

➢ only equal 

low rates 

➢ no change in 

flow 

directions 

 

✓ yes 

 

✓ yes 

✓ yes 

 

✓ yes 

Afonso 

(2011) 

Finite 

volume 

method 

and 

UCMM 

Newtonia

n and 

visoelastic 

channel ➢ Channel 

without 

porous 

media 

➢ Creeping 

flow 

➢ Only equal 

flow rates 

➢ No change in 

flow 

direction 

➢ No pipe 

flows 

✓ Yes 

 

✓ Yes 

 

 

✓ Yes 

 

 

✓ yes 

 

✓ yes 

 

 

Eschendu 

(2011) 

Finite 

element, 

Newtonia

n, 

channel ➢ Chan

nel 

witho

ut 

✓ Yes 
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SITGPC 

scheme 

 

with  

Power 

law and 

Bingha

m model 

Herschel-

Bulkley 

for non-

Newtonia

n 

poro

us 

medi

a 

➢ Only 

equal 

flow 

rates 

➢  

equal 

rates 

only  

and 

one 

chan

ge in 

flow 

direct

ion 

➢  

 

✓ Yes 

 

✓ yes 

 

2.7 Summary 

After reviewing the literature, evident research gaps have given good insightment and 

motivations for current research study. In most of the cases only channel flows were 

studied without changing flow directions and flow rates in the arms of a computational 

domain. In the wide gap domain as shown in figure 5.1 in chapter five of this thesis, there 

are variety of ways to change flow directions and even flow rates as insertion of thin 

inserts in the middle of the channel from either side gives us numerous combinations. 

Newtonian and non-Newtonian flows in such complex domains is very hard to handle. 

For the set aims and objectives, firsltly we found analytical solution to apply velocity 

profiles on the inlets of domain to pass fully developed flows. Secondly, using the 

developed code by Dr. Baloch and others authors have been extended to the requirements 
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of current study. Later, Newtonian and non-netonian have been analysed in circular pipes 

to monitor mixing and separating within the middle gap of inner and outer pipe.   

Complete description of pipe flows is available in chapter seven and eight. 

Most of the authors in literature review have used limited options to explore the very 

important flows in channel and circular pipes. But in the current study, four different 

combinations of the channel along with the flow rates have been examine thoroughly to 

see the inertia effects, pressure drops and effects of porousity and changing fluids within 

the domains. Reearch on channel filled with porous media and circular pipes with and 

without porous media for Notonian and non-Netonian fluid flows in current study is new 

of its kind and will be very useful for future studies.
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Chapter 3.  Basic Governing System of Equations 

 

3.1 Introduction 

This chapter is based on analysing the equations of the basic field and its formulation 

which is universally applied in all types of fluids. The classification of materials is done 

in terms of the Newtonian or non-Newtonian fluid flow. In this study both type of the 

fluid materials are investigated. To capture the shear-thinning behaviour of non–

Newtonian fluids the Power law and Bird–Carreau models are used. The details of these 

models could be found in chapter eight. As domain of interest is a channel and a pipe 

filled with or without porous media. For both cases transport equations are given. In first 

case, two-dimensional Navier-Stokes equations and their non-dimensional forms are 

given in Cartesian coordinates. For later in pipes flows continuity, and momentum 

equation are presented. The solution approach adopted is to solve the continuity, 

momentum transport equations subject to initial and boundary conditions for stresses, 

velocity and pressure in the whole domain. Dimensionless forms are produced for 

variables by incorporating their characteristic values. 

 

3.2 Basic equations 

This section presents equations of the governing system that accomplishes the flow of 

fluids in the domain computations. The law of conservation of mass, momentum transport 

equations by the well know, Newton’s second law of motion are discussed. 
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3.2.1 Equation of continuity (compressibility) 

At any point of time the continuity equation is connected with the mass conservation 

principle in 3 dimensional compressible domain and given by: 

 

   0
t





 


v                                                                                            (3.1) 

 

In Equation–(3.1),   ( ).div  v v , here v  represents the field of the vector for the 

flow field at any time as illustrated in the components of the local velocity ,u v  and .w  

Where,  represents the density of fluid. In Cartesian coordinates v , is a function of the 

location ( , , ).x y z  The first term on the left hand side of the equation (3.1) is the rate of 

change in time of the density (mass per unit volume). In the second representation, the 

term is describes as the convective term which involves the elements across the 

boundaries via its net flow, while  represents the gradient operator.  

 

3.2.2 Principle of conservation of mass (incompressibility) 

A material is said to be incompressible if, for all possible motions, the mass density 

satisfies the constraint that rate of change of mass vanishes  0
•

 , it means inflow 

mass is equal to outflow mass. Therefore for incompressible isothermal fluids the density 

  is constant, the material derivative of mass density in Equation-(3.1) is zero and 

equation of continuity in vectorial notation reduces to: 

 

0 v           (3.2)  
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A velocity that satisfies the conservation of mass is said to be solenoidal. Almost all 

liquids are incompressible and satisfy the equation of continuity. However, there are 

liquids like foam and bubbles that are slightly compressible. In this study consideration 

is given to those liquids which are essentially incompressible and satisfy the equation of 

continuity (3.2). It can be considered from the equation (3.2) that the incompressible 

material for every motion is volume preserving. 

 

3.2.3 Momentum equation (principal of conservation of momentum) 

The second law of motion describes the momentum equation for the moving continuum, 

presenting the fluid particles’ changing momentum rate equals to the combined forces on 

the particles. Two types of forces on the fluid particle are (a) Surface forces (pressure, 

viscous) (b) Body forces (gravitational force, centrifugal, centripetal, Coriolis and 

electromagnetic force).  

 

Using the second law of motion for the transport equation to consider the x-component:  

 

x xF a           (3.3) 

 

Where xF is the force in x-direction will be equals to: 

 

xF = .  g h            (3.4) 
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The equation (3.4), where   presents Cauchy’s stress tensor or simply stress tensor 

comes from Cauchys formula, Stress tensor describes traction on any surface, whereas 

gravity and height are given by ,g h  respectively. First term of the equation (3.4) 

represents surface forces and second body forces. 

The equation 3.3 defines the acceleration as xa :  

 

     ( .  )x

D
a

Dt t

 
   

 




v v
v v           (3.5)      

 

The equation (3.5) illustrates the material time derivative by 
D

Dt

v
where t  is the time. 

Momentum equation in general vectorial notation form can be written as (Baloch, 1994): 

 

   ( .  )
t

 
 

     
 

v
v v σ F             (3.6) 

 

In case of incompressible fluids above equations Cauchy’s stress tensor can be 

decomposed into the sum of Noll (1958):  

 

p  T                              (3.7) 

 

Where, p is the isotropic fluid pressure, T  is the extra stress tensors and  (Kronecker 

delta) denotes the components of a unit tensor.  For an incompressible Newtonian viscous 
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fluid, the extra-stress is proportional to the rate of strain or deformation tensor and defined 

as:  

 

2T d                   (3.8) 

 

In equation (3.8)   is fluid dynamic viscosity and d  is the rate of deformation tensor 

defined as Baloch (1994): 

 

1
   (   )  
2

ji

j i

vv

x x


 

 
d                   (3.9) 

 

In general notation: 

 

†1
[ ( ) ]

2
   d v v                  (3.10) 

 

Where, † is transpose of tensor; 

 

In expanded matrix notation form d  is written as follows:  
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2 ( ) ( )

( ) 2 ( )

( 2

1

2

)

u u v u w

x y x z x

u v v v w

y x y z y

u w v w w

z x z y z

    
 

    

    
 

    

  

 
 
 
 
 
 
 

  
  
 

 


   


 

d                         (3.11) 

 

In the absence of body forces and under linear functional dependency of the extra stress 

tensor T  on the rate of deformation tensor d and utilising the equations [(3.2), (3.6) and 

(3.7)] into equation (3.8) gives Navier-Stokes equation as follows: 

 

 . 2 ( . ) p
t

  


    


v
d v v                  (3.12) 

 

For Newtonian fluid   is taken as constant. Hence equation (3.12) becomes (Baloch,  

1994): 

 

2  ( . ) p
t




    


vv
v

v                 (3.13) 

 

Where, ( )
x x x

i j k
  

   
  

  which vector differential operator and known as 

gradient and 
2 2 2

2

2 2 2
i j k

x y z

  
   

  
  is a Laplacian operators. 
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3.3 Dimensionless system of equations 

In dimensionaless analysis, a dimensionaless number or simply a number ith dimension 

(1) is a pure number without any physical units. The characteristic velocity cv , length cL  

and the time scale of c

c

L

v
.  are selected to invoke the non-dimensionalisation.  For 

convenience the governing system of equations is cast into non-dimensional form. 

Dimensionless variables * * *, ,x pv  and 
*t   are defined by introducing suitable scales given 

as: 

 

*

c ,x L x        *

c ,v v v         2 *  c pp  v ,          and   c

c

t t
L

v

  

 

In the interest of clarity in presentation and without ambiguity all asterisk notation may 

be discarded and the Equation- (3.14) may be expressed non-dimensionally as Baloch 

(1994):  

 

 21
.

Re
p

t


    


v

v
v v                    (3.14) 

 

Where, Re is a Reynolds number and expressed as given below: 

 

 
Re  

 

c cLInertia force

friction force 


 

v
                      (3.15)  
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3.4 Initial and boundary conditions 

To complete the problem specification, it is necessary to prescribe initial and boundary 

conditions. The above Equation- (3.14) is supplemented by boundary condition given in 

the form:  

 

0( ,0) ( )x xv v       (3.16) 

 

Subject to 

 

0 0 v           (3.17) 

 

Boundary conditions on solid walls of the geometry and centrally inserted plates are 

taken as no slip conditions (all components of velocity field vanish). The steady 

Poiseuille flow profiles are imposed at both the entry and exit flow sections in both arms 

of a channel as shown in Equations- [(3.18a) and (3.18b)]. In the case of unequal flow 

rates and flow direction different boundary conditions have been found. For convenience 

pure approximation is considered and it is demonstrated for developing very frequent 

entrance in the regions of flow, as well as it does not reduce the solution accuracy. 

Transient simulations commence from quiescent initial conditions, or from two parallel 

but opposing flows, to obtain a steady state solution for fixed level of inertia. 

Subsequently, to accelerate the computation times for higher parameters values, prior 

steady state solutions are adopted as starting conditions. For material at both inlets: 
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    U – –     0 m y a b y at xu y      (Bottom left arm)           

(3.18a) 

 

      -V 2  –     23m y b b yy x Lu at       (Top right arm)           (3.18b) 

 

In equations[(3.18a) and (3.18b)] ,a b  are lower and upper coordinate of the wall of 

domain having b a  as height of the computational domains and 0.0254L  is 

thickness of the plate. Channel is having reasonable long length of 23L , which reflects 

the fully developed flow at the inlets and outlets of it. Here L is characteristic length of 

a channel.  For inlet flow imposed on bottom left arm the values of ,a b  are 0 and 1 

respectively. The maximum velocity obtained for the equal rate of flow in the channel 

arm centre is given by m mU V , whereas if there are an unequal rates of flow mU  and mV

presents the 1:15 and 1:2 ratios. 

 

In the exit sections for both geometries, consistency with the fixed pressure  0p   is 

achieved for the normal traction free conditions. With the application of numerical 

calculations for the flow fields approximation is made by checking the flow carefully for 

the regions and it does not affect the solutions’ global accuracy. Whereas no cross flow 

is assumed at both inlets and outlets  0v  . Graphpical represtation of equation (3.18) 

is shown in figure 1 in appendix-B on page-234. These equations show velocity profile 

imposed on top and bottom channel arms. 
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3.5 Governing system of equations for porous medium  

Consider spatial bounded domain 2→ with piecewise smooth boundary and a 

temporal domain [0, ]  with x  and t  representing the associated spatial and time 

coordinates. In the absence of body forces, the corresponding equations for conservation 

of mass and Darcy-Brinkman momentum transport for an incompressible, isothermal, and 

isotropic flow through homogeneous porous media may be used to describe flow 

behaviour in both channel and pipes and is given by the following equation: 

 

 . 2 ( . ) p
t


  




     



v
d v v v       (3.19) 

 

Where, ( , )tv x is the velocity vector field, ( , )p tx  is isotropic pressure (per unit density),

 and  are fluid density and viscosity respectively. In the given equation  represents 

the porous media’s permeability, whereas   describes the porous media’s porosity. The 

flow is considered to be hydro–dynamically fully developed hence velocity does not 

depend on transversal and radial direction of the channel and pipe respectively. Through 

the use of continuity equation, flow is given by the transversal direction function and in 

expression of the axial velocity. Equation (3.14) and (3.19) can be used to give the below 

equation (3.20) to express the same dimensionless form with its variables and scaling 

factors: 

 

21 1
( . )

Re Re a

p
t D


     



v
v vv v       (3.20) 
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Here,   c
a

c

D
L






v
 represents the Darcy’s non-dimensional number. 

 

The fully developed flow in the hydro-dynamic velocity, it is not dependent on the pipe 

and channel’s axial direction. The flow in the continuity equation is unidirectional and 

axial velocity expression presents it in the transversal direction of alone function. 

 

For porous media an exact velocity profile is imposed by steady-state solutions obtained 

during this study as follows: 

 

max

cosh sinh

1 ,

sinh

y a b y

Da Da
u(y) U

b a

Da

  
 

  
 

  

      (3.21) 

 

In equation (3.21) at bottom inlet at 0x  , max mU U  where 0a   and 1.b   Whilst, at 

other inlet (top right) 23x L , max mU V  and here 1.0254a   and 2.0254.b   However, 

for all other boundaries same conditions are imposed as explained above. In Appendix- 

B, equation (3.21) has been derieved for imposing velocity profiles on both inlets of a 

channel. Graphical representation is produced in the same appendix in its end as shown 

in figure 1. 

 

3.6 Material functions and rheometry 

Besides polymers, industry and nature provide with vast range of materials composed of 

complex polymeric elements in suspensions in fluid. At sufficiently high concentrations, 
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the suspended elements develop specific mutual interactions and therefore will be deal 

with pasty materials. The flow is not possible when the force exerted on it is below the 

critical value. This type of materials are found in our daily lives and commonly used, for 

example the hair gel, marmalade, peanut butter, mayonnaise, solar cream, cosmetic 

cream, shaving cream, paint, modelling paste as well as in natural phenomenon lahars, 

snow, mudflows, debris, and mining slurries. Civil engineering, cosmetic and food 

industries also use pasty or granular materials for sorting or storing solid matter or 

forming product, with agent such as drilling fluids, concrete , cement paste, mortar glues, 

ceramic slip, foodstuff, paste, sludges, grains, sand, and powders (Coussot, 2005). The 

complexity arises in the non-Newtonian fluid mechanics is to find the relationship of 

various characteristics of the fluids with the macroscopic flow features for example in 

shear flow the viscous behaviour.  

 

In order to find characteristics of the non-Newtonian fluids the material functions are 

employed, whereas through the use of rheometry simple flow functions, flow 

characteristics of material, and deformation is investigated. Other flows such as 

oscillatory shear flow and extensional flow are also important in the study of non-

Newtonian fluid mechanics. For generalised non-Newtonian liquids, the viscosity is non-

constant, and the relation between extra-stress tensor and rate of deformation is not a simple 

linear form, but some function of shear rate and elongational rate. The results from 

experimentally generated data for non-Newtonian flows are used to construct constitutive 

models from simple shear, oscillatory shear, uni and bi-axial extension and squeezing 

flows, with which predictions from mathematical models can be compared. 
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3.6.1 Steady simple shear flows 

In the present work, concern will be uniaxial steady simple shear flow of complex 

inelastic non–Newtonian fluids. The isothermal generalised extra–stress tensor for an 

inelastic non-Newtonian fluid as determined by (Baloch, 1994): 

 

 2 T d           (3.22) 

 

Considering the shear flow which is steady and simple,   defines rate of shear rate 

as:     

 

2 dII            (3.23) 

 

Here, dII represents the strain tensor rate for the second invariants d  that is present as 

equation 3.24 in axisymmetric frame: 

 

 
2 2 2 2

2

 

1 1 1
 

2 2 4

r z r r z
d

v v v v v
II tr

r z r z r

           
             

            

d    (3.24) 

 

It should be noted that the equation (3.22) is constitutive and beneficial for the 

identification of shear effect. The indices of power law are used in combination with 

the Bird-Carreau and Power law as the models of Shear thinning (Barnes et al., 1989). 
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3.7 Governing system of equations (cylindrical polar co–ordinates) 

The equations of momentum transport and continuity can be utilised for modelling the 

porous material filled pipes with the Newtonian and non–Newtonian incompressible 

fluids having laminar flow. Fully established flow at both inlets is considered to be axi–

symmetric and two dimensional. These governing equations  for two dimensional 

cylindrical polar coordinates, in domain filled without porous media are reported by 

(Solangi,  2011). The equation for momentum transport and mass conservation can be 

utilised with or without porous material filled in the circular pipes. Equations for 

Newtonian fluids subject to the boundary conditions are given, in the absence of body 

force used for such domains are written in the cylindrical coordinates as: 

 

 
0

1











r

rv

rz

v rz          (3.25) 

r-compotent 

2

2 2

1 1 1
( )

r r r
r z

r r r
r

v v v
v v

t z r

v v vp p
r v

r r r r z r r

 

   

  
  

  

    
      

     

                                     (3.26) 

z-component 

2

2

1 1 1
( )z z z z z

z r z

v v v v vp p
v v r v

t z r z r r r z r

 

   

       
        

        
  (3.27) 

 

Where, 
zv and rv  are the axial and the radial velocity components, p  is the isotropic 

pressure,  is the density of fluid and   represents the viscosity of fluid materials and 

  is the permeability of porous media.  
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Equations [(3.25)-(3.27)] are solved by imposing initial and boundary conditions. Their 

all necessary conditions along with non-dimensional form are discussed in chapter 7-8 

for Newtonian and non-Newtonian flows in a domain presented in figure (7.1).  

3.8 Summary 

This chapter presented the fundamental governing equations which are used to control 

the fluid flows in the domain filled with or without porous media. The non-

dimensionalisation along with appropriate initial and boundary conditions are defined. 

The Darcy’s term in momentum equations has been added and implemented in code used 

along with other parameters.  In latter chapters equations are presented for material 

functions and rheometry along with the equations monitor simple shear rate flows. 

 

As focus of this research is to study fluid flows in channel and pipes therefore equations 

are given in Cartesian and cylindrical and polar coordinates along with Darcy’s tem in 

momentum. Primary research has been extended to monitor flows through porous media 

in channel and pipes to observe the effects of porosity on flow domains by utilizing the 

appropriate numerical schemes presented in chapter 4 in detail for both coordinate 

systems. 

To empose exact velocity profiels on both inlets of a channel filled with porous media, 

an analytical solution has been found by using the knowelge of solving differential 

equations. The complete derivation of analytical solution shown in an equation (3.21) is 

available in Appendix-B with its graphical representation as presented in Figure 1 of the 

same Appendix. 
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Chapter 4. Implementation of Numerical Scheme 

 

4.1 Introduction 

This chapter covers the development of finite element scheme for the models introduced 

in chapter–03. For numerical simulation, the problem addressed in this investigation is 

combined mixing and separating flows. Computation of Newtonian and non–Newtonian 

fluids, flow through mixing–separating geometry filled with porous media and in absence 

is presented in chapter five to eight. The governing systems of equations employed in this 

study are in both Cartesian as well as cylindrical polar coordinates systems. To simulate 

steady–state and time–dependent problems, many sophisticated numerical algorithms can 

be found in the literature. To acquire the steady–state solutions there are numerous 

procedures, however, most popular method is Newton–Raphson’s. Whilst, computation 

of time–dependent problems, in the open literature numerous algorithms are present, for 

example, the Taylor–Galerkin (Donea, 1984b), Least–Square (Carey and Jianng, 1988) 

and Lagrange–Galerkin methods. Further details about the Taylor–Galerkin scheme are 

discussed in chapter two. 

 

The scheme of choice here is a multi–stage finite element technique. Initially, an explicit 

form of time–dependent Taylor–Galerkin scheme was improved (Townsend and Webster, 

1987) by incorporating pressure–correction method to resolve pressure driven 

incompressible flows of Newtonian fluids. The algorithm was designed following the 

ideas of (Donea, 1984a and 1984b)) and to obtain a second order accurate solutions and 

adjust the incompressibility the work of (Van Kan, 1986) was followed. 
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Structuring of this scheme is suitable to solving large–scale problems and ease to 

implement in three–dimension. By a number of researchers, a computer program in 

FORTRAN has been developed based on Taylor–Galerkin/pressure–correction algorithm 

was made available at the start of the research described in this thesis in literature review. 

However, the present author has significantly enhanced the code and has contributed by 

incorporating Darcy’s term for flow through porous material in the momentum equation. 

 

4.2 Taylor–Galerkin/Pressure–Correction Scheme 

Central theme of Taylor–Galerkin scheme is to develop a procedure to capture transient 

as well as steady–state solution of fluid flow problems through efficient and highly 

accurate time–stepping scheme. Originally, algorithm has been presented (Donea, 1984b) 

to resolve the time–dependent flows of viscous fluids and the incompressibility condition 

is treated implicitly. In the algorithm, temporal discretisation is achieved through 

expansions of Taylor series. For second order temporal accuracy of results, a Lax–

Wendroff approximation in two–step predictor–corrector scheme is employed. Algorithm 

also capture the higher order accuracy for time derivatives and consistent spatial 

derivatives. A significant augmentation in accuracy and stability is shown by the 

algorithm against Euler–Galerkin and Finite Difference methods [(Donea, 1984b) and 

(Hawken, et al., 1990)].  

 

Pressure–correction/projection method has been suggested originally (Chorin, 1968) and 

in explicit form offered by (Fortin, et al., 1971). A further development of this operator 

separating method, after a linearized momentum analysis, leads to overall second order 
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accuracy and stability [(Peyret and Taylor, 1983) and (Kan, 1986)]. A so called TGPC 

algorithm [(Zienkiewiczm and Codina, 1995) and (Zienkiewicz, et al., 2005)] presents 

the foundation for current numerical algorithm employed in this research. There are many 

other alike techniques related to finite difference literature may be found [(Lax and 

Wendroff, 1953), (Sod, 1978) and (Baloch, et al., 1994)]. For more details on steady–

state and transient flows of Newtonian fluids can be found [(Hawken, et al., 1990) and 

(Tamaddon–Jahromi, et al., 1992)]. Whilst, for non–Newtonian fluids, has guided to 

experiment numerically extend the algorithm in semi–implicit and fully–implicit form of 

algorithm. For significant diffusion dominant flows, semi–implicit algorithm is realised 

numerically accurate, computationally efficient and stable, therefore, algorithm is 

advocated for such problems. As in this research study semi–implicit form of TGCP 

algorithm is employed. Therefore, only this method is described here. 

 

4.3 Semi–implicit time–stepping scheme 

4.3.1 Cartesian co-ordinates 

In literature it is indicated that, due to slow rate–of–convergence and inherent difficulties 

to deal with large time step ( )t of explicit schemes are computationally very expensive. 

Therefore, for the numerical simulation in this research work a semi–implicit form of 

TGCP algorithm is employed [(Hawken, et al., 1990), (Carew, et al., 1993), (Baloch, 

1994), (Baloch, et al., 1995a) and (Solangi, et al., 2012b)]. The choice is purely 

recognised on its robustness of the algorithm and matter of fact, it enhance the accuracy, 

stability, efficiency and increase convergence rate at sufficiently larger time step. Fully 

implicit numerical algorithms commonly enhance the numerical stability properties, 

whereas, also computationally observed less cost effective. In the present research study, 
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only on the viscous or diffusive and Darcy’s components of Darcy’s–Brinkman equation, 

a Crank–Nicolson treatment is employed to deduce the TGCP scheme in semi–implicit 

form. 

 

Adopting a semi–implicit approach on TGCP algorithm, for the governing system of 

equations (3.12 and 3.19), a semi–discrete system is obtained by expanding temporal 

domain  1,n nt t   in two steps through Taylor series expansion. In first step, a forward 

difference approach is applied up to half time step, keeping the philosophies of (Van Kan 

,1986) in the finite element perspective to compute velocity vector field v at half time step 

 1
2

n  form initially given primitive variables  ,v
n np at

nt t . In second step, a central 

difference approach is employed to compute primitive variables  1 1,n np 
v at full time 

step  1nt t  . For pressure term accommodating the incompressibility constraint, a 

Crank–Nicolson technique is applied to split this step in further two steps. In second step, 

a non–divergence–free velocity vector field is calculated utilising the information 

gathered from first step and initial given data. Whilst, in third step a pressure difference 

is obtained at full time step  1nt t  . At final fourth step, divergence–free velocity vector 

field  1n
v is computed from the information for pressure difference resulted at third 

step. The semi–discrete system of Darcy’s–Brinkman equation in strong form and the 

algorithm in time difference is given as follows: 
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Stage–1a: Compute divergence free velocity field 

1

2v
n

 at half time step 1
2

n  from 

the given initial data for velocity vector field v
n and pressure

np  at initial level n : 
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2 n2
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2
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2 1 1

t 2Re 2Re D

1 1
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 
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 

v v

v v v v

      (4.1a) 

Stage–1b: Compute an intermediate non–solenoidal velocity field *
v from velocity 

vector fields 

1

2v
n

computed at 
1

2
n  time step and pressure

np  at initial time step n after 

applying Crank–Nicolson treatment on pressure. (Crank-Nicolson uses average of an 

implicit and explicit methods): 
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 

v

v v v v
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      (4.1b)  

 

Stage–2: Having solved for non–divergence free velocity vector v , now need to 

compute the pressure difference  n 1 np p  with the help of Poisson equation at full time 

step interval  1,n nt t  , as given below: 

 

 2 n 1 n *1
.p p

t
    


v         (4.1c) 
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Stage–3: Finally, at this step three, compute the solutions for a solenoidal velocity 

field 1n
v  at the concluding of full time step ( 1)n  cycle utilising information gathered 

in stage–1b and stage–2, i.e., 
v and pressure difference  n 1 np p  as follows: 

 

   n 1 * n 12 np
t

p   


v v
       (4.1d) 

Here, initial time step index is represented by n . The choice of Crank–Nicolson   (=0.5) 

is used [(Crank and Nicolson, 1996), (Baloch, et al., 1995a) and (Solangi, et al., 2012b)]. 

For Taylor–Galerkin/pressure–correction scheme, in first temporal fractional stage, the 

addition of mid–point temporal step, characterises the expansion from first to second 

order projection method. 

 

4.3.2 Finite Element Discretisation 

For spatial discretisation of above set of equations (4.1), are reorganise into a variational 

form using weighted technique and a finite element approximation. For shape and weight 

functions, following suitable definitions of Hilbert spaces (  
21H  ) and vector valued 

Sobolev space functions are defined on
2 . Which are themselves and their first 

order derivatives are first order square–integrable  2L  of scalar Hilbert space and 

second order square–integrable  2L  of vector Hilbert space functions. For detail 

definitions reader is referred to [(Baloch, 1994) and (Solangi, 2011)]: represents the 

particular standard of: 
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 
21

1

n
nV u H u b

 
     
 

        (4.2a) 

 

 
21

0 1 0V v H u
 

     
 

        (4.2b) 

 

For square–integrable functions, the conventional inner–product representation is defined 

as: 

 

     


dxgxfgf ,         (4.3) 

 

Let  2L be the scalar Hilbert space for square–integrable functions: 

 

  2 d
q L                   (4.4) 

 

For set of equations (4.1), utilising above definition of spaces of test functions for both 

velocity and pressure 0V and P respectively, a weak formulation of problem is acquired. 

Subsequently, integrating using inner product equation (4.4) over the spatial domain , 

the anticipated semi–discrete variational form of the above equations at different stages 

are: 
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Stage–1b: 
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Stage–2:    2 n 1 n *, ,.
1

p qp
t

    


v      (4.5c) 

 

Stage–3:    n 1 * n 1 ,
2

, np p q
t
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

v v      (4.5d) 

 

To derived fully discrete system of the problem, describing proper finite dimensional 

subspaces 0,h hV V and 
hP of 

0,V V and   respectively. Adopting weighted residual 

technique, the above system of equations (4.5) are spatially discretised using finite 

element method by Galerkin approximation, where, weight function is taken equivalent 

to shape function. For velocity components  ,u v and pressure p , a piecewise quadratic 

shape functions and piecewise linear shape functions are adopted respectively over 

triangular mesh tessellations. Employing variable separating (temporal and spatial 

variables) technique, the approximate solutions of primitive variables, u(x, y, t), v(x, y, t) 

and p(x, y, t), are introduced over finite spaces of following functions as: 

 

     
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, , ,n

j j

j

u x y t U t x y
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         (4.6b) 

 

     
3

1

, , ,k k

k

p x y t P t x y


        (4.6c) 

 

Where, 
j  and  k  are quadratic and linear shape functions respectively. In these 

equations (4.6) symbolisations are followed (Cuvelier, et al., 1986). Adopting divergence 

theorem, integrating by parts, the fully discrete system in the compact matrix form is:  
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* † 2
2

1 1
( )

Re 2 Re e

1

R

n
n

n

j k j j

a a

S M
S J p M N V

D

M

t D

    
           

     
V V V V V  (4.7b)  

 

Stage–2: 

 1 *2n n

jK p J
t

p    


V                           (4.7c) 

 

Stage–3: 

   1 * † 12 n n n

j j

M
pJ p

t

   


V V                                               (4.7d) 
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Where 
i jM d   is a consistent mass matrix, 

( ) ( ) ( )
j j

i l l i l lN V U V d
x y

 
   

  
   

  
  is a convection matrix, 

j ji iS d
x x y y

     
   

    
  is a momentum diffusion matrix, 

 
1

i
jJ d

x





 


 and 2

i
jJ d

y





 


 are divergence/pressure gradient matrix and 

 1 2,J J J  and
kj kjki kiK d

x x y y

     
   

    
  is a pressure stiffness matrix. Here, †  

is transpose of a matrix. *,nV V  and 1nV  are nodal vectors of velocity field, 
1,n np p 
 is 

pressure, and t  is the time interval  
1( , ).n nt t 

 

 

4.3.3 Cylindrical polar co–ordinates 

The choice of algorithm for numerical simulation depends on precision, convergence rate, 

effectiveness and stability. Literature review shows that semi-implicit techniques are 

preferred over the explicit schemes, which have slow rate of convergence [(Hawken et 

al., 1990), (Carew et al., 1994), (Baloch, 1994), Solangi, 2011), (Solangi et al., 2012a) 

and (Solangi et al., 2013)]. For the enhancement of numerical stability, generally implicit 

methods are used; however, these methods are computationally no more expensive. The 

fully discrete semi-implicit system of equations with Darcy’s term in addition is as 

follows: 

Stage–1(a): 
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 

 

1

2 †

, , , 1

, ,

2 1 1
( )

Re 2 Re

1

Re

n
n nrr

r j r j rr rz r j k

a

n n

r j r j

a

S M
M V V S S V J P

t D

N V V MV
D

    
              

 

  (4.8a) 

 

 

1

2 † †

, , z, 2

, ,

2 1 1
( )

Re 2 Re

1

Re

n
n nzz

z j z j rz zz j k

a

n n

z j z j

a

S M
M V V S S V J P

t D

N V V MV
D

    
              

 

  (4.8b) 

Stage–1(b): 

   

 
1

2

* †

, , , 1

, ,

1 1 1

Re 2 Re

1

Re

n

n

n nrr
r j r j rr rz r j k

a

n

r j r j

a

S M
M V V S S V J P

t D

N V V MV
D



    
              

 

  (4.8c) 

 

 
1

2

* † †

, , , 2

, ,

1 1 1
( )

Re 2 Re

1

Re

n

n

n nzz
z j z j rz zz z j k

a

n

z j z j

a

S M
M V V S S V J P

t D

N V V M V
D



    
              

 

  (4.8d) 

 

 

Stage–2: 
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   1

1 , 2 ,

2n

r j z jK Q J V J V
t

   


   (4.8e) 

Stage–3: 

   1 * † 1

, , 1
2

n n n

r j r j

t
M V V J p p 

    “P” should be capital with subscript “j”  (4.8f) 

   1 * † 1

, , 2
2

n n n

z j z j

t
M V V J p p 

      (4.8g) 

where, 


 drM ji , is a mass matrix,   (4.9a) 





 



drdr
r

J jk

j

k 1  and   (4.9b) 





 



dr
z

J
j

k2 , are Pressure gradient matrices,  (4.9c) 

  


















 



dr
z

V
r

VVN
j

ll

j

lli , is non–linear convection matrix,     (4.9d) 

While the momentum diffusion matrices are define as: 

 

r r r z

t

rz z z

S S
S

S S

 
 
 

   (4.9e) 










 


















 



dr
rzzrr

S
jijiji

rr 2
2   (4.9f) 




























 



dr
zzrr

S
jiji

zz 2    (4.9g) 








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








 



dr
zr

S
ji

zr         (4.9h) 
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kj kjki kiK d
r r z z

     
   

    
  is a pressure stiffness matrix.   (4.9I) 

Here, †  is transpose of a matrix. *,nV V and 1nV   are nodal vectors of velocity field, 

1,n np p   is pressure, and t  is the time interval  
1( , ).n nt t 

n

jV  is a nodal velocity vector at 

time  nt   , 
*

jV  is an intermediate non-divergence-free velocity vector and 
1n

jV 
is a 

divergence-free velocity vector at time step 1nt  . In above equations n

kp  is a pressure vector 

and 
1 1  n n n

k kQ p p     is a pressure difference vector. Where, subscripts i, j, and l are all 

six nodes (1, 2, … 6) for quadratic triangular element for velocity components, while k, 

k1 and k2 are represents only vertex nodes (1, 2, 3) for pressure. 

 

4.4 Solution methods for resultant system of equations/Mass matrix construction 

For numerical computation, initially at different stages, non–linear system of partial 

differential equations governing the flow, are reduced in the linear algebraic system of 

equations. The linearization is incorporated through finite element technique. 

Subsequently, finding the solutions of corresponding linear algebraic system of equations, 

the direct as well as iterative methods are employed. At stage–1(a, b) and stage–3, linear 

algebraic system of equations may be exhibited as: 

 

ij j iM X b            (4.10) 
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Here, the augmented mass matrix of order ‘n’ is represented by
11 1

1n n

n

n

m

m m

m

M

 
 


 
  

, 

whereas, solution vector jX represents an unknown velocity difference over each time–

step cycle   1,n nt t   and b  is related to a right–hand–side known column vector. On the 

left hand side of above linear algebraic system of equations (4.6), a symmetric coefficient 

mass matrix is present and it is solved through modified Jacobi’s iterative method and 

presented as: 

 

 ( 1) ( )s s

d dX M M X bM            (4.11) 

 

Where 
dM  is denotes a diagonal version of mass matrix. To ensure the mass matrix 

diagonally dominant, a diagonal matrix is introduced. This diagonal matrix
dM is 

constructed through absolute row sum of mass matrix and derived from M (Donea, et al. 

1982a).  

 

For the solution of equation (4.7), the direct inversion of mass matrix ‘ M ’ is 

circumvented, in order to save computation cost, an alternatively approach is adopted. At 

first and third stages, an explicit assembly of the consistent mass matrix is restricted. 

Therefore, element by element contributions of mass matrix is computed using Jacobi’s 

iterative technique. For planar flows, using exact integration, this choice is found to be 

suitable because it yields a fast convergence–rate with an adequate convergence is 

realised in only three or five iterations. The authors [(Hawken, et al., 1990) and (Ding, et 
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al., 1992)] have discussed the 
dM  for different choices  Whilst, unknown vector and 

iteration number are represented by
( )sX  and s respectively. The diagonal mass matrix is 

taken as the absolute row sum and illustrated as below: 

 

  d

d ijmM                                                                                   (4.12a) 

Where, 

1

0
d n
ij

ik

k

m
m fo

for i j

r i j




 
 
 
  


      (4.12b) 

For axi–symmetric flow problem, a seven point Gauss quadrature method is applied to 

integrate the governing PDEs, therefore, a mass lumping ( 1s  ) approach is adopted. As 

mass lumping always degrades convection results [(Gresho, et al. 19760 and (Baloch, 

1994)]. However, in diffusion dominant flows mass lumping accelerates the convergence 

and stabilises the solution (Donea, et al., 1982a). A mixed type method is engaged by 

(Usmani, et al., 1993) the effects of mass lumping are well discussed in [(Fu, 1972), (Fujii, 

1973), (Wood, 1990) and (Zienkiewicz and Taylor, 2000)]. Stream function calculator 

uses explicitly both lumped as well as higher number of mass iterations. Whilst, at stage 

two, for pressure difference, a Poisson equation is solved. At this stage a symmetric–

positive–definite stiffness matrix is formed with a banded structure. Therefore, it is an 

appropriate to apply Cholesky’s method. 

4.5 Stream function  

In the analysis of fluid dynamic problems, the flow structure has great importance. Flow 

structure can be computed through stream function in two–space coordinate system which 
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have quantitatively of significant interest. However, in three–space coordinate system, 

for each dimensional face a multiple stream functions are desirable. For illustration flow 

structure, the computation of stream function has an important physical meaning and 

mathematically useful to visualise. The streamlines represent the flow field corresponding 

to the local velocity vectors. Solid boundaries of the flow can be interpreted through 

streamline, also quantitatively suitable, particularly in recirculation regions.  

 

For planar flow, difference between two streamlines characterises the volume flow of 

fluid between the two positions. For the simulation of fluid flow problems using primitive 

variables, it is necessary to have a post processing facility of stream function generating 

in order to visualise clear picture of flow pattern. To draw streamlines from first node 

position to another location of node, it is necessary the information of stream function 

shall be present beforehand. A family of curves across the flow structure describes the 

stream function, while, can be computed from the velocity gradient. Whilst, in the steady–

state solution situation the variation along a single streamline or path line of the fluid 

particles is constant in the flow field. For both coordinate systems, i.e., plane Cartesian 

and cylindrical polar coordinates, stream function satisfies Poisson's equation in. To 

compute stream function at the completion of finite element solver, it is appropriate to 

adopt FE approximation to simulate the equation. For an incompressible two–

dimensional flow, a velocity vector potential ‘ ’can be presented, an applicable vector 

potential is: 

 

V            (4.13) 
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Where, {0,0,   }   represents the stream function. 

 

Here we only address an axisymmetric frame of reference as the Cartesian coordinates in 

computation is a subclass. Let ( ),r zv v be velocity components in axisymmetric 

cylindrical polar coordinate system ( r , z ) in radial and axial directions. Stream function

( , )r z  and fulfils the following relations between velocity components and stream–

function (Baloch, 1994): 

 

1 1
z rv and v

r r r z

 
  

 


        (4.14) 

 

For computation purpose using pseudo time stepping procedure, above equation (4.14) 

gives the following scheme: 

 

2 2

2 2

z r
z

v v
r v r

t r z r z

       
     

     
      (4.15) 

 

After dividing by r gives:  

 

 21 1 z z rv v v

r t r r r z

 
     

  
        (4.16) 

 

For time derivative in left hand side of the equation (4.16), employing forward time 

stepping scheme with step ( t ), variation form of equation–(4.16) becomes: 
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 
1

21 1n n
n z z rv v v

r t r r r z

    
      

   
       (4.17) 

 

Employing weighted residual technique, weak form of equation–(4.17) becomes:  

 

   1 21 n n n z

z r

vw w
r d r d w r d

t r r r

v v
w r d w r d

r z



  

 


       

 


  



  

 

      (4.18) 

 

A finite element approximation will be as follows: 

 

     
1

, , , , ,
N

j j

r z j r z i

i

v v V V r z


                                         (4.19) 

 

Where, on j nodal point
j  is the quadratic basis function, whereas, stream function’

j ’, radial velocity and axial velocity components are represented by  ,j j

r zV V  in r  

and z directions respectively.  

Adopting finite element Galerkin approximation in which weight function (
iw ) is taken 

equivalent to shape function (
i ) and represented below (Baloch, 1994):  

 

   
1 1

N N

i i

i i

w x x
 

                                             (4.20) 
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Gives: 

 

 1 21 jn n j

i j j i j j i z

jj j

i j z i r

d d r d v
t r

d v r d v
z




  

 


            

 


      



  

 

   (4.21) 

 

In order to reduce the second order derivatives of above equation (4.21), Green’s theorem 

is used to integrate by parts and neglecting the boundary integrals by imposing Dirichlet 

boundary conditions, can be written as: 

 

11 j j jn n ji i
i j j j i z

jj j

i j z i r

d d r d v
t r r z z r

d v r d v
z



  

 

    
            

      


      



  

 

      (4.22) 

 

The above equation (4.22) is presented in its explicit and semi–implicit forms adopting 

matrix–vector notation as:  

 

1

1 2

1 n n j j j

j j z z rM K D v Mv D v
t

      


        (4.23) 

1

1 2

1

2

n n j j j

j j z z r

K
M K D v Mv D v

t

 
        

 
      (4.24) 

 

Where, M  is called the mass like matrix with entries 


 dji
 and K   is known as 

diffusion like stiffness matrix with the followingentries: 
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j ji i d
r r z z



   
  

    
   

 

In equations–(4.23 and 4.24), 1D and 2D  are denoted as velocity gradient matrices with 

entries: 

 

j

i rd
r


 

  and 
j

i rd
z


 

 .  

 

4.6 Summary 

 For the simulation of mixing–separating flows through channels and pipes filled with 

porous material or without porous media, numerical algorithm employed is a semi–

implicit finite element based Taylor–Galerkin/Pressure–Correction (TGPC) algorithm. 

Technique adopts a time marching process based on a fractional–steps formulation. 

Scheme has been implemented successfully in numerous flow circumstances [(Van Kan, 

1986), (Carew, et al., 1993), (Carew, et al., 1994),  (Baloch, et al., 1995a), (Qureshi, et 

al., 2004), (Solangi, et al., 2012a), (Solangi, et al., 2012b) and (Solangi, et al., 2013)]. 

None of them has tried to check its stability and convergence in a domain filled with 

porous media. In current study numerical scheme has been implemented on the bench 

mark problem of geometries used by (Cochrane, 1981) through porous media. 

 

The semi–implicit scheme presented has been applied to simulate complex flows of 

Newtonian and non–Newtonian fluids under varying flow–rates and flow directions of 
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the domains introduced in chapters 5 to 8. Algorithm comprises, temporal discretisation 

through expansion of Taylor series in time (Donea, 1984a). At initial half time step a 

forward difference approach is adopted, while, for full time–step a central difference 

approach is employed. For computation of  pressure–differential, a numerical algorithm 

is built to achieve a second order accuracy in time, an operator–split projection method is 

used (Van Kan, 1986). For spatial discretisation a finite element basis functions are used, 

i.e., linear and quadratic approximation for pressure velocities is achieved. These basis 

functions are defined over two–dimensional triangular elements. An iterative, modified 

Jacobi’s, solver is used to compute velocity fields at stage–(1a and 1b) and stage–3. 

While, at stage–2, to Poisson equation for pressure–difference an explicit Choleski’s 

technique is adopted [(Townsend and Webster, 1987) and (Hawken, et al., 1990)].  

 

Convergence and stability of this scheme analysed in both coordinate system has been 

compared in channel and pipe flows on the basis of model used and discussed in chapter 

4 and eight. 
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Chapter 5. Reverse and Unidirectional Flows of Newtonian Fluids in a Channel 

 

5.1 Introduction 

This chapter covers numerically simulated results in a channel filled with and without 

porous channel. Four different settings from G1 to G2 are presented in figure (5.1). The 

domain is very much rich in changing flow directions along with varying flow rates in 

both channel arms. The hundreds of configurations are possible to get very interesting 

seniors but this study considers only four combinations. The continuity and momentum 

equations discussed in chapter three along with their appropriate initial and boundary 

conditions are solved for flows through non-porous and porous media. Two dimensional 

flows of Newtonian fluids are carried out in combined mixing separating geometry by 

using Cartesian co-ordinates system. An unsteady finite element scheme in combination 

with semi-implicit Taylor-Galerkin/Pressure correction scheme has been employed to get 

steady solutions. Details of this scheme are found in chapter four. 

 

The domain is twofold one with reversed and unidirectional channel flows interacting 

through a gap in the common separating walls filled with Newtonian materials in both 

arms of a channel and later with reversed and unidirectional flows through porous media 

as shown in figure [5.1(a)-(b)]. The impact of increasing inertia, variation in flow 

directions, varying flow rate patterns in both channel arms and pressure difference are all 

studied in detail. Numerical simulations of Newtonian fluid flows in a channel are 

presented for the reversed and unidirectional domain shown in Figure (5.1). A 

computational domain is configured into four different settings from G1 to G4 shown in 
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figures [5.1(a) to 5.1(b)] by changing flow directions. In same figure finite element mesh 

used in the domain is also presented as shown in figure [5.1(e)]. 

 

In all four settings equal (1, 1) and unequal [(1, 1.5), (1, 2)] flow rates have been analysed 

initially channel filled with non-porous materials and later with porous. The numerical 

solutions are analysed by presenting streamline patterns, which are plotted at an equal 

interval in two flow regions, those of combined mixing and separating as well as for the 

other three configurations. In the mixing region contours are plotted from the separation 

line to centrally located plate, and in the unidirectional flow region from the channel wall 

to the separation line. In each case of reversed and unidirectional flows particularly for 

high values of Reynolds number streamline patterns are plotted at equal intervals to 

monitor clear activity of vortex development in all flow regions.  

 

5.2 Problem specification 

The particular details of combined mixing and separating geometry of reversed along with 

a unidirectional flow problem is given in Figures [5.1(a) to 5.1(d)] along with the finite 

element mesh used in this study shown in figure [5.1(e)]. As shown in Figure (5.1), 

configurations consist of two inlet and two outlet flows in a planar channel that is divided 

into two different sections by the intersection of two thin insert plates, placed horizontally 

in the central plane of a domain. The second has with two inlets from same direction one 

outlet in opposite. The third modified geometry is with again two inlets in opposite 

direction and one outlet. The last unidirectional geometry has one inlet from left bottom 

arm and an outlet from top right arm of a channel. In this study wide gap geometry with 

a separation gap width of β = 3L where L is taken as height of one arm of a channel has 
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been studied. This facilitates an investigation of the impact of gap width on resultant flow 

structure.  

 

Here same thickness of the plate which is α = 0.0254L as in  (Baloch et al.,1995a) has 

been taken. The length of a channel is reasonably good for reproducing developed flow 

at inlet and outlet of the flow domain. This research has preferred the wide gap geometry 

because in medium and narrow gap geometries it was observed that flow characteristics 

do not have some dramatic change. As mentioned by (Cochrane et al., 1981)  it is very 

interesting geometry because flow rates and flow directions can be varied in several ways 

and the strength of the streams in the both the channel arms could be viewed by indicating 

arrows on the various figures. The flow domain is obtained by a uniform conformal 

mapping procedure and discretized into triangular elements.  The total number of 

elements, nodes, boundary nodes, degrees of freedom and vertex nodes in a finite element 

mesh of the domain are 1328, 2853, 392, 6469 and 763 respectively. 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

Figure 5.1 Geometries of the computational domain and mesh; (a) Diagram of 

combined mixing and separating flows with two inlets and two outlets (Reverse flow) 

, 1G , (b) Unidirectional flow with two inlets and one outlet, 2G , (c) Reverse flow with 

two inlets and one outlet, 3G , (d) Unidirectional flow with one inlet and one outlet, 

4G  and (e) Finite element mesh used in the simulation. 

 

Following the pioneer study (Baloch et al., 1995a) a proper choice of the time step has 

been made.  A semi-implicit scheme has been employed by using Jacobi method to 

capture an accurate solution and typical time steps involved are ∆t ≤ 0.01 for Newtonian 

problems. By employing five iterations per Jacobi step at a tolerance of 10-6 a steady state 

solutions have been achieved. 

 

5.3 Governing system of equations 

For an analysis of an incompressible flow, the governing system of equations involves 

the conservation of mass and momentum transport equations. In the absence of body 

forces under isothermal condition within bounded region in space 
2 with a smooth 
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piecewise boundary and time domain  0,   with t   and x   are time and space respectively 

the constitutive equations are defined as follows: 

 

Continuity equation 

0 v                                                                                                             (5.1) 

 

Where ( , )x tv the velocity is vector and   is the gradient operator.  

 

Momentum equation 

 . 2 ( . ) p
t

  


    


v
d v v                                                                    (5.2) 

 

Where, v  is a velocity of fluids, ( , )p tx is the isotropic pressure (per unit density),   is 

the fluid density,   is the gradient operator   is a Newtonian fluid viscosity and d  is 

the rate of deformation tensor and it is defined as below:  

†1
[ ( ) ]

2
d V V    .  Where 

†
  denotes matrix transposition. For Newtonian fluid    is 

assumed as constant. 

 

The flow is considered to be hydro-dynamically fully developed hence velocity does not 

depend on axial direction of the channel. The flow is a unidirectional one and it is 

expressed in terms of axial velocity alone as a function of transversal direction. The non-

dimensional system of equations along with appropriate initial and boundary conditions 
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could be found in chapter three. Governing system of equations are solved by employing 

a Taylor-Galerkin method which its numerical scheme and weak formulation is discussed 

in chapter four.  

 

5.4 Numerical results and discussion 

In this section, current study presents numerical solutions for Newtonian combining and 

separating flows in a channel filled with non-porous media. Investigations are given into 

flow stream patterns, vortex growth, pressure difference, due to changing flow rates and 

flow directions. Different combinations are given in Figures [5.1(a) to 5.1(d)] by changing 

flow directions and flow rates. 

 

5.4.1 Mixing and separating of Newtonian fluid flows in a channel filled with 

non-porous media (Geometry 1 1G ) 

Figure 5.1(a) shows Newtonian fluid flows for combing and separating in a channel filled 

with a non-porous media. Insertion of the plates into computational domain creates two 

inlet and two outlet channel arms of equal dimension on opposing sides of the partition 

and placed separation gap of width .  The separation gap considered is 3L   where L

is a characteristic length taken as the height of an inlet arm of a channel. The thickness of 

the plate is taken as 0.0254L   and sufficiently long length of a channel is selected to 

reflect fully developed flow at entry and exit of the domain. Here effects of inertia, vortex 

size and its power are being discussed when channel is filled with a non-porous material. 

Comparisons will be made with inertial effects, pressure difference with the available 

results in open literature when a channel is filled with non- porous materials. 
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5.4.1.1 Equal (1, 1) flow rate 

Equal (1, 1) rate is the volume of fluid passes per unit time into either channel arm is the 

same. As it has been discussed in chapter two .m mU V  In order to understand the effects 

of the inertia it is useful to first examine the flow of a Newtonian fluid and relative flow 

rates. The numerical results are presented in Figure 5.2 for increasing Reynolds number 

from (1≤Re≤200). Starting from two parallel Poiseuille flows that are moving in opposite 

directions in upper and lower channel section of the geometry, solutions for unit Reynolds 

number have been got first. It is observed that the fluid responds to the presence of the 

gap and immediately breaks up, with flow mixing in both upper and lower exit sections 

of the geometry.  

 

At Re = 15 vortices development has been started near the walls in both arms of a channel. 

At  Re= 15 both vortices formed near the wall of upper and lower channel arms collide 

and merge in one and cover the middle gap of the domain. That single vortex grows in 

size and clearly forms an eddy. By adopting the same approach in increasing the value of 

Re the development of intensity of these vortices become more visible near the nip of the 

inserted plates in lower and upper channel arms as shown in figure (5.2) (at Re= 30 to 

Re=150) by presenting symmetry with respect to each other.   

These independent vortices near the walls   grow in size with increasing value of Re at 

exactly Re=100 these vortices become stable stretch in size and adjust their position on 

the wall.  Eddy formed by the collision of two vortices in the middle gap increases in size 

grows horizontally and moves its position. Those eddies similarly start recirculation grow 

in size and forms two other eddies inside the bigger eddy and being symmetrically placed 

with respect to each other (at Re=200).  
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The core twin vortices near the boundary tend to become more twisted and stretched in 

the horizontal and vertical directions. Increasing the Reynolds number has an effect of 

increasing the size and strength of the central vortex and vortex behind the insert plates 

but with very high Reynolds number, vortices seem to divide into more vortices.  

In equal (1, 1) flow rate flow was blocked by dominant recirculating vortices in the middle 

gap of the domain and that results in the flow of reversed (at Re=15). Proper mixing of 

the fluids in middle gap has been observed. 

 

 

 

Re=1 

 

 

Re=15 
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Re=16 

 

 

 

Re=25 

 

 

 

Re=30 
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Re=50 

 

 

 

Re=150 

 

 

 

 

Re=200 
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Re=200 (with small time step) 

 

Figure 5.2 Streamline function for combined mixing and separating of Newtonian fluid 

flows for equal (1, 1) flow rate in a both channel arms, increasing Re from top to bottom. 

 

5.4.1.2 Unequal (1, 1.5) flow rate 

Numerical results for unequal (1, 1.5) flow rate of Newtonian flows in a channel are 

displayed in Figure- 5.3. In this case m mU V  and fluids passes from each channel arm 

takes the ratio 1:1.5. Again results are presented form the same domain but here flows 

rate has been changed in upper channel arm with increasing Reynolds numbers (1 ≤ Re ≤ 

200). Solutions are similarly started with Re=1, due change in upper channel arm flow 

has been pushed down in lower bottom arm of a channel and it has given rise to reversed 

flow. At Re=1 very weak vortex activity near the lip of sharp edge has been observed in 

in the right of lower channel arm towards the exit flow.  

By adopting the same approach of increase in the value of Reynolds number as shown in 

section 5.4.1.1. It has been observed one more vortex growth near the wall in top channel 

arm in the centre of the domain wall (at Re=25) has been appeared.by increasing the value 

of Re vortex developed near the insert plate lie flat and adjust its position. It grows in 

size, become more stable, deeper and inclined with the wall.  For further increase in the 

value of  Re the intensity of vortex recirculation increases and vortex near the boundary 

wall pushes more towards the middle separation gap, grows in size and form an eddy as 

shown in figure (5.3) (at  Re=100 to Re=200).   
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At Re=200 another vortex appears in the top channel arm on the left downstream. All 

vortices development in all three different locations and have adopted the same pattern of 

growth in size, intensity, stability and with symmetry in streamlines. Similarly, here 

increasing the value of Reynolds number has the outcome of increasing the size strength, 

stability of the vortices as it was observed in the case of equal flow rate in section 

(5.4.1.1). Here flows are both unidirectional and reversed.  

 

Vortex developed only on one wall of the upper channel whilst, in equal flow rate it 

appeared from either side of the domain in the middle of the wall. In lower a channel arm 

at Re=10, vortex appears only from one side near the central plate from its right. Another 

vortex on the other side of the central plate appears very late at Re=50. 

 

Re=1 
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Re=10 

 

 

Re=15 

 

 

 

Re=25 
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Re=30 

 

 

 

Re=50 

 

 

 

Re=100 
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Re=150 

 

 

Re=200 

 

Figure 5.3 Streamline functions for combined mixing and separating of Newtonian fluid flows 

of unequal (1, 1.5) flow rate in both channel arms, increasing Re from top to bottom. 

 

5.4.1.3 Unequal (1, 2) flow rate  

In this case fluid passes in lower and upper arm of a channel in the ratio of 1:2. It means 

volume of the fluid flows in upper channel arm is double as compared with lower channel 

arm. Unequal (1, 2) flows of Newtonian fluid filled in a channel for non-porous media 

are shown in figure (5.4). Calculations are presented for the same configuration with 
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increasing Reynolds numbers (1≤Re≤200) for different flow rates in both a channel arms. 

Numerical simulations are giving streamline patterns, which are plotted at equal intervals 

in two flow regions, those of unidirectional and reversed flow. In the mixing region 

contours are plotted from the separation line to centrally located plate and in the 

unidirectional flow region from the channel wall to the separation line.  

 

Results for double flow rate in upper arm of a channel are started with unit Reynolds 

number and very early activity of vortex development near the nip of edge of the central 

plate in bottom channel arm. Due to double flow rate in upper arm of the channel fluid 

has been pushed down in the lower channel. At Re=10 vortex grow in size and becomes 

inclined towards the flow direction towards right. Very late development of other vortex 

appeared on the top channel at Re=50 and higher Reynolds number. Moreover, the vortex 

was developed very late for higher values of Re at the top channel arm near the wall which 

again pushed down the flow in lower arm in the middle gap of the domain (at Re=50). By 

increasing the value of Re inertial effects become more visible in the entire computational 

domain. These all three vortices recirculate and grow in size. These vortices developed at 

the plate adjust their position by lying horizontally on the plate. These vortices grow in 

size and shape with same lines of symmetry in both vertical and horizontal directions.  

 

Once again like above unequal (1, 1.5) discussed in section (5.4.1.2). The unequal (1, 2) 

flow has more dramatic change in the flow structure. Vortices development has been in 

all three different locations of the computational domain like above discussed flow rate 

(1, 1.5). The vortexes are present in upper exit, lower exit near the insert plates and in the 

middle separation gap of the domain. Increasing the Reynolds number has the effect of 
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increasing the size, strength and intensity of the vortices as it was observed in unequal 

flow rate above and form eddies. Mixing and separating fluids have been noticed in the 

central gap. In all three configurations results are in very good agreement with 

experimental results. 

 

 

Re=1 

 

 

 

Re=10 
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Re=25 

 

 

 

Re=50 

 

 

 

Re=100 
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Re=100  

 

 

Re=200 

Figure 5.4 Streamline functions for combined mixing and separating of fluid flow for unequal 

(1, 2) flow rate in both arms of channel, increasing Re from top to bottom. 

 

5.4.1.4 Influence of unequal flow rate on flow structure 

In unequal flow rates there is dramatic change in inertial effects of Newtonian fluid flows 

in a channel filled with non-porous materials. For both unequal flow rates numerical 

results are presented for in figures [(5.3) to (5.4)] above. Solutions are found for 

increasing Reynolds number and there is no any evidence of completely reversed flows 

as compared with equal flow rate. It can be seen that unidirectional flow has been 

increased as the flow rate changes but reversed flow still exists up to the end. Increase in 

flow rates in the top arm of a channel has increased the intensity of unidirectional flow 
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and vortex growth near the one end of a channel arm. That vortex is near the central plate 

is the bottom arm of a channel has been suppressed/decreased in strength which exits near 

the other end of centrally positioned plate.  Here twin vortex which was appearing in the 

middle gap of separation gap of plate has changed its position in the top channel arm 

somewhere in the possible gap available near the upper wall of the channel. It is slowly 

coming down by pushing the flow in lower bottom channel arm.  

 

By increasing value of Reynolds number vortex pattern diminishes in size and strength 

and they split into other smaller vortices. That affect is due to the relative flow rates. 

Furthermore, in contrast with equal flow rates in unequal flow rates have given more rises 

to vortex generation only in the top channel arm. There is no any evidence of vortex 

development in bottom channel arm in the middle of the boundary wall. Due to the 

changing flow rates in upper channel arm vortex in the upper channel near the edge on its 

left have vanished for initial values of Re. Very late activity of third vertex have been 

noticed when Re reaches up to 50. Flows are mixing and separating in the separation gap 

but mixing is not like as it was in equal flow rate. 

 

5.4.1.5 Effect of flow rates on pressure difference 

As shown in figure (5.5), non-dimensional scaled pressure verses Reynolds number 

(Inertia) is presented for Newtonian fluids in combined mixing and separating geometry. 

For all relative flow rates the value of Reynolds numbers are considered from 1 ≤  𝑅 ≤

200.  For equal flow rate non-dimensional scaled maximum and minimum pressure 

obtained by current numerical scheme are, for equal flow rate,  1   2.8013sp  ,  for 

unequal (1,1.5) flow rate 1   5.6551sp  , and for unequal (1,2) flow rate, 1   8.4396sp 
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. Results are presented for increasing value of Re against non-dimensional scaled pressure 

difference for all three relative flow rates and are scaled by
 

max

max Re 1

Re
s

at

p
p

p






. Where, sp  

is scaled pressure difference,   
vL

Re



  Reynolds number and maxp   is a non-

dimensional pressure difference. 

 

It has been observed that increasing relative flow rates have shown effect of increase in 

pressure difference as presented in the following graph shown in Figure 5-5. In all three 

flow conditions an increase in pressure has been detected in all three relative increasing 

flow rates. When all three flow rates compared with each in an increasing order of Re, 

the change is obvious in figure (5.5). For initial values of Re from Re=1 to Re=50, 

pressure is minutely changed but for higher values of Re (from 100 to 200) obvious 

change is appearing.  Increase in the value of Re along with relative flow rates in upper 

arm of a channel have increasing effects on pressure difference. 
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Figure 5.5 Comparison of maximum scaled pressure with increasing inertia at 

different flow rates in a channel filled with non-Porous Media. 

 

5.4.2 Mixing and separating of Newtonian fluid flows in a channel filled with 

non-porous media ( 2G ) 

In section 5.4.1 flow is reversed with two inlets, one in top channel arm from its right and 

another in bottom from its left. Flows are in opposite directions with other two outlets 

one from its right in bottom channel arm and other from its left in upper channel arm. 

Flow directions are shown in figure [5.1 (a)]. In 2G  flow is unidirectional and domain is 

such that having two inlets from left side in each arm and only one outlet its right in lower 

arm as in figure [5.1 (b)]. Unidirectional Newtonian fluids have been passed in domain 

filled without porous media along with varying flow rates in both arms. The same 
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procedure as has been adopted for the presentation of streamline functions as discussed 

in above in section (5.4.1). In order to understand the effects of the inertia on flow 

structure and pressure difference flow of Newtonian fluids have been examined with 

relative flow rates. 

 

5.4.2.1 Equal (1, 1) flow rate 

Numerical solutions of Newtonian fluid flows for equal flow rate in both channel arms of 

Reynolds numbers (1≤Re≤200) are presented in figure (5.6). At Re=1 two big vortices 

have been produced in downstream of upper arm of a channel to its right side of the 

computational domain. One vortex is on the nip of the sharp edge of the central plate 

located on the middle side of the channel on its right and the other is farther to its silent 

arm. By increasing the value of Re, vortex on the nip of sharp edge on its above arm of a 

channel increases in its size as shown in figure (5.6) (at Re=20, 30, 50, 100 and 150). At 

Re =150 another inertial effect has been observed in the bottom channel arm near the 

central plate towards the exit. At Re=200 both vortices are merged and one weak vortex 

move horizontally towards the blockage. As fluid flow is unidirectional therefore mixing 

has been observed in the separation gap and in lower arm of a channel towards the exit. 

 

Re=1 
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Re=20 

 

Re=30 

 

Re=100 

 

Re=200 
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Figure 5.6 Streamline functions for unidirectional flows of Newtonian fluids for equal 

(1, 1) flow rate in both arms of a channel, increasing Re from top to bottom. 

 

5.4.2.2 Equal (1, 1) flow rate 

Numerical Results are presented for same domain from Re=1 to 200 in figure (5.7). The 

flow rate has been increased in upper channel to monitor change in inertia and mixing of 

fluids. Almost identical effect has been observed except one vortex development in lower 

arm near the inserted plate in the centre of the domain towards the exit. This vortex is 

stronger and bigger in size as compared with the one appeared in equal flow rate discussed 

in section (5.3.2.1). The same mixing effects have been monitored as was the case in 

equal flow rate. Early activity of vortex development has also been observed for lower 

Reynolds number. That vortex appeared near the centrally located plate on its right during 

increased value of Reynolds at Re=150. Vortex developed in silent arm has been a little 

bit pushed towards silent downstream of the top channel arm.  

 

During varying flow rate merging of two vortices becomes too early with the increasing 

flow rate. The same mixing effects have been found as with of equal flow rate. Numerical 

results are compared with the experimental and numerical results produced by (Cochrane 

et al., 1981) and results presented are in very good agreement them. Comparisons of 

numerical results with experimental are given in chapter nine in figures [(9.1)-9.2] in 

chapter 9. 
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Re=1 

 

Re=50 

 

Re=150 
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Re=200 

 

Figure 5.7 Streamline functions for combined mixing and separating of fluid flow for 

unequal (1, 1.5) flow rate in both arms of channel, increasing Re from top to bottom. 

 

5.4.2.3 Unequal (1, 2) flow rate 

With fluid flowing rate is double in upper arm of a channel to see mixing and inertia 

effects. In Figure (5.8) numerically simulated results are presented form an identical 

unidirectional domain. From Re=1 to Re=150 same effect as have been observed except 

little bit more push to fluids in salient corner of the domain. At Re= 100 two vortices 

appeared in the silent corner merged more early i-e. At Re=100 as compared to above two 

flow rates in the same situation discussed in sections [(5.3.2.1) to (5.3.2.2)].  Moreover, 

another weak vortex influence has been seen in lower channel arm near the centrally 

positioned plate.  

At Re=150 fluid has been pushed high on into a silent corner due to the double flow rate 

in upper arm of the channel. It is matter of common sense that fluid should be pushed 

there and it proves the strength of our numerical scheme and stability of the developed 

code. The vortex developed near the central plate grow in its size and adjust its position 

on the plate and moves towards the exit (at Re=150). The merged vortex breaks up into 

two vertices and these new vortices grow in its size and length. Mixing effects are literally 

same as observed in above two cases discussed in sections [(5.3.2.1) to (5.3.2.2)]. 
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Re=200 

 

Figure 5.8 Streamline functions of unidirectional flows Newtonian fluid for unequal 

(1, 2) flow rate in both arms of channel filled with non-porous media, increasing Re 

from top to bottom. 

 

5.4.2.4 Effects of flow rate 

For different flow rates numerical simulations of unequal [i.e. (1, 1.5) and (1, 2)] 

numerical results are shown in figures [(5.7) to (5.8)] for flows of Newtonian fluids in a 

channel filled with non-porous media.  Changing flow rates has effects on early 

development of vortices and some push to fluid in silent corners of the domain in upper 

downstream towards blockage. Early merging of two vortices developed in the silent 

corners has been observed as compared to equal flow rates in both channel arms. In 

unidirectional flow one more stable vortex has been developed near the central position 

plate towards the exit of a bottom channel arm. More inertia has been noticed due to 

changing flow rates in upper channel arm. Merged vortices again break up into two by 

increasing the value of Re. Similar mixing effects were seen as those in equal flow rate. 

 

 

 



 Chapter 5. Reverse and Unidirectional Flows of Newtonian Fluids in a Channel 

98 

 

5.4.2.5 Effect of increasing inertia and flow rates on pressure  

In figure (5.9), non-dimensional scaled pressure difference verses Reynolds number 

(Inertia forces) is presented for Newtonian fluids in combined mixing and separating 

geometry.  For all relative flow rates the value of Reynolds numbers are considered from  

1   200.Re   For three different flow rates non-dimensional scaled maximum and 

minimum pressure difference were obtained, which are for equal flow rate   

1   2.4255sp  ,  for unequal (1,1.5) flow rate 1   2.5365sp  , and for unequal (1,2) flow 

rate 1   2.6374sp  . Pressure difference for all three relative flow rates have been scaled 

the same way as above discussed in section (5.4.1.5). 

 

Newtonian fluid flows in three relative flow conditions give an increase in pressure with 

increasing the values of Reynolds number. In this case pressure increases smoothly as 

compared to the relative flow rates of 1G  discussed in section (5.4.1.5) and shown in 

Figure 5-5. In this situation as flow is unidirectional therefore increase in pressure 

difference is linear in nature as compared to reversed flow discussed in section (5.4.2.5) 

above. Compare figures [(5.5) to (5.9)].  

 

On lower values of inertia there is no dramatic change but with further an increase the 

higher values of inertia show a significant change as depicted in below graph from lower 

to higher values of Reynolds number. In unidirectional flows curve of the flow rate is 

smooth. But in case of reversed flow pressure show more inertia effects for specially for 

higher values as show in figure (5.9) (from Re=100 to Re=200). In figure (5.9) pressure 

ranges from 1 to 3 units and in this case it is within 1 to 3 units. From Re=1 to 50 there is 
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less variation but in the range of higher values of Re (at Re=100 to 200) pressure shows 

obvious change. 

 

Figure 5.9 Comparison of maximum scaled pressure with increasing inertia at 

different flow rates in a channel filled with non-Porous Media 

 

5.4.3 Mixing of separating of Newtonian fluid flow in a channel filled with non-

porous media ( 3G ) 

In this configurations domain is having two inlets in opposite directions, first from its 

right in top channel arm and another from its left in bottom channel arm. In this setting 

outlet is only one and it is from right in bottom channel as shown in Figure [5.1(c)]. 

Numerical solutions of that reversed flow for Newtonian fluid in a channel filled with no 

porous media in it are presented in figures [(5.10) to (5.12)] for relative flow rates. The 

numerical results are analysed by presenting streamline patterns, which are plotted at an 
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equal interval in two flow regions for reversed flows. In this section in similar way as 

discussed in sections (5.4.1) and (5.4.2) flow rates have been changed in both arms to 

observe its special effects on flow structure. Effects of inertia, intensity, size and length 

of vortex development in flow structure and pressure difference have been discussed in 

the section. 

 

5.4.3.1 Equal (1, 1) flow rate  

The numerical calculations are shown for equal (1, 1) in figure (5.10) with the increasing 

Reynolds numbers (1≤Re≤200) for different flow bifurcations. It is observed that the fluid 

responds to the presence of the gap and immediately breaks up, with flow mixing in both 

upper and lower exit sections of the geometry as it has been seen in other settings 

discussed in sections (5.4.1) to (5.4.2). From Re=1 to Re=15 two strong vortices have 

been seen in the downstream of the above arm of the channel and the flow in above 

channel has been pushed towards the wall of upper arm of a channel in the middle gap of 

a domain. At Re=30 one vortex has stretched horizontally in the whole middle gap of the 

top channel arm and the flow has been pushed to be reversed in the lower channel towards 

to the exit. Moreover, at Re=30 a new activity of vortex development can be seen in the 

lower channel arm near the central plate at nip of it. 

 

At Re=50 another inertial effect has been noticed in the top channel arm near the wall. 

By increasing the value of inertia vortex grows in size and moves towards the lower 

channel arm and also pushes the flow in the lower arm of a channel (at Re=100) in figure 

(5.10). At Re=150 third vortex develops in the salient corner of the top arm. All other 

four vortices established in different locations of the domain, nurture in size and firm their 



 Chapter 5. Reverse and Unidirectional Flows of Newtonian Fluids in a Channel 

101 

 

positions by moving horizontally and vertically. The third vortex developed in a upper 

channel arm on its left side in its downstream merged into one with second vortex near to 

it (at Re=200) in figure (5.10). 

Changing flow directions of the fluid flows has shown their effects as increasing inertia 

in the computational domain especially in upper arm of a channel. Increasing the value 

Reynolds number has shown more inertial effects and has further strengthened the shape 

and size of vortices noticed in different locations. Flows are both reversed and 

unidirectional up to Re=200. Mixing and separating of fluids have been observed in the 

middle gap and in lower channel arm. 

 

Re=1 

 

 

Re=15 
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Re=30 

 

 

Re=50 

 

 

Re=100 
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Re=150 

 

 

Re=200 

 

Figure 5.10 Streamline functions for combined mixing and separating of Newtonian 

fluid flows for equal (1, 1) flow rate in both arms of channel filled with non-porous 

media, increasing Re from top to bottom. 

 

5.4.3.2 Unequal (1, 1.5) flow rate 

In unequal (1, 1.5) flow rate, numerical results for Newtonian flows in a channel filled 

with non-porous media are displayed in figure (5.11). In this section the flow has been 

increased in top arm of the channel to detect its special effects on flow design of the 

computational domain. Almost the same influence has been seen in vortex progress from 

Re=1 to Re=20 as shown in figure (5.9) of equal (1, 1) flow rate. Although an early 
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activity of vortex growth has been noted in lower channel towards exit near at the sharp 

edge of a central inserted plate (at Re=15). 

Further increasing the value of Re has given rise to more vortex development and 

intensity in its growth and size. Flows are both unidirectional and reversed but presence 

of unidirectional flows have pushed the flows back to lower channel by the growth in the 

size of vortices appeared in the top channel arm. The Same effects of splitting and 

merging again have been observed in the top channel arm in its salient corners as shown 

in figure (5.10). Mixing and separating appear either in upper arm or lower arm towards 

the outlet of the channel. 

 

Re=1 

 

 

Re=10 
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Re=200 

 

Figure 5.11 Streamline functions for combined mixing and separating of Newtonian 

fluid flow for unequal (1, 1.5) flow rate in both arms of a channel, increasing Re from 

top to bottom. 

 

5.4.3.3 Unequal (1, 2) flow rate 

In this case flow rate in upper channel arm has been increased to its double when 

compared with the flow rate in its lower arm. A numerically simulated result for this 

purpose has been presented in figure (5.12) for same channel with the same settings 

except from the change in flow rate in the top arm.  For value of Re=1 to 20 the same 

effects of inertia have been noticed. For all other increasing number of Re same effect of 

vortices has been noticed except the raise more in size and in its adjusted shape as shown 

in figures [(5.10) to (5.11)]. Compare these similar effects as are shown in figures [(5.10) 

to (5.11)]. For higher values of Re, unidirectional flow in the bottom arm has been 

suppressed and has given strength to the reversed flow to the outlet of the channel fixed 

in the lower arm. Similar effects of inertia have been observed by changing flow rate in 

upper arm when compared to unequal (1, 1.5) flow rate discussed in section (5.3.3.2), 
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except unidirectional flow has been reduced in bottom arm towards its exit.  Mixing only 

appears in either separation gap or in the lower channel in the downstream towards exit. 

 

Re=1 

 

 

Re=20 

 

 

Re=30 
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Re=50 

 

 

Re=200 

 

Figure 5.12 Streamline functions for combined mixing and separating of Newtonian 

fluid flows for equal (1, 1) flow rate in both arms of channel filled with non-porous 

media, increasing Re from top to bottom. 

 

5.4.3.4 Effects of flow rate 

For different flow changing rates numerical simulation results for unequal flows of [i.e. 

(1, 1.5) and (1, 2)] in a channel filled with no porous media are given in figures [(5.11) to 

(5.12)]. Here reversed and unidirectional flows have been observed for both unequal flow 
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rates in the channel. Changing flow rate in upper arm has given rise to the early activity 

of vortex development as compared with the equal flow rate.  

Increasing the value of Re has more effects of inertia as it can be seen from the growth in 

size, splitting and merging of vortices in the salient corner of the upper arm. Changing 

flow rate in the upper arm of the channel i-e from unequal (1, 1.5) to (1, 2) have supressed 

the unidirectional flow in the lower arm in the downstream towards its outlet. Most of the 

mixing and separating have been seen either in lower arm or in the middle gap of the 

domain. 

 

5.4.3.5 Effects of increasing inertia on pressure difference 

Results from Newtonian fluid flows are presented in figure (5.13) under the reversed flow 

condition with dual-inlet/single outlet for different flow rates in a channel [as shown in 

figure 5.1(c)]. In three different flow rates non-dimensional scaled maximum and 

minimum pressure obtained are, for equal (1, 1) flow rate1   5.8078sp  , for unequal (1, 

1.5) flow rate1   8.7263sp  , and for unequal (1, 2) flow rate1   11.0048sp  . In all three 

flow situations the values of Reynolds number are considered 01 Re 200  to monitor 

the influence of inertia and flow rates on pressure. Results of pressure difference verses 

Reynolds number shown in figure (5.13). Pressure difference are scaled and shown in 

vertical axis, whereas Reynolds number are in horizontal directions. 

 

 It is obvious in figure (5.13) the non-dimensional pressure difference increases with the 

increasing flow rates and varying values of Reynolds number. A pattern of the graph of 

pressure difference verses Reynolds number against flow rates show the same change as 

was observed in reversed flow direction discussed in section (5.4.1.5). The effects of 
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increasing inertia and flow rates are the same in the reversed flow conditions as shown in 

figure (5.5) and figure (5.13). Scaled pressure difference are directly proportional to 

Reynolds number because with increasing Re pressure difference increases. Pressure 

difference in relative flow rates are also depending on Reynolds number. Increase in the 

value of Re increases pressure difference in respective flow rates. As shown in figure 

(5.13), values of pressure difference in unequal (1, 1.5) are flow are higher than equal (1, 

1) flow rate. Whereas values of pressure difference in unequal (1, 2) flow rate are greater 

than unequal (1, 1.5).  

 

Pressure is directly affected by increasing inertia. Pressure is also affected by flow rates. 

The reversed flow rates have significant effects as compared with unidirectional flow 

compare figures [(5.5) and (5.13)] with figure (5.9). Reversed and unidirectional flows 

are depending on Reynolds number. Increase in the value of Re increased the scaled 

pressure but that increase is higher in case of reversed flow case. From Re=1 to 50 there 

is no obvious dramatic change but from Re=100 to Re=50 it is very clear and depicted in 

graph. 
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Figure 5.13 Comparison of maximum scaled pressure with increasing inertia at 

different flow rates in a channel with non-Porous media. 

 

5.4.4 Unidirectional flow of Newtonian fluid in a channel filled with non-porous 

media ( 4G ) 

This configuration of unidirectional domain is having one inlet from the bottom arm from 

its left and one outlet from its right in the top channel arm as shown in [figure 5.1(d)]. It 

is obvious from the domain settings only equal flow rate could flow in each arm. The 

fluid flow enters from one arm and exits from the other. Numerical results for 

unidirectional flows of Newtonian fluids in a channel filled with non-porous medium are 

displayed in figure (5.14). The numerical solutions are analysed by presenting streamline 

patterns, which are plotted at an equal interval in two flow regions for unidirectional 

flows. Newtonian fluid Flows have been passed once again in the channel filled with non-
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porous media with changing flow directions. The effects of inertia and their influence on 

pressure difference are discussed.  

 

5.4.4.1 Effects of inertia on flow structure 

Figure 5-14 shows numerical results for the values of Re, from (1≤Re≤ 500). Newtonian 

fluid flows in the channel filled with non-porous media are presented with streamline 

functions along with pressure difference. In order to understand the effects of inertia 

simulation are started with Reynolds number. At Re = 1 a very strong and early growth 

of vortices in the salient arms of a channel near the sharp edge have been noticed. Vortex 

appeared on the top channel arm on the nip of a central plate grow in its size and started 

moving horizontally towards the middle gap in the top arm towards the exit as shown in 

figure (5.14) [at Re 10, 25, 50, 100]. At Re=300 a vortex developed near the central edge 

in lower channel also has started moving horizontally along with the wall of the channel. 

 

At Re=200 third vortex has been noticed in the upper arm in its blockage side. That vortex 

grows in size vertically as well as horizontally and the intensity of recirculation of vortex 

has broken it into other smaller vortices. These vortices have given rise to formation of 

an eddy in the top arm of a channel. With an increase in the value of Reynolds number 

these small vortices formed a strong eddy which adjusted its position between solid 

boundary walls and thin insert plates placed in the middle of the geometry. That eddy 

further stretched in the direction of flow towards the exit. The growth of an eddy was 

observed in the horizontal direction of top channel arm.  As the flow is coming from 

bottom arm of the channel and it is not giving it space to come down towards the gap.  

Above of it is a solid boundary wall which suppresses the developed eddy to down. 
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Enhancement of grown vortex/eddy is in horizontal direction in the direction of flow. 

That eddy has inclined towards exit due to flow direction that is the natural process.  

 

The vortex stretch is more in horizontal direction towards salient arm of the channel 

because the flow from its left suppresses its growth in that direction. Finally, that strong 

vortex adjusts its position on the boundary wall of bottom arm and form an eddy. It is 

observed that power of recirculation and its formation in size and shape of an eddy in the 

salient arm of top channel is strong.  It could be compared with the other vortices near the 

insert plate in salient bottom arm of channel. Here study can find very strong behaviour 

of recirculating vortices with an increasing value of Re behind the centrally positioned 

insert plates as evident from figure (5.14). For the higher values Re the process of 

meandering has been noticed in the end. 

 

Re=1 
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Re=50 

 

 

Re=100 

 

 

Re=200 

 

 

Re=300 
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Re=500 

 

Figure 5.14 Streamline function for unidirectional Newtonian fluid flows in a channel filled 

with non-porous media, increasing Re from top to bottom. 

 

5.4.4.2 The influence of inertia on pressure difference 

Figure (5.15) shows the effects of inertia on pressure with increasing the values of 

Reynolds number. Numerical simulations are carried out for unidirectional Newtonian 

fluid flows for the domain given in figure [5.1(d)]. Non-dimensional scaled pressure got 

for this purpose is 1 Re 1.3571  and shows an increase in its values as discussed in 

sections [(5.4.1.5), (5.4.2.5) and (5.4.3.5)] in all three flow conditions with an increasing 

values of Re.  As flow settings are shown in figure [5.1. (d)], because of it flow is entered 

from bottom arm from its left and exits from top channel arm from its right of the domain. 

Therefore it is not possible run relative flow rates. That is why only equal (1, 1) flow rates 

are discussed.  

 

In this case once again flow is unidirectional as was the case in section (5.3.2). Therefore, 

increase in values of pressure difference is linear in its nature and pressure rises linearly 

against inertial forces. Pressure difference and varying flow rates are influence with an 
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increasing inertia as shown in figures [(5.5), (5.9) and (5.13)]. As discussed in the 

beginning of this section (5.3.4) only equal (1, 1) are passed in this settings. This 

unidirectional flow setting agrees with the one discussed in section (5.3.2.5). Changes in 

pressure difference are similar to it. 

 

 

Figure 5.15 Maximum scaled pressure with increasing inertia in a channel filled with 

non-porous media. 

 

5.5 Summary 

The semi-implicit time-stepping Taylor-Galerkin/Pressure-Correction primitive variable 

finite element algorithm has been used. The scheme is found to be robust, stable and 

accurate in its predictions of steady and complex flows. For combined mixing and 

separating as well as unidirectional flows in a channel of Newtonian fluids different 
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bifurcations have been investigated by changing flow direction and flow rates. The results 

from two dimensional planar combined mixing and separating geometry as well as the 

other three modified settings of changing flow directions of unidirectional flows have 

shown that this algorithm gives an adequate mesh convergence for the full compressible 

Navier-stokes equation.  

 

For monitoring the level of inertial effects on flow structure and pressure the value of 

Reynolds number was increased for equal and unequal flow rates for all changing flow 

directions of the flows in given computational domain. It has been observed that an 

increase in the value of Reynolds number has led to an increase the intensity of vortex 

development near both ends of centrally located plate and in the middle gap of the 

geometry for equal flow rates. Changes in flow rates have encouraged the unidirectional 

flow in top channel arm and decreased the power of vortex development near one end of 

centrally positioned plate towards more flow direction. With the unequal flow rate, an 

increase of the value of Reynolds number flow is both unidirectional as well as reversed 

up to the end in contrast with equal flow rate. Furthermore, an eddy formed in the middle 

gap of the channel which was the result from the collision of two small eddies appeared 

from the boundary walls from the mid of the geometry stable its position. That eddy 

stretched horizontally in case of equal flow rate. While, in the case of unequal flow rate, 

an eddy appeared only from the upper boundary wall slowly stretched down by pushing 

the flow of the top arm and stabilise its position just near the middle gap of the geometry 

in the end by showing process of meandering [shown in figure (5.14) at Re=400 and 500]. 
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In the case of unidirectional flows early activity of a vortex is observed in the salient arms 

of the channel when compared with other relative fluid flows in the same channel. The 

size of an eddy formed by the recirculating vortices in the bottom channel arm near the 

lower end of centrally placed plate diminishes in size with a further increase of the value 

of Reynolds number. This eddy developed into the side of top salient arm of the channel 

stretches vertically and more horizontally in the direction of the flow and adjusts its 

position in between the solid boundary walls and centrally located insert plates. Changing 

flow rates and flow directions has given rise to the intensity of recirculation in vortex 

growth and pressure difference. Increasing value of Reynolds number has the same 

outcome vortex intensity. Splitting of one vortex into more and further increase in the 

value of Reynolds number have resulted in again a merge of two or more vortices into 

one. 

 

Under all three flow conditions, an increase in non-dimensional pressure difference has 

been observed by increasing the flow rate into the top arm of a channel along with the 

varying values of Reynolds number. In reversed flows a rise in the pressure is slightly 

different that in unidirectional flows. Patterns of growth in unidirectional flows show a 

linear change as compared with reversed flows as shown in figures [(5.9) and (5.13)]. 

Changing flow directions in Newtonian fluid flows either in reversed or unidirectional 

also has effects on pressure. It is clear when compared reversed flows with unidirectional 

domains as shown in figures [(5.5), (5.9), (5.13) and (5.15)]. Results achieved in this 

numerical study are in agreement with the published experimental results as shown in the 

discussion section of channel flows in chapter nine. 
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Stream functions are shown with velocity profiles and are alignment with vertical colour 

bars. Stream functions with contour number and its corresponding values are labelled. 

Contour types are presented in lines, flood and in some case lines and flood both.  Velocity 

Vectors are also presented for selected Reynolds number. These results are presentrd in 

as extra appendix-E for all equal (1, 1) and unequal [(1,1.5) and (1,2)] flow rates for 

1 4G G  (domain of all four geometries) for non-porous media.
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 Chapter 6. Mixing and Separating of Newtonian Fluid Flows in a Channel 

Filled with Porous Media  

6.1 Introduction 

Modelling flow of fluids through a porous medium in complex geometries has been 

challenging and interesting topic for research in applied mathematics and engineering 

because it has applications in many important industries with examples in petroleum 

industry, food processing, pharmaceutical industry, ground water flow, nuclear reactors 

etc.  Generally, industrial problems are much harder to tackle and present complex flow 

phenomena. Also fluids exhibit very complex rheological behaviour in several 

applications. 

 

In this chapter flow behaviour of mixing and separating in channel is modelled by finite 

element method by using Taylor-Galerkin/Pressure-Correction scheme. The flow consists 

of two reversed settings and two unidirectional flows of Newtonian fluids having sudden 

gap in a channel filled with porous materials. The steady solutions are obtained through 

an unsteady finite element approach. The influence of increasing inertia, porosity and 

variation in flow rates are all studied. The algorithm is found to be stable up to Reynolds 

number 6000 and solutions are physically correct. The results were in agreement with 

published data in the porous channels for Newtonian fluids. 

 

6.2 Problem specification 

Figures [5.1(a)-(d)] in chapter five have shown the schematic details of the two flow 

problems considered, i.e. (a) reverse flow and (b) unidirectional flow (c) Reversed flow 

and (d) unidirectional flow. The channel is divided into two sections by the two thin-plate 
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inserts. The inserts are placed horizontally in the same central plane of the geometry and 

separated by a gap of width of  .  The separation gap   is 3L  where L a characteristic 

length is taken as the height of a single inlet channel arm.   The thickness of the plate is 

taken as  0.0254 .L   A sufficiently long length of channel of 23L is selected to 

reproduce fully developed entry and exit flow. These specifications have allowed the 

numerical predictions for a direct comparison with experimental data and numerical 

results from the [(Al-Nimr and Aldoss 2004), (Cochrane et al.,1981), (Webster, 1982), 

(Baloch et al., 1995a), (Afonso et al., 2010) and (Echendu et al., 2011)].   

 

The flow domain is discretised with triangular elements that are generated by a uniform 

conformal mapping technique. The mesh design is such that the minimum size of element 

is in the neighbourhood of the separation or gap region, this being 0.003L.  A finite 

element mesh on the domain has total number of elements, nodes, boundary nodes, vertex 

nodes and degrees of freedom are 1328, 2853, 392, 763, and 6469 respectively. The 

choice of appropriate time-step was made following the pioneer study by (Carew et al., 

1993), governed principally by an explicit time-stepping scheme that depends on a 

measure of the mesh spacing (taken as the minimum radius of encircle over the triangular 

elements). A semi-implicit method is implemented with three Jacobi mass-matrix 

iterations to capture an accurate solution and typical time steps involved is 0.1t   for 

Newtonian problems. The steady-state solutions are achieved at a time-step relative 

increment tolerance of 
110

as used by [(Carew et al., 1993) and (Donea 1984b)]. As 

shown in figure (5.1), geometries of the computational domain and Finite element mesh 

are given to see the settings of inlets, outlets, initial and associated boundary conditions. 
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6.3 Governing system of equations 

Consider an unsteady, incompressible and laminar flow of Newtonian fluid in a channel 

filled with porous medium. The unsteadiness in the fluid flow is due to a suddenly 

imposed pressure gradient which derives the flow. The flow of Newtonian fluids through 

porous media assumed to be isotropic and homogeneous can be modelled through 

governing system equations which are conservation of mass and momentum transport 

(Darcy-Brinkman) has been given in chapter three. In same chapter initial and boundary 

conditions are given along with their non-depersonalisation form in detail. 

 

6.4 Numerical scheme and weak formulation 

In this study Taylor-Galerkin/Pressure-Correction scheme has been applied for obtaining 

steady solution. For viscoelastic flows this method was originally suggested by  

(Townsend and Webster, 1987)  and it was further enhanced for Newtonian flows by 

(Hawken et al.,1990). After that (Carew et al.,1993), worked on this scheme for a range 

of other applications in other complex flows. Taylor Galerkin /Pressure-Correction 

technique was employed to simulate mixing and separating Newtonian flows in channels 

for non-porous and porous materials (Khokhar et al. 2013) and numerical results were 

presented under Reynolds number up 6000 for equal and unequal flow rates and for other 

settings up to 10000. The method contains temporal discretisation through Taylor series 

expansions in grouping with predictor-corrector scheme. In this multi-stage method, at 

stage-1 a non-divergence-free velocity is calculated first and then Poisson equation for 

pressure is solved at stage-2. At stage-3 a velocity field is corrected. At each time step of 

fractional stages of the scheme second order accuracy is achieved. Galerkin discretisation 

has been used for the momentum and continuity equations. Details of this scheme are 
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presented in chapter four. During these study analytical solutions found and other 

parameters used are included in code. 

 

6.5 Numerical prediction and discussion 

Newtonian fluids are both shear-rate and strain-rate independent, manifesting a constant 

shear viscosity, zero first normal stress difference, and a constant extensional viscosity. 

Contemporary literature relates interesting descriptions of how rheologically complex 

fluids behave in flow in through a variety of porous media. Keeping in view the above 

facts the simulations are performed by extended code developed during current study. 

That code is already extended by incorporating parameters used for the study of channel 

flows through non-porous media. Newtonian fluid flows in a channel filled with a porous 

material are presented and the predictions are presented in the form of streamlines. 

Geometries are both reversed and unidirectional and all different bifurcations are given 

in figure (5.1). In this research value of porosity (Darcy’s number) is one with varying 

values of permeability from 0.1 to 0.00001and viscosity value is chosen 1 to monitor its 

effects on inertia and pressure on all three flow rates. With increasing Re icreases the 

denisity of the fluid because of it numerical algorithm diverges.for adjustments values of 

permeability and size of time interval is decreased to make algorithm convergent up to 

the reuired level of accuracy. Therefore, we have adjusted time interval and value of 

permeability so that algorithm converges to the required accuracy. Inertial factor always 

changes due to change of Re (density)  from 1 to 10000 in all four domains. 
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6.5.1 Mixing and separating of Newtonian fluid flows in a channel filled with 

porous media ( 1G ) 

The details of the particular combined mixing and separating flow problem are presented 

in figure [5.1 (a)] with same specification discussed in chapter five. In this section 

Newtonian flow in channel filled with porous media has been discussed. Mixing and 

separating effects on flow structure are focused in channel filled with Newtonian fluids. 

 

Numerical solutions are presented under different flow rates and flow directions by 

increasing the value of Reynolds number. The effects of inertia, vortex size and its 

intensity are discussed when channel is filled with a porous material. Inertial effects and 

changes in pressure difference will be compared with channel filled without porous media 

and other available open literature.  The effects of porosity and permeability will be 

analysed on the flow structure will be discussed.   

 

6.5.1.1 Equal (1, 1) flow rate 

 As shown in Figure 6-1, the effects of increasing Reynolds number of (1≤Re≤10000) on 

relative flow rates are investigated. Attention is given to new features arising from a 

change of flow rates and flow conditions to test the performance of the algorithm and to 

reproduce the flow characteristics, especially any dramatic change in flow characteristics 

by opposing influences of flow inertia and flow rates in the channel. Numerical 

simulations are started with Re=1 for both cases i.e. reverse and unidirectional flows to 

test the stability of the program and how it simulates in the presence of the gap in the 

middle and breaks up. This was necessary particularly in the reversing and mixing zones 

in both upper and lower exit sections of the geometry.  
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The solutions were obtained up to Reynolds number 10000 starting from Re=1. There is 

no development of vortex activity up to Re=4000. At the value of Reynolds number of 

Re=5000 has been noticed the activity of very weak vortex near the centrally positioned 

insert plate on its lower and upper nip in the direction of exit flow. With a further increase 

in the value of Re a vortex developed at the nip of central plate disappears as shown in 

figure (6.1) (at Re=6000 and 10000).  There is no evidence of strong vortex development 

behaviour under low Reynolds number and it is the indication of very low opposing 

inertia effects on flow structure as was expected and reported in literature (Al-Nimr and 

Aldoss, 2004).  

 

It has been observed that the macroscopic local inertial term has an insignificant effect on 

hydrodynamics behaviour of Newtonian fluids in porous medium domains. The 

simulation results are in very good agreement with similar results available in open 

literatures. Therefore, it is clear that porous medium domains of low Darcy numbers have 

very small transient time for all ranges of the microscopic inertial numbers. This implies 

that the effect of local inertia can be neglected because they have insignificant effects in 

porous domains.  
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Re=1 

 

 

Re=3000 

 

 

Re=4000 
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Re=5000 

 

 

Re=6000 

 

 

Re=10000 

 

Figure 6.1 Streamline contours for combined mixing–separating flows of Newtonian 

fluids with equal (1, 1) flow rate in a channel filled with the porous medium, 

increasing Re from top to bottom at fixed Darcy’s number (Da=0.1). 
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6.5.1.2 Unequal (1, 1.5) flow rate 

 For unequal flow rates (1, 1.5) numerically simulated results are given in figure (6.2) in 

a channel filled with porous media. The simulations are performed with an increase of 

Reynolds numbers (1≤Re≤10000) for different flow configurations. The two parallel 

flows of different flow rates in the top and bottom channel move in the opposite 

directions. At Re=1 under unequal (1, 1.5) the flow rate in top channel arm, flow comes 

down in the lower channel and forms an eddy on the wall of lower channel in the middle 

gap of the domain. A very early response of weak vortex development near the edge of 

centrally positioned insert plate in the exit flow of bottom channel arm at Re = 2000 was 

observed. This vortex grows in size and becomes stable at 3000.   Early response of vortex 

development behaviour reveals that relative flows have some effects on opposing inertia 

of the flow structure. Continually increasing approach in the value of Re has led to effects 

of vanishing inertia but an eddy formed on the wall of lower channel wall still exits till 

the end.  

It has been observed that presence of porous materials in the computational domain of 

Newtonian fluids flows has no significant effect on inertia as compared with channel 

filled without porous media. Due to the double flow rate top channel arm pushes fluid 

flow into lower channel arm; therefore, it encourages the reversed flow towards both exits 

of the computational domain. Due to a different flow rates in both channel arms, 

development of vortices was only observed on one side of the central positioned plate. 

That growth of vortices is on nip in the lower channel arm towards the exit. 
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Re=1 

 

 

Re=2000 

 

 

Re=3000 

 



         Chapter 6. Mixing and Separating of Newtonian Fluid Flows in a Channel Filled with Porous Media 

131 

 

 

Re=4000 

 

Re=5000 

 

Re=6000 

 

Re=10000 
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Figure 6.2 Streamline functions for combined mixing and separating flows of 

Newtonian fluids of unequal (1, 1.5) flow rate in a channel filled with the porous 

medium, increasing Re from top to bottom. 

 

6.5.1.3 Unequal (1, 2) flow rate 

Figure (6.3) shows, numerically simulated results from Newtonian Fluid flows in a 

channel filled with porous medium for unequal (1, 2) flow rate in both arms of a channel. 

Similarly, to the above these results these numerical simulations are presented against 

Re=1 to Re=10000 in the form of streamlines. Once again simulation was started with 

Re=1 it can be seen that pushing of flow in lower arm in the middle gap exits. That flow 

only touches the wall and moves back in the upper arm without forming and eddy as 

compared to flow rate (1, 1.5). An early existence of vortex development behind the one 

side of centrally positioned insert plate appeared. That vortex lies on nip of central plate 

in the direction of exit. As shown in figure (6.3) in the bottom channel at low Reynolds 

number Re = 2000. With a further increase of the value of Reynolds number, the vortices 

adjust their position inclined with the wall and become more stable as shown in Figure 

6.3 (at Re= 3000, 4000 and 5000).  

Identical with unequal flow rate (1.1.5) vortices are observed only at insert plate of bottom 

arm of the exit flow channel on its nip.  There is no other indication of vortex generation 

on the top channel arm near the insert plate in the mid of the geometry on its other side. 

Therefore, it is very clear that changing flow rates has some effects on opposing inertia 

of the flow structure with varying parameters of the fluids. It is evident that porous 

channel for flows of Newtonian fluids has less activity of vortices progress.  It reflects 

fewer opposing inertia effects as the similar numerical results suggest.  But results also 
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shows dissimilarity with flows in a channel filled with non-porous media discussed in 

chapter five of current study. Fluids are mixed in the middle gap of the domain and on 

the corners of the channel towards its exit.  

 

Re=1 

 

 

Re=1000 
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Re=2000 

 

 

Re=3000 

 

 

 

Re=4000 

 

 

 

 

Re=5000 
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Re=10000 

Figure 6.3 Streamline functions for combined mixing and separating flows of  

Newtonian fluids of unequal (1, 2) flow rate in a channel filled with the porous 

medium, increasing Re from top to bottom. 

 

6.5.1.4 Effects of flow rate 

Streamline functions are presented in figures [(6.2) to (6.3)] for two unequal [(1, 1.5) and 

(1, 2)] flow rates in a channel filled with Newtonian fluids through porous media. The 

results are computed from Re=1 to 10000 to monitor the effects of opposing inertia on 

the structure of the flow domain. In numerically computed results of changing flow rates 

in two different channel arms with varying parameters of fluid, a very early activity of 

vortex development reveals the effects of changing flow rates. It can be seen that vortices 

are only found on one side of the channel. These developed vortices lie on the centrally 

located plate on its nip in the bottom channel arm.  

 

Changing flow rates from equal (1, 1) to unequal (1, 1.5) has an influence on the vortex 

intensity which is the clear proof of more opposing inertia on the flow structures. Again 

changing flow rate from unequal (1, 1.5) to unequal (1, 2) in the top channel arm has its 
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effect on the flow structures. An early activity of vortex progress has been noticed as 

shown in figure (6.3) (at Re=2000). Flow in lower channel has been pushed down in the 

middle gap of the domain towards the wall of a channel due to the presence of double 

flow rate in top channel arm.  

 

An eddy found in the middle gap near the wall under unequal (1, 1.5) flow rate vanishes 

due to double flow rate in the top arm. A push to flow down to the wall in lower channel 

arm can still be noticed till the end of increasing Re up to 10000 in double flow rate. 

Flows are both reversed and unidirectional.  Mixing and separating have been observed 

but little a bit more change in reversed flow in lower channel arm towards the outlet. 

When both unequal rates are compared with equal flow rate with increasing inertia, in 

equal flow rate flows are balanced, mixing and separation is also smooth either in the 

separation gap or in the arms of both arms. 

 

6.5.2 Mixing and separating of Newtonian fluid flows in a channel through porous 

media ( 2G ) 

The details of the particular combined mixing and separating of unidirectional flows of 

Newtonian fluids in the same channel with changing flow directions is presented in Figure 

5.1 (b) with the same specification as discussed in chapter five. In this chapter flows of 

Newtonian fluids are discussed in a channel through porous media. The channel has 

having two inlets from its left in both upper and lower arms and one outlet from right in 

its lower arm. Discussions will be made for changing flow directions and increasing the 

value of Reynolds number and effects on inertia, pressure difference and the presence of 

Darcy term in momentum equations. 
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6.5.2.1 Equal (1, 1) flow rate 

The effects of increasing Reynolds number from (1≤Re≤1000) for equal (1, 1) flow rates 

are presented in Figure (6.4). Attention is given to new features arising from changing of 

flow rates and flow directions to test the performance of the algorithm to reproduce the 

flow characteristics, especially any dramatic change in flow structure by opposing 

influences of flow inertia. No effects of opposing inertia has been noticed so for by 

increasing the value of Re up to 10000. Due to unidirectional flows and addition of 

Darcy’s term there are no possessions of opposing inertia on the flow structure as 

compared with case of reversed flows discussed in section 6.5.1. Fluids mixes in the 

bottom arm towards to its exit. 

 

R=1 
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Re=5000 

 

 

Re=10000 

 

Figure 6.4 Streamline functions for unidirectional flows of Newtonian fluid of equal 

(1, 1) flow rate in a channel through porous medium, increasing Re from top to 

bottom. 

 

6.5.2.2 Unequal (1, 1.5) flow rate  

Numerically simulated results for unequal (1, 1.5) flow rate in a channel filled with 

Newtonians materials through porous media are presented in figure (6.5). The simulations 

were performed with increasing Reynolds numbers (1≤Re≤10000) for different flow 

divisions. The two parallel flows of different flow rates in top and bottom channel arms 

move in the same directions towards the same exit in lower channel arm from its right. 

There is no existence of inertia on the flow structure except a little bit push to flow in 

lower arm towards the exit due to an increased flow rate in top channel arm. 

 

It can be seen that increasing Re from lower to higher values up to 10000 gives little bit 

more push to the flow towards the wall of lower channel arm in its exit corner. No other 

effects of inertia are evident by changing flow rate as compared with channel filled with 
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non-porous media in same settings.  Due to unidirectional activities of fluid flows mixes 

in the lower channel arm towards its exit. With increasing Re up to 10000 no evidence of 

vortex generation has been found. Flows enter in the silent zone of above arm from its 

right but vortex generation is not noticed. 

 

Re=1 

 

Re=50 

 

Re=100 
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Re=500 

 

Re=1000 

 

Re=5000 

 

Re=10000 

Figure 6.5 Streamline functions for unidirectional flows of Newtonian fluid of 

unequal (1, 1.5) flow rate in a channel through porous medium, increasing Re from 

top to bottom. 
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6.5.2.3 Unequal (1, 2) flow rate 

In figure (6.6), numerical results from Newtonian Fluid flows in a channel filled with 

porous medium for unequal (1, 2) flow rate in both arms of a channel are presented. The 

simulations were performed with increasing Reynolds numbers (1≤Re≤10000) for 

different flow partitions. There is no occurrence of opposing inertia on the flow structure 

except a little bit more push to flow in lower arm towards the exit. This is due to increased 

flow rate in top channel arm as compared with unequal (1, 1.5) or even with equal (1, 1) 

flow rate. 

 

Increasing Re from smaller to larger values up to 10000 gives slightly more push to the 

flow towards the wall of lower channel arm in its exit corner. No other effects are evident 

by changing flow rate or fluid properties, compared with channel filled with non-porous 

media in same settings.  Due to unidirectional actions of fluid flows mixes in the lower 

channel arm towards its departure. Because of no dramatic change on flow structure of 

the domain fewer results are given below in figure (6.7) as compared with the other two 

flow rates. These flow rates are presented in figures [(6.4) to (6.5)] above in channel filled 

with Newtonian materials through porous media. 
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Re=1 

 

 

Re=10000 

 

Figure 6.6 Streamline functions for unidirectional flows of Newtonian fluid of 

unequal (1, 2) flow rate in a channel through porous medium, increasing Re from top 

to bottom. 

 

6.5.2.4 Effects of change in flow rate 

As shown in figures [(6.4) to (6.6)], there is no significance change on flow domain in 

it’s all of the three different sections, lower channel arm, upper channel arm and in the 
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separation gap in the middle of the changing flow directions. Increasing flow rate in upper 

arm of the channel has given a soft push to the fluids flow in lower arm of the channel 

towards the exit of the fluids.  As flow is unidirectional therefore mixing appears only in 

the lower arm of a channel towards its downstream. It is obvious that in all three flow 

rates not a single vortex generated by increasing the value of Re, in reversed flow case 

discussed in section (6.5.1), there was some evidence of inertia but in unidirectional case 

nothing has happened. 

 

6.5.3 Mixing and separating of Newtonian fluid flows in a channel through porous 

media ( 3G ) 

The details of the particular combined mixing and separating flows are presented in 

Figure 5.1 (c) with same specification discussed in chapter five. Flows of Newtonian 

fluids in the channel filled with porous will be discussed with increasing the value of 

Reynolds number. The flow is reversed two opposing inlets one from lower bottom arm 

from the left and the other from top arm from its right and one outlet is in lower arm from 

its right. Inertia effects, change in pressure difference and existence of the Darcy’s 

number by changing flow rates in top arm of a channel will be focused. 

 

6.5.3.1 Equal (1, 1) flow rate 

The effect of increasing Reynolds number from (1≤Re≤5000) for relative flow rates of 

Newtonian fluids in a channel filled with porous media are displayed in figure (6.7). The 

results were obtained up to Reynolds number 5000. At Re=1 movement of the flow from 

lower arms towards upper arm gives chance to reverse flow and blocks its mixing in the 

middle gap of the domain. Up to Re = 2000 there is no significant activity of the vortex 
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development except a shift of the flow in upper arm. By Further increasing the value of 

Re, at Re=3000 a very weak activity of vortex near the nip of a plate to the right in top 

arm has been noticed along with some recirculation in its right central plate on its lower 

side in the bottom channel arm. At Re=4000, the recirculation of vortex near the central 

plate on its right grows in its size and adjusts its position in the plate. The smaller eddies 

maintain their positions at an angle to the insert plates and seem to become more stable 

at Re=5000 as shown in figure (6.7). 

 

No evidence of strong vortex development behaviour for low Reynolds number and it is 

the indication of very low opposing inertia effects on flow structure as was expected and 

reported in paper (Al-Nimr and Aldoss, 2004). Both unidirectional and reversed flows 

have been observed with slightly more twist in reversed flow due to the movement of 

fluid flow in the upper arm towards its salient corner and in the middle gap up to the wall 

of top channel arm. The fluid mixes more in the lower channel arm in the section towards 

flow departures. 

 

Re=1 
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         Chapter 6. Mixing and Separating of Newtonian Fluid Flows in a Channel Filled with Porous Media 

147 

 

Re=5000 

 

Figure 6.7 Streamline functions for mixing and separating of Newtonian fluid flows 

for equal (1, 1) flow rate in a channel through porous medium, increasing Re from top 

to bottom. 

 

6.5.3.2 Unequal (1, 1.5) flow rate  

Numerical results from unequal (1, 1.5) flow rates of Newtonians in both arms of a 

channel filled porous media are presented in figure (6.8). The simulations were performed 

with increasing Reynolds numbers (1≤Re≤5000). At Re= 2000 a recirculation has been 

observed near the central plate fixed in the middle of the geometry in lower arm towards 

flow the exit. In the case of equal (1, 1) flow rate discussed in section 6.6.3.1 at Re=2000 

weak vortex developed on the nip of central located plate vanishes in increasing flow rate. 

Comparison can be seen in figures [(6.7) and (6.8)] due to increased flow rate in top 

channel arm. At Re=3000, a vortex near the one side of centrally positioned insert plates 

in the exit flow of bottom channel arm at grows in size and adjusts its position in the plate. 

At Re=4000 another weak vortex appeared near the centrally positioned insert plate lies 

flat in the plate in top channel arm. Both vortices developed in the plates near its edge 

adjust their position and become stable at 5000.   

 

 Changing flow rate in top channel arm has its effects on the late vortex development at 

the edge of central from its left in top channel arm. But increasing the value of Re again 

gives rise to its appearance again (at Re=4000) in figure (6.7). Other mixing and 
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separating effects are the same as mentioned in equal flow rate. Unidirectional and 

reversed flows behave the same way as discussed in sections [(6.5.1) to (6.5.2)] above. 

 

 

Re=2000 
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Re=5000  

Figure 6.8 Streamline functions of mixing and separating of Newtonian fluid flows 

for unequal (1, 1.5) flow rate in a channel filled with porous medium, increasing Re 

from top to bottom. 

 

6.5.3.3 Unequal (1, 2) flow rate  

Figure (6.9), shows the results of numerical simulation from Newtonian Fluid flows in a 

channel filled with porous medium under unequal (1, 2) flow rate in both arms of the 

channel. Up to Re=1000, no evidence of vortex growth has been noticed in any section 

of the flow domain. At Re=2000, a smaller vortex appears at the near sharp edge of the 

central plate fixed from right in the bottom channel arm. The vortex grows in size at 

Re=3000 and becomes more stable with the plate. At Re=4000 another vortex develops 

at the edge of central fixed plate on its right of the top arm towards salient corner of the 

domain. 

 

At Re=5000 both vortices grow in size but a vortex on the right at the edge grows more,  

stick to both sides of the edge in lower and upper side, then splits into more smaller 

vortices and creates the situation of meandering. The intensity in the progress splitting 

into other smaller vortices shows visible opposing inertial effects with more increase in 

the value of Reynolds number. Changing flow rate in the top channel arm has its effects 
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of late vortex development on the edge central from on its left in the top channel arm.  

Increasing the value of Re again gives rise to its appearance again as shown in figure (6.5) 

(at Re=4000). Other mixing and separating effects are same as mentioned in equal flow 

rate. Unidirectional and reversed flow behaves the same way as discussed in sections 

(6.5.3.1) and (6.5.3.2) of equal flow rate. 

Changing flow rate from unequal (1, 1.5) to (1, 2) in the top channel arm has more 

influence of inertia at the higher values of Reynolds number as shown in figure (6.9) (at 

Re=5000) compared with other relevant flow rates discussed. 

 

Re=1 

 

Re=1000 
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Re=5000  

Figure 6.9 Streamline functions of mixing and separating of Newtonian fluid flows 

for unequal (1, 2) flow rate in a channel filled with porous medium, increasing Re 

from top to bottom. 

 

6.5.3.4 Effects of change in flow rate 

Streamline functions are presented in figures [(6.8) to (6.9)] under unequal [(1, 1.5) and 

(1, 2)] flow rates in a channel filled with porous media for Newtonian materials. Changing 

flow rate in one of the upper arms has effects on vanishing vortex developed on the right 

side of the domain at the edge of central fixed plate. Increasing the value of Reynolds 

number along with double flow rate in top arm gives more strength and intensity to the 

formation of vortices. Spreading and splitting of one vortex into more or its generation 

have been observed and more recirculation indicates more inertial effects on the domain 

at its sharp edge towards the flow departure. 

 

Solutions are found for the increasing value of Reynolds number along with changing 

flow rates in the top channel arm and no completely unidirectional flows are found. But 

reversed flow has been increased due to the movement of flow from lower to upper arm 
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in salient corner and middle separation gap up to the wall of the top channel arm.  That 

reversed flow blocks the flow coming from upper channel arm towards the middle gap 

and forces to be reversed flow towards the outlet.  Mixing only increases in the bottom 

channel arm in the section towards the exit. 

 

6.5.3.5 Effect of unidirectional flows and permeability on pressure 

Figure (6.10) shows the patterns of increasing inertia and three relative flow rates on 

pressure difference. Newtonian fluid flows in a channel filled with porous media have a 

variation of pressure difference in the channel with respect to increasing Reynolds 

number. For equal and unequal flow rates in the two arms of a channel the pressure 

difference increases nearly linear with the increasing Reynolds number and with varying 

flow rates. The value of permeability has been varied at different Reynolds number during 

varying flow rates, which gives shoot up to pressure. Change in the value of permeability 

has changed the value of pressure difference as shown in figure (6.10) (at Re=1000 and 

2000). Increase in the value of Re gives increase in pressure as shown in figure (6.10) 

during relative flow rates.  
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Figure 6.10 Comparison of maximum scaled pressure with increasing inertia at 

different flow rates in a channel filled with Porous Media 

 

6.5.4 Unidirectional flows of Newtonian fluid in a channel filled with porous media 

( 4G ) 

In this unidirectional flow condition given in figure [5.1(d)] development of a vortex and 

its intensity will be analysed along with pressure difference. In this case there is one inlet 

from the left in the lower arm and only one outlet from its right in the top arm of a channel.  

Effects of porosity and permeability will be compared with other flow rates and flow 

directions discussed in above three configurations  
31 2,G G andG  and with the results 

discussed in a channel filled without porous media in chapter five.  
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6.5.4.1 The influence of inertia on flow structure 

Unidirectional flows of Newtonian fluids, the simulations of are performed under 

Reynolds numbers (1 ≤ Re ≤ 10000) in a channel filled with porous media and presented 

in figure (6.11).  No vortex growth has been noticed even under higher Reynolds number 

up to Re=10000. Unidirectional flow inertial effects are negligible compared with the 

reversed flow cases. Further presence of porous materials has also high impact on the 

lesser chance for inertia compared with the channel filled with no porous media as shown 

in chapter five. It is evident that results are in very good agreement with the results 

available in open literature for fluid flows in channel (Al-Nimr and Aldoss, 2004).  

 

Re=1 

 

Re=5000 
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Re=10000 

Figure 6.11 Streamline function for unidirectional flows of Newtonian fluid in a 

channel filled with Porous Media, increasing Re from top to bottom. 

 

6.5.4.2 Effects of flow rates and inertia on pressure 

Figure (6.12) shows the variation of pressure difference in the channel through porous 

media with respect to increasing Reynolds number of Newtonian Fluid Flows. For 

unidirectional flow in the two arms of the channel the pressure difference increases non-

linearly with the increasing Reynolds number, with the varying values. As it is obvious 

from graph in figure (6.12) at [Re=1 to 5000] growth is linear because the value of 

permeability ( ) is fixed 0.001. After decreasing the value of  =0.00001 from Re=600 

to 10000 the pressure increases and trend led to non-linear. Pressure difference is affected 

by varying the value of permeability and inertia. As under initial values of Re increase in 

pressure was very small and was not visible on graph. Therefore, vertical axis has been 

rescaled to show clear picture. 



         Chapter 6. Mixing and Separating of Newtonian Fluid Flows in a Channel Filled with Porous Media 

158 

 

 

Figure 6.12 Maximum scaled pressure with increasing inertia in unidirectional flows 

of Newtonian Fluids in a channel filled with Porous Media. 

 

6.6 Summary 

In this chapter effects of inertia on flow domain, difference in pressure difference under 

inertia and permeability are investigated numerically. Newtonian flows are studied in a 

channel filled with porous media. Taylor-Galerkin/Pressure-Correction primitive variable 

finite element algorithm has been used. Reversed and unidirectional flows of Newtonian 

flows are investigated for varying flow rates and directions in a porous channel. The 

algorithm was found to be stable at Reynolds number from 1 to 10000 and accurate in its 

predictions of steady and complex flows. For mixing and separating as well as 

unidirectional flows, different bifurcations have been examined by changing flow 

direction and flows rates in the same domain filled with porous media. The algorithm 
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gives satisfactory mesh convergence for the full compressible Navier-stokes equation.  

The physics of the flow is also predicted realistically by the numerical scheme. The flow 

patterns are presented as streamlines. The level of inertial effects on the flow structure, 

non-dimentionlised scaled pressure difference along with porosity in the channel is 

presented. 

 

Due to the presence of porous materials activity of vortex development was less than that 

in a channel filled without porous media. At a very high Reynolds number some vortices 

have been seen near the sharp edge of centrally fixed plate. Changing flow rates in the 

top channel arm has vanished the vortex developed from the left on the nip of the central 

plate at its near edge. In the case of unidirectional flow there was no activity of vortex 

progress as compared to reversed flow rate in the same computational domain. An 

increase of Reynolds number along with changing flow rates in the upper arm of a channel 

has led to an increase in the intensity of a vortex development near both ends of centrally 

located plates fixed of middle gap of the geometry for both equal and unequal flow rates. 

But the strength of vortex of the right of central plate is higher. 

 

In all three flow rate conditions and increasing inertia, an increase in non-dimensional 

pressure difference has been observed by increasing the flow rate into the top arm of a 

channel. Patterns of pressure verses flow rate and inertia are changing with varying values 

permeability. Graph shown in figure (6.12) shows a linear increase in pressure for fixed 

values of permeability for initial values of Re. with higher values of inertia and smaller 

values of permeability, an increase in pressure is non-linear. An increasing flow rates has 
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an increasing effect in the value of pressure. Decreasing values of permeability has the 

same influence on pressure. 

It has been observed that Newtonian fluid flows in a channel filled with porous media 

with an increasing inertial force have insignificant effects on vortex growth, intensity and 

size. This numerical scheme provides physically correct predictions and in very good 

agreement with the published results in open literatures. It is further determined that the 

inertial term has a negligible effect on the behaviour of the flow with power law index 

and the whole range of Darcy’s and Forchheimer numbers. The mass of the liquid 

contained in the porous domain decreases with decreasing inertia premises. As a result, a 

very short time is required for the fluid to reach the steady state behaviour. It has been 

reported in literature as well (Alazmi and Vafai, 2001). 

Most of the numerically simulated results are post processed to show many changes on 

the computational domain. Stream functions with velocity profiles and velocity vectors 

are presented for selected Reynolds numbers. stream functions with contour number and 

its corresponding values are labelled with vertically aligned colour bars. Contour types 

are presented in lines, flood and in some case lines and flood both.  Velocity Vectors are 

also presented for selected Reynolds number. These results are shown in appendix-E and 

referenced in respective sections of the chapter-6 for 1 4G G  (domain of all four 

Geometries) for all three flow rates for porous media.
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Chapter 7. Newtonian Fluid Flows in a Pipe Filled with and without a Porous Media 

 

7.1 Introduction  

Having investigated two dimensional planar channels with Cartesian coordinates in chapter 

five and six, two dimensional axi-symmetric combined mixing and separating flows in 

pipe/tube domain are focused in this chapter. These consist of one with reversed pipe and 

annular flows interacting through a gap in the common separating walls with Newtonian fluids 

in both cylinders. By using time dependent finite element approximation in the combination of 

semi-implicit Taylor-Galerkin/Pressure Correction scheme, steady results are obtained in 

cylindrical polar coordinates. The effects of increasing inertia on change in flow directions, 

varying flow rates and pressure difference configurations in both the central pipe and outer 

cylinder are considered. Due to unavailability of experimental data as well as numerical 

solutions in tubes or pipes the results were compared against channel flows [(Cochrane et al., 

1981); (Webster, 1982); (Baloch et al., 1995a), (Afonso et al., 2011), (Khokhar et al., 2012) 

and (Khokhar et al., 2013)]. 

 

7.2 Problem specification 

As shown in Figure [7.1(a)], the pipe is assumed as an inflexible circular tube, having two 

dimensional axial and radial directions. There are two pipes/cylinders one with small diameter, 

which is placed within another pipe of the large diameter. Fluid is flowing through both pipes, 

i.e., in the inner pipe from left side and in the outer cylinder from right side as an annular flow. 

In between inner pipe there is a gap in the centre of the cylinder, where fluid is mixing and 

separating at the same time (combine). Flow of fluid is being the same or different type by 

changing Reynolds number. Radius of the inner pipe is iR , the outer pipe having 0R and 
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whereas 0.0245   is non-dimensional thickness of the inner pipe. In this research, flow of 

Newtonian fluids through combined pipe/cylinder with or without porous media is modelled. 

For the sake of simplicity similar mesh of planner domain discussed in chapter 5-6 has been 

used here after having had a study on mesh density. Typical mesh is shown in Figure [7.1(b)]. 

The total number of elements, nodes and degree-of-freedom are 5049, 19057 and 73953 

respectively. 

 

(a) 

 

(b) 

Figure 7.1 Geometries of the computational domain and mesh; (a) Geometry of mixing 

and separating fluid flows in a cylindrical  pipe, (b) Finite element mesh. 

7.3 Governing system of equations 

Consider that the isothermal flow of incompressible Newtonian fluids in non–porous pipe and 

filled with porous media is to be axisymmetric in two dimensions, whilst the flow is fully 
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established at both inlets. The discussion of mass and momentum transport equations, which 

govern the flow of Newtonian fluids subject to the boundary conditions are written in the 

cylindrical polar coordinates as: 

  

Conservation of mass: 

 
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1











r
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rz

v rz
                                                                                             (7.1) 

 

Darcy’s–Brinkman transport component wise equations neglecting body force: 
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z-component 
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Where, 
zv and rv  are the axial and the radial velocity components, p  is the isotropic 

pressure,   is the density of fluid and   represents the viscosity of fluid materials and   is 

the permeability of porous media. For non–porous simulations, the last Darcy’s term will 

vanish in above both equations (7.2 and 7.3), and Darcy’s–Brinkman equation will reduce in 

to Navier–Stokes equation. 
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7.3.1 Non–dimensional system of equations 

In dimensionaless analysis, a dimensionalessnumber or a number with dimension (1) is a pure 

number without any physical units. For suitability, the governing system of equations is written 

in the following non-dimensional form by introducing the following dimensionless variables:  

 

* * * * 2 * *

2

*
, , , , ,r z

r c

c c c c c c

v vr z t v p
r z v R t p

R R R V R V
 


       

 

Where, cV    and cR   are characteristic velocity and length of pipe respectively, cV   is taken 

as velocity of the fluid and cR  is taken as radius of an inner pipe. Substituting these non-

dimensional values in Equations [(7.2) to (7.3)] and discarding asterisks for brevity and 

simplicity, the system of Equations [(7.1) to (7.3)] may be rewritten as: 
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Where, aD  is Darcy’s number and Re   is a Reynolds number. They are defined as: 
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Re c cV R


 ,     and  

2a

c

D
R


                                                                            (7.7) 

 

7.3.2 Initial and boundary conditions 

To present a well posed problem specification for the flow of fluid in pipe, it is essential to 

advise the proper initial and boundary conditions. To stipulate the value of  0v    at the initial 

time, the initial condition is taken as: 

 

   0,0z zv v ; Subject to 0 0  v . 

 

For initial conditions, velocity vector field and pressure the simulations start with quiescent 

initial conditions as vanishing values of velocity vector and pressure and tractions-free velocity 

components are executed  0r zv v p   . 

 

As shown in Figure7-1 (a), the boundary conditions are considered as fundamental conditions 

for simulation of the well posed problem. A normal traction free boundary condition is implied 

at the domain exit, at which a pressure datum of zero is fixed. The remaining surfaces are 

represented as solid walls where no-slip boundary conditions are taken 0r zv v  . On axis of 

symmetry, Neumann conditions are imposed ( 0,rv   0zv

r





). For the fluid flows through 

pipe/cylinder, flow proceeds from fully developed inlet velocity profile for both an inner tube 

and outer cylinder. On the inlet of a pipe, the non-dimensional analytic solution and axial based 
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velocity are defined without cross flow. The boundary conditions from both inlets either on 

inner or outer pipe are imposed as follows: 

 2
1 1zv V r     (On left inlet of inner pipe)                    (7.8) 

And 

2 ( )(b r)zv V r a     (On right inlet of outer cylinder)       (7.9) 

 

Where, 1V  and 2V  are maximum velocities based on flow rate, ia R    (where α = 0.0254L 

is the thickness of the inserted plate in the middle of the geometry) and 0b R .  For axi-

symmetric flow velocity vector field axial and radial coordinates are rv  and zv  where rv velocity 

is vector component in radial direction and zv   is velocity component in axial direction. In case 

of equal flow rate maximum velocities at the centre of a domain are 1 2 ,V V  whilst, in an 

unequal flow rate 1V , 2V  takes the ratio 1: 2 of fluid.  

 

The mesh is designed in such a way that the minimum size of the element is chosen in the 

vicinity separation of 0.003 L . Finite element mesh on the domain is illustrated in Figure 7.1(b), 

where the total number of elements, number of nodes, number of boundary nodes and number 

of vertex nodes are 1328, 2853,392,763 respectively.  

 

7.4 Numerical scheme  

Taylor-Galerkin/Pressure-Correction finite element method is well thought-out as a semi–

implicit time stepping procedure has been employed to simulate the Navier-Stokes equations, 

along with the incompressibility constraints. To get highly accurate time-marching algorithm 
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is the basic tactic lying behind this method and is used to compute transient as well as steady 

flow problems proposed by (Donea,1984a)). In chapter 4, this method is discussed in detail and 

also applied in chapters (5-6).  

Briefly, the Taylor-Galerkin based algorithm is a fractional step method, that semi discretises 

first in the temporal domain, using Taylor series expansion in time by adopting a two-step Lax-

Wendroff approach and a pressure-correction procedure, to extract a time stepping scheme of 

second order accuracy. The discretisation is computed via a spatial Galerkin finite element 

method, where velocities are approximated quadratic basis functions and pressure is an 

approximated linear basis function to ensure Babuska-Brezzi condition in order to avoid 

superior oscillation in pressure [(Cuvelier et al.,  1986) and (Johnson et al., 1990). Weak 

formulation of semi–implicit Taylor-Galerkin/Pressure–Correction algorithm for the domain 

filled with and without porous media has been presented in detail. 

 

7.5 Results and discussions 

The flow domain was meshed by employing uniform conformal mappings, a technique which 

automatically aligned element sides with streamlines and preserved orthogonally of the 

elements. The flow was considered by examining inertia special effects on flow structure, 

impact of change in flow rates on flow structure, effects of flow on pressure difference and 

influence of porosity in the computational domain. Stream function calculated vortex length 

and intensity of recirculation of flows at different Reynolds number. Therefore, the computed 

results are presented by stream functions including pressure difference at inlet against Reynolds 

number for increasing Reynolds number. Velocity profiles were imposed at different axial 

locations and velocity profiles at axis of symmetry. 
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Critical Reynolds number values are identified for the formation of vortex development in 

different flow structures by changing flow rates. For vortex formation the range of Reynolds 

number values was taken from (1Re200) for non-porous and (1 Re 5000  ) for Newtonian 

fluid flows of pipe filled with non-porous and porous media. Values of Re (density) gives us 

inertia factor.for Newtonian fluid flows for both flow rates Dary’s  number is 1, value of 

viscosity is 1 and permeability varies from 0.1 to 0.00001. 

 

7.5.1 Mixing and separating of Newtonian fluid flows in a pipe  

The domain of the problem shown in in Figure (7.1) is discretised into triangular elements, 

with mesh design of minimum element-size of 0.025 L  with same specification discussed in 

chapters five and six. In this chapter instead of a channel, a circular pipe has been taken as test 

problem. Newtonian fluids are flowing in pipe filled with both non-porous and porous media. 

Numerical simulations are analysed by presenting streamline patterns and filled domain. The 

effects of changing flow rates, varying materials and impact of porous media will be examined 

on vortex development, its intensity and enhancement and pressure difference. Also results of 

pressure difference are computed at inlet against Reynolds number. 

 

7.5.2 Newtonian flows in a pipe filled with non-porous media 

Flow outlines in a combing-separating formation are an important feature, found useful to start 

the presence of stagnant regions, and the productivity of overall progress. Flows of Newtonian 

fluid in a pipe filled with non-porous media have been displayed along with streamline 

projections in Figures [(7.2) to (7.3)]. In this section, numerical simulation of Newtonian fluids 

in combing-separating domain, investigation into influence of inertia through streamline 

patterns, vortex growth and impact of changing flow rate on flow structure are studied. 
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7.5.2.1 Equal (1, 1) flow rate 

In case of equal flow rate maximum velocities at the centre of domain are 1 2V V . Whilst in 

case of unequal flow rate 1V  and 2V  takes the ration of fluids 1:2 as discussed in section 0.  

The impact of fluid inertia in terms of streamline projections has been displayed in Figure (7.2) 

with changing inertia in terms of the Reynolds numbers, from Re = 1 to 200, respectively. It is 

found that the flow answers to the presence of the gap and breaks up, with some flow 

unidirectional, mixes in the gap and flow merging in both upper and lower exits of the domain 

(Re =1). It is observed that at equal (1, 1) flow rate, no significant activity of vortex generation 

has occurred in the centre of the domain, even at high Reynolds number. In all cases, the flow 

structure remains similar except pushing flow to internal pipe towards the line of symmetry. 

This flow phenomenon is not fully understood.   

 

Re=1 

 

Re-10 
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Re=100 

 

Re=200 

Figure 7.2 Streamlines for Newtonian mixing-separating flow of equal (1, 1) flow rate 

in a pipe filled with the non-porous medium, increasing Re from top to bottom. 

 

7.5.2.2 Unequal (1, 2) flow rate 

In order to understand the effects of inertia, the flow of a Newtonian fluid has been observed 

and numerical estimates are presented with increasing Reynolds number from Re=1 to Re=200 

in Figure (7.3). To analyse the flow phenomena with changing flow rates from equal to unequal 

in both inner and outer pipes, it was deliberated to set up, double flow rate in outer pipe in 

opposite direction. A very interesting flow phenomena is observed, even at a low value of 

inertia at unity (Re =1). A strong recirculating region appears in the centre of the outer pipe at 

a nip/in the vicinity of separating region, the flow structure is shown in Figure (7.3). 

 

As increased inertia was beyond Re = 1, this vortex activity increases and occupy centre of the 

domain. The vortices appeared in outer pipe in its upstream from right and left. With increasing 

Reynolds number at Re=50 the above vertex discussed shifted down in the centre of a pipe. 
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Also at Re=50, two other vortices occurred one strong vortex in the middle gap of the domain 

slightly above the central gap and the other vortex was developed in the downstream of the 

outer cylinder. With increase in the value of Re these all three vortices were strengthened and 

become stable with increasing Reynolds number up to 200. The presence of a vortex in the gap, 

caused fluid coming from inlet has been pushed an inner pipe. The double flow rate in the outer 

cylinder has pushed vortex near the plate into the inner pipe as well. Mixing of fluids was only 

observed in the inner pipe, due to pushing flows towards the line of symmetry. 

 

Re=1 

 

 

Re=25 

 

Re=50 



                                 Chapter 7.  Newtonian Fluid Flows in a Pipe Filled with and without a Porous Media 

172 

 

 

Re=100 

 

Re=150 

 

 

Re=200 

Figure 7.3 Streamlines for Newtonian mixing-separating flow of unequal (1, 2) flow rate 

in a pipe filled with the non-porous medium, increasing Re from top to bottom. 

 

7.5.2.3 Influence of flow rate  

The results from both equal (1, 1) and unequal (1, 2) flow rates of Newtonian fluids are shown 

in Figures [(7.2) to (7.3)]. Changing flow rate in outer cylinder has given much more rise in 

vortex intensity and vortex enhancement in the outer cylinder and also in the separation gap of 

the domain. In unequal flow rate fluid has been pushed in down in the separation gap of the 

inner pipe towards the line of symmetry. Double flow caused mining only in inner pipe. 
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7.5.2.4 Effects of flow rates and inertia on pressure 

In Figure (7.4) Pressure in Newtonian mixing and separating flow of fluids in a pipe filled a 

non-porous medium is presented. Pressure has been scaled in the same way as discussed in 

Chapters five and six for Newtonian fluid flows in a channel filled with non-porous and porous 

media. For Newtonian fluid flows non-dimensional scaled pressure obtained in inner and outer 

pipes filled with non-porous media is 1 1.132sp   and 1 1.6309sp   under both equal (1, 

1) and unequal (1, 2) respectively. Varying flow rate and increasing inertia have effects of 

increase in pressure. In a channel flow’s frequency of vortex development was higher than pipe 

flows. For initial values of Re from (Re=1 to 50), increase in pressure is less than compared 

from (Re=100 to 200).  As shown in Figure (7.4) under equal flow rate growth is linear but in 

double flow rate increase in scaled pressure is non-linear.  

 

In channel flows increase in pressure for initial values was not significant but in pipe flows it 

is obvious. Results could be compared as shown in Figures [(5.5) and (5.13)] with Figure 5-7. 

In pipe flows influence of flow rate is also obvious when compared with the channels flows. 

For initial values of Re patterns of graph for each flow rate is almost had the same values but 

in pipe flows flow rate shows good difference. Even for higher values flow rate has obvious 

change as compared with channel flow discussed in chapter five. Figures [(5.5) and (5.13)] of 

channel flows give very good comparison against pipe flows shown in Figure (5.7). 
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Figure 7.4 Comparison of maximum scaled pressure with inertia at different flow rates in 

Pipes filled with non-Porous Media. 

 

7.5.3 Mixing and separating of Newtonian fluid flows in a pipe filled with porous media 

The details of the particular combined mixing and separating flow problem are presented in 

Figure [7.1 (a)] with same specification discussed in section (7.5.2). In this section the domain 

is filled with porous media. Flows of Newtonian fluids filled with porous media have been 

displayed along with streamline projections from Re=1 to Re=5000 under both equal and 

unequal flow rates. Influence of increasing inertia, pressure difference and effects of porous 

media in the computational domain have been discussed. 
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7.5.3.1 Equal (1, 1) flow rate 

Numerical results of Newtonian fluids for increasing Reynolds number are presented in Figure 

(7.5) in a pipes filled with porous media. At the equal flow rate no noticeable activity of vortex 

development has been observed, however as fluid releases from the inlet cylinder and comes 

down to the central pipe and goes again back in the same cylinder in upper downstream. 

Subsequently no mixing has been observed as compared with flows without presence of the 

porous materials. For all increasing Reynolds number the same pattern of streamlines as have 

been seen that fluid flow has been pushed down in inner pipe towards the line of symmetry. As 

it appears in Figure (7.5), no significant inertial effect on the flow structure can be seen, 

therefore only few simulated results from Re=1 to Re=5000 are presented. 

 

Re=1 

 

Re=1000 
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Re=3000 

 

 

Re=5000 

 

Figure 7.5 Streamline functions for Newtonian combined mixing and separating flow of 

equal flow rate (1, 1) in a pipe filled with a porous medium, increasing Re from top to 

bottom. 

 

7.5.3.2 Unequal (1, 2) flow rate 

Figure (7.6) shows the simulated results from Newtonian fluids in the same domain filled with 

porous media from Re=1 to Re=5000. It appears that with no noticeable activity of vortex 

development, subsequently no mixing has been observed compared with flows without 

presence of the porous materials. Due to double flow rate in the outer cylinder there appears a 

numerical artefact in the inner pipe which will be examined in later research. Similarly, fluid 

flows have been pushed down in the inner pipe as was the case in the equal flow rate shown in 

Figure (7.5). 



                                 Chapter 7.  Newtonian Fluid Flows in a Pipe Filled with and without a Porous Media 

177 

 

 

Re=1 

 

 

Re=100 

 

 

Re=3000 

 

 

Re=5000 
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Figure 7.6  Streamline functions for Newtonian combined mixing and separating flow 

of unequal flow rate (1, 2) in a pipe filled with a porous medium, increasing Re from 

top to bottom. 

 

7.5.3.3 Influence of flow rate  

Results for both equal (1, 1) and unequal (1, 2) flow rates in the computational domain are 

presented in Figures [(7.5) to (7.6)]. Numerically simulated results do not show any dramatic 

change with varying flow rate in outer the cylinder in the reversed direction. In an unequal flow 

rate fluids have been pushed down into a separation gap of the inner pipe towards the line of 

symmetry and again gone back to upstream of the outer cylinder. No mixing effects have been 

observed by changing flow rates in the outer cylinder. Some numerical artifact has been noticed 

in the inner pipe and will be examined future studies. 

 

7.5.3.4 Effects of flow rates and permeability on pressure 

Numerically simulated results for pressure of Newtonian fluid flows in a pipe filled with porous 

media are presented in Figure (7.7). The graph shows trends under two different flow rates, 

increasing Reynolds number and varying values of permeability. Maximum and minimum 

scaled pressure for both equal and unequal flow rates are,  1 991.8812sp   and 

1 683.5631sp  respectively. The results show a dramatic change in pressure with equal and 

unequal flow rates with changing values of permeability. In all conditions discussed in chapter 

five and in section (7.5.3) on Newtonian fluid flows either in channel or pipes filled with or 
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without porous media in the domain pressure increases with varying flow rates from equal (1, 

1) to unequal (1,2) but in section it is opposite. 

Pressure increases very fast with adding Darcy’s effects in the computational domain compared 

with Newtonian fluid flows established in the domain without porous media in it. In this setting 

the value of   varies for equal and unequal flow rates from 0.001 0.00001  and 

0.01 0.00001  respectively. The value of Forchheimer number is fixed 0.001 for equal and 

0.0001 for unequal flow rates. Influence of change in the values of permeability and 

Forchheimer number are obvious in pressure in the presence of varying flow rates and inertia. 

From Re=1 to 4000 the value of permeability has been changed, it shows significant changes 

in the pressure as shown in Figure (7.7). From Re=4000 to 10000 permeability is fixed and 

shows linear trend in the pressure as shown in Figure (7.7). 
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Figure 7.7  Comparison of maximum scaled pressure with inertia at different flow rates 

in Pipes filled with Porous Media 
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7.6 Summary 

A numerical study has been conducted on Newtonian fluids filled with and without porous 

media in an inner pipe and outer cylinder under combing and separating flow configurations. 

Semi-implicit Taylor-Galerkin scheme found very useful in the study of pipes flow filled with 

or without porous media. Numerical solutions are presented through streamline patterns for 

stream functions and pressure difference with graphs to see the effects of changing flow rates 

from equal to unequal on a computational domain. The algorithm used has been found stable 

and accurate in its predictions. The numerical solutions obtained theoretically prove a very 

close agreement with results found in a channel filled with and without porous media as 

discussed from chapters five and six in this thesis.  

 

The results presented in this work for Newtonian fluids in pipes initially filled with no porous 

media have demonstrated that there was no development of vortices in equal flow rate. In the 

same domain filled with non-porous media by changing flow rates in outer cylinder there has 

been a very effective development of vortices in the domain in the separation gap near the 

central plate in the outer cylinder even at low Reynolds number. In mixing and separating 

geometry for higher values of Reynolds number more vortices were observed in the 

downstream of outer cylinder and in the middle gap of the domain. By further increase of the 

value of Re these vortices grow in their size until being settled in the domain in the outer 

cylinder and in the separation gap. 

 

Influence of changing flow rates, inertia and Darcy’s number is obvious on pressure difference. 

Pressure increases with increasing inertia and flow rates in general. But an increase in pressure 

has been highly affected by equal to unequal flow rates along with varying values of 
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Forchheimer from 0.001 to 0.00001in pipes filled with porous media. The effects of 

permeability are seen on pressure. It can be seen in Figure (7.7) from Re=1 to 4000 and again 

from Re=4000 to10000. The trend is non-linear for first half of the inertia values and then non-

linear for the other half. 

 

Lastly, Newtonian fluids have been passed in both pipes filled with porous materials. Results 

have shown no formation of vortices even if changing flow rate in outer cylinder or increasing 

the value of Reynolds number except flow has been pushed down in the inner channel toward 

symmetry. Again results are in good agreement with channel filled with porous media 

discussed in chapter 6. 

 

Stream functions of computational domain for Newtonian fluids through circular pipes are 

presented  with velocity profiles and velocity vectors as given in appendix-E. Stream functions 

are presented with contour number and its corresponding values of contours. Contour types are 

presented in lines, flood and in some case lines and flood both.  Velocity Vectors are also 

presented for selected Reynolds number. These results are presented for equal (1, 1) and 

unequal (1,2) flow rates in both cases either domain is filled with non-porous or porous 

materials. 
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Chapter 8. Flows of Non–Newtonian Fluids through Tubes Occupied with and without a 

Porous Material 

 

8.1 Introduction 

For the numerical simulation of inelastic non–Newtonian fluids, this chapter presents a brief 

description of the mathematical models of flow in circular pipes filled with porous media. 

Details of the problem specification of combined mixing–separating domain are given. The 

modelling approaches used to capture the shear thinning behaviour of fluids are presented. 

Mathematically, the flow of inelastic non–Newtonian fluids can be modelled by means of 

continuity and time–dependent generalised momentum equations. For axisymmetric two–

dimensional cylindrical polar frame of reference, these governing equations needs initial and 

boundary conditions and dimensionless forms are discussed. 

 

Justification of applied numerical scheme is given which has been already used in chapters 5 

to 7. The results and discussions of the numerical simulations are described for the used models. 

The effects of inertia on flow domain on the flow domain, under increasing Re, varying flow 

rates, power lawn index are presented with streamline functions. The influence of inertia, 

varying flow rates and permeability on pressure difference are debated. Finally, general 

discussions of the models, their effects on the flow domain due to changing power law index, 

increasing Reynolds number, permeability on pressure are summarized. 

 

8.2 Problem specification 

Information related to the specific flow of combing and separating tube problems measured are 

given diagrammatically as shown in Figure [7.1(a)-(b)] of chapter 7 . Problem specification is 
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such that there are two pipes. One is with smaller diameter which is fitted within another 

cylinder of larger diameter. The inclusion of the inner pipe of small radius into the large tube 

domain produces dual inlets and outlets in both same as well as in opposite directions. Breaking 

of the inner pipe wall in the centre, creates separation (gap) between both pipes. For this 

investigation purpose, at entry and exit of computational domain, a fully developed flow is 

ensured. While, the length of an axi–symmetric two–dimensional computational domain is 

taken 23 R . Where, R is taken as characteristic radius of inner tube, while, the non–

dimensional thickness of inner pipe is taken as ( 0.0245  ) in case of channel flow problem, 

discussed in earlier chapters. 

 

Flow of non–Newtonian fluid passed pipes filled with porous material is simulated through 

circular rigid tubes having an axially symmetric gap and the size of a typical 3L  discussed 

in previous chapters. All results presented here are computed with a mesh given in Figure [7.1 

(b)]. The computational domain is discretised in small tessellation in reflected and symmetric 

fashion. In which, respectively, the total number of elements, nodes and degree-of-freedom are 

5049, 19057 and 73953. Other details, diameters of the pipe and initial and boundary conditions 

of the domain may be referred to Figure (7.1) in chapter seven. Poiseuille flow was created in 

the two-dimensional domain as accessible in as discussed in previous chapters.  
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Couple of (Bird–Carreau and Power Law) models have been investigated to acquire the 

behaviour of inelastic non-Newtonian fluid. The effect of shear–rate dependent functional 

viscosity of fluid in a pipe can be investigated. The increasing levels of inertia were introduced 

by varying the Reynolds number and with varying flow rates in the outer cylinder. This allows 

an analysis of the effects of inertia on flow patterns and pressure difference.  

 

8.3 The Power law model 

The functional viscosity of inelastic non–Newtonian Power law model fluid is given in 

equation (8.1) as: 

 

 
1

0( )
n

   


                                                                                                                  (8.1) 

Where, zero shear viscosity ( 0 ) also known as consistency index of the flow and the Power 

law index ‘n’ taken as 0.9, 0.8 and 0.7. While, shear–rate is represented by ‘ ’ and defined as

1




s

r

vz . The Power law index ‘n’ specifies the degree of the inelastic shear–thinning and –

thickening behaviour of the fluid. When n < 1, then fluid behave shear–thinning, while, n > 1 

then fluid behave like shear–thickening [(Jung, et al., 2004) and (Solangi, et al., 2012b)]. 

 

In Figure (8.1), non–Newtonian Power law model depicts the variation of viscosity against 

shear–rate. With the increase of shear–rate viscosity decreases, graph in Figure (8.1), shows 

clearly the shear–thinning behaviour of the fluid captured by the Power law model. 
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Figure 8.1  Graph of shear–rate dependent viscosity of Power law model. 

 

For Power law model, the analytical solution is given below as (Neofytou, et al., 1994): 
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     

 

   0 ir R                                    (8.2) 

Where, iR  is a constant taken as non-dimensional radius of an inner pipe. Pressure difference 

for Power law model is analytically computed from the z-component of a steady-state 

momentum equation. Employing Equation-(8.2) along with boundary conditions, at inlet, 

pressure difference become as used in (Solangi et al., 2012a): 
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8.4 The Bird-Carreau model 

The governing non-Newtonian equation was indented to capture the variances in velocity 

profile due to the shear thinning behaviour of fluid by the given Carreau model as  (Berthier et 

al., 2002) and published in (Solangi et al., 2012a): 

 

 

1
. 22

0 1 ( )

n

    



 

 
    

 

                                                                             (8.4) 

 

Where 0 , ,   and n  are the zero and infinite shear rate limit viscosities, relaxation time 

constant. Power law index taken n  is as 1.0 kg/m-s, 0.9, 0.8 and 0.7 respectively. The relaxation 

time constant and the power law index control the respective transitions and slope in the Power 

law region.  

 

The shear thinning behaviour of viscosity at low and high shear rates is displayed for Carreau 

model in Figure (8.2). Viscosity is dependent on shear rate; increase in shear rate decreases the 

viscosity. Therefore, shear rate and viscosity are inversely proportional. As shown in Figures 

[(8.1) and (8.2)], in Power law model viscosity decreases more than compared with Bird-

Carreau model. 
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 Figure 8.2  Variation of viscosity with shear rate according to Carreau model. 

 

8.5 Governing system of equations 

Flow of non–Newtonian fluid can be mathematically modelled by the continuity and 

generalised momentum balance equations. These governing equations, in the absence of body 

force, for two dimensional cylindrical polar coordinates are given as under [(Solangi, 2011) 

and (Solangi et al., 2012b)] : 

 

Continuity equation:   

  0
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
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                                                                                                           (8.5) 

 

Momentum balance equation: Momentum Balance Equation Component-wise: 
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z-component: (Solangi et al., 2012b) 
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                                     (8.6b) 

 

Where, rv  and zv are fluid velocity components in the radial and axial direction respectively, 

 is the fluid density, p  is the isotropic fluid pressure and t is time. Then  andzzzrrr ,,

denote the components of the extra stress tensor and defined as follows [(Solangi, 2011) and 

(Solangi et al., 2012b)]: 
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Where, )(
.

 is the functional viscosity of the fluid and 
.

  is a shear rate.  
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8.5.1 Initial and boundary conditions 

The system of Equations [(8.5), (8.6a) and (8.6b)] with continuity equation are solved by 

imposing appropriate initial conditions on the region  as detailed in the study of (Solangi, 

2011). 

 

   0,,,, 0 zrvtzrv rr                             (8.11) 

 

   0,,,, 0 zrvtzrv zz                                                              (8.12) 

 

   0,,,, 0 zrptzrp                                                              (8.13) 

 

Where,  

0 0 v                                                                          (8.14) 

 

The appropriate boundary conditions on   as: 

  11 ,  ontxgv                                                  (8.15) 

 

    22 ,.  ontxgn                                                  (8.16) 

 

Where,  

 zr vvv ,                                                                          (8.17) 
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Here  21    enclosing the domain , n  is the unit outward normal to the boundary, 

 txg ,1  represents the velocity vector prescribed on 1 ,  txg ,2  designates the traction vector 

prescribed on 2 , and   is the total Cauchy’s stress tensor. Note that it is also possible to have 

mixed velocity–traction boundary conditions. Finally, if 1  when vanishing tractions are 

imposed  02  , the prescribed velocity  txg ,1  must satisfy consistency conditions. 

0. 


bdn                                                                                     (8.18) 

In this case, a consistent pressure datum must be supplied up to an arbitrary constant in order 

to avoid an indeterminacy or fluid dynamic inconsistency. No-slip condition is imposed on 

solid walls, while on axis of symmetry Dirichlet condition (vanishing cross component) and 

Neumann condition for axial component is imposed. 

 

8.6 Numerical scheme and fully discrete system of weak formulation 

The selection of algorithm for numerical simulation depends on accuracy, convergence rate, 

efficiency and stability. Literature review shows that semi-implicit techniques are preferred 

over the explicit schemes, which have a slow rate of convergence [(Hawken et al., 1990), 

(Carew et al., 1994), (Baloch et al., 1994), (Baloch, 1994), (Baloch et al., 1995a) and (Solangi 

et al., 2012a)]. For the enhancement of numerical stability, generally implicit methods are used; 

however, these methods are computationally no more expensive. A fully discrete system of the 

problem will be derived by defining appropriate finite dimensional subspaces
hhh PandVV 0,

of PandVV 0,  respectively. The equations are spatially discretised using Galerkin weighted 

residual technique and a mixed velocity-pressure formulation is used to solve the equations. 

The piecewise quadratic functions for velocities and piecewise linear functions for pressure 
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over triangular mesh subdivision are taken. Velocities ( rv , zv ) and pressure p  are 

approximated over each element by the equations. 

The fully discrete implicit and semi-implicit Taylor-Galerkin/pressure-correction scheme 

along with finite dimensional subspaces over a finite dimensional space of functions is 

presented in chapter 4. 

 

8.7 Numerical results and discussions 

Numerical solutions are presented by streamline patterns and graphs for change in pressure 

difference due to changing flow rate. The effects of two different inelastic models, namely the 

Power law and Carreau model, have been compared. Increasing inertia Reynolds (density) 

numbers from (Re=1 to Re= 6000) and increasing inertia by changing the values of N (power 

law index) 0.9, 0.8 and 0.7, porosity 1, viscosity 1, values of peremeability from 0.1 to 

0.00001and zero shear viscosity are taken. Power law index varies from 0.9 to 0.7 to monitor 

shear thining behaviour on the flow domain of non-Newtonian fluids. 

The numerical results are presented by stream line projections and graphs of pressure difference 

against increasing Reynolds number have been presented in for a pipe filled with porous 

materials. Comparisons of numerically simulated results have been made with the results 

presented in chapter six for channel flows through porous media. 

 

8.7.1 Mixing and separating of non-Newtonian fluid flows in a pipe filled with   porous 

media (Power law model) 

Numerical results from inelastic Power law model have been displayed with increasing inertia.  

Flows of non-Newtonian fluid filled with porous media have been shown along with streamline 

projections in Figure- 8.4 with equal and unequal flow rate in an inner pipe and outer cylinder 
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with changing power law index from 0.9 to 0.7. Mixing and separating effects are discussed 

against changing flow rates and power law index. The value of permeability varies from 0.1 to 

0.0001 along with a changing value of power law index to see its effects on pressure difference 

in both equal and unequal flow rates. 

 

8.7.2 The influence of inertia on flow structure 

As shown in Figures [8.4(a) to 8.4(c)], the steady-state predicted streamline functions are 

presented with increasing Re from 1 to 6000 along with a change in power law index for both 

equal (1, 1) and unequal (1,2) flow rates in an inner pipe and outer cylinder respectively. As 

usual, a fluid has been pushed in the inner pipe as was the case in Newtonian fluids. Similarly, 

and reverse flow in the inner pipe along with the line of symmetry has been noted. Not any 

effect on inertia either with changing power law index or increasing the value of Reynolds has 

been observed.  

 

Changing flow rates in the outer cylinder has some effects on inertia at Re=1 as shown in Figure 

8.3 (a) when power law index is 0.9 but for other decreasing values that effects vanishes as in 

Figures [8.3 (b) and 8.3 (c)]. At Re=1 vortex has been developed at the separation gap in the 

outer cylinder but with increasing value of Re it vanishes as shown in Figure 8.3 (a) [Re=1 and 

6000 when N=0.9 and flow rate is (1, 2)]. No other obvious effects of inertia on flow structure 

have been noticed either by changing flow rates or power law index. Above observation are in 

agreement with the numerical results discussed in a channel filled with porous media in chapter 

6. 
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Flows are unidirectional as was the case of Newtonian fluids in a pipe either filled with porous 

or porous media. Only some reverse flows due to some numerical error appeared in the inner 

pipe towards the exit section near the line of symmetry. Fluids are only mixed in an inner pipe 

in the separating gap. Mixing and separations appeared in all cases of changing flow rates and 

increasing inertia values. In this research no other evident influence of changing flow rate in 

outer cylinder has been seen.  

 

N=0.9 

(a) 

Equal (1, 1) Flow Rate 

 

Re=1 

 

 

Re=1000 
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Re=6000 

 

Unequal (1, 2) Flow Rate 

 

 

Re=1 

 

 

Re=5000 
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Re=6000 

 

N=0.8 

(b) 

 

Equal (1,1) Flow Rate 

 

Re=1 

 

 

Re=3000 

 

Re=6000 

 

Unequal (1,2)Flow Rate 



          Chapter 8. Flows of Non-Newtonian Fluids through Tubes Occupied with and without a Porous Material  

197 

 

 

 

Re=1 

 

 

Re=3000 

 

 

Re=5000 

 

 

N=0.7 

(c) 

 

Equal (1,1) Flow Rate 
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Unequal (1, 2) Flow Rate 

 

 

 

Re=1 

 

 

Re=3000 

 

 

Re=6000 
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Figure 8.3 Streamline function of non-Newtonian fluid flows for Power law model    

under changing values of power law index from 0.9 to 0.7 with increasing Reynolds 

number from Re=1 to 6000, from top to bottom. (a)  Under an equal (1, 1) and unequal 

(1, 2) flow rates, (b) Under an equal (1, 1) and unequal (1, 2) flow rates, (c) under an 

equal (1, 1) and unequal (1, 2) flow rates. 

 

8.7.3 Effects of changing flow rates and permeability on pressure 

Non-Newtonian fluid flows in pipe filled with porous media with relative flow rates are 

presented in Figures [8.4(a) and 8.4(c)], to compare its effects on pressure. Maximum and 

minimum scaled pressures with both flow rates at N=0.9 are 1 500.9706sp  and 

1 530.1138sp   respectively with changing values of permeability from 0.1 0.0001  . 

Maximum and minimum scaled pressures for both flow rates at N=0.8 are 1 9.9815sp  and 

1 2.00sp  respectively with changing values of permeability from 0.001 0.0001  .  

Similarly, maximum and minimum scaled pressures with both flow rates at N=0.7 are 

1 1.0094sp  and 1 1.012sp  respectively with fixed value of permeability 0.0001 for all 

increasing values of inertia.  

 

To monitor the effects of changing flow rates on pressure difference along with varying the 

value of power law index from 0.9 to 0.7 and value of permeability from 0.1 to 0.0001 together 

with varying value of Reynolds number from 1 to 6000.  In this research pressure rises with 

changing flow rates. A decrease in the value of permeability also gives rise to pressure 

difference.  In Figure 8.4(a) as shown in when power law index N=0.9 and the value of 

permeability changes from 0.1 to 0.001, the pressure shoots up as shown in Figure 8.4 (at Re=1 
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and 10) by keeping Darcy’s number fixed to 1. At same power law index and changing value 

of permeability from 0.001 to 0.0001, the pressure increases as shown in Figure 8-5 (at Re=50 

and 100). Again at Re=500 and 1000 the pressure rises when permeability decreases from 0.001 

to 0.0001. In unequal flow rate pressure rises when permeability varies from 0.001 to 0.0002 

as shown in Figure 8-5 (at Re=500 to1000). 

 

At power law index N=0.8 initially permeability was fixed, therefore, there is no dramatic 

change in pressure difference, when the value of permeability has been changed from 0.001 to 

0.0001 which gives rise to pressure the same way as was the case when N=0.9 as shown in 

Figure 8.4 (Re=500 to 1000).  As at N=0.8 less permeable domain gives minimum change in 

pressure difference and trend tends to linear as compared with both flow rates at N=0.9. 

 

The Figure 8.4(a) could not show us the clear picture of the effects on pressure with flow rates 

with changing power law index from 0.8 to 0.7 due to fixed value of permeability. Their effects 

have been shown in Figure [8.4(b)] by breaking the vertical axis to its smaller values of scaled 

pressure of flow rates at N=0.7. For the increase in the Reynolds number permeability is fixed 

in both the flow rates, where N=0.7, which means there is no significant effect of pressure, 

while inertia values increase smoothly. Changing flow rates and the value of permeability gives 

rise to pressure difference with increasing inertia. 



          Chapter 8. Flows of Non-Newtonian Fluids through Tubes Occupied with and without a Porous Material  

202 

 

 

(a) 
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(b) 

Figure 8.4  [(a)-(b)] Pressure difference for an equal (1, 1) and unequal (1, 2) flow rates 

with changing power law index from 0.9 to 0.7 and with increasing Reynolds number 

from 1 to 6000. Re increasing from top to bottom.  

 

8.7.4 Mixing and separating of non-Newtonian fluid flows in a pipe filled with 

porous media (Bird-Carreau model) 

The results of numerical computation have been obtained using the inelastic model of Bird 

Carreau that displays the equal and unequal rate of flow within outer cylinder and inner pipe 

with porous materials filled in it.  Flows of non-Newtonian fluid filled with porous media have 

been shown along with streamline projections in Figure (8.5) with increasing inertia and 

changing power law index from 0.9 to 0.7. Mixing and separating effects are discussed due to 

changing flow rate and power law index. Inertial effects have been discussed due to the 

presence of porous media and compared with those from the power law model. 

 

8.7.5 Influence of inertia on flow structure  

Non-Newtonian results are given in Figures [8.5(a) to 8.5(c)] to see an impact of inertia on 

flow structures with both equal and unequal flow rates in pipes filled with porous media. No 

impact on inertia in pipes filled with porous media either by changing flow rates or increasing 

the value of Reynolds number along with decreasing value of power law index has been 

observed. For both rates of flow as demonstrated there is an increase in the Reynolds number 

and decrease in the power law index, 1 to 6000 and 0.9 to 0.7, respectively. Similarly flows 

have been pushed in the inner pipe from both sides of the outer cylinder in the gap towards the 
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line of symmetry and some reverse flow has been observed in the inner pipe towards the 

downstream exit. 

 

It is found that Bird Carreau has no effect on the inertia due to pressure, while there was only 

negligible inertia effect in the power law model. Flows are the same unidirectional as was the 

case in power law model. There is no influence of changing power law index. No impact of 

inertia has been noticed what so ever is the reason. Increasing inertia, varying flow rates, power 

law index along with variation in the values of permeability has not affected the flow. Cross 

flow in an inner pipe at the exit section has been noticed. That error could be dealt in future 

studies. 

N=0.9 

 

(a) 

 

Equal (1,1) flow rate 

 

 

Re=1 
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Re=6000 

 

Unequal (1,2) flow rate 

 

Re=3000 

 

Re=6000 

 

N=0.8 

 

(b) 
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Equal (1,1) flow rate 

 

 

 

Re=3000 

 

 

Re=6000 

 

Unequal (1, 2) flow rate 
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Re=3000 

 

 

Re=6000 

 

N=0.7 

 

(c) 

 

Equal (1,1) flow rate 

 

 

Re=3000 

 



          Chapter 8. Flows of Non-Newtonian Fluids through Tubes Occupied with and without a Porous Material  

208 

 

 

Re=6000 

 

Unequal (1, 2) flow rate 

 

Re=3000 

 

 

Re=6000 

 

Figure 8.5  Streamline function of non-Newtonian fluid flows for Bird Carreau model 

under changing values of power law index from 0.9 to 0.7 with increasing Reynolds 

number from Re=1 to 6000, from top to bottom. (a)  Under an equal (1, 1) and unequal 
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(1, 2) flow rates, (b) Under an equal (1, 1) and unequal (1, 2) flow rates, (c) under an 

equal (1, 1) and unequal (1, 2) flow rates. 

 

8.7.6 Effects of Power Law and Bird Carreau model on pressure when pipes 

are filled without porous media 

The Figure (8.6) displays the differences for the effect of Bird Carreau and power law due to 

pressure with an increase in the Re for flows of non-Newtonian fluid. Reynolds number has 

been taken from Re=1 to 200 under equal (1, 1) flow rate when pipes are filled with non-porous 

media. With the increasing pressure there is no significant change observed for Re up to 50 th. 

The influence of Power law on pressure is higher than Bird Carreau model. Bird Carreau model 

shows linear trend in the increase of scaled pressure while Power law shows linear trend in an 

increase up to Re=150 after that increase in pressure is non-linear. As discussed above in 

sections (8.7.2) and (8.7.5), Power laws have some inertia effects on flow behaviour whereas 

the Bird Carreau model shows no significant effects in inertia.   

 

Like other situations discussed in chapters 6 to 7 in a channel and pipe flows, pressure increases 

with varying values of Re same trends has been observed in non-Newtonian flows when pipe 

is filled with non-porous media.  
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Figure 8.6  Comparison of Power Law and Bird Carreau model on pressure. 

 

8.8 Summary 

In this chapter, numerical simulations have been carried out with non-Newtonian rheological 

models, that is, the Bird-Carreau and Power law model under combing and separating flow 

configurations in an inner circular pipe and outer circular cylinder. With the increase in the 

Reynolds number the graphs and streamline patterns illustrates the numerical results, with 

varying power law index and changes in the flow rate in both pipes from dual- outlet/ inlet. 

Taylor-Galerkin/Pressure-Correction primitive variable finite element algorithm has been 

found accurate and stable in its performance and predictions. Numerical results obtained prove 

to be theoretically in close agreement with available numerical and results achieved in the 

channel filled with porous media.   
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For mixing separating flows in pipes filled with porous media, if non-Newtonian effects are 

added then Power law and Bird Carreau model found negligible inertial effects in the domain 

filled with porous media. In this work Power law model of has captured inertia effects on flow 

structure for low Reynolds number. With the higher values of power law index, these inertia 

effects vanished. With Bird Carreau model no impact on inertia has been noticed either varying 

values of power law index or flow rates. It has been noticed that there are some numerical 

errors in flows. This error appeared in the inner pipe in the exit section, which will be discussed 

later. 

Considering the various mixing and separating flow conditions has obvious effect on the 

permeability, power law index, and flow rates in pipe. Increasing flow rate in outer cylinder 

gives rise in pressure during changing power law index. Decreasing values of permeability 

decreases pressure and increasing value of it increases pressure but fixed values of permeability 

shows a linear trend in the value of pressure. In comparison to Bird Carreau model, there are 

more effects noted for the inertia and flow on pressure than power law model. Pressure has not 

been affected too much in Bird Carreau model with changing flow rates, power law index and 

permeability in the entire computational domain. Figure (8.6) shows that for values from Re=1 

to 4000 where the values of permeability have been changed for different Reynolds numbers. 

After Re=400 on fixed value of permeability and Forchheimer growth is linear. 

Flows of non-Newtonian fluids through tubes are presented with Velocity profiles at Re=01 

for Power law model. In this an equal (1, 1) flow rate is shown when domain is filled with 

porous media as an example in the end of appendix-E. Stream functions with contour numbers 

its corresponding value are labelled and aligned vertically. Contour types are shown in flood, 

lines and lines and flood together as well.  Velocity Vector is also presented for Re=01. 
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Chapter 9. Discussion 

 

9.1 Introduction 

Overall general discussions on variety of the results achieved in this research are given below 

for four different categories of channel flows. In pipes mixing and separating flow involves the 

material changes, besides the application of the non-Newtonian models. 

 

9.2 Channel flows through non-porous media 

The chapter five of the thesis presented, computations, numerical modelling, and Newtonian 

fluids of the mixing and separating flows combined without porous media in the planar channel. 

For primitive variables numerical algorithm employed in the analysis is based on Taylor series 

expansion for temporal discretisation. Galerkin is a finite element for the approximation of the 

spatial discretisation. To achieve second order accuracy and deal with incompressibility 

constrain pressure–correction method is incorporated in the scheme. Details of this algorithm 

are debated in detail in chapter 4 and onwards in different sections of this thesis. Reversed and 

unidirectional flows with different flow bifurcations of computational domain and finite 

element mesh as shown in Figure (5.1) along with applied numerical scheme are discussed in 

chapter five in detail. Three flow rates in every condition are simulated and compared with 

each other to see the influence of changing flow rate on flow structure. In order to understand 

the effects of inertia on flow structure, flows are monitored with increasing value of Reynolds 

numbers, changing flow rates and flow directions. Comparison of pressure difference due to 

varying flow rates are presented into different sections of the chapter 5 for four different 

configurations (geometries 1G to 4G ). In the end results are compared with experimental and 

numerical results available literature. 
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Over all highlights of the general discussion in detail on the modelling and numerical results 

of Newtonian fluid for complex mixing–separating channel flows filled with non–porous 

media in first part of Figure [5.1(a)] with varying flow rates in the upper channel arm are given 

below. Reynolds numbers have been considered from 1 to 200. The aim of varying it from 

lower to higher values is a way to find the critical Reynolds number. 

 

In equal (1, 1) flow rate the fluid mixes and separates in the middle gap and towards the exit 

sections of the domain under initial Reynolds numbers. When the Reynolds number increases, 

vortex forms and grows within the middle gap and move horizontally in the direction of 

separating plates, giving rise to a reverse flow. Other vortices formed will grow that resides on 

the central nip; these are starched in horizontal direction and adjusts their positions of the plate. 

At the higher value of Reynolds number that is 200 eddies formed in the middle gap due to 

more recirculation twist their position clockwise. An increase in the value of Re has led to an 

increase the size, intensity of recirculation and stability in adjusting their positions of the 

vortices of the entire domain. 

 

Due to unequal (1, 1.5) flow rate into the upper arm of fluid flows have been pushed to the 

lower channel arm in its gap. The vortex development taking place very early because of the 

flow rate changes is a predominant evidence of the effects of inertia on the flow structure and 

rates. Due to changing the flow rate in a top channel a vortex has been developed on only one 

plate its nip of in the exit sections of the domain for lower values of Re. In contrast with the 

equal flow–rate the vortex developed on side of the wall in upper channel arm in its middle. 

With increasing the value of Re the vortex developed on the wall grows in size and starts 
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moving in the middle gap of the domain in its gap along with the emerge of another vortex 

which was expected on the other side of the centrally located plate. In contrast to the equal flow 

rate in both arms of a mixing–separating domain, flows are both unidirectional as well as 

opposite direction until the exit of the channel. Fluid is mixed within the exit section and middle 

gap of the domain. 

 

 The more drastic effect in the flow is observed with the change (1, 1.5) to (1, 2) in flow rate. 

Again very early activity of vortex development has been observed in flow domain due to 

unequal (1, 2) flow rate contrast to equal (1, 1) and unequal (1, 1.5) flow rates.  Vortices have 

been noticed in all three different locations of the domain but with more intensity and power 

of recirculation against increasing inertia. When the Re value increases vortices are split into 

small vortices in same eddies. For the mixing and separation of the domain in Reynolds 

numbers throughout the process there were both unidirectional and reversed flows. Changing 

flow rates as described in chapters five and six in computational domain from equal to unequal 

flow rates of Newtonian fluid flows in combining mixing separating geometry has a dramatic 

change on flow structure. Influence of unequal flow rate has been observed on inertia, positions 

of vortices and on fluid flow directions. In the study of Newtonian fluid flows in a channel a 

comparison of scaled pressure difference verses Reynolds numbers are presented with relative 

flow rates. The relative flow rates with increasing the value of inertia have the effects of 

increasing non-dimensional pressure difference. 

 

In another unidirectional configuration discussed in chapter 5, as shown in Figure [5.1(b)], 

Newtonian flows in a channel have been simulated and detail discussions are given in chapter 

five. In such settings target is basically the results of, change in flow direction and its inertia 
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effect, changes in flow rate for equal and unequal, and effect of flow direction and rates on the 

pressure differences. Similarly, Reynolds number has been taken from 1 to 200 for this 

unidirectional situation. 

 

In all three equal and unequal flow rates, vortices have been developed only in the silent zone 

of the upper channel arm. Fluids mix only in the lower arm towards the downstream of a 

channel. With increasing the value of Re along with varying flow rates in upper channel arm 

due to recirculation power vortices developed the splits and a merge. A weak vortex developed 

on the plate fitted towards right in the middle grows in size and becomes more visible with 

changing flow rates in the upper arm for higher values of Re. The pressure difference is same 

for the effects by the inertia and flow rate; however, there is a linear increase in pressure with 

the reverse flow. 

 

The Figure [5.1 (c )] illustrates configurations for single outlet and dual inlet, considering the 

Reynolds number from 1 to 200 the study discussed the Newtonian fluid flows and numerical 

calculations. Flow rates have been changed in the top arm of a channel again to see the effects 

on flow structure and non-dimensional pressure difference. It is evident that Fluid flows have 

been pushed into the upper channel arm in the separation gap of the domain along with the 

appearance of vortices in the silent section of the same arm. With increasing Re, vortex 

developed in the left section of the upper arm grows in size and becomes an eddy and moves 

towards the middle gap horizontally. That eddy adjusts its position in the middle gap between 

the upper wall and due to a push of flow from the lower arm of channel. With increasing value 

of Re, two other vortices grow one from the upper wall and another on the plate fitted to the 
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left in the middle of the domain. To increase the Re values all eddies and vortices developed 

are adjusted in their position and increase in size.  

 

The influence of unequal flow rates along with increasing inertia on flow behaviour has been 

mentioned and no other obvious dramatic change has been noticed except early development 

and intensity in the formation of vortices/eddies due to more recirculation. Flows are both 

unidirectional as well as reversed. Non-dimensional pressure difference shows same the pattern 

of increase as was the case of unidirectional flow case discussed earlier in above paragraphs. 

Once again unidirectional flows of Newtonian fluid in a single inlet/outlet configuration as 

shown in Figure [5.1(d)] in chapter 5 are numerically simulated to see the effects of inertia and 

the effects on pressure difference. The value Re has been considered from 1 to 500 to observe 

its effects on the flow domain. Again similar development in vortices has been noticed in the 

silent section of the domain of the low pressure zones. With increasing Re vortices/eddies grow 

in size and horizontally parallel to the wall in the opposite directions towards the inlet and 

outlet of the domain. Both vortices/eddies near the plate and in the silent zones, narrows the 

path of fluid flows in the middle gap due to their movements. For the greater values of Re, in 

an upper arm more vortices have been noticed along with one on the central plate towards the 

exit section of the domain. Linear increase in the pressure difference has been observed due to 

increasing inertia which resembles with the unidirectional flow discussed above Figure 

[5.1(b)]. 

 

Numerically simulated results discussed in this section are in very good agreement with 

experimental and numerical results available in open literature [(Cochrane, et al., 1981), 

(Cochrane, et al., 1982), (Walter and Webster, 1982), (Baloch, et al., 1995b) and (Echendu, et 
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al., 2011)]. There are comparisons considering various flow rates and directions within 

Newtonian fluids. In Figure (9.1) flow visualizations taken by photographing images under 

experimental setup are presented from the study of (Cochrane, et al., 1981). Newtonian liquids 

used in the experiment are high maltose syrup-water mixtures, whose velocities are determined 

by using a Brookfield viscometer. The Weissenberg number (w) is of course zero for 

Newtonian fluids. In the experimental study non-Newtonian fluids are also investigated to 

compare with the results with Newtonian fluids. In scope of current research channel flows are 

investigated under Newtonian fluids with varying flow rates and flow directions. The current 

study has not found the effects of Weissenberg on the domain’s flow rate without porous media 

filled in the channel. Figure 9.1 also shows numerical results of this study and are comared 

against experimental results of (Cochrane, et al., 1981). The Figur 9.1 illustrates that there is 

equal rate of flow for each arm, thus, the current experimental results are consistent with this 

investigation. 

 

In figure 9.2 experimental results also nearly agrees with the predictions of present analysis 

Figure 9.2, in which unequal (1, 2) flow rates are passed in both arms of a channel. In 

experimental results Re=0.75 and W =0.17 and in numerical results of this study at Re=1 with 

w=0. The Figure 9.2 shows the unidirectional flow obtained in the current numerical results at 

Re=1, which are similar to Re= 1 experimental results with w=0.23. If inertia effects of current 

study are compared with the experimental study of (Walter and Webster, 1982) at Re=1, then 

again result is almost same. The reversed flow of this study is also agrees with the experimental 

results of (Walter and Webster, 1982) but difference is, in this study double flow rate is in 

upper arm of a channel. Due to double flow rate in upper arm fluid has been pushed in the 

middle gap in the lower arm as shown in Figure (9.2), It is noted that (Walter and Webster, 
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1982) experiment found the lower channel arm with double rate of flow, which means that 

fluid is pushed towards the upper arm’s middle gap.  

 

• Unidirectional and reversed flows with equal and unequal flow rates in 

both channel arm. 

 

 

 

 

 

 

 

 

 

Figure 9.1  Numerical Results Compared with the experimental Results of (Cochrane 

et al., 1981). 

 

• Channel flows with changing flow directions and varying flow rate. 
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Figure 9.2  Numerical Results Compared with the experimental results of [(Cochrane et al., 

1981) and (Walters and Webster, 1982)]. 

 

9.3 Channel flows through porous media 

In this section detailed discussions are carried out for flows of Newtonian fluids through 

complex mixing–separating channel in the presence of porous material. In chapter five Figure 

(5.1), the study presented the different configuration with the same domain. For an 

incompressible flow through homogeneous porous material, continuity and a time–dependent 

Darcy–Brinkman momentum equation have been used. For primitive variable formulation a 

finite element based semi–implicit Taylor–Galerkin/Pressure–Correction algorithm is 

employed. Details of this scheme are discussed in detail in chapter four and onwards in different 

sections of this document. Detailed discussions on the effects of inertia, pressure and Dary’s 

numbers on the flow domain have been given in chapter 6. The value of Darcy’s number  aD  

is 1 and permeability    changers from 0.1 to 0.00001with increasing Reynolds numbers 

Re  from 01 to 10000. 

 

Numerically simulated results for configuration presented in [Figure 5.1(a)] discussed in detail 

have been presented in chapters 6. In this section some useful findings are discussed. At Re= 

4000, the study found varying Re values with flow rate equal (1, 1) for the inertia effect on the 

structures of flow. The study found very weak appearance of vortex development at Re=5000 
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for the central plate’s lower head within the middle gap. For increasing values of Re vortex 

appeared, vanished and no other vortex has been found in the entire domain. For the end at Re, 

there are unidirectional and reversed flows.  

 

For unequal (1, 1.5) flow rate flows have been pushed in the bottom channel arm due to higher 

flow rate in top arm as was the case for Newtonian flows in a channel filled with free of porous 

media. An early activity of vortex generation has been noticed with changing flow rate in the 

top channel arm which bears a resemblance with flows in the channel filled with non-porous 

media. But with increasing Re a vortex developed disappears is dissimilar to the flows in a 

channel filled without porosity. With the increase of flow rate with an increasing Re within the 

channel’s upper arm results in generating early vortex. By increasing further, the value of Re 

the vortex developed on the nip of centrally located plate disappears as was the case in above 

equal (1, 1) and unequal (1, 1.5) flow rates. Thus, in the central gap fluid is mixed and streams 

down towards the channel exits.  

 

The details given in section (6.5.2) of the chapter 6 presents the configuration of the Newtonian 

fluid flows for the unidirectional numerical simulations. Here discuss the important aspects of 

inertia on flow behaviour due to changing flow rates in upper channel arm are addressed. For 

the entire domain there were no activities involving the development of vortex in both unequal 

and even equal rates of flow. Fluids mix only in the lower channel arm in the downstream of 

the domain towards the exit. 

 

As shown in the figure (5.1(c)), one-outlet/ two-inlet domain combination that are illustrated 

in section (6.5.3) of the chapter 6, where because of the middle gap flow is directed towards 
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the upper arm. There was not any early activity of vortex development for initial Reynolds 

number on the entire domain for equal flow rate conditions. At Re=2000, it was found that 

there were very weak vortices generated within the central plate nip and because of the increase 

in the Re value their size grows and positions stabilises. Flows are both unidirectional as well 

as reversed for the entire range of Re. It was found that there is vortex development in early 

activity for the unequal flow rates. Initially vortex appeared at the right side of the domain on 

the nip of central plate and later on left side.  The effects of inertia and varying flow rates are 

obvious on pressure. Pressure increases with an increase in the value and changing the flow 

rate. That was also the case in channel flows of non-porous domains. 

 

Under the last condition of unidirectional flows for separating domain as shown in the figure 

[5.1(d)], numerical calculations are presented in section (6.5.4) in detail. There were no inertial 

effects found based on the porous media filled within the domain to effect the flow behaviour. 

Increasing or decreasing the value of permeability affects the pressure difference. In the 

literature about fluid flow in a domains totally filled with porous media, it has been noticed 

that the local macroscopic inertial term is commonly small compared to the microscopic Darcy 

drag term and hence could be neglected (Nield, 1991). A quantitative plotting of the operating 

and geometrical parameters within which the local inertial term may be significant is not 

available in the literature yet. Therefore, it is not possible that numerically computed results of 

Newtonian fluid flows in a channel could be compared with the other experimental or 

numerical results.  

 

 

 



          Chapter 9. Discussion 

222 

 

9.4 Pipe flows through non-porous media 

Numerical study has conducted Newtonian fluid flows passing through two pipes filled with 

non-porous media. The problem specification is such that one pipe with small diameter placed 

within another pipe of the large diameter having sudden gap in the middle as shown in Figure 

(7.1) in chapter 7. Newtonian fluid flows are passing in reversed directions with varying flow 

rates in either circular pipe. The same method is adopted as in chapter four, five and size for 

numerical compilations. The scheme is fractional staged Taylor-Galerkin/pressure-correction 

finite element as discussed in chapter four in detail and applied in chapter seven along with 

imposed initial and boundary conditions discussed. The flow domain is meshed by employing 

a uniform conformal mappings, a technique which automatically aligns element sides with 

streamlines and preserves orthogonally of the elements. In the current research, the power and 

vortex length is calculated via stream function with the increase in Reynolds numbers. Thus, 

considering the stream functions’ numerical predictions were established using the stream line 

patterns and pressure differences for the increasing inertia is monitored for outer and inner 

cylinder pipes with varying flow. Critical values of Reynolds number are identified during the 

vortex generation due to increasing the value of Re and with the changing flow rates in 

cylindrical pipes. 

 

Reynolds number were used from 1 to 200 and the gaps within the mixes and unidirectional 

flow have been found using the Newtonian fluid. Newtonian fluid Flow merges in both upper 

and lower exits of the computational domain. For the flow rate at equal (1, 1) no relevant vortex 

development activity was found, even considering the higher value (Re= 200). Flow structure 

stays the same except that fluid has been pushed to the inner pipe towards its line of symmetry.  
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In order to identify more effects of inertia on flow domain an unequal (1, 2) flow rate has been 

served from the inlets. The fluid passing from the outer cylinder is double as compared to the 

inner cylinder in volume, because of the increase in the flow rates. Even at Re=1, there is a 

significant flow phenomenon demonstrated within the flow rate changes. A strong recirculation 

region has been observed in the centre of outer pipe behind its centrally located plate in the 

vicinity of separating region. Increasing the value of Re increases the power of vortex 

development and the generated vortices grow in size and occupy the central gap of the domain. 

Most of the developed vortices remain in the outer cylinder on the central plate, in the middle 

gap and silent region. Similar push to flow in the inner pipe has been noticed towards the line 

of symmetry as was the case in equal flow rates. Increasing value of Reynolds number and 

varying flow rate have the collective effects on pressure difference. Influence of increase in 

scaled pressure difference has been shown in Figure 7-4 in seventh chapter of this thesis. 

 

9.5 Pipe flows through porous media 

The porous media filled within the domain will pass with equal and unequal flow rates for both 

fluids (Newtonian and non-Newtonian). Details of the combined mixing-separating geometry 

are given in Figure (7.1) along with its associated initial conditions and boundary conditions. 

The Power law and Bird Carreau model have been used to capture the non-Newtonian 

behaviour of the fluid flows. When the value of Reynolds number are varied the level of inertia 

is increased. The semi-implicit time stepping Taylor-Galerkin/pressure-correction scheme has 

been used for the solution of the Navier-stokes equation and with the incompressible 

constraints. Numerical results are shown by stream line patterns with increasing inertia and 

plots of pressure difference due to changing flow rates in chapter eight. 
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For Newtonian fluid flows in pipes filled with porous media, flow phenomena are the same as 

was in equal flow rate in pipes filled without porous media. As shown in section (8.7) in chapter 

8, no obvious activity of vortex generation has been noticed except the fluid has been pushed 

in the inner cylinder. Physically it is correct since the diameter of the outer pipe is large; thus 

the flow of fluid is also greater in the outer pipe as compared to the inner ones. During unequal 

flow rate a numerical artefact in inner pipe has been observed which will be examined in later. 

This research could not find any obvious change on flow behaviour due to changing flow rates. 

Flows in a pipe filled with porous media have a dramatic change on pressure difference due to 

an increase or decrease in the value of permeability. Due to the increasing or decreasing 

permeability value for the porous material filled in the pipe the pressure difference changes. 

Decreasing the value of permeability gives rise to pressure. 

 

Non-Newtonian behaviour of fluid has been captured by using two inelastic models Power law 

and Bird Carreau in a domain filled with porous media. The effects of flow domain and pressure 

difference are analysed with increasing inertia, changing flow rates in inner and outer pipe, 

permeability and power law index. The power law index varies from 0.7 to 0.9 and permeability 

from 0.1 to 0.0001. Stream line functions are presented from Re=1 to 6000. Fluid has been 

pushed the same way as was the case of Newtonian flows. No significant effects of inertia are 

observed to due changing flow rates or power law index. An error has been originated in an 

inner pipe towards the exit near the line of symmetry as it was in the case of Newtonian fluid 

flows through porous media. Results of pipe flows thorough are in agreement with results of 

channel flows through porous media.  

The increase in inertia and change of flow rate effects the difference in pressure, but increase 

or decrease of permeability value have significant effect on the pressure. The power law and 
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Bird Carreau Model predict almost the same behaviour of flows in the domain filled with 

porous media but differ in forecasting pressure. Through the increase or decrease of 

permeability value when applying the Bird Carreau Model there was no effect on the pressure. 

As experimental and numerically simulated results are not available for the domain 

investigated during this study. Therefore, results are compared with channel flows. Simulated 

results are in good agreement. 
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Chapter 10.  Conclusions and Future Suggestions 

 

10.1 Introduction 

This chapter is based on providing the overview of the complete study. It specifies the main 

scientific ideas based on findings and future suggestions on further research work is presented. 

In the first chapter, the aims and objectives set out, are accomplished. The robustness of Taylor-

Galerkin/pressure-correction algorithm and its viability is exhibited.  The numerical 

predictions are validated by simulating several steady–state isothermal flows of incompressible 

fluids through complex mixing–separating channels and pipes filled with porous material or 

without considering porous media. Comparing against other experimental results and 

numerical solutions a well agreement is observed. The validation of the predicted results 

illustrate that the present technique is most promising and being robust incense of accuracy, 

rate of convergence and stability. In a channel flows through non–porous media comparisons 

are presented with the experimental results as shown in Figure [9.1 to 9.2]. The implemented 

algorithm can be utilised as an effective tool for performing numerical experiments and can be 

achieved insight appreciation of the flow phenomena, for the range of steady–state complex 

flows. The general conclusions of the research study have been given below; that are obtained 

through numerical results for pipe flows and mixing-separating channel with and without 

porous material.  

 

10.2 Conclusion on channel flows 

1. The research study found that changing the Newtonian fluids’ material properties can 

be obvious with non-porous media filled in the channel. This was investigated by 
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without porous material and increasing the Reynolds number, thus inertia, which results 

to increase the size, recirculation power, and positional stability for adjustment. 

2. Changing flow rates in a channel filled for Newtonian fluids without porous media has 

given rise to an early development of vortices. These vortices are formed under higher 

values of Re and eddies are noticed on only one side of the central plate for its initial 

Reynolds number in a channel filled with no porous media.  

3. Flows of constant viscosity fluid in a planar channel in absence of porous material, with 

changing flow–rates, at both inlets, from an equal to unequal have still given 

unidirectional and reversed flows whereas this was not the case in equal flow rate for 

higher values of the Reynolds number. 

4.  In a channel flows, reversed flows show more inertia effects as compared with 

unidirectional flows. 

5. There is a less chance of the development of vortex with porous material filled in the 

channel. The study found very weak vortices relative to very high number of Reynolds. 

6. Pressure difference is effected by the variations within the flow rates 

7. The performance and the capability of the numerical scheme are clearly demonstrated 

through its applicability for a wide range of inertia, flow rates on flow structure and 

porosity. In all cases the semi-implicit Taylor-Galerkin/pressure-correction scheme 

works well except simulating flows with very high Reynolds number.  

 

10.3 Conclusions on pipe flows 

1.  It was found that there is a varying flow rate due to inertia effect on the domain without 

porous media for the Newtonian fluid flows in combined separation and mixing. In the 

current study it was found that the vortex development within the unequal flow rates (1, 



 Chapter 10. Conclusions and Future Suggestions 

228 

 

2) excites in the outer cylinder, while the flows are pushed closer to the symmetry line 

towards the inner pipe. 

2. In a mixing-separating domain of pipes filled with Newtonian materials in which fluid 

passes through porous media; there is no significant change in the flow structure due to 

increasing inertia and varying flow rates.  However, a dramatic change in pressure 

difference has been noticed due to increasing or decreasing value of permeability. 

3. In non-Newtonian flows pressure is affected by varying flow rates and permeability in 

the domain filled with porous media. In comparison to Bird Carreau Model, the power 

law model captures some effects of inertia. 

4. This study could find an influence of varying power law index on inertia but 

permeability has its more effects on pressure. 

5. Numerical scheme is very good in capturing flow behaviour but some error has been   

noticed in an inner pipe filled with porous media under unequal flow rates in the outer 

cylinder. 

 

10.4 Novelties of the research project   

1. Darcy term has been added in momentum transport equation for monitoring the 

effects of porosity on the flow domain. The applied implicitness on the Darcy’s term 

is to make mass matrix more stronger. 

2. An analytical solution has been found during current study and has been imposed as 

an exact velocity profile on the inlets of a channel filled with porous media. Full 

details of its derivations are available in Appendix-B.  

3. Numerical modelling for Pipe flows has been taken as test problem for the Newtonian 

and non-Newtonian fluid flows through porous and non-porous materials.  



 Chapter 10. Conclusions and Future Suggestions 

229 

 

4. Initially problem was solved for equal flow rates. In current research flow directions 

and flow rates have been changed to monitor the inertia effects on the computational 

flow domain. 

5. To improve the accuracy of the solution modified Euler method has been used instead 

of Euler method. 

6. Numerical code has been enhanced by including all necessary parameters required for 

Newtonian and non-Newtonian flows in both porous media domains. Extended 

numerical code is attached in appendix-D. 

7. Physical analysis was compared with experimental results for consistency and good 

agreement have been established. 

 

10.5 Recommendations for future work 

The foremost recommendation for the implementation of numerical simulation is that it is 

not used as a substitute but only applicable for the experimental analyses. For the solution 

of realist physical problem using mathematical modelling approach, it is very important that 

the assumption must be based on realist physical conditions and should be very close as 

possible. The present study has raised many new issues and they need to be examined. Some 

of them are: 

1. Total number of elements 1328, 5049 was used in a rectangular channel and circular 

pipes respectively. In presence of the computer capacity it is predicted that the accuracy 

can be achieved by increasing the number of nodes and elements. 

2. Mesh refinement was used in current research, however many regions in a circular pipes 

were observed with numerical artefact and should be investigated. 
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3. In channel flows there are variety of ways to change directions and flow rates in either 

arms. In the current study using the varying flow rates, four combinations were 

analysed.  Still there are more configurations possible and should be examined. 

4. Pipe flows were taken as test problem during current study by applying same mesh used 

for channel flows. As these are three dimensional domains as well in many industrial 

applications, therefore three dimensional meshes should be used and simulated in the 

presence of cluster and parallel processing. 

5. The pipe flow domain can be designed in a variety of ways. By keeping outer pipe fixed 

and rotating inner pipe clockwise or counter clockwise should be investigated. Even 

rotating one side of inner pipe clockwise and other counter clockwise will reveals many 

new phenomena. 

6. During the implementation of Finite element analysis one the most critical decisions is 

the design of mesh. In many non-Newtonian flows, regions with steep stresses and 

gradients frequently occur or disappear or change their shape and location. It is 

therefore important to make sure that finite element mesh is sufficiently fine in these 

areas to accurately capture the solution.  

7. During this study only two dimensional flows were studied, however, further 

investigation is need to extent the present research in three–dimension and may be for 

turbulent flow, due to its importance in the industrial context. 

8. The problems related to time dependency may arise in the flows involving the moving 

objects, multi-layer injecting moulds, and free surface. Difficulty of handling moving 

meshes then may arise. In that case, consistent time dependent boundary conditions are 

needed because they add some freedom to the specification of the problem.   
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9. In the current study single relaxation time was considered; therefore, it is suggested that 

future studies use multiple-relaxation times for the pipe flows, as well as different 

models for viscoelastic and non-Newtonian in the pipe flow channels should be used. 

 



   Appendix- A 

232 

 

Appendix-A  

 

Publications 

1. Khokhar, R. B., Chen, Y. K., Calay, R. K. and Xu, Y. (2013), Numerical scheme to simulate 

combined mixing and separating flow in a channel, Applied Mechanics and Materials, 

Vols. (303-306), pp. 2798-2805. 

2. Khokhar, R. B., Chen, Y. K., Xu, Y. and Calay, R. K. (2013), Numerical simulation of 

combined mixing and separating flow in channel filled with porous media, Advanced 

Materials Research Vols. (694-697), pp. 639-647. 

3. Solangi, M. A., Khokhar, R. B. and Baloch, A. (2013), A FEM Study for Non-Newtonian 

behaviour of blood in plaque deposited capillaries: analysis of blood flow structure, Mehran 

University Research Journal of Engineering and Technology, vol. 32 (2), pp. 277-282. 

4. Solangi, M. A., Khokhar, R. B. and Blaoch, A. (2012), Computational modelling of pressure 

difference for non-Newtonian behaviour of blood in plaque deposited capillaries, Sindh 

University Research Journal Science Series, vol. 44(4), pp. 723-726. 

5. Solangi, M. A., Shaikh, H., Khokhar, R. B. and Baloch, A. (2012), Numerical Study of 

Newtonian blood flow through a plaque deposited artery, Sindh University Research 

Journal Science Series, vol. 44 (04), pp.79-82.  

 



   Appendix- B 

233 

 

Appendix-B  

Analytical solution 

 

Steady–state analytical solution of one–dimensional Darcy’s–Brinkman equation to 

impose boundary condition on the inlets of combined mixing–separating domain 

 

Consider the steady–state incompressible isothermal flow of constant viscosity fluid through 

planar channel packed by porous media governed by one–dimensional Darcy–Brinkman 

equation, neglecting body force is written as: 

 

2

2u p
u

xy

 

 

 
 


          (1) 

 

Where u is the axial velocity component, p is the isotropic pressure, x and y are axial and 

transversal coordinates respectively, while, respectively material parameters  ,   and  are 

fluid viscosity, porosity and permeability of porous material. After taking suitable scaling 

factors such as *

cu V u , * *( , ) ( , )cx y L x y and
*c

c

V
p p

L




 . Then dimensionless form of above 

equation (1) with constant pressure gradient, takes the following form: 

 

2

2 1

a

u p
u

D xy

 
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          (2) 
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Here dimensionless Darcy’s number 
2a

c

D
L




  and 





p

x
 are constants then partial differential 

equation reduces in an ordinary differential equation as: 

 

   2

2

  
d u

Au B
dy

                                                                                                            (3) 

 

Where  
1

a

A
D

  and    
dp

B
dx

   

 

As we know boundary conditions are ( ) 0u a  and ( ) 0.u b   

 

Equation (3) is non-homogeneous linear partial differential equation with constant coefficient 

and conditions are homogeneous so that required general solution of Equation (3) ( )u y  is of 

the form: 

 

(y) c pu u u                                                                                                                         (4) 

 

Where cu and pu stands for complementary function and particular integral. 

 

For complementary function, the equation (3) becomes homogeneous as: 

2

2

0 
d u

Au
dy

 or 2 ( ) 0 yyu Au y                                                                                 (5) 
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Or it can be written as: 

 2 ( ) 0D A u y                                                                                                                (6) 

 

In Equation (6), replacing  D  by m : 

2 0 m A or 2 m A                                                                                                         (7) 

or 

 m A                                                                                                                             (8) 

 

Here the roots are distinct so the particular solution will be exponential or hyperbolic; in 

hyperbolic form solution is as follows: 

   1 2cosh sinhcu C Ay C Ay                                                                                       (9) 

 

Now for particular integral ( .P I ) equation (3) is 2

2

 
d u

Au B
dy

so that 
pu is: 
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Apply Binomial Theorem, and then the result will be: 

p

B
u

A
                                                                                                                           (11) 

 

Now adding Equations (9) and (10), we will get the complete general solution as: 

   1 2( ) cosh sinh
B

u y C Ay C Ay
A

                                                              (12) 

Or  

1 2( ) cosh sinh a

a a

y y dp
u y C C D

dxD D

   
     

   
   

                                                                (13) 

 

Now after applying boundary conditions ( ) 0,u a   it means 0u   at y a  and ( ) 0,u b 

means 0u   at y b then from Equation (13), we get as follows:  

1 20 cosh sinh
a a

a a B
C C

AD D

   
     

   
   

                                                                          (14) 

 

1 20 cosh sinh
a a

b b B
C C

AD D

   
     

   
   

                                                                           (15) 

 

Solving simultaneous Equations (14) and (15) for constants 1C  and 2C , by applying basic 

trigonometric identities and know formulae we get the values of 1C  and 2C . By putting these 

values in Equation (13), we will get the steady–state analytical solution as below: 
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max

sinh sinh

1

sinh

y a b y

Da Da
u(y) U

b a

Da

  
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  
 

  

                                                                              (16) 

 

where max .
p

U
x


 


 

 

In figure below, the graphs for above solution equation (16) of axial velocity profile on both 

inlets, i.e., left bottom and right top of the mixing–separating channel flow. 

 

(a)     (b) 

Figure 1  Velocity profiles imposed on the (a) left bottom inlet and (b) right top of the 

computational domain. 
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Appendix-C  

Flow Chart of the of finite element scheme 
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Appendix-D  

Two dimensional code  

!********************************************************************** 

!********************************************************************** 

!********************************************************************** 

!************ *********** 

!************ SEMI-IMPLICIT *********** 

!************ TAYOR-GALERKIN + PROJECTION METHOD *********** 

!************ *********** 

!************ PLANE TWO-DIEMSIONAL *********** 

!************ *********** 

!************ NEWTONIAN *********** 

!************ *********** 

!********************************************************************** 

!********************************************************************** 

! 

! Started : 14th Sept. 2014 

! Last Modified : 

! 

! Authors : A. Baloch 

! 

! Location : Mehran University of Engineering and Technology, 

! Jamshoro, Sindh, Pakistan 

! 

!--------------------------------------------------------------------- 

! 

! #if cflag1 || cflag2 && !cflag3 

! #elif cflag4 

! #elif 

! #endif 

! means if cflag1 or cflag2 and not cflag3 

! else if cflag4 

! else 

! 

!===================================================================== 

! 

Include 'local_def.f90' 

Include 'Common_h.f90' 

Include 'Pvm_cb.f90' 

! 

Include 'Assemble.f90' 

Include 'BuildDiag.f90' 

Include 'BuildRhsMom.f90' 

Include 'Cholesky.f90' 

Include 'CompErr.f90' 

Include 'Dmpfmt.f90' 

Include 'ExacElmMat.f90' 

Include 'FixBry.f90' 

Include 'GaussQuan.f90' 

Include 'Get_Area_steer.f90' 

Include 'GetRhsStage1.f90' 

Include 'GetRhsStage2.f90' 

Include 'GetRhsStage3.f90' 

! Include 'GNVisCos.f90' 

Include 'LhsDiagStage1.f90' 

Include 'MasItn1FV.f90' 

Include 'Meshuty.f90' 

Include 'Naguty.f90' 

Include 'Postprocess.f90' 

Include 'PorousM.f90' 
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Include 'Prepare1.f90' 

Include 'Preprocess.f90' 

Include 'Profit.f90' 

Include 'Psetup.f90' 

Include 'QuadElmMat.f90' 

Include 'ReadCont.f90' 

Include 'ReadStrt.f90' 

Include 'SetGauss.f90' 

Include 'Setup.f90' 

Include 'SetupMat.f90' 

Include 'SetupSteer.f90' 

Include 'SetupShape.f90' 

Include 'ShearExten.f90' 

Include 'SolveEqu.f90' 

Include 'SolveStage1.f90' 

Include 'SolveStage2.f90' 

Include 'SolveStage3.f90' 

Include 'VisCosGenN.f90' 

! Include 'Gradrec2d.f90' 

! 

!--------------------------------------------------------------------- 

! 

PROGRAM MAIN 

! 

USE local_def, ONLY : ZNumNodes, ZTNODP, ZNumElements 

USE common_h, ONLY : ZBAND, ZBTNOD, ZDIM, ZDOF, ZMFAC, & 

ZNOD2, ZNODLP, ZNODLV, ZNVAR, ZNQP, & 

ZNUMT, BTNOD, CONTUE, DOFNOD, DSCALE, & 

DSMALL,ICOORD, IELTOP, INF, ING, & 

INH, IPSTR, ISOL, ISOLP, ISYSK, & 

ISYSM, ITEST, IVSTR, IWORK1, IWORK2, & 

IWORK3,JCOORD, JELTOP, JNF, JSOL, & 

JSYSK, JWORK3, MFAC, NQP, NSTEP, & 

NTER, NUMT, NVAR, NVET, PNODEL, & 

PICON, PNODS, VNODEL, NStepPr 

! 

USE pvm_cb 

! 

IMPLICIT NONE 

! 

! 

!--------------------------------------------------------------------- 

! 

! Data (parameters) initialisation 

! 

ICOORD=ZNumNodes; IELTOP=ZNOD2; ISOL=ZNumNodes; NQP= ZNQP; 

ISOLP=ZTNODP; ISYSK=ZTNODP; ISYSM=ZNumNodes;IWORK2=ZTNODP; 

IWORK3=ZNumNodes; INF=ZNumNodes; ING=ZNumNodes; INH=ZNumNodes; 

JCOORD=ZDIM; JELTOP=ZNumElements; JSOL=ZNVAR; JSYSK=ZBAND; 

JWORK3=ZDIM; JNF=ZDOF; DOFNOD=ZDOF; PNODEL=ZNODLP; 

VNODEL=ZNODLV; NVAR=ZNVAR; PNODS=ZDIM; MFAC=ZMFAC; 

BTNOD=ZBTNOD; NUMT=ZNUMT; DSCALE = 1.D+20; DSMALL = 1.D-10 

NSTEP=0; ITEST=0; PICON=.TRUE.; CONTUE=.TRUE. 

! 

!--------------------------------------------------------------------- 

!===================================================================== 

! Pre-processing part: 

! Setup requirment for the time-stepping loop 

! 

Call Preprocess_setup 

! 

!--------------------------------------------------------------------- 

! MAIN TIME LOOP processor for various fractional stages 

! 
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Call SolveEquations 

! 

!--------------------------------------------------------------------- 

! Post processor: 

! FINAL SOLUTION PRINTOUT 

! 

Call Postprocess_rsults 

! 

!--------------------------------------------------------------------- 

! 

STOP 

END PROGRAM MAIN 

! 

!===================================================================== 

!==================================================================== 

!-------------------------------------------------------------------- 

! 

SUBROUTINE GetMassMom( Nele, QuotM, RhsB, IRhsB ) 

! 

! Called in GetRhsStage1 for Mass like term MP, 

! For Darcy's term (Porous media) in RHS RBK 

! Planar case at STAGE 1 only 

! With "exact integration" (1 = true) or a quadrature rule 

! (1 = false). 

! 

USE common_h 

! 

IMPLICIT NONE 

! 

! Parameter list 

INTEGER :: Nele, IRhsB 

DOUBLE PRECISION :: QuotM 

DOUBLE PRECISION :: RhsB( IRhsB, * ) 

! 

INTEGER :: I, J, JST, IVAR 

DOUBLE PRECISION :: SOLIJ, VSC 

! 

!-------------------------------------------------------------------- 

! evaluate MMATE(VNODEL,VNODEL ) by exact integn. 

! Make use of zero elements in matrix for the calculation of 

! the rhs contributions 

!-------------------------------------------------------------------- 

! 

DO IVAR = 1, 2 ! loop over variables 

DO J = 1, VNODEL 

JST = VSTEER( J, NEle ) 

VSC = GNVisc( JST ) 

SOLIJ = QuotM * Sol( JST, IVAR ) * VSC 

DO I = 1, VNODEL 

RhsB( I, IVAR ) = RhsB( I, IVAR) + MMATE(I, J) * SOLIJ 

ENDDO 

ENDDO 

ENDDO ! end loop over variables 

! 

!-------------------------------------------------------------------- 

! 

RETURN 

END SUBROUTINE GetMassMom 

! 

!-------------------------------------------------------------------- 

!==================================================================== 

!-------------------------------------------------------------------- 

! 

SUBROUTINE GetForchhMom( NEle, QuotM, RhsB, IRhsB ) 
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! 

! Called in GetRhsStage1 for Forchheimer term (Porous Media) 

! Calculate of solution arrays Fa * v^2 at the Gauss points 

! Planar case at STAGE 1 only 

! With quadrature rule setup interpolated values of velocity 

! array terms at the Gauss points for Darcys law 

! 

USE common_h 

! 

IMPLICIT NONE 

! 

! Parameter list 

INTEGER :: NEle, IRhsB 

DOUBLE PRECISION :: QuotM 

DOUBLE PRECISION :: RhsB( IRhsB, * ) 

! 

INTEGER :: I, IQ, IVar, J, JST 

DOUBLE PRECISION :: SolIJ1, SolIJ2 

DOUBLE PRECISION :: SOLVN1, SOLVN2 

DOUBLE PRECISION :: VelN( ZNqp, NVel ) 

! 

!-------------------------------------------------------------------- 

! Make use of zero elements in matrix for 

! the calculation of the rhs contributions 

!-------------------------------------------------------------------- 

! 

! Initialize 

VelN = 0.0d0 

! 

!-------------------------------------------------------------------- 

! 

Do J = 1, VNODEL 

JST = VSTEER(J, NEle) 

! The most recent velocity 

SolVN1 = SolN(JST, 1) 

SolVN2 = SolN(JST, 2) 

Do Iq = 1, ZNqp 

VelN(Iq, 1) = VelN(Iq, 1) + SOLVN1 * FUNV(Iq, J) 

VelN(Iq, 2) = VelN(Iq, 2) + SOLVN2 * FUNV(Iq, J) 

End Do 

End Do ! End of loop J over VNODEL 

! 

Do Iq = 1, ZNqp 

SolIJ1 = QuotM * VelN(Iq, 1) * VelN(Iq, 1) 

SolIJ2 = QuotM * VelN(Iq, 2) * VelN(Iq, 2) 

Do I = 1, VNodeL 

RhsB( I, 1 ) = RhsB( I, 1 ) + FUNV(IQ, I) * SolIJ1 

RhsB( I, 2 ) = RhsB( I, 2 ) + FUNV(IQ, I) * SolIJ2 

End Do 

End Do 

! 

!-------------------------------------------------------------------- 

! 

RETURN 

END SUBROUTINE GetForchhMom 

! 

!-------------------------------------------------------------------- 

!==================================================================== 

!-------------------------------------------------------------------- 

! 

SUBROUTINE GetMasPM(NEle, Del, IDel, JDel, QuotPM, RhsB, IRhsB) 

! 

! Called in GetRhsItMom for step 1, for porous media 

! 
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! evaluate symmetric element mass matrix MMATE(VNODEL,VNODEL) 

! contribution to the rhs using exact integration. 

! Elements with straight sides only!!! 

!-------------------------------------------------------------------- 

! 

USE common_h 

! 

IMPLICIT NONE 

! 

INTEGER :: NEle, IDel, JDel, IRhsB 

DOUBLE PRECISION :: QuotPM 

DOUBLE PRECISION :: Del(IDel, JDel), RhsB(IRhsB, JDel) 

! 

INTEGER :: I, J, JST, IVar 

DOUBLE PRECISION :: DelJ1, VSC 

! 

!-------------------------------------------------------------------- 

! 2D planar coordinates 

!-------------------------------------------------------------------- 

! 

Do J = 1, VNodeL 

JST = VSTEER(J, NEle) 

VSC = GNVisc( JST ) 

Do IVar = 1, NVel 

DelJ1 = Del(JST, IVar) * QuotPM * VSC 

Do I = 1, VNodeL 

RhsB(I, IVar) = RhsB(I, IVar) + MMate(I, J) * DELJ1 

End Do 

End Do 

End Do 

! 

!-------------------------------------------------------------------- 

! 

RETURN 

END SUBROUTINE GetMasPM 

! 

!-------------------------------------------------------------------- 

!==================================================================== 

!-------------------------------------------------------------------- 

! 

SUBROUTINE GetMasDiagPM( NEle, Quot, RhsB, IRhsB ) 

! 

! Called in GETMAT 

! Calculation of diagonalised mass matrix (transient) terms 

! either the max row sum or just the diagonal of MMATE is 

! evaluated, depending on what is stored in MMATD 

! Elements with straight sides only!!! 

! 

USE common_h 

! 

IMPLICIT NONE 

! 

INTEGER :: NEle, IRhsB 

DOUBLE PRECISION :: Quot, RhsB(IRhsB,*) 

! 

INTEGER :: I, LST1, LST2, LST3 

DOUBLE PRECISION :: MMATH, RadL1, RadL2, RadL3, QuotPM 

! 

!-------------------------------------------------------------------- 

! 2D planar coordinates 

!-------------------------------------------------------------------- 

! 

DO I = 1, VNODEL 

RhsB(I, 1) = Quot * MMATD(I) 
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ENDDO 

! 

!-------------------------------------------------------------------- 

! 

RETURN 

END SUBROUTINE GetMasDiagPM 

! 

!-------------------------------------------------------------------- 

!==================================================================== 

!================================================================== 

!------------------------------------------------------------------ 

! 

SUBROUTINE GetRhsStage1( elpha ) 

! 

! Called in SolveStages - the main iteration loop 

! PSETUP - initialise pressure 

! Get the rhs for the stage 1 equations 

! Returns the rhs for stage 1 in matrix work. 

! 

! ZNumNodes = total number of nodes 

! nstres = znvar = zdof - 1 = (vel dof + stress dof) 

! per node, in 2D viscoelastic = 5 

!------------------------------------------------------------------ 

! 

USE common_h 

! 

USE pvm_cb 

! 

IMPLICIT NONE 

! 

! parameter list 

INTEGER :: elpha 

! 

! local variables 

INTEGER :: i, j, k, imode 

! 

!------------------------------------------------------------------ 

! 

! Computes Gen. Newt. Viscosity per node in global array 

! Call GenNVisCos 

! 

!------------------------------------------------------------------ 

! 

! First initialise the work array 

! index is ( total_no_nodes, velocity_and_stress_index ) 

! 

Work = 0.0d0 

! 

!------------------------------------------------------------------ 

! 

! Build RHS for momentum equation, 

! only for non-fixed velocity field 

! 

CALL GetRhsStage1Vel( elpha ) 

! 

!------------------------------------------------------------------ 

! 

! print*,'Work vector-Stage-1' 

! do j = 1, TOTNOD 

! write( *, * ) j, ( Work( j, k ), k = 1, nvar ) 

! end do 

10 format( i5, 8e16.6 ) 

9000 FORMAT(I4,5D15.8) 

! 
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!------------------------------------------------------------------ 

! 

RETURN 

END SUBROUTINE GetRhsStage1 

! 

!------------------------------------------------------------------ 

!================================================================== 

!------------------------------------------------------------------ 

! 

SUBROUTINE GetRhsStage1Vel( elpha ) 

! Called in GetRhsStage1. 

! 

! Get the rhs for the stage 1 momentum equations 

! Returns the rhs for the momentum equations (stage 1) 

! in multiple (matrix) work vector. 

! 

! ZNumNodes = total number of nodes 

! NVEL = number of velocity dof per node, in our case = 2 

! elpha = pressure parameter to include the pressure term in 

! the momentum equations (=1) or not (=0). The latter 

! is used to initialize the pressure field, or for a 

! first order pressure-correction implimentation 

! 

! momentum rhs vector and constitutive rhs vector: 

! fractional step one of projection method 

!------------------------------------------------------------------ 

! 

USE common_h, ONLY : NVEL, SOL, SOLN, REYNLD2, VISC1, & 

VISC2, VISCTY, NDTYPE, TOTELS, & 

RELAX, REYNLD1, VNODEL, VSTEER, & 

WORK, ELDET, ISOL, ZNODLV, ZNQP, & 

ZNumNodes, TOTNOD 

USE pvm_cb 

! 

IMPLICIT NONE 

! 

INTEGER :: Elpha 

! local variables 

INTEGER :: BNEle, NEle, i, j, k, jst 

DOUBLE PRECISION :: Det, CrjacC, CrjacF, CrjacM, CrjacS, & 

QuotC, QuotD, QuotF, QuotM, QuotS 

DOUBLE PRECISION :: RadGss( ZNQP ) 

DOUBLE PRECISION :: rhsb( ZNODLV, NVEL ), & 

VelGssN( ZNQP, NVEL ) 

! 

!---------------------------------------------------------------------- 

! 

CrjacC = REYNLD2; CrjacS = 1.0d0 / REYNLD1; 

CrjacM = CrjacS / permibility; 

CrjacF = Forchheimer 

! print*, porous, permibility 

! 

!---------------------------------------------------------------------- 

! Loop over finite elements (momentum eqn) 

!---------------------------------------------------------------------- 

! 

Do NEle = 1, TotEls 

! 

Det = ElDet(NEle) * Relax 

! 

!---------------------------------------------------------------------- 

! Nullify rhs b vector 

rhsb = 0.0d0 

!---------------------------------------------------------------------- 
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! Get quantities in Gauss points for quadrature 

Call SetGaussMom( NEle, VelGssN, RadGss, ZNqp, & 

SolN, ISol, NVel ) 

! 

!---------------------------------------------------------------------- 

! update rhs vector with diffusion terms, 2 eta_s d 

! For the semi-implicit method this term has to be applied 

! on sol and not on soln 

!---------------------------------------------------------------------- 

QuotS = -Det * CrjacS ! scaling factor for matrix SS 

Call GetDiffMom( NEle, Sol, ISol, NVel, QuotS, & 

RhsB, ZNodlV, RadGss ) 

! 

!---------------------------------------------------------------------- 

! (partially integrated) grad.tau term (tau = elastic stress) 

!---------------------------------------------------------------------- 

! alpha == elpha = 1: take into account the L^T p term 

! in the momentum equation 

If( Elpha == 1 ) Then 

Call GetGradPMom( NEle, Det, RhsB, ZNodlV, RadGss ) 

End If 

! 

!---------------------------------------------------------------------- 

! convection term (for non-zero reynolds number only) 

QuotC = -Det*CrjacC ! scaling factor for matrix CMATE 

Call GetConMom( NEle, QuotC, RhsB, ZNodlV, SolN, ISol, & 

VelGssN, ZNqp, RadGss ) 

! 

!---------------------------------------------------------------------- 

! Mass like term (for non-zero Darcy's number only) 

If( porous == 1 ) Then 

QuotM = -Det * CrjacM !Scaling factor for matrix MMATE 

Call GetMassMom( NEle, QuotM, RhsB, ZNodlV ) 

End If 

! 

!---------------------------------------------------------------------- 

! Mass like term (for non-zero Darcy's number only) 

If( porous == 2 ) Then 

! 

! Mass like term (for non-zero Darcy's number only) 

! - v / ( Da * Re ) 

QuotM = -Det * CrjacM !Scaling factor for matrix MMATE 

Call GetMassMom( NEle, QuotM, RhsB, ZNodlV ) 

! ____________ 

! - Fa * ( v * \/ (u^2 + v^2) ) 

! Mass like term due to Forchheimer 

QuotF = -Det * CrjacF !Scaling factor for matrix MMATE 

Call GetForchhMom( NEle, QuotF, RhsB, ZNodlV ) 

End If 

! 

!---------------------------------------------------------------------- 

! information generated is in spatially local matrix "rhsb" 

! now transfer it to spatially global matrix "work". 

! NVEL = 2 (u,v) 

! vnodel = 6 (6 nodes on the element) 

! Nele = do loop counter over all elements 

!---------------------------------------------------------------------- 

Do j = 1, vnodel ! j = 1..6 (nodes_per_element) 

jst = vsteer(j,Nele) ! jst = steering --> global node index 

Do k = 1, NVEL ! k = 1..2 (u,v) 

Work(jst,k) = Work(jst,k) + RhsB(j,k) 

End Do 

End Do 

! end of Nele counting though all Finite Element elements 
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End Do 

! 

!-------------------------------------------------------------------- 

! 

! print*,'Work vector at Stage-1 vel.' 

! Do j = 1, TOTNOD 

! write(nout,10 ) j, ( Work( j, k ), k = 1, nvel ) 

! write( 16, 10 ) j, ( Work( j, k ), k = 1, nvel ) 

! write( 17, 10 ) j, ( Work( j, k ), k = 1, nvel ) 

! End Do 

! 

! Stop 

! 

!-------------------------------------------------------------------- 

! 

10 Format( i5, 3e16.6 ) 

! 

RETURN 

END SUBROUTINE GetRhsStage1Vel 

! 

!-------------------------------------------------------------------- 

!==================================================================== 

!================================================================= 

! 

SUBROUTINE SolveStage1( dteff ) 

! 

! Called ONLY from SolveStages.F and call various stage1 

! solve routines 

! 

USE common_h 

! 

IMPLICIT NONE 

! 

! parameter list 

DOUBLE PRECISION :: dteff ! the effective time-step 

! 

! local variables 

Integer :: i, j 

!------------------------------------------------------------------ 

! Solve the momentum equations if velocity field is not fixed. 

!??? Has to be solved after the stress, to use velocity at correct 

!??? time level in SUPG upwind function (iterative part) for stress 

!------------------------------------------------------------------ 

! 

CALL SolveStage1Vel( dteff ) 

! 

!----------------------------------------------------------------- 

! print*,'End of SolveStage1' 

!----------------------------------------------------------------- 

! print*,'Work vector as solution difference' 

! do i = 1, TOTNOD 

! write(*,10) i, (Work(i,j), j=1,nvar) 

! end do 

! print*,'Old solution vector Sol' 

! do i = 1, TOTNOD 

! write(*,10) i, (Sol(i,j), j=1,nvar) 

! end do 

! print*,'New solution vector SolN' 

! do i = 1, TOTNOD 

! write(*,10) i, (Soln(i,j), j=1,nvar) 

! end do 

10 format(i4,3f12.6) 

! 

!----------------------------------------------------------------- 
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! 

RETURN 

END SUBROUTINE SolveStage1 

! 

!----------------------------------------------------------------- 

!================================================================= 

!----------------------------------------------------------------- 

! 

SUBROUTINE SolveStage1Vel( dteff ) 

! 

! fix boundary AND calculate solution for fractional step 1 

! momentum balance equation 

! 

USE common_h, ONLY : NVEL, TOTNOD, SOL, SOLN, WORK, ZNumNodes 

! 

IMPLICIT NONE 

! 

! parameter list 

DOUBLE PRECISION :: dteff ! the effective time-step 

! 

! local variables 

INTEGER :: i,j 

! 

!-------------------------------------------------------------- 

! 

! mass matrix iteration for increment of solution component 

! (Delta u, Delta v) 

CALL MasItn1FV( dteff ) ! updates velocity in work. 

! Also calls FixBry1Vel. 

! 

!-------------------------------------------------------------- 

! 

! Update the velocity solutions with (Delta u, Delta v) 

DO j = 1, NVel ! loop through just u and v 

DO i = 1, TotNod 

SolN( i, j ) = Sol( i, j ) + Work( i, j ) 

ENDDO 

ENDDO 

! 

!-------------------------------------------------------------- 

! print*,'Work vector as solution difference' 

! print*,'Solution vector' 

! do i = 1, TOTNOD 

! write(*,10) i, (Work(i,j), j=1,nvel) 

! write(*,10) i, (Soln(i,j), j=1,nvel) 

! end do 

10 format(i4,3e18.8) 

! 

!-------------------------------------------------------------- 

! 

RETURN 

END SUBROUTINE SolveStage1Vel 

! 

!-------------------------------------------------------------- 

!============================================================== 
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Appendix–E 

Numerically simulated results with velocity profiles, colous bars and velocity vectors 

1. Chapter-5 

1.1 Mixing and separating of Newtonian fluid flows in a channel filled with non-

porous media (Geometry 1G ) 

Equal (1, 1) flow rate 
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Unequal (1, 1.5) flow rate 
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Equal (1, 2) flow rate 
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1.2 Mixing and separating of Newtonian fluid flows in a channel filled with non-

porous media ( 4G ) 
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1.3 . Mixing and separating of Newtonian fluid flows in a channel filled with non-porous 

media ( 2G ) 

Equal (1, 1) flow rate 
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3.2 Unequal (1, 1.5) flow rate 
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Unequal (1, 2) flow rate 



    Appendix-E 

299 

 



    Appendix-E 

300 

 

 

 



    Appendix-E 

301 

 



    Appendix-E 

302 

 

 



    Appendix-E 

303 

 

 

 



    Appendix-E 

304 

 



    Appendix-E 

305 

 



    Appendix-E 

306 

 

 

 

  



    Appendix-E 

307 

 

1.4  Mixing of separating of Newtonian fluid flow in a channel filled with non-porous 

media ( 3G ) 

Equal (1, 1) flow rate 
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Unequal (1, 1.5) flow rate 
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Unequal (1, 2) flow rate 
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2. Chapter-6 

 

2.1 Mixing and separating of Newtonian fluid flows in a channel filled with porous 

media ( 1G ) 

Equal (1, 1) flow rate 
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Unequal (1, 1.5) flow rate 
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Unequal (1, 2) flow rate 
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2.2 Mixing and separating of Newtonian fluid flows in a channel through porous media 

( 2G ) 

Equal (1, 1) flow rate 
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Unequal (1, 1.5) flow rate 
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Unequal (1, 2) flow rate 
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2.3 Mixing and separating of Newtonian fluid flows in a channel through porous media 

( 3G ) 

Equal (1, 1) flow rate 
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Unequal (1, 1.5) flow rate 
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Unequal (1, 2) flow rate 
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2.4 Unidirectional flows of Newtonian fluid in a channel filled with porous media ( 4G ) 
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3. Chapter-7 

 3.1 Newtonian flows in a  circular pipes filled with non-porous media 

Equal (1, 1) flow rate 
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Unequal (1, 2) flow rate 
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3.2  Mixing and separating of Newtonian fluid flows in a circular pipes filled with 

porous media 

Equal (1, 1) flow rate 
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Unequal (1, 2) flow rate 
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4. Chapter-8 

 Mixing and separating of non-Newtonian fluid flows in a circular pipes filled 

with porous media (Power law model) at the value of Power law index (N=0.9) 

Equal (1, 1) flow rate 
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