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Abstract  

The influenza A basic polymerase protein 2 (PB2) functions as part of a heterotrimer to 

replicate the viral RNA genome. To investigate novel PB2 antiviral target sites, this work 

identified evolutionary conserved regions across the PB2 protein sequence amongst all sub-

types and hosts, as well as ligand binding hot spots which overlap with highly conserved 

areas. Fifteen binding sites were predicted in different PB2 domains; some of which reside in 

areas of unknown function. Virtual screening of ~50,000 drug-like compounds showed 

binding affinities of up to -10.3 kcal/mol. The highest affinity molecules were found to 

interact with conserved residues including Gln138, Gly222, Ile529, Asn540 and Thr530. A 

library containing 1738 FDA approved drugs were screened additionally and revealed 

Paliperidone as a top hit with a binding affinity of -10 kcal/mol. Predicted ligands are ideal 

leads for new antivirals as they were targeted to evolutionary conserved binding sites.  

 

Keywords: Influenza A, PB2, sequence evolution, binding site, virtual screening, drug 
discovery, conservation, Paliperidone 

 

Introduction 

The influenza A virus causes one of the most prevalent and significant respiratory viral 

infections worldwide with previous pandemics resulting in remarkably high fatality rates 

(Taubenberger and Kash, 2010). This is largely due to continuous genome evolution and the 

zoonotic nature of the virus which enables rapid transmission of new re-assortant strains 

(Reperant et al., 2012). The main form of prevention against influenza is annual vaccination; 

however this may not always guarantee extensive protection or control of the virus 

(Chambers et al., 2015). Therefore treatment with antiviral drugs such as the neuraminidase 

inhibitors is heavily relied on, while there is widespread resistance against matrix protein2 

(M2) inhibitors. Since the adoption of these drugs,  influenza A subtypes in circulation have 

shown varying levels of sensitivity due to amino acid mutations in the drug target site 

(Hayden and De Jong, 2011; Samson et al., 2013). For this reason the M2 inhibitors are no 

longer recommended for clinical use (Harper et al., 2009). Consequently, the discovery and 

search for novel   antivirals which are unlikely to be affected by resistance mutations is a 

priority, with several candidate inhibitors having emerged from recent studies (reviewed in 

Naesens et al., (2016); Patel and Kukol, (2016)). 
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The infectious life cycle of the virus requires several functional proteins encoded by eight 

RNA segments, which are released into the host cell, allowing the virus to replicate its 

genome and suppress the immune response (Bouvier and Palese, 2008). The influenza A 

polymerase basic protein 2 (PB2) is encoded by RNA segment one. It is one of the largest 

influenza proteins consisting of 759 amino acids and is a constituent subunit of the trimeric 

viral polymerase complex in addition to polymerase basic protein 1 (PB1) and the acidic 

polymerase (PA). Transcription and replication of the viral genome occurs in the host cell 

nucleus, and involves a series of stages before translation of viral mRNA in the cytoplasm 

(Fodor, 2013). During transcription, the PB2 protein is mainly responsible for generating the 

cap structure for viral mRNA from the 5’ end of 7-methyl guanosine triphosphate (mGTP) 

capped host mRNA. The PB2 ‘cap snatching’ mechanism involves residues between 

positions 318-482, which recognise methylated guanosine in order to bind the host cell RNA 

strand. The endonuclease subunit of the PA then cleaves the RNA leaving a 10-13 nucleotide 

primer to initiate transcription by PB1 (Fodor, 2013). In complex, the N-terminal 249 

residues of the PB2 subunit are associated with the C-terminal subunit of PB1, which is a 

critical interaction to trigger PA endonuclease activity (Sugiyama et al., 2009). A structural 

study of the PB2 protein from a H5N1 avian virus had found that following translation, the 

C-terminal domain (residues 536-759) undergoes large conformational re-organisation 

between open and closed states. This flexibility enables the nuclear localization signal (NLS) 

peptide in the 686-759 region to bind with host importin-α, enabling PB2 entry into the target 

cell nucleus to catalyze further RNA transcription (Das et al., 2010; Delaforge et al., 2015). 

Other PB2 conformational changes occurring in connection with the cap-snatching 

mechanism and the kind of RNA bound have also been described in the context of the full 

polymerase complex (Reich et al., 2014; Thierry et al., 2016). 

In addition to mutations in the haemagglutinin (HA) and neuraminidase (NA) proteins, 

changes in the sequences of polymerase proteins are also considered as major determinants of 

host range and adaptation (Mehle and Doudna, 2009; Neumann and Kawaoka, 2015). The 

characteristic PB2 host determining residue at position 627 (with lysine being prevalent in 

human strains, glutamic acid present in avian strains and serine in bat strains) is situated in a 

loop region, which along with the cap-binding domain does not make extensive contact with 

the PB1 and PA subunits (Kuzuhara et al., 2009; Pflug et al., 2014). The 535-684 domain has 

also been shown to have RNA binding activity which is affected by the E627K mutation and 

is unrelated to the cap-snatching function (Kuzuhara et al., 2009). 
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As the PB2 protein plays multiple essential roles in the virus life cycle, it is a valid target for 

antiviral drugs. Several crystal structures are available in the protein data bank (PDB) for 

specific PB2 subunit domains in holo and apo forms which can aid with structure based drug 

discovery studies. Despite some of the PB2 surface area being inaccessible due to trimer 

assembly, inhibitors of the ‘cap snatching’ function to prevent capped host mRNA binding 

have been identified showing potent effects against several influenza strains in vitro (Boyd et 

al., 2015; Clark et al., 2014; Pautus et al., 2013). The aim of this work was to identify highly 

conserved regions of PB2 using an algorithm superior to counting conservation from multiple 

sequence alignments and to identify overlap with potential ligand binding sites. Structure-

based virtual screening was used to predict small drug-like molecules that may bind to those 

sites. These findings could help in studies aimed at obtaining novel insight into PB2 functions 

as well as provide a starting point for further in vitro investigations of replication inhibitors 

that are effective in a variety of hosts and lack the potential of inducing influenza antiviral 

resistance. 

 

Results and discussion 

 

PB2 sequence conservation  
 

12,459 PB2 sequences were obtained from the NCBI influenza virus resource database. This 

included 31% from human, 16% from swine and 50% from avian hosts. 702 sequences 

remained after removing redundant sequences at 98.5% identity, indicating that a large 

proportion of PB2 sequences deposited are highly similar which would reflect bias upon 

conservation scoring (Valdar, 2002).  The conservation scores calculated from the multiple 

sequence alignment of the non-redundant sequences shows that there is a high level of amino 

acid conservation throughout the entire protein sequence. The scores ranged from 0.789 

(lowest) to 1.0 (highest) and the majority of amino acids had a score between 0.95 and 1.0 as 

shown in Fig. 1.    

For display purposes the conservation scores were re-scaled and mapped on to the PB2 

structure (Fig. 2). Overall, the key functional regions of PB2 were found to be highly 

conserved and consisted of several residues scoring 0.95 or above. This includes the N-

terminal residues 1-37 which form three short α-helices comprising the PB1 binding interface 

required for effective polymerase activity (Sugiyama et al., 2009). The mGTP cap binding 
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domain (318-482) is also well conserved, albeit with moderately conserved residues at 

position 339, 340, 453 and 456. Substitution of Lys339 to Thr339 of certain subtypes has 

been found to prevent binding of the phosphate group of mGTP capped mRNA, reducing 

RNA synthesis, and thereby regulating PB2 activity (Liu et al., 2013). Val414, Arg415 and 

Gly416 are highly conserved and are required for PB2-acetyl-CoA interaction to maintain 

transcription activity (Hatakeyama et al., 2014). The 424-loop region is suggested to have an 

allosteric role in regulating PB1 activity, whilst other conserved residues are expected to 

contribute to the domains structurally distinct fold which allows formation of intermolecular 

contacts specific for mGTP cap binding activity (Guilligay et al., 2008). The 1-269 and 580-

683 segments which are reported to be capable of binding the nucleoprotein (NP) (Poole et 

al., 2004), also consist of long stretches of conserved residues such as Ser592-Thr612. A total 

of 42 amino acids were found to be 100% conserved and could therefore be the most resistant 

to change due to evolutionary adaption of the virus. This includes Leu744 located on a 

surface exposed loop region and Gly693, which we suggest to be key residues in the NLS 

region due to their high conservation, enabling PB2 nuclear entry from the cytoplasm via 

binding importin-α. Other highly conserved regions with unassigned functions identified in 

this work may be of interest with regards to antiviral drug discovery. 

An intermediate level of conservation for the host specific residue at position 627 was 

reflected in the alignment with a conservation score of 0.885. Due to the majority of 

sequences being from avian hosts, glutamic acid was the prevalent residue based on the 

consensus sequence. Whilst a range of amino acid residues can be tolerated at the 627 

position shown by mutagenesis (Chin et al., 2014), the E627K mutation is well known for 

determining virulence by increasing polymerase activity and replication in mammals. This 

prime example of host adaptation  is thought to be due to glutamic acid being able to bind  

the avian version of the host cell factor ANP32A; whereas substitution to lysine allows the 

polymerase to bind to the mammalian version of this host factor (Long et al., 2016; 

Moncorgé et al., 2010). . However, some avian viruses carrying the E627 variant can 

efficiently replicate in mammalian cells due to compensatory mutations found in the PB1 

protein of H5N1 strains (Xu et al., 2012). A mutation study of the 627 domain has also 

identified specific conserved residues to be essential for general PB2 activity (Arg597, 

Pro620, Phe621, Arg646 and Arg650), as well as non-essential residues such as Pro625, 

Pro626 and Gln628 which are also highly conserved (Kirui et al., 2014). Furthermore, the 

positive charge of the highly conserved Arg630 (in the presence of NP R150), or Lys627 
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promotes PB2-NP interaction, which is essential for the ribonucleoprotein complex to 

provide structural maintenance and regulate viral transcription (Labadie et al., 2007; Ng et 

al., 2012). 

Low (scores below 0.85) or moderate conservation was identified mainly at single amino acid 

positions such as 64, 107, 147, 271, 292, 453, 483, 559, 588, 590, 591, 613, 661 and 676. The 

lowest conservation score was 0.789 at position 147. The residues at these positions are  all 

located on the exterior surface of the protein (Fig. 2(b)), which is consistent with the finding 

that surface residues evolve faster than those in the protein core (Warren et al., 2013). 

Adaptive mutations to Ala271, Arg591, and Ser590 have been found to enhance polymerase 

activity and virus replication in mammals (Bussey et al., 2010; Mehle and Doudna, 2009; 

Yamada et al., 2010). The remaining non-conserved positions with uncharacterised mutation 

effects may also be associated with determining host range, virulence, PB2 cellular 

localization, or with no particular function. Additionally, a conservation study on the 

influenza PA protein has shown that residues classed as non-conserved may indeed be 

biologically important, and that functional residues are not always conserved (Wu et al., 

2015), which could also to be the case for PB2. The residues neighbouring less conserved 

positions were generally found to be highly conserved, as well as 16% of residues located in 

the interior of the protein. Their restricted variability is presumably essential for maintaining 

the protein structure, in particular the subdomains. 

The protein sequence dataset analysed contains two sequences isolated from bats (including 

the H17N10 strain for which a crystal structure has been resolved, PDB ID: 4WSB), which 

are noticeably different to the consensus sequence. Influenza protein sequences isolated from 

bats have shown less similarity overall to sequences from other hosts (Tong et al., 2013). 

Despite  these differences , the H17N10 sequence for PB2 remains evolutionary close to 

human and avian strains (Pflug et al., 2014) and is therefore unlikely to result in major 

structural differences. 

Protein structure modeling 

The PB2 sequence of a human H5N1 isolate, for which an N-terminal structural fragment 

(PDB ID: 3L56) exists, was used to construct a full length structural model using the I-

TASSER modelling server (Yang and Zhang, 2015; Zhang, 2008). This sequence was 

modelled as it is from a virus isolated from a human host, while the existing full length PB2 

structure is from an H17N10 bat virus. The model had a template modelling (TM) score of 
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0.92, and was largely built on this H17N10 template (PDB ID: 4WSB, chain C). Model co-

ordinates were replaced with the 3L56 N-terminal fragment and then refined by energy 

minimisation. The 3L56 fragment is structurally very similar to that of H17N10 with a 

backbone RMSD of 1.05 Å, justifying the approach of using the bat H17N10 structure as a 

template for modelling the structure of full-length H5N1 PB2 sequence. The alignment of the 

two sequences covering parts of the polypeptide chain in the target site for virtual screening 

is shown in Fig. 3. The overall percentage identity between the two full length sequences is 

68% calculated using the Clustal2.1 percent identity matrix, implying that the H17N10 

sequence is an appropriate template..  

Predicted ligand binding hot spots 
 
Fifteen ligand binding hot spots which represent favourable binding regions with small 

organic molecules were predicted using the FTMap web server in different domains of the 

protein; many of which were located in highly conserved areas. The locations of the top ten 

binding hot spots are shown in Fig. 4. The most surface accessible binding regions are spots 

three, four, five, nine, six, seven, eight, fourteen and fifteen. Hot spots two, eleven, twelve 

and ten appear to be partially buried when viewing the structure in a spacefill representation, 

with spots one and thirteen being the least exposed to the outer surface on the protein. 

Although, based on previous structural information reported and the flexibility of viral 

polymerase subunits in general (Reich et al., 2014; Thierry et al., 2016), the surface 

accessibility of some of these binding hot spots may change upon trimer formation or 

subdomain rotation. Structural alignment of our H5N1 PB2 structure with 4WSB (chain C) 

suggests that the accessibility of these sites would be unaffected as they are not directly 

blocked by PA/PB1 in complex. Whereas alternative configurations of the heterotrimer 

(reviewed by Pflug, Lukarska, Resa-Infante, Reich, & Cusack, (2017)) have shown that 

depending on the RNA promoter bound, the PB2 cap-binding, 627 and NLS domains may 

exist in several states in influenza B and C polymerases. This suggests that accessibility of all 

hot spots (except for six, nine, ten and thirteen which are not located within these domains) 

could change.  

 

Spots seven, fourteen and fifteen are clustered closely together forming the conserved mGTP 

cap binding site; and considering the functional importance of this region, the low ranking 

assigned is probably due to the affinity for the highly charged RNA molecules, which are not 

well represented by the library of organic solvents used in the docking with the FTmap 
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algorithm. However, these spots are near the binding site for the inhibitors identified by Clark 

et al., (2014) (methylguanine derivatives) and Pautus et al., (2013) and consist of residues 

involved in hydrogen bonding. The highest number of different probes were found to bind at 

hot spot one, which indicates that this area has good binding potential with a variety of 

functional groups. Amino acids surrounding spots one, seven, fourteen and fifteen are not 

involved in heterotrimer formation and are located at positions set apart from the PA/PB1 

subunit interactions. Spot six is the only one located within the N-terminal third and could be 

implicated in trimer association. Spot three is close (within ~6.0Å) to the intermediately 

conserved residue Val613. The  region encompassing hot spot twowas selected as the target 

site for docking, as the residues closely surrounding this hot spot display high conservation so 

are less likely to mutate. Also this hot spot is second ranked as several different probe types 

were predicted to bind there, suggesting it is an important site of the protein (Brenke et al., 

2009),  and this site has not previously been targeted by virtual screening experiments 

Furthermore, there are currently no identified inhibitors which target this hot spot. In relation 

to PB2 structure and function, the residues surrounding this spot may be associated with 

rotation of the C-terminal domain or contribute towards interactions with PB1. 

Virtual screening - benchmarking 
 

A virtual screening benchmark was performed against the mGTP capped RNA binding site. 

The ability of the docking software to identify five known inhibitors among the top 10 

predictions out of 180 compounds with similar molecular weight was tested. Results showed 

that AutoDock Vina alone and a combination with AutoDock4 were the best method to 

retrieve active PB2 inhibitor compounds at the top positions of the rank list as both methods 

were able to identify one inhibitor (Table 1). For simplicity, the single AutoDock Vina 

software was used for the PB2 target site screening. The binding affinities of test compounds 

using Autodock Vina ranged from -7.4 kcal/mol to -4.5 kcal/mol and from -7.4 kcal/mol to -

2.9 kcal/mol with AutoDock4. 

 

  



 

9 
 

Table 1. Results of benchmarking three docking software for virtual screening.  

Docking software Number of true ligands 
found 

binding affinity of ligand 
(kcal/mol) 

AutoDock Vina 1 -7.4 

AutoDock 4 0  

AutoDock Vina + 

AutoDock 4 

1 -7.4 + -6.0 

 

Virtual screening – PB2 target site 
 

The binding affinities of 46,926 compounds from the NCI library screened against the target 

site surrounding hot spot two (Fig. 4) ranged from -10.3 kcal/mol to +13.7 kcal/mol. A large 

proportion of compounds were predicted to bind between the range of -5.0 kcal/mol and -7.0 

kcal/mol. Pan Assay Interference compounds (PAINS), which appear as frequent hitters in 

bioassays and are considered as problematic screening compounds  (Baell and Holloway, 

2010), were removed from the rank list to increase the reliability of the predictions. The top 

75 hits (supplementary material, Table S1) had binding affinities below -9.0 kcal/mol, and 

were all aromatic compounds. Some of the key amino acid residues found to interact with the 

top ten compounds via hydrogen bonding and hydrophobic interactions include: Gln138, 

Gly222, Ile529, Ile539, Asn540, Gly541, Tyr531 and Thr530; all of which are highly 

conserved. The predicted binding conformations show that some of these compounds bind 

partially inside a deep pocket formed by these residues (Fig. 5). Compound 1 (ZINC01617371) 

forms hydrophobic contacts with eighteen residues and a single hydrogen bond with Ile529 at 

a distance of 3.12Å. The compound bends around the 531-541 loop region causing the phenyl 

ring and nitrile group to be entirely buried within the protein; the methyl group at the other 

end is surface exposed.  Also three aromatic groups of compound 4 (ZINC03954617) form 

hydrogen bonds with Gly222, Gln241 and Ile529 and are surrounded by eleven residues 

forming hydrophobic contacts. The top ten compounds share the common scaffold of an 

aromatic group at one or both ends (Fig. 6), occupying the binding pocket in a similar 

orientation as compound 2 (Fig. 5) supported by van der Waals and electrostatic interactions 

between atoms. Binding of compounds may have biological or functional significance with 

regard to host protein interactions with PB2, or interfere with trimer assembly by restricting 
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or inducing conformation changes, and synthesis of RNA (Thierry et al., 2016); the ligands 

predicted in the current study could serve as tools to investigate such functions.  

The Approved DrugBank library, containing 1738 FDA-approved small molecule drugs, was 

also screened against the same target site in order to find any approved drugs that may also 

target the PB2 protein. The binding affinities ranged from -10.0 kcal/mol to +53.8 kcal/mol 

with the largest proportion of compounds predicted to bind between the range of -5.0 

kcal/mol and -7.0 kcal/mol. None of the approved drugs had a significantly stronger predicted 

binding affinity than the top ranked compound of the NCI library; however, the highest 

ranked drug paliperidone (ZINC04214700) had the same binding affinity as three compounds 

of the NCI library ranked within the top ten positions. The chemical structure and docking 

models of a top hit compound from both libraries are shown in Fig. 5. The nitrogen atom of 

the central pyridine ring of paliperdone is able to form a hydrogen bond with the oxygen 

atom of Glu241, and the drug-protein complex is maintained via hydrophobic contacts with 

sixteen surrounding residues of the target site. Paliperidone binds to the dopamine and 

serotonin receptors, although the exact mechanism of action is not known (reviewed in 

Corena-McLeod, (2015)). Paliperidone is approved by the FDA for the treatment of 

schizophrenia and related disorders. The results of this study may be useful for repurposing 

this drug or derivatives as a treatment for influenza infection. The chemical properties of 

compounds identified as top hits from the screening of both libraries are listed in Table 2 

where numbers in brackets refer to the chemical structures shown in Fig. 6. These compounds 

may have a tendency to bind and block other viral proteins that display similar structure and 

properties to the PB2 target site. 

 

  



 

11 
 

Table 2. Chemical properties and binding affinity (ΔG) of predicted top hit compounds 
identified from virtual screening of the NCI and DrugBank library obtained from the ZINC 
database. Properties include molecular mass (Mol M), predicted partition coefficient 
(xLogP), no. of hydrogen bond donors and acceptors, hydrophobic sites and total polar 
surface area (tPSA) at pH7. 

Compound  
(ZINC ID) 

ΔG 
(Kcal/mol) 

Mol M 
(g/mol) 

xLogP H-bond 
donors 

H-bond 
acceptors 

Hydrophobic 
sites 

tPSA 
(Å2) 

NCI library  
ZINC01617371 (1) -10.3 390.42 2.69 1 7 4 115 
ZINC05543024 (2) -10.2 291.31 2.46 2 3 3 74 
ZINC01612458 (3) -10.1 328.76 4.26 2 6 5 80 
ZINC03954617 (4) -10.1 288.31 1.31 2 6 4 83 
ZINC01040450 (5) -10.0 354.32 3.46 2 9 2 103 
ZINC08651894 (6) -10.0 446.93 3.18 2 9 6 131 
ZINC13212434 (7) -10.0 359.84 2.51 4 6 5 82 
ZINC01624487 (8) -9.9 369.83 3.80 1 5 5 82 
ZINC01612446 (9) -9.8 404.73 3.66 2 12 4 171 
ZINC01614027 (10) -9.8 318.40 4.27 1 3 4 41 
DrugBank library 
ZINC04214700 (11) -10.0 427.50 1.97 2 7 6 86 
ZINC01481956 (12) -9.9 427.50 1.97 2 7 6 85 
ZINC00538312 (13) -9.4 411.50 2.96 1 6 6 65 
ZINC13540266 (14) -9.4 397.39 4.08 2 9 3 147 
ZINC18456289 (15) -9.4 439.39 -2.37 5 13 3 219 
ZINC05844788 (16) -9.0 406.45 3.10 4 5 4 75 
ZINC01851132 (17) -8.9 425.40 -1.53 5 11 3 197 
ZINC01548097 (18) -8.8 427.50 3.95 1 6 7 66 
ZINC03964126 (19) -8.8 435.89 2.53 1 8 3 88 
ZINC02568036 (20) -8.7 314.26 1.75 1 9 2 121 

 

CONCLUSION 

This work has identified potential binding sites of high conservation that could be further 

investigated to identify novel interactions between PB2 and other proteins and/or cellular 

metabolites. In addition drug-like compounds were predicted to bind with strong affinity to a 

region of the PB2 protein consisting of highly conserved residues that were not targeted in 

other studies. The predicted compounds could serve as laboratory tools to investigate PB2 

functions and/or be developed into antivirals. Due to the low probability of the targeted 

region undergoing genetic changes among different virus subtypes and hosts, such antiviral 

compounds may remain viable long-term as universal influenza inhibitors.  
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METHODS 

PB2 sequence analysis and calculation of conservation 
 
PB2 sequences were downloaded from the National Centre for Biotechnology Information 

(NCBI) Influenza Virus Resource database (Bao et al., 2008). Full length non-identical 

sequences were chosen from all hosts, regions and subtypes until January 2016. The CD-HIT 

web server (Huang et al., 2010) was used to reduce redundancy and cluster sequences 

meeting a similarity threshold of 98.5% as this gave an acceptable number of sequences for 

further analysis. For each cluster a representative sequence was retained. After removal of 

sequences with undefined residues, multiple sequence alignment was performed with Clustal 

Omega version 1.2.1 (Sievers and Higgins, 2014). The default settings for all parameters 

remained unchanged whereby the number of guide tree iterations and Hidden Markov Model 

iterations were coupled to produce the most accurate alignment. The sequence alignment 

editor Jalview Version 2 (Waterhouse et al., 2009) was used to analyse and edit the 

alignments. The Valdar scoring method was applied for the calculation of sequence 

conservation scores as it incorporates sequence redundancy (Valdar, 2002), which we 

consider critical for conservation scoring of influenza virus sequences. For the purpose of 

mapping the Valdar scores onto the protein structure as beta-factors the scores were re-scaled 

between zero and 100 (zero being low conservation and 100 being high conservation) using 

the following formula, where vs is the original Valdar score, min is the minimum 

conservation score in the dataset and 1 is the maximum conservation score: 

Re-scaled conservation score = (vs-min)*(100 / (1-min)) 

Protein modelling 
 
The structure of a full length amino acid sequence of the PB2 polymerase isolated from a 

human host (A/Viet Nam/1203/2004 (H5N1)) was predicted with the I-TASSER server 

(Yang and Zhang, 2015; Zhang, 2008). Residues 483-490 and 742-759, which were not 

covered by any template, were modelled ab-initio. The I-TASSER model was aligned with 

the crystal structure of A/VietNam/1203/2004 (H5N1) (PDB ID: 3L56) and the 

experimentally known co-ordinates of residues 542-673 and 690-738 were copied into the 

model. Missing atoms and side chains were fixed with Swiss PDB Viewer version 4.1.0. To 

remove atomic clashes from the model energy minimization was performed with 1000 steps 

of the steepest descent algorithm using Gromacs version 4.6.5. The AMBER99SB – ILDN 

force field was selected along with the TIP3P water model. The protein was solvated in water 
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in a cubic box with periodic boundary conditions, and the charge of the chemical system was 

neutralised with 21 sodium ions and additional NaCl at 100mM concentration. The particle 

mesh ewald algorithm for calculating electrostatic interactions was used with a real space cut-

off distance of 1.0 nm and the cut-off for van der Waals interactions was 1.0 nm. Residues 

with an exposed surface area above 2.5 Å2 were considered as exterior residues.  

Prediction of binding hot spots 
 
Binding hot spots were identified with the FTMap web server (Brenke et al., 2009) 

(http://ftmap.bu.edu/) which docks 16 different small organic molecular probes onto a protein 

surface to locate favourable binding regions or ‘druggable’ sites. These regions are ranked 

based on average free energy; low energy sites where several probe clusters overlapped 

(consensus) are considered as potential binding hot spots.  

Virtual screening - benchmarking 
 
Five previously identified compounds which were shown to inhibit influenza replication in 

vitro and are reported to bind the PB2 polymerase (Clark et al., 2014; Pautus et al., 2013) 

were used to benchmark virtual screening methods to find the best method of identifying true 

positives. These compounds were downloaded from the PDB and converted to the pdbqt- 

format with the AutoDock screening preparation tool Raccoon. The three methods tested 

were: AutoDock Vina version 1.1.1 (Trott and Olson, 2010), AutoDock 4 (Morris and Huey, 

2009) and a consensus method using both (Kukol, 2011). A number of 180 decoy molecules 

with similar molecular weight from the National Cancer Insitute (NCI) Plated 2007 library 

were selected for the benchmarking. The grid parameters for the benchmarking were set 

around the mGTP binding pocket and remained the same as those reported in the publication 

by Pautus et al, (2013). The top ten positions of all 185 compounds ranked according to their 

binding affinity were considered for identifying the known inhibitors.  

Virtual screening – target site 
 

For the identification of new inhibitors the 3D chemical structures of all molecules at pH 6-8 

were downloaded from the NCI Plated 2007 compound library of the ZINC database 

(http://zinc.docking.org/). The compounds from this library are available without charge for 

the scientific community. A chemically diverse subset of clustered molecules based on 

structural similarity within a Tanimoto cut-off selected at 80% was extracted from this library 

to give a total of 52,172 molecules. The compound library was filtered using the software 
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Openbabel version 2.3.1 (O’Boyle et al., 2011) to eliminate compounds with molecular 

weight over 500g/mol and partition coefficient (logP) over five. The remaining 46,926 

chemical compounds were split into individual ligand files and saved in .pdbqt format using 

the AutoDock screening preparation tool Raccoon. The grid box dimensions for docking 

against the target site are shown in the supplementary material (S1). Compounds considered 

as ‘frequent hitters’ were removed by passing the compound library through the Pan Assay 

Interference Compounds (PAINS) filter with the online FAF-Drugs3 (Free ADME-Tox 

Filtering Tool) program (Baell and Holloway, 2010; Lagorce et al., 2015). A total of 42,348 

compounds remained. The DrugBank-approved compound library (Law et al., 2014) was 

downloaded from the ZINC database and also screened against the PB2 target site. Molecular 

interactions were analysed with Ligplot+ version 1.4.5 (Laskowski and Swindells, 2011). 
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Figures 

 
Fig.1. Frequency distribution of PB2 amino acid conservation scores obtained after alignment 
of 702 non-redundant influenza A sequences from mainly human, avian and swine hosts 
using the Valdar scoring formula. 
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Fig. 2. Amino acid conservation mapped onto the H5N1 influenza A PB2 protein structure 
shown in (a) cartoon representation and (b) spacefill representation.  

 

 

 

Fig. 3. PB2 H5N1 (A/Viet Nam/1203/2004) and H17N10 (A/little yellow-shouldered 
bat/Guatemala/060/2010) sequence alignment of the region 101-150 and 501-550 covering 
the target site for virtual screening. An asterisk indicates identical amino acid residues, a 
colon indicates strong similarity, and a period indicates weak similarity. 
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Fig. 4.  Locations of the top ten ligand binding hot spots (green spheres) identified by the 
FTMap algorithm shown together with the degree of PB2 sequence conservation on the 
H5N1 PB2 structure.  
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Fig. 5. Docking models of top hit compounds targeting the PB2 protein: ZINC05543024 (2) 
and paliperidone (11) identified by virtual screening using AutoDock Vina. Interacting PB2 
residues are labelled. 
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Fig. 6. Chemical structures of predicted top hit compounds from the NCI and DrugBank 
library. Numbers correspond to the ZINC ID shown in table 2. 


