
Harvard Data Science Review •

Self-Organizing Floor Plans
Silvio Carta1

1University of Hertfordshire, UK

Published on: Jul 23, 2021

DOI: 10.1162/99608f92.e5f9a0c7

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://creativecommons.org/licenses/by/4.0/

Harvard Data Science Review • Self-Organizing Floor Plans

2

ABSTRACT

This article introduces and comments on some of the techniques currently used by

designers to generate automatic building floor plans and spatial configurations in

general, with emphasis on machine learning and neural networks models. This is a

relatively new tendency in computational design that reflects a growing interest in

advanced generative and optimization models by architects and building engineers.

The first part of this work contextualizes self-organizing floor plans in architecture and

computational design, highlighting their importance and potential for designers as well

as software developers. The central part discusses some of the most common

techniques with concrete examples, including Neuro Evolution of Augmenting

Topologies (NEAT) and Generative Adversarial Networks (GAN). The final section of

the article provides some general comments considering pitfalls and possible future

developments, as well as speculating on the future of this trend.

Keywords: self-organizing floor plans, computational design, architecture, machine

learning, generative adversarial networks, artificial neural networks

Media Summary
This article introduces some of the techniques currently used by designers to generate

automatic building floor plans and spatial configurations in general, by using machine

learning and neural networks. This is a relatively new tendency in computational

design that reflects a growing interest in advanced generative and optimization models

by architects and building engineers.

In this work we analyze some of the most popular techniques to automatically generate

spatial configurations in architecture. We try to highlight how and why different

techniques are used and provide comments on the results for each approach.

We contextualize these methods within previous work of self-organizing configurations

and suggest how we should consider and use these techniques in the future.

1. What Are Self-Organizing Floor Plans?
This article discusses how the space in which we live can be designed by algorithms

instead of humans, with designers working out their projects driven by computer logic

instead of Euclidean geometry. Of course, the question is more elaborate that it seems

and it is, probably, even less exciting.

Harvard Data Science Review • Self-Organizing Floor Plans

3

In the context of design, floor plan is an architectural term that indicates the

bidimensional spatial arrangement used by designers to determine internal building

layouts. More generally, people refer to floor plans today as blueprints, spatial layouts,

internal spatial arrangements, and so on.

Usually, designers start the spatial organization of space (a room, a building, an entire

city) by encapsulating the main spatial qualities in an initial sketch. Through several

procedural stages, this sketch is then developed into spatial arrangements, floor plans,

and technical drawings (Plowright, 2014). During this nonlinear process, the designer

evaluates each development of the drawings against the prescriptive data (building

regulations, health and safety, minimum distances, etc.) and subjective aspects (taste,

experience from previous projects, and experimental concerns).

Although automation in architectural and design is an integral part of the history of

design (think of Sigfried Giedion’s [1948] comprehensive accounts of how

“Mechanization takes Command”), traditional approaches where projects start with

sketches and templates and are developed through continuous refinements, are today

challenged by a more linear and data-driven workflow where designers use algorithms

to produce their project (cf. Ferreira & Leitão, 2015).

Unlike traditional architects, computational designers need to start their work by

modeling the design problem (what is required by the project brief), including all

relevant information (from building regulations to dimensional guidelines) and

elaborating a logic that allows all parts of the design to be hierarchically related and

processed. Once the design logic has been elaborated, this approach requires the use

(or the development) of an algorithm of which implementation will allow the final

design to be computed. A direct application of this method is represented by self-

organizing floor plans (SOFP).

In the context of this article, with SOFP we refer to the combination of methods that

designers use to automatically generate spatial building layouts. Generally, these

methods include machine learning (ML) and optimization techniques, neural networks

(NN) and evolutionary algorithms. The models usually include topological approaches

(for example, with Kohonen's self-organizing feature maps [SOMs]) and object

recognition (e.g., deep neural networks). The notion of self-organization has different

meanings depending on its context. In the study of complex systems, for example, self-

organizing may be associated with the idea of emergence, where a global order among

elements is achieved through interactions of the parts governed by local rules (think of

fractals or cellular automata). Although some of the topological approaches (for

Harvard Data Science Review • Self-Organizing Floor Plans

4

example, Kohonen's SOMs) rely on this idea, the examples included in this article also

include different approaches, where self-organization is achieved by using neural

networks and genetic algorithms.

This article addresses methods that are being recently applied in architecture and

design. However, it is important to note that the problem of automated generation of

spatial layouts is not new, as it has been developed since the second half of the 20th

century and applied to many different fields and studied by many (e.g., March &

Steadman, 1971; Shaviv, 1987, and more recently, Guo & Li, 2017; Martin, 2005;

Merrell et al., 2010; Michalek et al., 2002; Zheng & Ren, 2020). Well-known examples

are represented by automated facilities layout (cf. Chen et al., 2020; Levary & Kalchik,

1985; Liggett, 2000; Seehof et al., 1966, among many others), spatial synthesis (cf.

Eastman, 1975; Jo & Gero, 1998; Veloso & Krishnamurti, 2021), space planning (cf.

Anderson et al., 2018; Brookes & Kaplan, 1972), and layout synthesis (Liggett, 2000;

Wu et al., 2019).

To understand the importance and relevance of SOFPs for architecture and design

today, we need to contextualize them within the design industry at large. In fact, there

are three main viewpoints that can help to create a comprehensive picture of what is

usually called a ‘self-organizing floor plan.’

Firstly, the media (including magazine targeting nonarchitects or data scientists)

presents SOFPs as a magic tool where designers input generic data into a black-box

algorithm that provides fully fledged floor plans as an outcome. This has led to a large

debate (which is still ongoing at the time of writing) about the future of designers and

the actual need for them in a situation where computers can potentially substitute

them entirely (for example, Carta, 2020a; Celento, 2007; Fairs, 2019).

To date, we are still far from what the media often portrays where computers

automatically produce floor plans and building designs. We will probably never arrive

at this point as design is an intrinsic human activity that requires intuition, taste, and,

ultimately, a good degree of subjectivity (cf. Davis, 2020). However, it is also true that

synthetic approaches can be very helpful to designers as they increase the accuracy of

their work, reduce the number of errors in a project, save precious time, and avoid

tedious tasks. This opens up new possibilities for development (Carta, 2020b).

Opinions differ among architects and designers on this matter, between those who

recognize the potential of the use of algorithms in the design process, and those who

consider them with suspicion. The relationship between human and machine in

Harvard Data Science Review • Self-Organizing Floor Plans

5

architecture is elegantly summarized by David Rutten as: “the architect remains the

designer, while the computer becomes the critic” and this is related to the idea that

“ultimately, a computer has no idea what it’s doing, let alone why it’s doing it.

Understanding stuff is what humans are good at” (Rutten, 2021).

Rutten’s opinion indirectly suggests the importance of considering hybrid approaches,

where the contributions of machines and humans are deployed at different stages and

to tackle different problems in a design process, playing on each specific strength. A

growing number of projects epitomize this human-AI (or human-machine) co-creation

(e.g., Pitso, 2019; Wikström, 2018; Woo, 2020).

The examples included in this article illustrate this delicate relationship between

designers and computers, which is far from being fully resolved. One way of looking at

this is through the lens of the designer who sources and selects the initial data sets,

curates and cleans the data in preparation for the computer to be calculated, and

models the design problem in order to address the questions at stake (from the design

brief, the client’s requests, etc.). In this case, we may argue that the designer is still in

utter control of the design while the machine is merely executing instructions set by

the designer. Another perspective can be from the viewpoint of the computer that is

employed in the design process in the hope that new and unforeseen results may

emerge. Take the example of clustering a given data set. Designers may use clustering

or classifying techniques to find new aspects in their design that would not be visible

without the aid of a computer. In this case, we may argue that the designer is still in

control of the design, although they trust the computer to generate parts of the design

that are outside of their reach. Designers become meta-designers or, in extreme cases,

they become critics of their own work, as suggested by Rutten.

The argument suggested by this article is that designers in both cases are still in full

control of their creative work, especially considering the effort they make in preparing

and curating the data set, modeling the problem, setting up the entire workflow,

evaluating results at any stage of the process to ensure consistency and validity and,

ultimately, being responsible for the final results obtained.

Secondly, designers, especially those interested in computational design (that is,

simplifying, a subset of design where computers are heavily used), consider self-

organizing plans and generative design in general as one of the future directions for

development. Not only do computational designers create their own tools using open-

ended graphical programming interfaces but they also see such tools as increasingly

integrated into the main software packages that are largely used in the design industry

Harvard Data Science Review • Self-Organizing Floor Plans

6

(for example Autodesk Revit or McNeel’s Rhinoceros 3D). Designers are moving their

work (together with their creativity and problem-solving approaches) from the

traditional representation of initial ideas and their continuous refinement to a radically

new dimension. In this, designers create their own (computational) tools that serve

them as intelligent collaborators in their projects (Jabi, 2013; Terzidis, 2006).

Thirdly, computer scientists have found that applications of certain models and

algorithms can be tested against a real-case scenario (for example, the design and

construction of a building). An example of this is the work that Tarabishy and his

colleagues have done on the use of “deep learning surrogate models for spatial and

visual connectivity” (Tarabishy et al., 2020). In this, they use a number of ML methods

to reduce the computational time needed to simulate the spatial and visual

connectivity of a given office space. More and more, we see the emergence of new

consultancy practices where mathematicians, statisticians, software developers, and

computer scientists work along with designers and engineers to offer bespoke and

intelligent solutions for architecture and the construction industry. Examples of such

practices are Kreo, Hypar, or TestFit among many others.

This article is an attempt at clarifying the reasons why the second and third views are

important, for they are significantly changing some aspects of the architecture and

construction industry. Indirectly, with the analysis included in this work we want to

offer a robust counterargument to the first view, explaining the extent to which the

idea of computers as a substitute for designers is not only simplistic, but

fundamentally flawed.

2. Self-Organizing Floor Plan at Work
An increasing number of designers and computer scientists are working together to

develop new ways of creating automated methods to generate spatial solutions (among

others, Eisenstadt et al., 2019; Goodman, 2019; Kalervo, 2019; Liu, 2017; Nauata,

2020; Phelan et al., 2017; Sandelin, 2019; Zeng et al., 2019).

In general terms, we might say that the success of each model for this particular task

is connected to two main aspects. The first one is the advancements in machine

learning research. The growing use of artificial neural networks (ANNs) in

computational design is a reflection of the fast advancement in research in generative

models (Dhondse, 2020) and true distributions (Alcin, 2019). This is as well as the

increasing computational power available and training data sets available (Hodas &

Harvard Data Science Review • Self-Organizing Floor Plans

7

Stinis, 2018). As the possible applications of these methods increases and they become

more reliable, research in this direction is increasingly active.

The second is the creative use that designers make of this new research. It is

important to note that although many of the current projects are the result of

multidisciplinary teams (including computer scientists, data scientists, and designers),

they often originate from and are led by architects (see, for example, the work

conducted at MIT’s SenseAble City Lab). Architects, and designers in general, use

computational methods to generally produce applied research using primary new

knowledge produced in statistics, mathematics, computer science, data science, and so

on. It is in its possible application to buildings, cities, or as in this case, floor plans that

designers can offer novel and creative approaches to real-life problems.

The information-processing model that is commonly used is an ANN. One of the

reasons behind this choice is that this model is proven to be particularly powerful

when designers have large data sets available for their projects (for example, the

website HousePlans.com offers around 40,000 floor plans that can be used as a

training data set). The choice of using an NN is also quite popular due to the fact that

most of the computation needed for predicting spatial distribution (floor plans) is made

largely possible on standard machines (e.g., home computers, workstations, etc.)

through backpropagation and general-purpose Graphics Processing Units (GPUs)

(Danka, 2020).

The examples presented in this section use optimization techniques (neuro evolution of

augmenting topologies—NEAT) and variants of neural networks based on graphs (e.g.,

graph convolutional networks—GCN). Algorithms based on graph theory result in quite

effective manipulation of data in spatial configurations. Designers and those trained in

spatial abstraction usually find topological approaches intuitive, for they have direct

applications to spatial organization. A clear example of this is space syntax (Hillier &

Hanson, 1989)—including one of its methods, isovist (Benedikt, 1979; Turner et al.,

2001)—which is among the most developed and used computational spatial theories

applied to architecture and cities. Modeling design problems through graph theory is a

common strategy in the projects included in this section. The projects that follow

include models based on graph optimization and generative models.

We start with a non-data-driven approach based on NEAT, which is a powerful

optimization method. Generalizing, optimization models are employed to find solutions

through an objective (or fitness to criterion) function. Possible solutions are iteratively

Harvard Data Science Review • Self-Organizing Floor Plans

8

evaluated against the objective function in search of optimal values (Hoos & Stützle,

2004, p. 13).

This approach is based on Stanley and Miikkulainen’s (2002) work where an advanced

method for evolving neural network topologies along with the associated weights is

presented. NEAT’s outperformance regarding the other fixed-topology approaches is

related to “employing a principled method of crossover of different topologies,

protecting structural innovation using speciation, and incrementally growing from

minimal structure” (Stanley & Miikkulainen, 2002, p. 99). Simon (2017) and then Carta

et al. (2020) developed a workflow to optimize an existing floor plan based on a

number of design criteria. NEAT involves the use of genetic algorithms to find the most

fitting topology in a given initial configuration. In this method, each solution (also

called genome) is represented by a series of nodes and connections. Each node

contains information that is iteratively evaluated against a fitness function to ascertain

how close (or far) that particular solution is to the desired result (as the combination of

the optimization criteria). Each connection stores information about the nodes that it

links and their relative weights. The weights give important details about the role of

that connection within the system, for example, the distance between the nodes (or

rooms) or whether that link is considered within a particular instance. In each

iteration, there is a mutation of the genome underpinned by the combination of the

previous best-performing solutions where new nodes and connections can be added or

removed. The method used by Carta et al. (2020) includes the initial generation of a

random population of solutions to which a number of mutations is applied. In each

iteration, the solution is mapped against a generic floor plan (that needs optimizing).

An ant-colony optimization (ACO) algorithm is used to evaluate the best connections

between the rooms (corridors). The configuration is then evaluated against the fitness

fiction and the criteria used as the input. The possible solutions are then used as

inputs for the next generation. The process repeats using the best solutions of each

generation to improve the overall solution, until satisfactory results are obtained. An

example is show in Figure 1.

Harvard Data Science Review • Self-Organizing Floor Plans

9

Although NEAT applied to self-organizing floor plans can yield promising results, this

method is indeed not very much used by architects and designers who seem to prefer

in general data-driven approaches with NNs and generative methods.

A more common approach is graph convolutional networks (GCNs). This is where the

NN informational model is based on graphs and their elaboration. They are defined as

convolutional due to some of their characteristics (for example, the filter parameters),

which are common to different parts of the graph (Kipf, 2016). A relevant application

of GCN to floor plans is the work in progress of Li et al. (2020) where the user can

input new nodes into the graph directly via a browser and the program generates a

floor plan corresponding to the graph.

Figure 1. Self-organized plan with NEAT where optimization criteria

based on care home residents’ need have been applied. This figure

illustrates one of the spatial configurations obtained as the result of the

generative process where distances among rooms and the position of each area is

optimized according to a set of given design criteria. From Carta et al. (2020).

Harvard Data Science Review • Self-Organizing Floor Plans

10

a

b

Harvard Data Science Review • Self-Organizing Floor Plans

11

Graph to plan demo

Visit the web version of this article to view interactive content.

This method outputs a plan layout using an input graph as the predictor of the NN

through a three-step process. Firstly, through graph-embedding information, including

topology and relational features, among rooms and architectural elements (door,

windows, etc.) from an existing floor plan is converted into a graph (Figure 2b).

Secondly, the vectors generated in the first step are computed by a message passing

network, considered the core of the GCN, where all (relational) information related to

each specific node is propagated through the graph. The GCN outputs updated vectors

passed to a box & mask regression network to evaluate the loss function. The method

c

Figure 2. Representation of a typical floor plan as a graph (2a and 2b)

and final result, where the user of the web app inputs the rooms

(kitchen, living room, etc.) as nodes of a graph that are then combined

into a floor plan (2c). Li, Ao, Tian, Runjia, Wang, Xiaoshi and Yueheng Lu.

PlanGCN Team. https://www.aoli.org/graph2plan.

https://www.aoli.org/graph2plan

Harvard Data Science Review • Self-Organizing Floor Plans

12

outputs a new spatial configuration, which is optimized with regard to the initial input.

In this particular application, the input is represented by a number of points in space

(position of rooms) that is read by the NN as an input graph.

The example of GCNs clearly shows how floor plans can be modeled as graphs of

which topology is optimized resulting in a new spatial configuration. However, the

approaches to SOFP that seem to be currently more popular are those based on

generative models.

In this group we have methods where deep learning approaches are used to predict

the implicit distribution and configuration of graphs (Zhou et al., 2018, p. 18). Unlike

in discriminatory approaches, where features are mapped to labels, in generative

models the aim is to find (by prediction) new features given an initial set of labels.

NEAT and GCN seem so far to have been successful at illustrating how initial inputs

can be translated into spatial arrangements. However, it is with generative adversarial

neural networks (or GANs) (Goodfellow et al., 2014) where most of the progress to

date is being made by architects and computational designers. In order to understand

why GANs are considered to be powerful enough for the task of generating realistic

floor plans, we need to briefly see how they work.

GANs are unsupervised networks where there are two main components. The first

network (generator) generates the data outputs (for example, images) that are

assessed by the second network (discriminator). The discriminator is trained with both

real and fabricated images to ascertain whether the images are real (true data) or

fake. The generator is trained to produce images that look real for the discriminator.

The data can be backpropagated through both the generator and the discriminator to

ensure that the former adjusts its parameters in order to reduce the difference

between real and fake images for the latter (Goodfellow et al., 2014).

For example, architect and designer Erik Swahn produces simulations where GAN is

employed to generate new built environments ranging from building interiors to maps

and landscapes. Swahn experiments mostly using conditional generative adversarial

networks (Isola et al., 2017) and StyleGAN (Karras et al., 2017). This later is a

generator architecture used for generative adversarial networks developed by NVIDIA

in 2019 (Karras et al., 2019). In his work on automatic production of floor plans and

other architectural spaces, Swahn developed a workflow whereby he scraps a number

of webpages for images to generate a training data set (in this case 64 images of

elevations, 342 sections, 499 plans from Archimaps, 824 from Archive of Affinities,

http://www.thearchitecturemaps.com/
https://archiveofaffinities.tumblr.com/

Harvard Data Science Review • Self-Organizing Floor Plans

13

1,455 plans from plansofarchitecture, 791 plans from DeZeen, etc.) to be used with

Pix2Pix (Isola et al., 2017), a generative adversarial network built for image-to-image

translation. He then selects and generates pairs of images by drawing quick outlines

directly on a touchpad (Figure 3a and 3b), and visualizes the results of the process

using different inputs (images from a webcam/visualizer, geometries like simple

rectangles or architectural drawings) (Figure 3c) on the browser (Figure 3d) (Swahn,

2019). Swahn defined this work as latent spaces, referring to the “bottleneck layer […]

between the encoder and decoder in the GAN generator […] where images are

maximally reduced to a latent vector of length n. This low-dimensional vector can be

seen as a point in a n-dimensional space (the model’s latent space)” (Swahn, 2019).

a

b

https://plansofarchitecture.tumblr.com/
https://www.dezeen.com/
https://affinelayer.com/pixsrv/

Harvard Data Science Review • Self-Organizing Floor Plans

14

Erik Swahn. Latent Spaces.

Visit the web version of this article to view interactive content.

Other designers like Sean Wallish have been working with deep convolutional

generative adversarial networks (DCGAN) to produce new building silhouettes based

on existing data sets. In GAN Hadid, Wallish (2019b) trained a neural network with

information about the relationships between pixels in published photographs and

renders of Zaha Hadid Architects’ architectural buildings (Figure 4). This model has

been trained with 8,428 low-res images of Zaha Hadid Architects’ buildings (Wallish,

2019, p. 12). The training involved multiple sessions with different number of epochs

each (session 1 = 30 epochs, session 2 = 10 epochs, etc.). At the end of the training,

the algorithm was able to associate architectural elements (forms, materials,

silhouettes, etc.) from a single or combination of projects (in the training set) to new

shapes. The final results of this method are not verisimilar images of real buildings. In

this respect, Wallish identifies a number of aspects that characterize the training data

set and that are somehow amplified in the generated images, including the lack of

c d

Figure 3. Latent Spaces. This figure shows one of the results of Swahn’s project where different modes of

representation of architectural buildings can be translated (for example, sketches to plans, maps to plans, webcam

images to plans, etc.). Erik Swahn, Latent Spaces. From: https://twitter.com/erikswahn.

https://github.com/PhoenixDai/DCGAN-tensorflow/tree/090c609e42b17f572a62354abae9f1b66e763e45
https://twitter.com/erikswahn

Harvard Data Science Review • Self-Organizing Floor Plans

15

details, the clear separation between ground and sky, background and foreground, and

the predominance of white/light grey colors (Wallish, 2019a, pp. 29–30).

However, this project offers very promising results for architects, for it shows a

workflow to generate new configurations in urban settlements based on existing ones.

a

b

Harvard Data Science Review • Self-Organizing Floor Plans

16

Similarly, in his project GAN Loci, Kyle Steinfeld (2019) used GAN to generate

imaginary new places by training the NN with spatial and visual characteristics (light

conditions, forms, textures, or colors). Steinfeld’s process to generate these synthetic

images of new places is threefold. The first is the preparation of the data sets. This is

where a large number of photographs (around 500 images per each of the nine sites

chosen for this project) depicting points of interest in various cities in the United

States and Europe are collected from Google Street View, and cleaned and categorized

into organized sets. In each training set, a pair of images is created where a raster

RGB image is associated to its relative greyscale version that represents its depthmap

(Figure 5a).

The images are then formatted to be readable by the training models, StyleGAN

(Karras, 2018) and Pix2Pix (Isola et al., 2017). Lastly, the two models are used to

generate new synthetic images, with each of them producing different results with

different interfaces.

c d

Figure 4. GAN Hadid. This illustrates the initial results at the epoch 1 (4a) and final ones at epoch 30 of the 1st stage

(4b). Figure 4c and 4d show the original photograph of Hadid’s building (4d) and a new configuration generated by

Wallish (4c). Figure 4c is generated by Wallish: From: https://www.seanwallish.com/gan-hadid. Figure 4d: Zaha Hadid

Architects Beijing Daxing International Airport. https://www.zaha-hadid.com/architecture/beijing-new-airport-terminal-

building/. Photograph: Hufton + Crow.

https://www.seanwallish.com/gan-hadid
https://www.zaha-hadid.com/architecture/beijing-new-airport-terminal-building/

Harvard Data Science Review • Self-Organizing Floor Plans

17

a b c

d

Harvard Data Science Review • Self-Organizing Floor Plans

18

Figure 5. Synthetic images produced with Pix2Pix (5b and 5c) and

StyleGAN (5d). The volume on the right-end side of the depthmap image (5a)

“is interpreted by the Rotterdam model (5b) as a large brick housing block, as is

typical in the Dutch city, while the Pickwick Park model (5c) renders this massing

in a manner typical of the Northern Florida flora, suggesting the mass of a mossy

Live Oak” (Steinfeld, 2019). In the images generated with StyleGAN, the “vertical

columns define course features, such as camera direction and orientation, while

horizontal rows define fine features, such as textures, colors, and lighting effects

of each urban place” (Steinfeld, 2019).

Images from: Kyle Steinfeld http://blah.ksteinfe.com/191026/gan_loci.html. Figure

5d is from: https://towardsdatascience.com/gan-loci-e2bbd1b4926f.

http://blah.ksteinfe.com/191026/gan_loci.html
https://towardsdatascience.com/gan-loci-e2bbd1b4926f

Harvard Data Science Review • Self-Organizing Floor Plans

19

Steinfeld’s work offers a novel method to generate a large number of images that are

site-specific, retaining some of the unique characteristics (or “tacit properties” in

Steinfeld’s words) of each place used as a case study. More importantly, Steinfeld

considers this method as potentially analytical where GAN can be used to: “reveal

certain properties useful in uncovering the nature of urban places […] [like] forms,

textures, colors, and qualities of light that exemplify a particular urban location”

(Steinfeld, 2019).

While the three projects illustrate how GANs can be used to generate (architectural)

spatial configurations in general (in this case at the urban scale), the focus on interior

layout is particularly relevant to this discussion. One of the examples where, to date,

the methods discussed so far have been applied comprehensively is perhaps Stanislas

Chaillou’s ArchiGAN. This is a Generative Stack for Apartment Building Design. In this

work, GANs are applied in different ways to the three stages of the project: building

footprint massing, program repartition, and the furniture layout (Chaillou, 2019). “By

nesting these models one after the other, [he] create(s) an entire apartment building

‘generation stack’ while allowing for user input at each step” (Chaillou, 2019). The

GAN method applied here is Pix2Pix (Isola et al., 2017), yet in the implementation of

Christopher Hesse’s Image-to-Image Translation in TensorFlow, the Torch code has

been ported to TensorFlow (Hesse, 2017).

Harvard Data Science Review • Self-Organizing Floor Plans

20

The first application uses spatial data related to the surroundings of a generic house in

order to determine the building outline. Information like location, the shape of the plot,

and orientation have been used to infer the building footprint and general massing.

Chaillou trained a GAN model with Geographic Information System (GIS) data from

the City of Boston (with plot shape and relative building footprint) so then the NN

could predict generic results for any type of new plot of land.

Once the building outline is determined, NN is employed to predict the position of the

windows (fenestration) and internal layout (including the position of walls, doors, and

corridors). The initial footprint (from the previous stage) is given to the NN as an

input. The NN is trained using a large database of house floor plans where the position

of windows and other relevant elements is annotated. The NN outputs a new floor plan

with the room type classified by color and labels as show in Figure 7.

Figure 6. Sequence illustrating how the GAN model increasingly learns

to generate floor plans from initial data sets. Each floor plan is a sequential

outcome generated during the training of the network. From: Stanislas Chaillou,

https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-

design/?linkId=70968833.

https://www.arcgis.com/home/item.html?id=c423eda7a64b49c98a9ebdf5a6b7e135
https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/?linkId=70968833

Harvard Data Science Review • Self-Organizing Floor Plans

21

The final application of the model is used to associate interior furniture with the

rooms. To each colored area (representing a room type in the previous stage), there is

a corresponding set of furniture and appliances (bedroom = bed, wardrobe, bedside

table, etc.) based on the same database used in Stage 2.

a

Harvard Data Science Review • Self-Organizing Floor Plans

22

b

c

Harvard Data Science Review • Self-Organizing Floor Plans

23

ArchiGAN Model II: Interface and Process Demonstration (Figure 7b)

Visit the web version of this article to view interactive content.

3. What Model Is Best for Self-Organizing Floor Plans?
It is difficult, if not impossible, to say today with certainty which model is better for

generating self-organizing floor plans. Related to it, the question also arises as to

which one will be most used in the future. All of the methods seen here have their own

respective pros and cons. For example, GANs are very successful at providing clean

and sharp synthetic images (Karpathy et al., 2016), but their success is dependent on

stability. The right balance needs to be struck between the generator and discriminator

(Salimans et al., 2016). Convolutional Neural Network (CNN) has been applied

extensively and with relative success in the recognition of objects and parts of images

Figure 7. Sequential application of the neural network: Three stages. We

can see the initial input from the designer as a generic geo-referenced plot (7a),

the final output generated by the GAN (7b), and its ground truth (7c): the original

floor plan used to train the network (this process is applied to all plans in the

set). Output floor plans and ground truth are often compared to evaluate the

similarity between the computer generated and the original scheme.

From: Stanislas Chaillou, https://developer.nvidia.com/blog/archigan-generative-

stack-apartment-building-design/?linkId=70968833.

https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/?linkId=70968833

Harvard Data Science Review • Self-Organizing Floor Plans

24

(LeCun, 2015, p. 439) with more recent application in facial recognition. More

importantly, CNNs offer a great level of accuracy as the labeling can happen at the

scale of pixels (LeCun, 2015, p. 439). However, they require large data sets and

precise labeling to produce accurate results (LeCun, 2015, p. 440). NEAT is a powerful

method to optimize a network by finding a minimized topology by searching for

solutions with the minimum number of dimensions in each generation (Ibrahim et al.,

2019, p. 111). NEAT has been used quite successfully in approaching real-time

problems with user’s input/action (Bird et al., 2019, p. 752). However, its performance

significantly depends on the initially chosen topology (Ferner et al., 2017, p. 11) and

the control of complexity within inner networks (Le Goff et al., 2020, p. 43).

So far, we have explored two main approaches to self-organizing floor plans. One

based on the optimization of an initial configuration (this being an existing building

floor plan or a hypothetical one based on a set of desired criteria), and the second

focusing on the generation of a new configuration (based on prediction of new labels

from a training set).

Although these two approaches can be combined (see, e.g., Chen at al., 2019) and

share some logic (think of the generative aspects of both approaches), they are quite

distinct in their objectives. In optimization problems using NEAT, the final spatial

configuration is strongly conditioned by the initial configuration (i.e., existing floor

plan), and by the ways in which inputs are given at each iteration of the Genetic

Algorithm (GA). Optimization approaches in general yield more accurate results, for

they provide a new spatial configuration that retains many of the original architectural

features as a part of the topology (e.g., doors connected to walls as in the original

plan). Conversely, with GANs the outcome is largely dependent on the training data set

used, so factors like the size of data sets, initial data resolution, and quality of the data

set are highly influential to achieve the desired results. New configurations generated

through GANs are in general more innovative, as outcomes are often unexpected, yet

they tend to be less accurate, as there is not an original floor plan used as starting

point (and for comparison).

It is intuitive to see why in those cases where designers need an accurate and

controlled new configuration that ‘evolved’ from the original one, optimization models

through genetic algorithms are preferred. These allow designers to retain a good

degree of accuracy in the position of key elements of the configuration of which

movement in space requires careful consideration, including structural elements (load

bearing walls, columns, beams, etc.), health and safety parts of the building (fire

Harvard Data Science Review • Self-Organizing Floor Plans

25

escape routes, fire compartments, etc.), and other building parts (shafts, ductwork,

etc.).

By the same token, in those cases where designers are working with a larger degree of

freedom (e.g., scoping out the possibilities of a new building or space, working with

speculative design, etc.), generative models like GAN are effective in producing

synthetized solutions. They allow designers to obtain often unforeseen configurations,

generating an element of surprise and unpredictability in the design process.

The two approaches should be used in different instances with different aims, mostly

depending on the stage of development of the project (e.g., conceptual versus

development phases). As unsurprising as it may sound, the answer to the initial

question: ‘What model is best for self-organizing floor plans?’ is that it depends on

what designers are after in each particular phase of their project.

In general terms, however, we note that GANs (and their variants like StyleGAN or

DCGAN) seem to be increasingly popular among computational designers and data

scientists. This is most likely related to the fact that GANs can be trained with

relatively modest data sets (e.g., Wallish’s GAN Hadid project has around 8,000 images

as a training set) and to the fact that image-based data sets are increasingly affordable

and offer promising results. We should note that many of the GAN projects in this

article have been developed using NVIDIA GPUs technologies (see Song et al., 2018)

(e.g., Wallish, Chaillou, and Steinfeld’s) that allow for relatively satisfactory results in

small periods of time and with general-use machines. Most of these implementations of

GANs are based on recent developments at NVIDIA for optimized image processing

(Karras et al., 2017; Karras, 2020), as well as new tools that facilitate the training of

data sets and the use of ML in general, including Pix2Pix (used by Chaillou and

Wallish), and more generally TensorFlow, PyTorch, and so on(underpinning most of the

projects using GANs).

GANs may not necessarily be the best solution for SOFPs, but their use is certainly

increasing and they are attracting a growing number of designers who want to

experiment with these models, given the growing number of publications and

promising results.

If more designers are experimenting with methods like GANs and NNs in general as a

part of their design explorations, access to the appropriate technology becomes a key

part of this development. By access we refer to infrastructure (this includes hardware:

CPUs, GPUs, or TPUs, computational power of general-use machines and software:

Harvard Data Science Review • Self-Organizing Floor Plans

26

open-access libraries and online resources) as well as skillset. For designers to be able

to use relevant data science techniques and methods in their projects, not only do they

need to understand the design problem and model it, but they also need to effectively

implement their strategies. Thankfully, a growing number of libraries, Application

Programming Interfaces (APIs), and platforms are now available to designers who can

more easily access some of the data science methods mentioned in this article. The

following section explores some of them, illustrating what designers can do and how.

4. How Are SOFPs Used (by Designers)?
The models presented in the previous sections illustrate cases where designers have a

hybrid profile (data scientist/designers) and are able to work with the two aspects of

these projects (data science/architecture) at the same time. Most of the techniques and

tools used in the examples from Section 2 are not design tools per se. They are rather

workflows generally used in computer graphics, computer vision and machine learning

projects (for example, our NEAT project is coded entirely on Python and Pix2Pix is an

image-to-image mapping tool). In parallel to this approach where designers use data

science tools and methods, there is an important growing infrastructure of software,

libraries, and interdisciplinary communities developed directly for designers. These

tools are helping more and more to democratize important developments in data

science into the field of design and architecture.

The libraries and software presented following represent a good section of the new

tools for data science available today to designers and show the direction in which the

development of computational tools is going, especially helping designers without a

strong data science background to work with ML and NNs models.

The implementation of neural network methods (and machine learning in general) for

computational designers has rapidly developed in the last decade. Firstly, there is the

emergence of experimental approaches where individuals make promising attempts at

running NNs through modeling and Computer-aided Design (CAD) platforms. These

scripts are usually written in C# or Python, using developer kits within the CAD or

parametric software (Khean et al., 2018). A good example are the ML tools within the

Lunchbox Library for Grasshopper and Revit, and the beta version of the APIs in

Grasshopper including Crow, a library with supervised learning through

backpropagation networks and unsupervised learning through self-organizing maps.

Figure 8 shows how the network is trained using an internalized database to associate

basic bidimensional shapes with three-dimensional meshes representing objects (for

example, fruits).

https://provingground.io/tools/lunchbox/
https://www.food4rhino.com/app/crow-artificial-neural-networks

Harvard Data Science Review • Self-Organizing Floor Plans

27

Visit the web version of this article to view interactive content.

Another good example is PlanBee, developed by Marco Juliani at the beginning of

2020. This library allows designers to use a Kohonen SOM algorithm to automatically

organize blocks of activities in a given floor plan with pre-settings (Figure 9). “In order

to understand this, it helps to think of the floor plan as a field of voxels, each of which

contains values for different computed metrics. Once the metrics are computed, each

voxel corresponds to a multi-dimensional vector. The SOM basically reconciles the

multi-dimensional vectors of the field of voxels with the features one specifies should

belong to a programmatic mix (i.e. the list of activities in the building)” (Juliani, 2020).

Figure 8. The Crow Library. The interface of the Crow library in action, with the

graphical language User Interface (UI) on the right and the 3D shapes outputted

by the NN on the left.

From: Benjamin Felbrich, https://www.food4rhino.com/app/crow-artificial-neural-

networks.

https://github.com/M-JULIANI/planbeeGH
https://www.food4rhino.com/app/crow-artificial-neural-networks

Harvard Data Science Review • Self-Organizing Floor Plans

28

More recently (Crow and other similar projects were developed around 2016), we have

noticed a more structured approach whereby NN and machine learning solvers are

being integrated with major software packages in the Architecture, Engineering and

Construction (AEC) industry. Notably, Autodesk Revit 2021 includes a module for

Generative Design that includes optimization tools, evolutionary solvers and

topological optimization libraries. This, along with the graphical programming

interface Dynamo and the option to integrate these tools with text-based programming

languages, represents a significant shift in the design industry. While 5 years ago (and

before), computational design tools (including ML libraries) were only add-ons to main

programs and needed some tweaking by the designers in order to work (Daher et al.,

2019), such tools are now fully integrated into the standard industry software, hence,

they are largely available to any designer.

In addition, interoperable online tools to create workflows are increasingly available to

designers as well. For example, RunwayML offers several ML tools that can be flexibly

connected to other apps. There is also the platform COMPAS that offers an open

framework for designers to share libraries and APIs that work outside of any specific

software so to increase its interoperability.

Figure 9. Interface of the Plan Bee library where we can a see a Kohonen

self-organizing feature map (SOM) in action.

From: Marco Juliani, https://www.food4rhino.com/app/planbee.

https://www.autodesk.com/solutions/generative-design/architecture-engineering-construction
https://runwayml.com/about
https://compas.dev/
https://www.food4rhino.com/app/planbee

Harvard Data Science Review • Self-Organizing Floor Plans

29

The fact that main design software companies are embracing generative design

models, as well as NNs and ML methods, offering them as a part of their standard

tools should be considered positively. The inclusion of these tools in the designer’s

toolbox should encourage designers to experiment and better understand the

potentials and limitations of intelligent systems applied to architecture and spatial

practices. By the same token, this also calls for more data scientists to be involved with

the design industry, bringing their expertise in this field. More and more, there seems

to be the need for ‘bridging profiles’ who can work across data science and design.

SOFPs represent a great and equally exciting challenge for designers (and those

interested in automatic generation of spatial layouts) for two main reasons. The first is

about design as a discipline and field of study. These new data-driven approaches

require designers to reconsider their role within the design process, from designers of

buildings through drawings, to designers of scripts that will generate buildings. The

second reason relates to specialization and expertise. Today, designers need to work

with methods that originate in data science, using tools and a logic that is naturally

outside of their traditional (academic and professional) training. Designers need,

therefore, to heavily rely on colleagues from the data science community, embracing a

new level of multidisciplinarity.

However, a caveat should be considered. This has to do with the transparency and

intelligibility of these tools, and the extent to which designers are fully aware of the

mechanisms that underpin the tools. In other words, these new tools make it very easy

to obtain results from complex operations without necessarily the need of being aware

of the entire process that brings those results. For example, some tools make it very

easy to compute a linear regression given a large data set, but designers still need to

understand whether a linear regression was the best statistical method in that

particular case. In using APIs and libraries, designers need to put a certain level of

trust on the tool and their developers who made them, assuming (and accepting) that

the implementations of those tools fits the needs of their project.

Generalizing, in the case of SOFPs it is becoming increasingly easy to use tools that

generate spatial configurations or architecture in general (either with NNs,

optimization algorithms, etc.). It is important that designers (and any other users of

these tools) understand the logic and process behind these workflows to ensure a good

level of control over the obtained results. In other words, to generate a self-organizing

plan is becoming increasingly easy, but who guarantees the spatial quality of the

results? After all, these spatial configurations are generally made to be built, that is,

Harvard Data Science Review • Self-Organizing Floor Plans

30

translated into physical spaces where people live, interact, and subjectively experience

the world around them. One way of addressing this concern may be to look at the

quality of the training data that we use for our models. The designer’s oversight over

the entire design, modeling, and implementation process is very important. However,

the final results of our floor plans are directly dependent upon the initial data used in

the model. This aspect has an important impact on the final design, often more

significant than the algorithm used to generate it.

5. A Final (Design) Note
Most of the machine learning methods mentioned in this article (especially the ANN)

require large data sets (in the order of thousands) to be trained. In the current

attempts we seem to concentrate more on where to find good and reliable data sets

(the larger the better), how to train our models, and how to achieve a reasonable level

of accuracy in the training (with the resulting floor plans that have a good resemblance

to traditionally designed plans). One aspect that is still underdeveloped (and perhaps

underestimated) is the quality of the training data. We often use data sets that reflect

existing buildings, with most of them characterized by average and often mediocre

architectural qualities. Often, the rationale used in finding an initial data set is not

about the quality of the plans (or their architecture, social qualities, etc.), but more

about the quality of the data itself (are plans comparable to each other, drawn well-

enough to be read without too many problems? are data easily available, how large is

the data set? etc.). Our models are increasingly fast and accurate, yet they output the

same quality that we give them as input. From a strictly design perspective, this is not

good, as (good) designers aim at achieving a new level of architectural quality with

every new project (usually learning from previous ones).

In the examples presented in this article, we identify some promising cases that used a

data set that included high-quality architectural projects. For example, Erik Swahn’s

work included drawings in his training data set from websites that publish projects by

international renown architects (plansofarchitecture and DeZeen). In his GAN Hadid,

Sean Wallish trained his generative adversarial networks with photographs of

buildings by Zaha Hadid Architects. Zaha Hadid is today regarded as one of the most

talented recent architects. The two projects illustrate very clearly how GANs can be

applied to architecture to produce new spatial configurations on the basis of high-

quality projects. In their work, however, we are not able to see any final, full-fledged

floor plan (like perhaps we see in Chaillou’s). In GAN Hadid in particular, we can see

how very well-designed buildings are separated into their salient components (that can

Harvard Data Science Review • Self-Organizing Floor Plans

31

be geometries and architectural features that may stand out from the overall building

silhouette) and reaggregated into a new composition. These new synthetized spatial

configurations are made of the parts of many buildings, yet they do not look

necessarily surprisingly new. One may argue that the designer here trained the GAN

so well that the algorithm generated a design as the original architect would have

done. If the main objective of an NN is to learn from a training data set to generate

new configurations based on rules inferred, this would be good for architects in

general terms. This would be relevant in Chaillou’s case, where his method can be

applied to high-quality floor plans to generate extraordinary solutions (note that

Chaillou trained his GAN with generic floor plans from the City of Boston).

As we all know, a good design is a complex combination of several factors that may

include consideration of the context, the users, normative constraints, experience from

past projects, and so on. A good design also includes aspirational elements like the

designer’s ambitions for the project, their own way of seeing and interpreting the

world through their ideology and culture, and the intention of improving people’s lives

(with an added quality of the physical environment, for example). These are aspects

that, combined, encourage designers to improve their work every time. In this regard,

one may argue that learning from existing projects (floor plans, spatial configurations,

etc.) is simply not enough to achieve incremental architectural quality. By the same

token, designers should try to integrate into their computational approaches to design

elements ones that are so far not included and that are more subjective, aspirational,

and striving for incremental improvement. At the same time, data scientists should

develop ways in which ML methods can include the designer and users’ subjective

components that make design (in principle) better every time.

One of the next challenges is then how to produce SOFPs with perhaps smaller and

more controlled data sets that generate an incremental level of spatial quality,

including a certain degree of subjectivity (of the designer) and that ensure a good

public acceptance of the resulting building. In other words, how to encode those

important aspects that differentiate a generic (and sometimes mediocre) building from

an outstanding architecture that can enrich people’s lives?

Disclosure Statement
The authors have no disclosures to share for this manuscript.

Harvard Data Science Review • Self-Organizing Floor Plans

32

Acknowledgements
I would like to thank Hongwei Wu (University of Hertfordshire) for his helpful

comments on GANs and ML methods in general. I would also like to express my

appreciation to the designers who kindly allowed me to include their images in this

article, especially Stephanie St Loe, Tommaso Turchi, Joel Simon, Ao Li, Runjia Tian,

Xiaoshi Wang, Lu Yueheng, Erik Swahn, Sean Wallish, Kyle Steinfeld, Stanislas

Chaillou, Benjamin Felbrich and Marco Juliani. Finally, I would like to thank the editors

of HDSR for their helpful, constructive, and prompt comments throughout the entire

process and, in particular, the Editor-in-Chief Xiao-Li Meng for the encouraging

comments and suggestions.

References
Alcin, M., Koyuncu, I., Tuna, M., Varan, M., & Pehlivan, I. (2019). A novel high speed

artificial neural network–based chaotic true random number generator on field

programmable gate array. International Journal of Circuit Theory and Applications,

47(3), 365–378. https://doi.org/10.1002/cta.2581

Anderson, C., Bailey, C., Heumann, A. and Davis, D., 2018. Augmented space planning:

Using procedural generation to automate desk layouts. International Journal of

Architectural Computing, 16(2), pp.164-177.

Benedikt, M. L. (1979). To take hold of space: Isovists and isovist fields. Environment

and Planning B: Planning and Design, 6(1), 47–65. https://doi.org/10.1068/b060047

Bird, J. J., Ekárt, A., Buckingham, C. D., & Faria, D. R. (2019). Evolutionary

optimisation of fully connected artificial neural network topology. In K. Arai, R. Bhatia,

& S. Kapoor (Eds.), Intelligent Computing-Proceedings of the Computing Conference

(pp 751–762). Springer, Cham. https://doi.org/10.1007/978-3-030-22871-2_52

Brookes, M. J., & Kaplan, A. (1972). The office environment: Space planning and

affective behavior. Human Factors, 14(5), 373–391.

https://doi.org/10.1177/001872087201400502

Carta, S. (2020a). Algorithms are designing better buildings. The Conversation.

Carta, S. (2020b). Machine learning and computational design. Ubiquity, 2020(May), 1–

10. https://doi.org/10.1145/3401842

https://doi.org/10.1002/cta.2581
https://doi.org/10.1068/b060047
https://doi.org/10.1007/978-3-030-22871-2_52
https://doi.org/10.1177/001872087201400502
https://doi.org/10.1145/3401842

Harvard Data Science Review • Self-Organizing Floor Plans

33

Carta, S., St Loe, S., Turchi, T., & Simon, J. (2020). Self-organising floor plans in care

homes. Sustainability, 12(11), Article 4393. https://doi.org/10.3390/su12114393

Celento, D. (2007). Innovate or perish: New technologies and architecture’s future.

Harvard Design Magazine, 26 (Spring/Summer).

http://www.harvarddesignmagazine.org/issues/26/innovate-or-perish-new-technologies-

and-architectures-future

Chaillou, S. (2019, July 17). ArchiGAN: a Generative Stack for Apartment Building

Design. NVIDIA. https://developer.nvidia.com/blog/archigan-generative-stack-

apartment-building-design/?linkId=70968833

Chen, C., Chacón Vega, R. J., & Kong, T. L. (2020). Using genetic algorithm to automate

the generation of an open-plan office layout. International Journal of Architectural

Computing, Article 1478077120943532. https://doi.org/10.1177/1478077120943532

Chen, M., Yu, R., Xu, S., Luo, Y., & Yu, Z. (2019). An improved algorithm for solving

scheduling problems by combining generative adversarial network with evolutionary

algorithms. Proceedings of the 3rd International Conference on Computer Science and

Application Engineering, Article 10, 1–7. https://doi.org/10.1145/3331453.3361639

Daher, E., Kubicki, S., & Pak, B. (2019, June). A survey on the parametric approaches

and tools used in the design process by practitioners. In 2019 IEEE International

Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1–7). IEEE.

https://doi.org/10.1109/ICE.2019.8792606

Danka, T. (2020 May). Why are neural networks so powerful? Towards Data Science.

https://towardsdatascience.com/why-are-neural-networks-so-powerful-bc308906696c

Davis, D. (2020, February 20). Generative design is doomed to fail.

https://www.danieldavis.com/generative-design-doomed-to-fail/

Dhondse, A., Kulkarni, S., Khadilkar, K., Kane, I., Chavan, S., & Barhate, R. (2020).

Generative adversarial networks as an advancement in 2D to 3D reconstruction

techniques. In Data management, analytics and innovation (pp. 343–364). Springer.

https://doi.org/10.1007/978-981-13-9364-8_25

Eastman, C. N. (1975). Spatial synthesis in computer-aided building design. Elsevier

Science.

https://doi.org/10.3390/su12114393
http://www.harvarddesignmagazine.org/issues/26/innovate-or-perish-new-technologies-and-architectures-future
https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/?linkId=70968833
https://doi.org/10.1177/1478077120943532
https://doi.org/10.1145/3331453.3361639
https://doi.org/10.1109/ICE.2019.8792606
https://towardsdatascience.com/why-are-neural-networks-so-powerful-bc308906696c
https://www.danieldavis.com/generative-design-doomed-to-fail/
https://doi.org/10.1007/978-981-13-9364-8_25

Harvard Data Science Review • Self-Organizing Floor Plans

34

Eisenstadt, V., Langenhan, C., & Althoff, K.-D. (2019). Generation of floor plan

variations with convolutional neural networks and case-based reasoning—An approach

for transformative adaptation of room configurations within a framework for support of

early conceptual design phases. In J. P. Sousa, J. P. Xavier, & G. Castro Henriques

(Eds.), Architecture in the age of the 4th Industrial Revolution—Proceedings of the

37th eCAADe and 23rd SIGraDi Conference (Vol. 2, pp. 79–84).

Fairs, M. (2019, October 22). Rise of artificial intelligence means architects are

"doomed" says Sebastian Errazuriz. dezeen.

https://www.dezeen.com/2019/10/22/artificial-intelligence-ai-architects-jobs-sebastian-

errazuriz/

Ferner, J. N., Fischler, M., Zarubica, S., & Stucki, J. (2017). Combining neuro-evolution

of augmenting topologies with convolutional neural networks. en. In:(), 56.

https://www.researchgate.net/publication/328939814_Combining_Neuro-

Evolution_of_Augmenting_Topologies_with_Convolutional_Neural_Networks

Ferreira, B., & Leitão, A. (2015). Generative design for building information modeling.

In B. Martens, G. Wurzer, T. Grasl, W. E. Lorenz, & R. Schaffranek (Eds.), Real time -

Proceedings of the 33rd eCAADe Conference (Vol. 1, pp. 635–644).

Giedion, S. (1948). Mechanization takes command a contribution to anonymous

history. Oxford University Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Proceedings of the

27th International Conference on Neural Information Processing Systems (NIPS'14)

(Vol. 2, pp. 2672–2680). MIT Press.

Goodman, G. (2019). A machine learning approach to artificial floorplan generation.

Theses and Dissertations—Computer Science, 89.

https://doi.org/10.13023/etd.2019.391

Guo, Z., & Li, B. (2017). Evolutionary approach for spatial architecture layout design

enhanced by an agent-based topology finding system. Frontiers of Architectural

Research, 6(1), 53–62. https://doi.org/10.1016/j.foar.2016.11.003

Hesse, Christopher. (2017, January 25). Image-to-Image Translation in TensorFlow.

https://affinelayer.com/pix2pix/

https://www.dezeen.com/2019/10/22/artificial-intelligence-ai-architects-jobs-sebastian-errazuriz/
https://www.researchgate.net/publication/328939814_Combining_Neuro-Evolution_of_Augmenting_Topologies_with_Convolutional_Neural_Networks
https://doi.org/10.13023/etd.2019.391
https://doi.org/10.1016/j.foar.2016.11.003
https://affinelayer.com/pix2pix/

Harvard Data Science Review • Self-Organizing Floor Plans

35

Hillier, B., & Hanson, J. (1989). The social logic of space. Cambridge University Press.

https://doi.org/10.1017/CBO9780511597237

Hodas, N. O., & Stinis, P. (2018). Doing the impossible: Why neural networks can be

trained at all. Frontiers in Psychology, 9, Article 1185.

https://doi.org/10.3389/fpsyg.2018.01185

Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and

applications. Elsevier. https://doi.org/10.1016/B978-1-55860-872-6.X5016-1

Ibrahim, M. Y., Sridhar, R., Geetha, T., & Deepika, S. (2019). Advances in

neuroevolution through augmenting topologies — A case study. 2019 11th

International Conference on Advanced Computing (ICoAC), (pp. 111–116). IEEE.

https://doi.org/10.1109/ICoAC48765.2019.246825

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with

conditional adversarial networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 1125–1134). IEEE.

Jabi, W. (2013). Parametric design for architecture. Laurence King Publishing.

Jo, J. H., & Gero, J. S. (1998). Space layout planning using an evolutionary approach.

Artificial Intelligence in Engineering, 12(3), 149–162. https://doi.org/10.1016/S0954-

1810(97)00037-X

Juliani, M. (2020). Plan Bee. https://www.food4rhino.com/app/planbee;

https://github.com/M-JULIANI/planbeeGH

Kalervo A., Ylioinas J., Häikiö M., Karhu A., & Kannala J. (2019) CubiCasa5K: A dataset

and an improved multi-task model for floorplan image analysis. In M. Felsberg, P. E.

Forssén, I. M. Sintorn, & J. Unger (Eds.), Image analysis. SCIA 2019. Lecture Notes in

Computer Science (Vol. 11482). Springer, Cham. https://doi.org/10.1007/978-3-030-

20205-7_3

Karpathy, A., Abbeel, P. Brockman, G., Chen, P., Cheung, V., Duan, R., Goodfellow, I.,

Kingma, D., Ho, J., Houthooft, R., Salimans, T., SchulmanIlya Sutskever, J., & Zaremba,

W. (2016). Generative models. OpenAi.com. https://openai.com/blog/generative-models/

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of GANs for

improved quality, stability, and variation. ArXiv. https://arxiv.org/abs/1710.10196

https://doi.org/10.1017/CBO9780511597237
https://doi.org/10.3389/fpsyg.2018.01185
https://doi.org/10.1016/B978-1-55860-872-6.X5016-1
https://doi.org/10.1109/ICoAC48765.2019.246825
https://doi.org/10.1016/S0954-1810(97)00037-X
https://www.food4rhino.com/app/planbee
https://github.com/M-JULIANI/planbeeGH
https://doi.org/10.1007/978-3-030-20205-7_3
https://openai.com/blog/generative-models/
https://arxiv.org/abs/1710.10196

Harvard Data Science Review • Self-Organizing Floor Plans

36

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for

generative adversarial networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (pp. 4401–4410). IEEE.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing

and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (pp. 8110–8119). IEEE.

Khean, N., Kim, L., Martinez, J., Doherty, B., Fabbri, A., Gardner, N., & Haeusler, M. H.

(2018). The introspection of deep neural networks-towards illuminating the black box-

training architects machine learning via Grasshopper definitions. In T. Fukuda, W.

Huang, P. Janssen, K. Crolla, & S. Alhadidi (Eds.), Learning, adapting and prototyping

—Proceedings of the 23rd CAADRIA Conference (Vol. 2, pp. 237–246).

Kipf, T. (2016, September 30). Graph convolutional networks. GitHub.

https://tkipf.github.io/graph-convolutional-networks/

Le Goff, L. K., Hart, E., Coninx, A., & Doncieux, S. (2020, July). On pros and cons of

evolving topologies with novelty search. In Artificial Life Conference Proceedings (pp.

423–431). MIT Press. https://doi.org/10.1162/isal_a_00291

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature 521(7553), Article

14539. https://doi.org/10.1038/nature14539

Levary, R. R., & Kalchik, S. (1985). Facilities layout—A survey of solution procedures.

Computers & Industrial Engineering, 9(2), 141–148. https://doi.org/10.1016/0360-

8352(85)90013-0

Li, A., Tian, R., Wang, X., & Lu, Y. PlanGCN Team. (2020) Graph to Plan.

https://www.aoli.org/graph2plan

Liggett, R. S. (2000). Automated facilities layout: Past, present and future. Automation

in Construction, 9(2), 197–215. https://doi.org/10.1016/S0926-5805(99)00005-9

Liu, C., Wu, J., Kohli, P., & Furukawa, Y. (2017). Raster-to-vector: Revisiting floorplan

transformation. In Proceedings of the IEEE International Conference on Computer

Vision (pp. 2195–2203). IEEE. https://doi.org/10.1109/ICCV.2017.241

March, L., & Steadman, P. (1971). Spatial allocation procedures. In The Geometry of

Environment (pp. 303–317). MIT Press.

https://tkipf.github.io/graph-convolutional-networks/
https://doi.org/10.1162/isal_a_00291
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/0360-8352(85)90013-0
https://doi.org/10.1016/S0926-5805(99)00005-9
https://doi.org/10.1109/ICCV.2017.241

Harvard Data Science Review • Self-Organizing Floor Plans

37

Martin, J. (2005). Algorithmic beauty of buildings methods for procedural building

generation. Computer Science Honors Theses, 4.

Merrell, P., Schkufza, E., & Koltun, V. (2010). Computer-generated residential building

layouts. ACM Transactions on Graphics, 29(6), Article 181.

https://doi.org/10.1145/1882261.1866203

Michalek, J., Choudhary, R., & Papalambros, P. (2002). Architectural layout design

optimization. Engineering Optimization, 34(5), 461–484.

https://doi.org/10.1080/03052150214016

Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., & Furukawa, Y. (2020). House-GAN:

Relational generative adversarial networks for graph-constrained house layout

generation. https://arxiv.org/abs/2003.06988

Phelan, N., Davis, D., & Anderson, C. (2017). Evaluating architectural layouts with

neural networks. SIMAUD '17: Proceedings of the Symposium on Simulation for

Architecture and Urban Design (May), Article 8, 1–7.

Pitso, T. (2019). Shared futures: an exploration of the collaborative potential of

intelligent machines and human ingenuity in cocreating value. In Toward super-

creativity-improving creativity in humans, machines, and human-machine

collaborations. IntechOpen. https://doi.org/10.5772/intechopen.85054

Plowright, P. D. (2014). Revealing architectural design: Methods, frameworks and

tools. Routledge.

Rutten, D. (2021). The inevitable and utter demise of the entire architectural

profession. https://discourse.mcneel.com/t/unpublished-opinion-piece/118250

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016).

Improved techniques for training GANs. ArXiv. https://arxiv.org/abs/1606.03498

Sandelin, F. (2019). Semantic and instance segmentation of room features in floor

plans using Mask R-CNN. (PhD dissertation). http://urn.kb.se/resolve?

urn=urn:nbn:se:uu:diva-393348

Seehof, J. M., Evans, W. O., Friederichs, J. W., & Quigley, J. J. (1966, January).

Automated facilities layout programs. In Proceedings of the 1966 21st National

Conference (pp. 191–199). ACM. https://doi.org/10.1145/365719.366401

https://doi.org/10.1145/1882261.1866203
https://doi.org/10.1080/03052150214016
https://doi.org/10.5772/intechopen.85054
https://discourse.mcneel.com/t/unpublished-opinion-piece/118250
https://arxiv.org/abs/1606.03498
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393348
https://doi.org/10.1145/365719.366401

Harvard Data Science Review • Self-Organizing Floor Plans

38

Shaviv, E. (1987). Generative and evaluative CAAD tools for spatial allocation problem.

In Principles of computer-aided design: Computability of design (pp. 191–212). Wiley-

Interscience.

Simon, J. (2017). Evolving floorplans. https://www.joelsimon.net/evo_floorplans.html

Song, M., Zhang, J., Chen, H., & Li, T. (2018, February). Towards efficient

microarchitectural design for accelerating unsupervised GAN-based deep learning. In

2018 IEEE International Symposium on High Performance Computer Architecture

(HPCA) (pp. 66–77). IEEE. https://doi.org/10.1109/HPCA.2018.00016

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through

augmenting topologies. Evolutionary Computation, 10(2), 99–127.

https://doi.org/10.1162/106365602320169811

Steinfeld, K. (2019). GAN Loci. http://blah.ksteinfe.com/191026/gan_loci.html

Swahn, E. (2019, June 10). Latent spaces. Studio 9.

https://www.studio9.arch.kth.se/author/erikswahn/

Tarabishy, S., Psarras, S., Kosicki, M., & Tsigkari, M. (2020). Deep learning surrogate

models for spatial and visual connectivity. International Journal of Architectural

Computing, 18(1), 53–66. https://doi.org/10.1177/1478077119894483

Terzidis, K. (2006). Algorithmic architecture. Routledge.

Turner, A., Doxa, M., O'Sullivan, D., & Penn, A. (2001). From isovists to visibility

graphs: A methodology for the analysis of architectural space. Environment and

Planning B: Planning and Design, 28(1), 103–121. https://doi.org/10.1068/b2684

Veloso, P., & Krishnamurti R. (2021) Self-learning agents for spatial synthesis. In S.

Eloy, V. D. Leite, F. Morais, & V. J. Vieira (Eds.), Formal methods in architecture.

Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for

Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-030-57509-

0_24

Wallish, S. (2019a). Counterfeiting daily: An exploration of the use of generative

adversarial neural networks in the architectural design process. Columbia University.

https://open.library.ubc.ca/cIRcle/collections/graduateresearch/42591/items/1.0387289

Wallish, S. (2019b). GAN Hadid. https://www.seanwallish.com/gan-hadid

https://www.joelsimon.net/evo_floorplans.html
https://doi.org/10.1109/HPCA.2018.00016
https://doi.org/10.1162/106365602320169811
http://blah.ksteinfe.com/191026/gan_loci.html
https://www.studio9.arch.kth.se/author/erikswahn/
https://doi.org/10.1177/14780771198
https://doi.org/10.1068/b2684
https://doi.org/10.1007/978-3-030-57509-0_24
https://open.library.ubc.ca/cIRcle/collections/graduateresearch/42591/items/1.0387289
https://www.seanwallish.com/gan-hadid

Harvard Data Science Review • Self-Organizing Floor Plans

39

Wikström, D. (2018). Me, myself, and AI: Case study: Human-machine co-creation

explored in design. Umeå University, Faculty of Social Sciences, Department of

Informatics. http://www.diva-portal.org/smash/record.jsf?

pid=diva2%3A1223277&dswid=6515

Woo, W.L., 2020. Future trends in I&M: Human-machine co-creation in the rise of

AI. IEEE Instrumentation & Measurement Magazine, 23(2), pp.71-73.

Wu, W., Fu, X.-M., Tang, R., Wang, Y., Qi, Y.-H., & Liu, L. (2019). Data-driven interior

plan generation for residential buildings. ACM Transactions on Graphics (TOG), 38(6),

1–12. http://dx.doi.org/10.1145/3355089.3356556

Zeng, Z., Li, X., Yu, Y. K., & Fu, C. W. (2019). Deep floor plan recognition using a multi-

task network with room-boundary-guided attention. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (pp. 9096–9104). IEEE.

http://dx.doi.org/10.1109/iccv.2019.00919

Zheng, H., & Ren, Y. (2020). Architectural layout design through simulated annealing

algorithm. In D. Holzer, W. Nakapan, A. Globa, & I. Koh (Eds.), RE: Anthropocene,

Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference (Vol. 1,

pp. 275–284).

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2018). Graph

neural networks: A review of methods and applications. ArXiv.

https://arxiv.org/abs/1812.08434

This article is © 2021 by the author(s). The editorial is licensed under a Creative

Commons Attribution (CC BY 4.0) International license

(https://creativecommons.org/licenses/by/4.0/legalcode), except where otherwise

indicated with respect to particular material included in the article. The article should

be attributed to the authors identified above.

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1223277&dswid=6515
http://dx.doi.org/10.1145/3355089.3356556
http://dx.doi.org/10.1109/iccv.2019.00919
https://arxiv.org/abs/1812.08434
https://creativecommons.org/licenses/by/4.0/legalcode

