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Abstract 
 

The use of stem cell-based therapy in conjunction with existing medical interventions, 

to target complications caused by coronary artery disease (CAD) is not fully examined. 

In parallel, the role of lysophosphatidic acid (LPA); an important endogenous bioactive 

phospholipid, has shown cardioprotective characteristics at low physiological 

concentrations, providing a potential for future treatment plans. In addition, studies 

have indicated the promise of aspirin (ASA)/ salicylic acid (SA) or LPA to induce and 

promote cardiac differentiation of SCs in various models. Therefore, in this project, we 

investigated the effects of ASA/SA in the presence or absence of LPA to induce the 

differentiation of the murine P19 teratocarcinoma stem cell line into cardiomyocytes. 

Routine cell culture was undertaken using P19 stem cells cultured in complete α-

minimal essential medium (α-MEM). In the first instance, the protocol was optimised 

to ensure that efficient and reproducible differentiation was achieved. Embryoid 

bodies (EB) were formed by seeding cells and left to aggregate over a period of 2 days 

in ultra-low attachment 96-well plates, to establish differentiation. P19 stem cells 

were pre-incubated for 1 hour with ASA and SA at varying concentrations (0.1mM, 

0.3mM, 1mM and 3mM) and selective NFκB inhibitor (0.1nM CAY10470) were pre-

incubated 1 hour prior to adding LPA (5µM).  Control cells were cultured in complete 

α-MEM alone. 6-8 EBs were isolated and seeded into 12-well tissue culture plates and 

cultured for 6 days. Western blotting was used to confirm differentiation, examining 

for the expression of ventricular myosin light chain (MLC-1v), relative to β-actin. To 

determine the potential mechanism through which differentiation may be induced, 

changes in phosphorylation of activated NFκB and IκB were determined. 

Optimisation of the differentiation protocol revealed that 1 x 104 cells grown for 2 

days, produced consistent EBs sizes which ranged between 350-450µm in diameter. 

These EBs efficiently differentiated into cardiomyocytes. Differentiation was 

consistently achieved using LPA (5µM) and at selected concentrations of ASA (0.3 -
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1mM, at day 3) and SA (1mM, at day 3). Maximal expression of MLC-1v in ASA/SA 

conditions was seen at 1mM. However, LPA induced differentiation was inhibited by 

both in combination treatment with ASA and SA, despite both inducing differentiation 

independently. Analysis of phosphorylated and native proteins associated with the 

NFκB complex was successfully detected. These initial studies indicated substantial 

expression of phospho NFκB in LPA, SA and ASA treated cells and increases were seen 

at the 6-9-hour time points. The expression of phospho IκB in LPA treated cells peaked 

at 10-15 mins, while ASA/SA treated cells showed phospho IκB peaking at a later time 

point (3 hours). 

In conclusion, the experiments conducted in this thesis have shown that both ASA/SA 

and LPA induced cardiomyocyte differentiation. However, when ASA or SA are used in 

combination with LPA, an antagonistic effect is seen, preventing LPA to induce 

differentiation. 
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MAPK Mitogen-activated protein kinase 

mECSC Murine embryonic carcinoma stem cells 

mESC Murine embryonic stem cells 

MI Myocardial infarction 

MSCs Mesenchymal stem cells  

MTT 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide 

NFκB  Nuclear factor kappa B 

NSAIDs Nonsteroidal anti-inflammatory drugs 

OxLDL  Oxidised LDL 

PA Phosphatidic acid 

PBS 

PCI 

Phosphate buffered saline 

Percutaneous coronary intervention 

PDGF-A–B Platelet-derived growth factor 
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PDLSCs Periodontal ligament stem cells 

PG Prostaglandins 

PKC Phosphoinositide 3-kinase 

PSCs Pluripotent stem cells 

PVDF 

RCF 

Polyvinylidene difluoride 

Relative centrifugal force 

RIPA Radioimmunoprecipitation assay 

ROCK Rho-associated protein kinase 

S.E.M. Standard error mean 

SA Salicylic acid 

SC Stem cell  

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TF Transcription factor 

TX Thromboxane 

TXA2 Thromboxane A2  

VCAM-1 Vascular cell adhesion protein 

VEGF Vascular endothelial growth factor 

VSMC Vascular smooth muscle cell 
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1.1 Coronary artery disease 

Coronary artery disease (CAD) is reported to cause over 17.3 million deaths worldwide, 

accounting for 31.5% of all deaths (Townsend et al., 2016). Atherosclerosis is caused 

by the build-up of fatty deposits within the coronary arterial walls and over time, can 

lead to the narrowing of arterial walls causing restricted blood flow to the heart; this 

results in angina, arrhythmia, myocardial infarction (MI), and other cardiovascular 

events (Leon & Maddox, 2015). Atherosclerosis may also enhance the expression of 

other supplementary mediators such as adipokines, adhesion molecules, selectins and 

inflammatory markers present at the site of the lesion (Hochrainer et al., 2013). Risk 

factors for CAD (or atherosclerosis) include age, sex, cigarette smoke, family history of 

CAD, hypertension, hypercholesterolemia, diabetes, obesity, physical inactivity and 

may also be linked to the accretion of fibrinogen, lipoproteins and triglycerides levels 

(Assmann et al., 1999).  

1.1.1 Pathophysiology of atherosclerosis 

Atherosclerosis is an underlying pathology associated with CAD; defined as an 

inflammatory-fibroproliferative response to multiple forms of endothelial injury and 

chronic inflammatory stimulus, ultimately leading to stenosis and thrombosis within 

the major conduit arteries. Atherosclerosis is a progressive development, as continued 

morphological changes within the arterial wall lesions, results in the accumulation of 

cholesterol-rich lipids and inflammatory cytokines. The initiation of atherosclerosis 

occurs upon damage caused to the endothelium by various factors including high 

blood pressure, viruses, cigarette toxins, resulting in high concentrations of plasma 

cholesterol, more specifically low-density lipoprotein (LDL) entering the arterial intima 

from the blood, which accumulates within the arterial wall. Once in the vessel wall, 

LDL particles undergo chemical modification resulting in oxidised LDL (OxLDL), which 

can induce pro-atherogenic genes such as intercellular adhesion molecule 1 (ICAM-1), 

vascular cell adhesion protein (VCAM-1), heparin-binding EGF-like growth factor (HB-

EGF) and platelet-derived growth factor (PDGF-A–B) (L.-F. Chen & Greene, 2004). 
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Inflammation is initiated when chemoattractant and chemokines are expressed by 

activated intimal smooth muscle cells and activated endothelial cells that secrete 

adhesion molecules, consequently enrolling circulating neutrophils, monocytes, 

lymphocytes and mast cells within the intimal layer. Once in the intimal layer, 

monocytes differentiate into macrophages which express scavenger receptors that 

bind to oxidised LDL (Takase et al., 2013). Macrophages laden with engulfed oxidised 

LDL become foam cells and are the first early signs of atherosclerosis which appears 

as yellow fatty streaks. In addition, plaque formation is associated with the increasing 

accumulation of extracellular lipids that coalesces into pools, forming lipid-rich 

necrotic cores in the intimal layer. As a result, fibrous tissues are formed over these 

lipid-rich necrotic cores, encasing them under the endothelium producing a fibrous 

cap (Takase et al., 2013). The resulting thrombus formation associated with the 

pathophysiology of atherosclerosis leads to life-threatening complications such as 

myocardial infarction (MI).  

1.1.2 Myocardial Infarction 

Myocardial ischaemia arises from blockage of the coronary artery, resulting from 

either lipid deposition in the coronary arteries or from a blood clot that is formed in 

response to atherosclerotic plaque. The formation of atheroma causes occlusion of 

blood vessels, consequently hardening and narrowing the coronary artery. 

Subsequently, the reduction in oxygen supply to the surrounding heart muscles leads 

to myocardial infarction, which in turn give rise to various necrosis and pathological 

characteristics such as myocyte necrosis, coagulation necrosis, contraction band 

necrosis and specific areas expressing myocytolysis are also denoted. Furthermore, 

myocardial infarction is distinguished into type 1 (spontaneous myocardial infarction) 

and type 2 (myocardial infarction secondary to ischaemic imbalance). Type 1 

myocardial infarction associated with events resulting from atherothrombosis, 

ulceration, plaque rupture, fissuring and erosion, leading to coronary thrombus 

formation in one or more of the coronary arteries. Type 2 myocardial infarction occurs 
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as a result of inadequate myocardial oxygen supply and demand associated by factors 

other than CAD such as arrhythmia, severe anaemia, respiratory failure, bradycardia, 

and hypotension (Kohli et al., 2011). Therefore, the severity of myocardial infarction 

has led to a broad range of pharmacological interventions being adopted for clinical 

use as mentioned below.  

1.1.3 Current treatments of coronary artery disease   

Contemporary treatment for CAD uses approaches to reduce the risk of adverse 

cardiovascular events, improve and recover the functional capacity of the myocardium 

and re-establish normal working blood flow throughout the coronary arteries (X. Chen 

et al., 2003; Martinez-Agosto et al., 2007). One of the first course of action for acute 

MI consist of undertaking the detection of the blockage, to plan the next course of 

treatments. To accommodate these test X-rays, electrocardiogram and coronary 

angiography would be conducted. Consequently, the first line of treatments consists 

of administering patients under appropriate medications such as anticoagulant, 

antiplatelet and thrombolytic agents, etc. In addition to these treatments, 

percutaneous coronary intervention (PCI) procedures are followed, such as 

angioplasty, in which a balloon-tipped catheter is inserted at the target location 

(plaque formed area) and pushed against the endothelial wall, thus initiating an 

increase in blood flow by widening the blood vessel walls. Furthermore, coronary 

stenting often accompanies angioplasty, in which a small wire-mesh tube structure is 

inserted into the narrowed/damaged blood vessel, providing a scaffold that increases 

structural integrity and diameter  (Michaels & Chatterjee, 2002). In severe cases, 

coronary artery bypass surgery is considered, whereby the surgery involves re-

establishing blood flow to the heart by bypassing the occluded or narrowed coronary 

artery using grafted blood vessel.  

In prolonged cases of oxygen deprivation to the cardiac muscles, resulting from severe 

myocardial infarction (MI), the cardiac tissues undergo necrosis and subsequently, 

heart failure develops. In such cases, heart transplantations are undertaken and may 
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be the only effective choice of treatment. However, this method of treatment is 

hurdled by several challenges, examples of these include transplant rejection of the 

donor's heart, due to the host’s immune system targeting foreign tissue. This can 

result in stem cell (SC) graft failure and may increase infection susceptibility, as the 

medications are taken post-transplant weakening the patient’s immune system, 

leaving them vulnerable to infections (Cha et al., 2015). Furthermore, the combination 

of these treatments associated with heart transplant does not guarantee success or 

indeed survival of the patient. Consequently, the combination of these factors calls for 

an alternative and effective form of therapy.  

Physiologically, a small degree of innate regenerative capacity (pre-existing vessels 

and vascular progenitor cells contributing to angiogenesis) and cardioproliferative 

effects of the heart are seen following MI and ischaemic injury (Bertero & Murry, 

2018). However, the limited rate of regeneration is not sufficient for functional 

restoration. Furthermore, the inability of the heart to functionally repair itself results 

in its limited capacity to function adequately. This is further hampered by the lack of 

treatment to target the loss of cardiomyocytes resulting from MI. Cardiac tissue 

regeneration using stem cells has however been the focus over the past decade.  The 

success of using stem cells clinically has also shown limited progress. This is due to 

several barriers that are yet to be overcome and include cell death due to the hostile 

microenvironment presented as a direct result of MI.  The hypoxic condition presented 

by restricted blood flow to the affected areas and acidosis caused by the increase in 

pH due to the increase in carbon dioxide content, all contribute to cell death (Zhao et 

al., 2016). Conclusively, regeneration of patient’s cardiac tissue could negate the 

underlying issues listed previously, for example, such as the lack of survivability seen 

in grafted SCs. One way forward is the use of stem cell therapy, as there has been 

extensive research in this field in recent years. One such example is fusing rat 

cardiomyocytes and human stem cells obtained from adipose tissue, that were 

capable of beating and replacing damaged heart tissue following MI (Metzele et al., 

2011) and the transplantation of cardiac muscle cells derived from human embryonic 
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stem cells, into primate monkey cardiac muscle, showing 40% repair in cardiac muscle 

damage (Chong et al., 2014).  

Although these studies initially provided a promising innovation in using stem cells 

therapy for cardiac treatment, it is still considered a highly controversial area. Over 31 

scientific papers  have been redacted in the field of cardiac cell therapy (recently 

Circulation Research and Circulation, have listed 13 redactions); independent evidence 

has disproved claims that c-kit+ cell is a cardiac muscle progenitor (Sultana et al., 2015); 

studies have shown a lack of rigour and positive bias, reporting a significant amount 

of technical errors within their research (Nowbar et al., 2014). In conclusion, the 

translational relevance of stem cell therapy to the clinical application could lie 

anywhere from 5-25 years and to overcome the previously mentioned issues, rigorous 

studies should be carried out, fully recognising the multiple challenges and 

complexities of cardiac cell therapy (Chien et al., 2019).  

Subsequently, the use of prophylactic treatments has been undertaken in regulating 

the progression of MI and further maintaining the symptoms imposed by CAD. One of 

the pharmacological agents used for this is aspirin, an antiplatelet agent that targets 

the generation of thromboxane A2 (TXA2), by irreversibly inhibiting the function of 

platelet cyclooxygenase (COX1) pathway. As a result, platelet activation and 

aggregation are prevented due to the inability of TXA2 to form (Schrör, 2016). In 

addition, fibrinolytic drugs such as reteplase and streptokinase that target the 

stimulation of plasminogen, resulting in fibrin disintegration are yet another example 

of pharmacological interventions prescribed for patients with CAD. Lipid-lowering 

drugs such as atorvastatin, fluvastatin, and lovastatin are also used to control 

hypercholesterolemia by reducing the levels of circulating LDL levels. Their mechanism 

of action includes targeting the rate-limiting step in cholesterol synthesis by 

competitively inhibiting the enzyme 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-

CoA) reductase, resulting in the increase of LDL receptors expression, leading to the 

increase of LDL reuptake (Willey et al., 2006). In conclusion, the pharmacological 
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interventions described above govern the regulation of heart disease (HD) symptoms 

and prevent further progression of risks and consequences associated HD. 

 

1.2 Stem cells for heart diseases 

Recently, studies have examined the use of cortical bone stem cells (CBSCs), isolated 

from Gottingen minipig or transgenic C57/BL6 mice, in improving cardiac function 

after MI. The data suggested an increase in cardiac lineage commitment, increased 

proliferation and migration of the transplanted stem cells that produce functional gap 

junctions (connexin 43) between the transplanted and pre-existing cells. As a result, 

CBSCs have the potential to enhance protective effects after cardiac injury (Mohsin et 

al., 2015). Stem cell injection delivery studies have also been conducted on human 

patients, demonstrating the potential for stem cell in improving damaged cardiac 

structures and function. Mesenchymal stem cells (MSCs) have been proposed to 

improve left ventricular (LV) structure by enhancing left ventricular ejection fraction 

(LVEF). To test this hypothesis, patients were injected with autologous MSCs into 

akinetic/hypokinetic myocardial territories. The results implicated there was 

comprehensive restitution of regional function that could contribute to successful cell-

based therapy (Karantalis et al., 2014).   

From these previous studies, research undertaking the potential use of human 

embryonic stem cell (hESC)-derived cardiomyocytes (hESC-CMs) were conducted, 

which examined the generation of highly vascularised cardiac tissues in vitro, to 

improve the survivability of transplanted myocytes. The results demonstrated cardiac-

specific tissues with functional properties could be achieved by generating highly 

vascularized human engineered cardiac tissue, thereby establishing an increase in 

functional cardiac benefit and graft survival (Caspi et al., 2007).  Furthermore, the use 

of autologous human cells, such as human adipose-derived stem cells (hASC) has been 

proposed to be a potential source for stem cell-based therapy. This was investigated 

through the trans-differentiation of the human adult stem cells mentioned above, by 
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exposing these cells to human atrial extracts. In conclusion, the reprogramming of 

adult stem cells could be used in treating cardiac diseases (Perán et al., 2010). 

To address pre-existing concerns associated with SC therapy, a study conducted by 

Zhao et al aimed to implant pre-differentiated pluripotent stem cells (PSCs) into the 

early cardiac stage, as the rate of survivability was significantly lower when using 

mature cardiomyocytes. The native chemical, mechanical and electrical cues pre-

existing within the heart, would provide a foundation to ensure the prolonged survival 

of pre-differentiated cardiac cells into a mature cardiomyocyte. Furthermore, this 

theory was supported by the bioengineering of an injectable encapsulated aggregates 

of PSC (Zhao et al., 2016). Firstly, a semi-permeable alginate hydrogel was constructed 

using co-axial electrospray to mimic the pre-hatching embryo physical configuration. 

This was subsequently used to micro-encapsulate murine embryonic stem cells (mESC) 

within the permissive liquid core of hydrogel, leading to the formation of one single 

aggregate of mESC’s. These were then pre-differentiated into early cardiomyocytes 

inside the microcapsules. Using sodium citrate as an isotonic solution, the encasing 

microcapsule was dissolved to release the pre-differentiated aggregates. Finally, mESC 

aggregates were re-encapsulated within a micromatrix, preparing them for 

implantation in the desired location (Zhao et al., 2016). 

Alternatively, research has examined the use of paracrine mediators to ensure the 

improvement of post-ischaemic cardiac function and stem cell-mediated cardiac 

repair (Jackson et al., 2015). A key cardioprotective cytokine; insulin-like growth factor 

1 (IGF-1) activates pro-survival of cardiac function via the protein kinase B and 

extracellular signal-regulated kinase/ mitogen-activated protein kinase (ERK/MAPK) 

pathways. The overexpression of IGF-1 was achieved using a third-generation lentiviral 

vector system to facilitate the integration of the transfer plasmid sequences into the 

host genome. The results of this study showed an enhancement in paracrine signals 

by the transplanted explant-derived cells (EDCs), resulting in the recruitment of 
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progenitor cells, increase in survival and of the generation of new cardiomyocytes and 

salvage of the reversibly damaged tissue (Jackson et al., 2015). 

1.2.1 Stem cells 

Stem cells are unspecialized cells with the ability to present themselves in asymmetric 

divisions, existing in a mitotically quiescent form that employ the capacity to 

extensively self-renew; generating daughter cells identical to their parent cell and 

leading to the production of a progeny with more restricted potential of multiple cell 

lineages through these self-renewing capabilities, known as differentiation (Lanza, 

2006; Vartiainen et al., 2003). The multitude of characteristics expressed by stem cells 

enables them to govern the development and the regeneration of tissues within the 

body lost through normal wear and tear, injury, or diseases (Eroles et al., 2014). 

1.2.1.1 Stem cell Potency 

Potency is referred by the ability of stem cells to differentiate into specialized cell 

types, with the capacity to form any mature cell type. Furthermore, these 

differentiation potentials are categorised as totipotent, pluripotent, multipotent, 

oligopotent and unipotent. Totipotent SCs are derived from the first few divisions of 

fertilised eggs (zygote), these cells have the potential to differentiate into embryonic, 

extraembryonic cell types and give rise to primitive-germ-line, somatic 

stem/progenitor SCs. Pluripotent SCs, are obtained from the inner cell mass of 

blastocysts and are descendants of totipotent SCs. These cells have the ability to 

differentiate into nearly all cells and tissues, e.g. germ layer derived cells (endoderm, 

ectoderm and the mesoderm) (De Luna-Bertos et al., 2012; Evans & Kaufman, 1981). 

In contrast, multipotent SCs have the ability to differentiate into a number of limited 

forms of cell types; those closely related to the tissues they reside in. Examples of such 

SCs are adult haematopoietic stem cells, which give rise to multiple blood cell lineages. 

In contrast, oligopotent SCs can give rise to a few but specific lineage of cells seen in 

Figure 1.1. Examples include myeloid and lymphoid SCs. Finally, unipotent being the 
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latter in SC potency have the potential to differentiate along into only one lineage, 

with the ability to renew (Lanza, 2006).  

 

 

 

 

 

 

 

1.2.1.2 Adult Stem cells 

Adult stem cells (ASC) can be found in differentiated tissue and have the ability to 

renew the specific cell type of that tissue. Examples of such sources of tissue include 

skeletal muscle, dental pulp, bone marrow, liver, blood, eye, skin and brain (Eaves, 

2002). In addition, SC from the mesodermal tissue, including bone marrow, have 

shown to give rise to the three major types of ectodermal derivative brain cells (Mezey 

et al., 2000). A limited number of cell lineages present themselves as multipotent or 

oligopotent. However, some ASCs are only able to differentiate into a singular cell line, 

thereby they are categorized as monopotent SCs (Gudjonsson & Magnusson, 2005). 

1.2.1.3 Embryonic Stem cells 

Embryonic stem cells (ESCs) are derived from an early-stage embryo originating from 

a zygote; initiated through the fertilization of an ovum by a sperm, leading to the 

Figure 1.1. Stem cell potency 

EC cells of mammalian embryos are pluripotent, giving rise to all types of cells. 
Whereas, multipotent adult stem cells can give rise to multiple different lineages and 
unipotent adult stem cells produce a single cell type (Martinez-Agosto et al., 2007). 
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systematic formulation of a morula and resulting in a specialized spherical formation 

known as a blastocyst. The blastocyst consists of an outer layer (trophoblast) and a 

cluster of cellular mass known as the inner cell mass. The inner cell mass ability to give 

rise to the majority of the germline (ectoderm, mesoderm, and endoderm) (Eaves, 

2002). Moreover, a singular ESC could potentially differentiate into 200 cell lineages 

leading to tissue and organ formations. Thereby, ESC presents themselves as 

totipotent, due to their differentiating capacity. These characteristics portrayed above 

enable ESC to be used as homogeneous stem cell cultures without an apparent limit 

(Marshak et al., 2008). Embryonic carcinoma (EC) cell lines were the first pluripotent 

cell lines to be established from human germ cell tumours.  They have the ability to 

differentiate into derivatives of all three embryonic germ layers; endoderm, ectoderm 

and mesoderm (Yu & Thomson, 2008).  

1.2.1.4 Induced Pluripotent Stem Cells 

A novel approach to achieving pluripotent stem cell line characteristics was developed 

by Yamanaka and colleagues (Takahashi & Yamanaka, 2006), generating from normal 

adult mouse somatic cells (skin fibroblasts) and later in human somatic cells. 

Consequently, these cells were termed as induced pluripotent stem cells (iPSCs). These 

somatic cells were reprogrammed, presenting pluripotent characteristics through 

overexpression of four transcription factors: c-Myc; Oct4; Klf4; and Sox2 (Takahashi & 

Yamanaka, 2006). The reprogrammed cells displayed many features of embryonic 

stem cells such as teratoma formations, morphology, proliferation and functions. 

Using this technique, the sacrifice of embryos was negated, enabling patient-specific 

pluripotent stem cell lines to be obtained and programmed for therapeutic 

applications of stem cells (Mummery et al., 2011). 

1.2.2 Clinically relevant inducers of stem cell differentiation 

The use of extrinsic factors mediating SC differentiation into cardiomyocytes has 

proven to be successful in this field of research, however, the implication of these 

mediators in clinical applications and relevance are yet to be represented successfully. 
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Although experimental studies previously undertaken have used organic solvents such 

as dimethyl sulfoxide (DMSO), and growth factors such as epidermal growth factor 

(EGF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF), drug-related 

chemicals (cyclosporine, and 5-azacytidine) and active vitamin derivatives (retinoic 

acid), these regulators create challenges for clinical use and most are not readily 

expressed endogenously (Metzele et al., 2011). Consequently, the use of a more 

sustainable endogenous molecule was considered for this research. One such 

molecule is lysophosphatidic acid (LPA), an independent predictor of peripheral 

arterial disease and atherosclerotic cardiovascular disease. Lysophosphatidic acid is an 

endogenous bioactive phospholipid that is elevated in plasma concentrations and 

produced by various stress-inducing stimuli (Orsó & Schmitz, 2017). Lysophosphatidic 

acid may, therefore, be an ideal candidate and may show promising clinical relevance 

in cardiac regeneration. The interactions of these inducers initiating cellular 

differentiation are further understood when examining the signal transduction 

mechanism and their interactions with these molecules.  

1.3 Lysophosphatidic acid (LPA): 

Lysophosphatidic acid is a ubiquitous glycerophospholipid with a molecular weight of 

430-480 Da, found at low concentrations in the blood plasma of many eukaryotic 

species. Discovered to be an essential extracellular signalling molecule, it activates five 

known rhodopsin-like G protein-coupled receptors (GPCRs). Lysophosphatidic acid’s 

structure is constituted with a fatty acid chain at the sn-1 (or sn-2), the hydroxyl group 

at the sn-2 (or sn-1), and a phosphate group at sn-3 (Hopper et al., 1999). Furthermore, 

LPA has been noted to exist in body fluids as long chains of saturated and the more 

biologically active unsaturated fatty acids (Xiao et al., 2000). Lysophosphatidic acid has 

been linked to the control of various cellular functions (cell proliferation, cell 

migration, cell survival, cell transformation, platelet aggregation and smooth muscle 

contraction) through the interactions with specific G-protein coupled receptors 
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(GCPR), associated with endothelial differentiation gene (EDG2, EDG4 and EDG7) 

families (Pagès et al., 2001) 

1.3.1 LPA Synthesis 

Lysophosphatidic acid is actively present, both intracellularly and extracellularly and 

found in various organ systems and tissues. Intracellular LPA, acting as an intermediate 

for the synthesis of other glycerolipids can be synthesised enzymatically from 

mitochondria and endoplasmic reticulum (Pagès et al., 2001). In which, membrane-

bound glycerophosphate acyltransferase (GPAT) located within the mitochondria, 

converts phosphatidic acid (PA) into LPA. Whereas, extracellular LPA can also be 

synthesised enzymatically through the conversion of autotaxin (ATX), resulting in the 

reduction of lysophosphatidylcholine (LPC) into LPA (Sheng et al., 2015). 

1.3.2 LPA Receptors 

Lysophosphatidic acid’s signalling orchestrates many biological effects, from normal 

physiological functions and tissue development to tissue repair and vascular 

remodelling (Lin et al., 2010; Orsó & Schmitz, 2017). The first cognate high-affinity 

receptor of LPA (LPA1) was noted in 1996, subsequently leading to the identifications 

of two additionally related receptors LPA2 LPA3 and more notably the recent 

determination of two more divergent LPA receptors (LPA4 & LPA5). These receptors 

were denoted the distinct genes LPAR1–LPAR5 in humans and Lpar1–Lpar5 in mice, 

the functions of these receptors are further illustrated in Figure 1.2 (Choi et al., 2010). 

1.3.2.1 LPA1:  

 The mammalian LPAR1 gene attributed to the LPA1 high-affinity receptor, encodes for 

approximately 364 amino acids, putative transmembrane domains (7), resulting in 

molecular weight of approximately 41-kDa. LPA1 mediates a variety of cellular 

response ranging from cell migration, proliferation, survival and cytoskeletal changes 

to the activation of the Rho pathways, mitogen-activated protein kinase Akt and 

phospholipase pathways. These biological activities are mediated through Gα i/o, 
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Gα12/13 and Gα11/q G proteins. Additionally, the inhibition of the adenylyl cyclase and 

modulation of Ca2+ were also observed as a cellular response to LPA1 (Choi et al., 2010). 

1.3.2.2 LPA2:  

The second LPA receptor (LPA2) is encoded by the LPAR2 gene, which is similar 

to LPAR1 and can be determined, due to the mutual structure of amino acids (60%) 

and a predicted amino acid residue of 348, thus presenting a molecular mass of 

38 kDa. However, LPAR2 varies spatiotemporally as compared to LPAR1 for 

expression patterns. The activation of LPA2 has denoted behaviours mediating cell 

survival, cell migration and interactions with adhesion molecules. In contrast, LPA2 had 

proven to provide inhibitory actions such as effects on the epidermal growth factor-

induced migration mechanisms of cancerous cells and therefore resulting in a 

potential factor in cancer metastasis. This occurs similar to LPA1, through the coupling 

in heterotrimeric regions of a family of G proteins Gαi/o, Gα11/q, and Gα12/13. These 

interactions activate complimentary pathways such as the mitogen-activated protein 

kinase, phosphatidylinositol 3-kinase, Ras, Rho, Rac, diacylglycerol and phospholipase 

C (Choi et al., 2010). 

1.3.2.3 LPA3:  

 The likenesses of these receptors are further seen when examining the structure 

of LPAR3 gene encoding for LPA3, sharing an approximately 50% of GPCRs expressed 

in LPA1 and LPA2, substantiating in an overall molecular weight of ∼40-kDa. LPAR3 is 

able to couple with Gαi/o and Gαq G protein receptors, inducing the activation of 

mitogen-activated protein kinase, phospholipase C activation, Ca2+ mobilization and 

preventing the inhibition of the adenylyl cyclase pathway. However, LPA3 is unable to 

couple to Gα12/13. Furthermore, LPA3 is distinct in comparison to LPA1 and LPA2’s 

affinity to saturated acyl chains, due to the lack of responsivity, it expresses a high 

affinity to 2-acyl-LPA containing unsaturated fatty acids (Choi et al., 2010). 
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1.3.2.4 LPA4:  

LPA4 is encoded by the LPAR4 gene and is the fourth receptor gene located on the X 

chromosome in humans and structurally different from the previously mentioned LPA 

receptors in the classical structural sense. The structure consists of 1113 base pairs 

encoding an intronless open reading frame, calculated at a molecular mass of 

to ∼42 kDa. The morphological changes associated with LPA4 induces neurite 

retraction, stress fibre formation and cell rounding, as a result of Gα12/13 and Rho/Rho-

kinase pathways activations. Following this, the mobilization of Ca2+ through the 

induction of Gαq/ 11 and Gαs mediated signalling, resulting in intracellular cyclic 

adenosine monophosphate (cAMP) accumulation. Additionally, cell adhesion, through 

the interactions of the N-cadherin-dependent and cell aggregation mediated through 

Rho-kinase pathways are further expressed (Choi et al., 2010). 

1.3.2.5 LPA5:  

Although structurally different to LPA receptors 1-3, LPA5 belongs to the identical 

rhodopsin-GPCR family, sharing 35% homology to the other LPA receptors. Encoded 

by the LPAR5 gene, LPA5 has approximately 372 amino acids and with a molecular 

mass of ∼42 kDa. It is widely expressed in a range of embryonic tissues, such as 

embryonic stem cells, lung, heart, brain, thymus, spleen, stomach, skin, intestine, liver 

and small intestines. More specifically LPA5 increases intracellular calcium levels, 

cAMP levels and inositol phosphate production through the activation of G-proteins 

Gαq and coupling of Gα12/13 (Choi et al., 2010). 
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1.3.3 Role of LPA in the vascular system 

Within the cardiovascular system, LPA exerts numerous roles ranging from myocardial 

hypertrophy and protection against ischaemic injury, regulating the cardiovascular 

function of cardiac myocytes, endothelial and smooth muscle cells and platelets. In 

contrast to these physiological effects, LPA has been implicated in pathophysiologic 

vascular responses by promoting migration of vascular smooth muscle cells (VSMCs) 

and growth through signalling of Gαq subunits. These two factors are key in the 

development of intimal hyperplasia after vascular injury (Lim et al., 2013). 

Furthermore, studies have shown LPA induces a chemotactic response in pulmonary 

artery endothelial cells of bovine species with a similar intensity to vascular endothelial 

growth factor (VEGF) and basic fibroblast growth factor (bFGF)(Kattman et al., 2006). 

In addition, studies examining angiogenic characteristics, LPA has been shown to 

evoke the formation of new blood vessels in chicken chorioallantoic membrane (CAM) 

Figure 1.2: Overview of LPAR expression. 

The tissue distribution and main function of these LPA receptors are highly expressed 
in the heart, lung and stomach in humans, whereas in mouse species they are more 
expressed in lungs and kidneys, an image adapted from (Choi et al., 2010). 
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assays. This angiogenic trait is further supported by the evidence seen in a multitude 

of cancer cells (prostate, ovarian and lymphoma), where the induction of VEGF-A 

expression via HIF-1α activation was presented (Kattman et al., 2006).  

An increase in LPA activity and production is attributed to an increase in response to 

cellular stimuli and agonists, resulting from wound healing, inflammation and 

thrombus formations. Under normal biological conditions, serum concentrations of 

LPA at 1.66 mg/L are seen, whereas patients who have suffered an acute myocardial 

infarction, showed serum concentrations of LPA to increase by 6.3 fold to 10.46 mg/L, 

after a 72 hour period (X. Chen et al., 2003). Additionally, studies have shown LPA 

concentration levels are elevated in cardiac injury and ischaemic conditions, evoking 

their cardioprotective characteristics that protect cardiomyocytes from hypoxia-

induced apoptosis and similar events. (Isao Ishii et al., 2004).  

 

1.4 Signal Transduction 

Signal transduction is a major aspect in the regulation of key functions in multicellular 

organisms, mediating the intracellular machinery that directs cellular responses such 

as cell proliferation, migration, differentiation and apoptosis. These effects are 

normally initiated by various stimulants including growth factors, hormones and 

chemical/physiological stress. These agents could act through signal transduction 

cascades which eventually result in activation of transcription factors such as nuclear 

factor-kappa B (NFκB), which can then go onto activate targeted gene transcription.  

1.4.1 Transcription Factors  

Transcription factors (TFs) are a large subset of proteins involved in regulating gene 

expression through transcriptional control consisting of short non-coding RNA. The 

regulation of RNA synthesis and the subsequent interaction binding to specific 

regulatory sites in DNA initiate gene expression or repression with varying groups or 

complexes; forming multiple interactions that lead to the cellular responses 
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mentioned above, including differentiation (Phillips & Hoopes, 2008). There is a 

multitude of TFs families that regulate cardiomyocyte differentiation such as GATA, 

myocyte enhancer factors (MEF2), Homeobox protein Nkx-2.5, mesoderm posterior 1 

(MESP1) and nuclear factor kappa B (NFκB). Further examples of TFs are seen in Table 

1-1. 

Table 1-1. Transcription factors mediating cardiac hypertrophy. Adapted from (Kohli 
et al., 2011) 

 

Lysophosphatidic acid, being the target biomolecule in our research has raised interest 

to examine how TFs direct the expressions of a gene that is directly activated by LPA, 

leading to cardiomyocyte differentiation of P19 mouse embryonic carcinoma stem 

cells (mECs). As mentioned previously, NFκB has shown to be a critical inducible TF 

that is involved in various pathological and physiological functions including 

proliferation, survival, and differentiation.  Studies have shown protein level of NFκB 

p65 are increased upon differentiation of mouse ES cells as opposed to 

Transcription Factor Type of domain Physiological Significance 

Pro-Hypertrophic Transcription Factors 

GATA-Family Double Zinc Finger Hematopoiesis and Cardiac Development 

MEF-2 MADS-domain Embryonic Development, differentiation and stress 
response 

Csx-Nkx-2.5 Helix-turn-helix Cardiogenesis 

SRF & Myocardin MADS-box Cell cycle regulation, Cardiac and smooth muscle gene 
expression 

HAND Helix-loop-helix Cardiac and Vascular Development 

TEAD Helix-loop-Helix Foetal heart development and cardiac remodelling 

NFAT Rel homology region Immune response, Cardiac and skeletal muscle 
development 

Anti-Hypertrophic Transcription Factors 

FoxO Forkhead box Cell growth, proliferation and differentiation 

MITF Helix-loop-helix Leucine 
Zipper 

Melanocyte and osteoclast development 

YY1 Zinc Finger Histone modification for promoter regulation 

CHF1/Hey2 Basic helix-loop-helix Cardiac Development and ventricular function 
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undifferentiated EC cells (Young-Eun et al., 2008). This is also expressed in a study 

conducted by Norman et al, in which NFκB subunits p65, p50, inhibitor of kappa alpha 

(IκB-α) and inhibitor kappa beta (IκB-β) were actively present through development 

and the NFκB complex participated in myocardial gene regulation in response to 

cytokine interactions, activating cardiac myocytes (Norman et al., 1998). The essential 

role of NFκB in the process of differentiation has further shown to extend into the 

maintenance of pluripotency in human IPCs, by which the augmentation of NFκB 

activity was proportional to the state of cellular differentiation, resulting in the 

increased expression of pluripotency-associated transcription factors (Oct3/4 and 

Nanog), and the up-regulation of the differentiated markers (WT-1 and Pax-2) (Takase 

et al., 2013). 

1.4.2 Nuclear factor-kappa B 

Nuclear factor kappa B (NFκB) is a transcription factor complex, discovered almost 20 

years ago, and was originally regarded as an immunoglobulin gene. However, due to 

research interest over the years, it has been established as a ubiquitously expressed 

TF. The NFκB transcription factor family in mammals consists of 5 distinct 

transcriptionally active homo/heterodimeric complex proteins: p65/RelA, RelB, c-Rel, 

p105/p50 (NF-kB1), and p100/p52 (NF-kB2) (Takase et al., 2013). A conserved N-

terminal Rel homology domain within each member of NFκB enables homo- and 

heterodimerization nuclear localization and, more importantly, DNA binding. This 

results in the signalling through two major pathways, the canonical and the non-

canonical pathways (Rinkenbaugh & Baldwin, 2016). 

In basal conditions, NFκB exists as an inactive p65-p50 dimer bound to κB proteins 

(IκBs), which readily enable nucleocytoplasmic shuttling by shifting the steady-state 

localization of NFκB to the cytosol. However, upon exposure towards many stimuli, 

including LPS and pro-inflammatory cytokines (TNF, IL-1), results in the downstream 

activation via the canonical pathway. The restrictive κB proteins complex (IKK), 

constituting of regulatory subunit IKKγ (NEMO) and kinase subunits IKKα and IKKβ; 
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phosphorylate IκBα, which results in the proteasomal degradation and ubiquitination 

of the complex (Rinkenbaugh & Baldwin, 2016). The bound NFκB is released, leading 

to an accumulation of resident NFκB; an increase in DNA binding and inevitably 

enabling the transcription of proliferation factors (cyclin D1) and various target genes. 

However, the degradation of IκBα alone is not sufficient enough to enable maximal 

NFκB transcriptional activity (L.-F. Chen & Greene, 2004). To maintain the control of 

NFκB, a group of the target gene (A20, IκBα) acts as a negative feedback loop and 

negatively regulates the levels of NFκB. In contrast, within the non-canonical pathway, 

the bound p100 of the p100/p52 NFκB acts as the inhibitory IκB molecule mentioned 

earlier and retains Rel B within the cytoplasm. During activation of this pathway from 

developmental stimuli such as tumour necrosis factor receptor superfamily members 

(B-cell activating factor receptor, BAFF-R), lymphotoxin beta receptor (LTBR) or cluster 

of differentiation 40 (CD40); the stabilization of NFκB-inducing kinase (NIK) occurs, this 

is further represented in Figure 1.3. This activates the phosphorylation of p100 and 

IKKα dimers, leading to p100 cleaving into p50 and actively producing Rel B-p52. 

Similar to the canonical pathway, NFκB is subsequently free to move into the nucleus 

and enable the transcription of various target genes (Rinkenbaugh & Baldwin, 2016). 

An aspect of our research examined how NFκB signalling could be involved in LPA-

induced differentiation of P19 SCs into cardiomyocytes. 
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1.5 Aspirin in stem cell therapy 

The use of aspirin and its capability of accelerating regenerative potential in stem cells 

has been the topic of research over the past decade. Research has examined the effect 

of aspirin on the bone marrow mesenchymal stem (BMSC) in a mini swine calvarial 

bone defect model. The authors showed that aspirin promoted osteogenic 

characteristic of BMSCs. Furthermore, BMSCs treated with aspirin significantly 

decreased the cell signalling protein TNF-α and IFN-γ involved in apoptotic cell death. 

Consequently, the improvement of BMSC-mediated calvarial bone regeneration can 

be regulated through the administration of aspirin.  This has promoted the idea of 

Figure 1.3: Canonical and alternative NFκB pathways. 

The stimulation of the canonical pathway is triggered by proinflammatory cytokines 
and TLRs, leading to activation of RelA that regulates expression of cell proliferation, 
proinflammatory and cell survival genes. The alternative NF-kB pathway is stimulated 
by BAFF-R, LTBR and CD40L, causing the activation of RelB/p52 complexes within the 
nucleus. An image adapted from (Lawrence, 2009).  
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using aspirin in other MSC-based therapies (Cao et al., 2015). Similarly, research on 

the potential of periodontal ligament stem cells (PDLSCs) was also undertaken, 

examining the osteogenic potential, proliferative capacity and expression of growth 

factor–associated genes enhanced by site-specific aspirin treatment. These results 

have shown aspirin modulates the expression of growth factors and the upregulation 

of specific genes leading to the activation of canonical pathways. Consequently, aspirin 

imposed a modulatory effect on cell proliferation, tissue regeneration, and 

differentiation, enhancing PDLSC function (Abd Rahman et al., 2016). However, there 

have not been any studies conducted to establish the effect of aspirin on cardiac 

regeneration/ differentiation of SCs. Our research, therefore, aims to address this 

missing niche within the area of cardiac stem cell therapy research.  

1.5.1 Cellular mechanism of action of aspirin 

It was not until 1970 when the mechanism of action of aspirin was first published by 

the group led by John Vane. Three articles were then published in Nature describing 

the multiple biological activities of aspirin which were all related to inhibition of 

prostaglandin biosynthesis (Massimi et al., 2014). The latter explains the anti-

inflammatory and analgesic properties observed with aspirin. The trans-acetylation of 

the COX-1 target protein was noted to be a factor in the inhibition of platelet function, 

consequently, aspirin has been widely used as an anticoagulant. The acetylation of 

COX-2 resulted in the generation of anti-inflammatory mediators such as aspirin-

triggered lipoxin (ATL), thus leading to the inhibition of leukocyte recruitment, 

whereby the facilitation of inflammation was negated (Schrör, 2016). 

Aspirin’s primary mechanism of action suppresses the production of prostaglandins 

(PG) and thromboxane (TX) as it acts as an acetylating agent which subsequently 

irreversibly inactivates cyclooxygenases (COX-1 & COX-2), the initiating enzyme in the 

synthesis of PG and TX, as seen in Figure 1.4. Furthermore, aspirin has shown 

secondary modes of action expressing anti-inflammatory, antipyretic and analgesic 

effects. Moreover, aspirin acts on the enzymes cyclooxygenase 1 (COX-1) on Ser 530 
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and cyclooxygenase 2 (COX2) on Ser 516, consequently inhibiting their function to 

transform arachidonic acid into prostaglandins, by adding an acetyl group (−C(O)CH3) 

to an amino acid residue (Dang et al., 2002).  

 

 

 

 

 

 

 

 

Furthermore, aspirins mechanism of action on platelet COX-1 works by mediating the 

inhibition of the enzyme active site, thus leading to irreversible acetylation and 

subsequent blockade of downstream TXA2 synthesis. Moreover, the arachidonic 

cascade is disrupted, resulting in arachidonic acid being unable to enter the enzyme 

active site. Consequently, the production of prostaglandins synthesis is prevented. 

However, to overcome this reduction in prostaglandin synthesis, the formation of new 

COX enzymes is required which are not affected by aspirin to continue their function. 

Similarly to COX-1, aspirin inhibits COX-2 through irreversible acetylation and 

reversible salicylate blockade, in turn, the active site on the enzyme is blocked, 

preventing the synthesis of prostaglandins, resulting in the reduction of inflammation, 

fever and pain (Drier et al., 1999; Zhang et al., 2012).  

Figure 1.4: Biosynthesis of prostaglandins and thromboxane enzyme cascade. 

Enzyme cascade representing the production of Prostacyclin (PGI2), prostaglandin (D2, 
E2, F2A) and thromboxane (TXA2) from arachidonic acid by the conversion of two COX 
isoenzymes (COX-1 and COX-2). An image adapted from (Novella & Hermenegildo, 
2011). 

 



36 
 

1.6 Aims of the project: 

The aim of this thesis is to investigate the effects of aspirin (ASA) and salicylic acid (SA) 

on P19 embryonic carcinoma SCs differentiation into cardiomyocytes in the absence 

and presence of LPA. LPA has been utilised here as it has been used extensively in our 

laboratory to induce differentiation of SCs to cardiomyocytes, thus providing a useful 

tool in developing a differentiation model. If this model using LPA is to be exploited 

clinically, in the future, understanding how it might be regulated by drugs commonly 

prescribed to patients with or at risk of MI is critical. The focus will also be on 

understanding whether ASA/SA either on its own or in the presence of LPA regulates 

the ability of SCs to differentiate into cardiomyocytes. In addition, ASA was chosen as 

it has an extensive pharmacological background, providing a firm foundation to 

conduct our research under, in the limited time available. Furthermore, the ability of 

ASA to regulate the actions of LPA either directly or indirectly will also be investigated. 

Lastly, the underlying signalling pathways involved in the actions of ASA and/or SA will 

be investigated, however, these studies may be restricted in their scope due to time 

constraints.  
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2. Materials and Methods 

 
  



38 
 

2.1 Cell Culture 

Cryopreserved ampoules of mouse P19 (ATCC® CRL-1825™) embryonal carcinoma 

cells, were purchased at passage 2 and experiments were carried out at passages 7-

20.  These cells were cultured in complete culture medium consisting of alpha 

minimum essential medium (α-MEM), constituting of 10% heat-inactivated foetal calf 

serum (FCS), penicillin (100 unit/mL) and streptomycin (100 µg/mL) and maintained at 

37°C and at 5% CO2. Cells were sub-cultured using 0.05% trypsin-EDTA at a ratio of 

1:10 every 2-3 days, depending on the expected confluency (~75-85 %). 

2.1.1 Resuscitation of P19 stem cells 

Vials containing frozen cells were thawed and transferred into 15 mL Falcon tubes, in 

which 9 mL of complete α-MEM was added, and the cell suspension was centrifuged, 

leaving a pellet. The supernatant was aspirated, and 7 mL of complete α-MEM was 

added and gently mixed to disperse the cell pellet. Following this, the cell suspension 

was transferred into T25 flasks. Cells were grown to a confluency of ~75-85 %, 

complete α-MEM was changed every other day.  

2.1.2 Culture and maintenance of P19 stem cell 

The culture of P19 cells was developed and maintained routinely at a set seeding 

density of 3.5 x 105 cells per mL. The prime confluency of ~75-85% was sustained 

through the duration of the experiments, in which the cells were washed twice with 

1X phosphate buffered saline (PBS). To dissociate adherent cells, 1-6 mL of 0.05% 

trypsin-EDTA, respective of the flask volume was added for a duration of 1-3 mins. To 

inactivate the trypsin, complete α-MEM was added to the flasks at a ratio of 1:1. The 

cell suspension was mixed thoroughly and transferred to 15 mL or 50 mL Falcon tubes 

and centrifuged. The supernatant was aspirated, leaving a cell pellet which was then 

disassociated in 6-9 mL of complete α-MEM. Cell counting was undertaken to establish 

the appropriate volume to achieve a seeding density of 3.5 x 105 in the required final 

volume for sub-culture, embryoid body (EB) formation or cryopreservation. 
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2.1.3 Cryopreservation of P19 Stem cells 

 Cells were trypsinised as mentioned above and the remaining cell pellet was 

resuspended in 1mL of a freezing medium consisting of 10% glycerol and 90% FCS. To 

prevent cell damage resulting from rapid crystallization in -80°C, the solution 

containing the cells were placed into a Thermo Scientific NALGENE Mr. Frosty, with a 

controlled freezing rate of 1°C/min for a period of 24 hours. Subsequently, the cells 

were transferred from Mr Frosty into liquid nitrogen containers for storage. 

2.2 Antibodies and Reagents 

General cell culture reagents were purchased from Gibco (Life Technologies, UK) and 

Invitrogen (UK). DMSO was from Fisher scientific and glycerol from Sigma-Aldrich. 

Lysophosphatidic acid (Oleoyl-L-α-lysophosphatidic acid sodium salt), acetylsalicylic 

acid and salicylic were purchased from Sigma-Aldrich. Primary antibodies used in these 

studies: NFκB p65, β-Actin and MLC-Iv were purchased from Abcam, (UK); Phospho-

NFκB p65, Phospho-p44/42 MAPK (Erk1/2), Phospho-IKKα and IκBα from Cell 

Signalling technologies (UK); CAY10470 (selective NFκB inhibitor) (from (Merck 

Chemicals); Acetylsalicylic acid and salicylic acid from Sigma-Aldrich (UK). Secondary 

antibodies used in these studies: goat anti-mouse IgG-HRP antibodies were purchased 

from Santa Cruz Biotechnology, (United States); anti-rabbit IgG HRP-linked and anti-

mouse IgG HRP-linked from Cell Signalling Technologies (UK); goat anti-rabbit IgG H&L 

HRP and goat anti-rabbit IgG H&L HRP from Abcam (UK). Salts and chemical 

compounds used for molecular biology were purchased from Sigma-Aldrich (UK), 

Fisher Scientific (UK) and Invitrogen (UK). Pierce BCA protein assay kits were purchased 

from Thermo Scientific (UK). 

2.3 Determination of drug concentrations 

Cell culture-based experiments examining the effects of aspirin used a concentration 

range of 0–10 mM, which provided an appropriate working index to achieve the 

maximum effect relative to cytotoxicity (Campregher et al., 2007; Castaño et al., 1999; 
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Luciani et al., 2007). Furthermore, the selected concentrations used in this experiment 

are similar to that of used in the research conducted by Hao et al, concluding a 

concentration of 2 mM aspirin is the most effective, as lower concentrations failed to 

elect a response and higher concentrations induced high cellular toxicity. Therefore, 

the concentrations were modelled on these findings (Hao et al., 2018). Initial EB 

optimisation of the P19 stem cell differentiation model was carried out using a 

concentrations range of 0.01 mM, 0.03 mM, 0.1 mM, 0.3 mM and 1 mM for both ASA 

and SA compounds. These concentrations listed above were further revised to a range 

of 0.1 mM, 0.3 mM, 1 mM and 3mM for both compounds in subsequent cell culture 

experiments.  

When comparing clinical relevance it is worth noting that these concentrations are 

well above plasma concentrations, as the Cmax (maximum /or peak serum 

concentration) of a 500 mg ASA dose given intravenously versus is seen at 54.25 mg/L, 

(~0.3 mM) and 4.84 mg/L (~0.03mM) with ASA 500 mg given orally (Nagelschmitz et 

al., 2014). However, there are varying factors to consider in cell culture conditions, 

which justify the use of higher concentrations of ASA and SA in our experiments.  

 

2.4 Differentiation and Embryoid Body formation of P19 stem cells 

2.4.1 Lysophosphatidic acid stock preparation 

To induce differentiation, LPA was dissolved at a final stock concentration of 5 mM, in 

1x PBS and 0.01% fatty acid-free bovine serum albumin (BSA). Aliquots of 50 µL were 

stored at -80°C and upon use, the stock concentration of LPA was diluted to 5 µM in 

complete α-MEM. 

2.4.2 Cell counting and plating for EB formation 

Cell count was achieved by detaching monolayers of P19 stem cells with 0.05% trypsin-

EDTA, to which complete α-MEM was added to inactivate trypsin-EDTA, forming 

single-cells in suspension. An equal volume of cell suspension was mixed with 0.4 % 
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trypan blue (20 µL) and counted on a Countess electronic cell counter. The following 

formula is shown below (Table 2-1) was used to achieve the desired seeding density 

of 1.4 x 104 in 96-well cell culture plates. 

 

 

2.4.3 Differentiation of P19 stem cells into cardiomyocytes 

Differentiation was induced using a differentiation medium consisting of 0.8% DMSO 

in complete α-MEM as a positive control or 5 µM of LPA. Post trypsinisation, the cell 

suspension was incubated with α-MEM alone or with LPA either at 5 µM or varying 

concentrations as required.  Embryoid bodies were allowed to form at 37°C and at 5% 

CO2 for a period of 48 hours as seen in Figure 2.1.  6-8 EBs were then plated per well 

in a 12-well tissue culture plates in 3 mL of complete α-MEM for selected time points. 

Media was intermittently changed every other day with complete α-MEM.  

To establish the effects of ASA and SA on differentiation of P19 cells into 

cardiomyocytes, trypsinised cell suspensions were pre-treated for 60 minutes with 

either ASA (0.1, 0.3, 1, 3 mM) or SA (0.1, 0.3, 1, 3 mM) before being incubated with α-

MEM alone or with α-MEM in the presence of LPA (5µM).  

 
Total cells: 2.86 x 106/mL 
Cell Viability: 81% 
Live Cells: 2.32 x 106/mL 

Final volume per 96-well: 0.290 mL 
Seeding density: 1.4 x 104/mL 

 

 E.g. volume of suspension (X) plated= Desired concentration of cells X Final volume 
                                                                    Viable cell concentration (1 mL) 

 
                                1.4 x 104 x 0.290 mL= 0.00175 mL 
                                    2.32 x 106 
 
                                                   In 289 µL of complete α-MEM 

 
 

 

 

Table 2-1: Cell seeding calculations for EB formation. 



42 
 

 

 

 

 

 

2.5 Protein determination and quantification  

2.5.1 Cell lysate generation for MLC-1v protein expression 

Cell lysates were obtained at specific time points ranging from days 3, 6, 9, and 12 and 

probed for myosin light chain 3 (MLC-1v). Plates were transferred onto the ice at the 

end of specific incubation periods and existing culture media was aspirated and the 

cells were washed twice with ice-cold 1x PBS. Whilst on the ice, 

radioimmunoprecipitation assay (RIPA) buffer (Figure 2.2) (at a volume of 80-150 µL 

was added to each well and cells were scraped using a fine pipette tip and transferred 

to ice-cold 1.5 mL microcentrifuge tubes in an ice box.  The lysates were sonicated in 

an ice-filled sonication bath for a period of 90 seconds with 15-second intervals and 

centrifuged at the max relative centrifugal force (RCF) or 13,000 rpm for 10 mins at 

4°C. Cells lysates were then immediately stored at -80°C to prevent protein 

degradation.  

Figure 2.1: Differentiation of P19 stem cells into cardiomyocytes  

Cells monolayers were grown to a confluency of ~75-85% trypsinised and seeded into 
ultra-low attachment 96-well plates, with and without 5 µM LPA over a period of 48 
hours. Embryoid bodies were then seeded into 12-well tissue culture grade plates and 
allowed to differentiate into cardiomyocyte monolayers.  
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Table 2-2: RadioImmunoPrecipitation Assay (RIPA) Buffer- 200mL  

Vials Volume of Diluent (µL) 

50mM Tris-HCL (pH 8)  1.211g 

150 mM NaCl  1.753 g 

0.1% Triton x-100  200 µL 

10% sodium deoxycholate  1000µL 

0.1% SDS  200 µL 

(1%) Inhibitor Cocktails  10uL/mL 

50mM Tris-HCL (pH 8)  1.211g 

 

2.5.2 Cell lysate generation for phosphorylated protein expression 

Lysates were obtained by conducting early time point studies. Post trypsinisation, the 

single-cell suspension treated with varying concentrations of ASA (0.1, 0.3, 1, 3 mM) 

or SA (0.1, 0.3, 1, 3 mM) and/or LPA (5µM) were seeded into Gosselin square Petri 

dishes and incubated for specific time points. At the allocated time point, 2-3 mL of 

cell suspensions were transferred into Falcon tubes, centrifuged for 30 seconds and 

cells were washed with 1 mL of 1x PBS and transferred into ice-cold 1.5 mL 

microcentrifuge tubes in an ice box. As mentioned above, the same methodology was 

followed by adding RIPA, sonicating and centrifuging the samples to obtain cell lysates. 

Cells lysates were they immediately stored at -80°C to prevent protein degradation. 

2.5.3 Protein quantification using bicinchoninic acid (BCA) assay 

To determine the total protein content of the cell lysates the Pierce BCA protein kit 

was used. Using 2 mg/mL ampoules of BSA stock, a standard curve was prepared using 

double distilled water (DDW) with a set of working standards and layout as seen in 

Table 2-3. The 96 well plate containing the samples and standards was then placed 

onto an orbital shaker for 30 mins, followed by incubating at room temperature for 15 

mins. The plates were read at a wavelength of 620 nm using the CLARIOstar plate 

reader. Using the standard curve equation y=mx+c (seen in Figure 2.2), the unknown 

protein absorbance readings were replaced for y in the rearranged formula x= (y-c)/m 
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and this values were further used to calculate for a loading volume of 20 µg/ µL for 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In this 

equation X was the unknown concentration to be determined, Y was the absorbance 

value at 620nm, C is the intercept and m is the slope.  

Table 2-3. Preparation of diluted BSA standards 

Working stock concentration of BSA 2 mg/mL and Diluent (DDW) 

Vials 
Volume of Diluent 

(µL) 
Volume and Source 

of BSA (µL) 
Final concentration 

(µg/µL) 

A 0 50 of Stock 2 

B 25 25 of vial A dilution 1 

C 25 25 of vial B dilution 0.5 

D 25 25 of vial C dilution 0.25 

E 25 25 of vial D dilution 0.125 

F 25 25 of vial E dilution 0.063 

G 50 0 0 = Blank 

 

Table 2-4. 96-well plate layout for preparation for BCA 

Samples 
DDW (µL) 

Cell Lysates 
(µL) 

Standards 
(µL) 

RIPA Buffer 
(µL) 

BCA (µL) 

Control 5 - - 5 100 

Cell Lysates 5 5 - - 100 

Standards - - 5 5 100 
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Figure 2.2. BCA protein standard curve. 

Graph representing the BCA standard curve of bovine serum albumin at 620nm 
absorbance, with a standard regression coefficient of R2 = 0.9995 and the line equation 
of y=0.27x +0.01. 

 

2.6 Protein analysis using western blotting and SDS-PAGE 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

resolve and separate proteins in cell lysates according to their molecular weight and 

size. Subsequently, the gels were then transferred using enhanced chemiluminescence 

and immunoblotting for proteins of interest. 

2.6.1 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)  

2.6.1.1 Gel Preparation 

Resolving gel at 12% and stacking gel at 4% was prepared following the recipe in Table 

2-5. Resolving gel (4 mL) solution was pipetted into BIO-RAD glass sandwich plates and 

allowed to polymerise. Double distilled water (DDW) (150-200µL) was layered on top 



46 
 

of the gel to prevent the dehydration and to prevent bubble formation. Following 

polymerisation, the layer of distilled water was removed using a filter paper and 

stacking gel (1.5-3 mL) solution was pipetted and set with the addition of a 10 well 

loading comb and left to polymerize appropriately. Using the buffer recipes in Table 

2-7, the electrode/tank buffer was loaded into electrophoreses tanks, in which the gels 

were placed.  

2.6.1.2 Sample Preparation 

Calculations were carried out determining the loading volume for 20 µg of cell protein 

lysates in the 2x sample buffer (Table 2-6). The samples were then heated at 95°C for 

3-5 mins, allowed to cool and then loaded into each well. The gels were run at 150mA, 

200 V for 45 mins. 

2.6.1.3 Protein transfer 

The gels were placed into 1X transfer buffer (seen in Table 2-8) for 5 mins. 

Polyvinylidene difluoride (PVDF) membranes were cut prior and then transferred into 

100% methanol for 30 seconds activating the membrane and immediately placed into 

distilled water for 2 mins, as PVDF membranes are hydrophobic, prior to use. The 

membrane was equilibrated in the 1X transfer buffer for 5 mins. A PVDF membrane 

sandwich was constructed, consisting of pre-soaked filter papers, membrane and gels. 

Air bubbles in the sandwich were removed using a rolling pin and the semi-dry transfer 

carried out on a Pierce Power Blotter at 25 V, 2.5mA for 7 mins. 

2.6.2 Western Blotting 

2.6.2.1 Blocking and antibody probing of membranes 

The membranes were blocked with 5% non-fat semi-skimmed milk using the recipe in 

Table 2-10 and placed on an oscillating shaker for 1-2 hours at room temperature. 

Polythene bags were used to probe membranes with primary antibody overnight at 

4°C. A dilution of 1:1000 in blocking buffer was used to dilute the antibodies for 

primary and secondary antibodies from Abcam and a dilution of 1:5000 for primary 
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and secondary antibodies purchased from Cell Signalling Technologies. Following 

primary antibody probing, membranes were washed with 1x TBST 3 times for 30 mins 

with 10 min intervals on an oscillating shaker. Secondary antibodies were used at 

1:5000 dilution and probed similarly at room temperature for 2 hours and washed 

again. For chemiluminescence, Thermo ECL reagents were used at a ratio of 1:1. 

Membranes were incubated with the reagent for 5 mins and analysed using the 

Thermo ECL imager.  

2.6.2.2 Membrane Stripping and re-probing 

Membranes were washed in 1x TBS as mentioned above, following ECL imaging and 

placed into 20 mL of Thermo Restore stripping buffer for 15 mins on an oscillating 

shaker. Membranes were rewashed, blocked and re-probed with the appropriate 

antibodies.  

2.6.2.3 Analysis of western blot images 

A housekeeping protein such as β-actin was used to normalise the protein loading and 

protein expression with the accompanying primary antibodies. Raw image files of the 

selected membranes derived from the ThermoECL imager were analysed using Bio-

Rad Image Lab software to plot the expression of proteins.  

 

Table 2-5. Gel recipe for SDS-PAGE (4 Gels) 

Reagents Resolving Gel (12%) Stacking Gel (4%) 

DDW 6.6 mL 6.1 mL 

Acrylamide (30%) 8 mL 1.3 mL 

Tris-HCL (1.5 mM, pH 8.0) 5 mL - 

Tris-HCL (0.5 mM, pH 6.8) - 2.5 mL 

Ammonium Persulfate (10%) 200 µL 200 µL 

SDS (10%) 200 µL 100 µL 

TEMED 12 µL 20 µL 
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Table 2-6. Recipe for 2x Sample Buffer (10 mL) 

Reagents Volume (mL) 

0.5 M Tris-HCL (6.8pH) 2.5 

Glycerol 2 

SDS 10% 4  

Bromophenol Blue 1% 0.4 

Dithiothreitol (DTT) 2M 0.1  

DDW 1  

 

Table 2-7. Recipe for 10x Tank Buffer (2 Litres) 

Buffers were diluted to 1x before use. 

Reagents Constituent 

Glycine 288 g 

Tris base 60.4 g 

SDS 20 g 

DDW 1.8 L 

 

Table 2-8. Recipe for 10x Transfer Buffer (2 Litres) 

Buffers were diluted to 1x before use with 10% Ethanol added last. 

Reagents Weight (g) 

glycine 288 g 

Tris base 60.4 g 

Methanol 200 mL 

DDW 1.8 L 
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Table 2-9. Recipe for 10x TBS (Wash Buffer) (1 Litre) 

Stock pH was adjusted to 7.6 with HCl and buffers were diluted to 1x before use. 

Reagents Weight (g) 

Tris base 24 g 

Sodium Chloride 88 g 

DDW 1 L 

 

Table 2-10. Recipe for blocking buffer 

Blocking buffers were also used to dilute and immunoprobe antibodies on PVDF 
membranes.  

Reagents Constituent 

Non-fat semi skimmed milk powder 5g 

Tween- 20 100 µL 

Transfer Buffer 10X 10 mL 

DDW 90 mL 

 

2.7 Cell Viability Assay 

2.7.1 MTT (3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay 

The MTT cell metabolism assay was performed to determine the viability of cells under 

different experimental conditions. Mitochondrial dehydrogenases of viable cells 

cleave the MTT dye into insoluble purple formazan crystals, resulting from NAD (P) H-

dependent cellular oxidoreductase enzymes present in viable cells. Therefore, the 

absorbance present is proportional to viable cells (Liu et al., 1997). 

Cells were seeded at 1.0 x 105 cells in a final volume of 200 µL into each Falcon 96-well 

tissue culture plate. Cells were cultured for the selected time points and serum-free 

media was used to replace the existing media (50µL) and 50µl of MTT solution (5 

mg/mL).  Cells were incubated for 4 hours at 37°C and at 5% CO2. Media was then 

discarded and 100µL of isopropanol was added to dissolve the formazan crystals 
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formed. The plates were placed onto an orbital shaker for 10 mins and the absorbance 

was read at 540nm on a CLARIOstar plate reader. Cell number was determined using 

a standard curve of known cell densities. This was prepared with known cell densities 

of cells seeded into serum-free media filled 96-well plates (seen in Table 2-11) and 

incubated overnight, to enable cells adhered without proliferating and then assayed 

as mentioned above. Using the line of the equation, cell number and cell cytotoxicity 

were analysed respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Cell number standard curve for MTT assay. 

Graph representing cell number standard curve read at an absorbance of 570nm, with 
a standard regression coefficient of R2 = 0.9962 and line equation of y= 1.328x10-6x-
0.01718. 
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Table 2-11. Preparation of diluted cell densities 

Working stock concentration of 1.0x107 cells and Diluent (serum-free α-MEM) 

Vials 
Volume of Diluent 

(µL) 
Volume and Source 

of cells (µL) 
Final concentration 

of cells 

A 0 400 of Stock 1.25x106 

B 400 400 of vial A dilution 6.25 x105 

C 400 400 of vial B dilution 3.13 x105 

D 400 400 of vial C dilution 1.56 x105 

E 400 400 of vial D dilution 7.81 x104 

F 400 400 of vial E dilution 3.91 x104 

G 400 400 of vial F dilution 1.95 x104 

H 400 400 of vial G dilution 9.77 x103 

I 400 0 Blank 

 

2.8 Statistical analysis 

The results were subjected to the statistical software on GraphPad Prism 7 and 

presented as means ± standard error means (S.E.M.). Using a one-way and two-way 

ANOVA with the Dunnett's post Hoc test analysis of variance, multiple comparisons of 

significance was analysed. A significance value of p < 0.05 (95% confidence interval) 

was used to compare the effects of ASA and SA conditions, in the presence and 

absence of LPA. Independent experiments exceeding n=3 were carried out to provide 

adequate data for these statistical tests carried out.   
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3. Results 
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3.1 Development and characterization of P19 stem cell differentiation 

model 

To conduct a routine cell culture of P19 ECS, the cells were systematically cultured over 

a period of 2-3 days, until a confluency rate of 75-85% was achieved. Aseptic 

techniques were undertaken with the utmost precaution to prevent contamination of 

SCs and subsequent cultures.  

In initiating the studies, the first consideration was to determine the growth pattern 

of P19 cells in culture and to establish the time period taken for optimal growth and 

confluency. Trypsinised cells were seeded at a concentration of 3.5 x 105 cells per mL 

in a T-25/T-75 tissue culture flasks, which were observed daily under an inverted 

Olympus microscope over a period of 4 days. As shown in Figure 3.1A, the trypsinised 

cells plated in the flasks appear rounded and sparsely distributed because of the low 

seeding density. As the cells became established, they attached to the surface of the 

flask; beginning to grow, changing their morphology as they do so. This is evident 24 

hours post cell seeding (Figure 3.1B). The cells continued to grow in small clusters over 

48 hours (Figure 3.1C and D) reaching optimal confluency at 72 hours. Full confluency 

was reached at 96 hours showing a very tightly packed monolayer of cells (Figure 3.1E).  
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Figure 3.1: Growth pattern of P19 stem cells at different confluency 

Passage 19, P19 SCs were trypsinised using 1% trypsin-EDTA and seeded 3.5 x 105 
cells/mL. Cells were grown at 37oC, 95% air and 5% CO2. The cells were cultured in 
complete α-MEM containing 10% foetal calf serum (FCS) and 100 units/mL penicillin 
together with 100µg/mL streptomycin. Images were taken with an Olympus inverted 
microscope. (A) Initial seeding of P19 SCs, at 10X magnification. (B) Cells at 5-10% 
confluency on day 2, at 10X magnification. (C) Cells at 50% confluency on day 3 at 10X 
magnification. (D) Cells at 90% confluency on day 3 at 4X magnification. (E) Cells at 
100% confluency on day 4 at 4X magnification. Free floating cell debris are circled.   
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Figure 3.2 shows a monolayer of P19 SCs progressing to approximately 70% of 

confluency under routine culture. The cells appear elongated with a unique stellate 

shape, as the cells are constantly dividing and reaching optimum confluency to achieve 

a single monolayer, spreading uniformly throughout the flask. In addition, some cells 

have fused together as they divide in close proximity, forming clusters which are seen 

as the beginning of a monolayer formation. Furthermore, unattached SCs and cell 

debris are evidently seen free floating in the complete medium. 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.2: Morphology of P19 stem cells in culture. 

Passage 21, P19 SCs were trypsinised using 1% trypsin-EDTA and seeded 3.5 x 105 
cells/mL. Cells were grown at 37oC, 95% air and 5% CO2. The cells were cultured in 
complete α-MEM containing 10% foetal calf serum (FCS) and 100 units/mL penicillin 
together with 100µg/mL streptomycin. Images were taken with an Olympus inverted 
microscope. (A) Cells at 50-60% confluency of healthy P19 SCs, at 4X magnification. (B) 
Cells at 10X magnification with the same set of cells. Areas representing free floating 
unattached cells and cell debris are circled above. 
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When allowed to grow further, cells reached maximum confluency; saturating the 

surface area of the flask as shown in Figure 3.3. The cells appear very tightly packed 

and more cobbled stone in their morphology. There is also evidence of dead cells and 

cell debris as indicated by translucent structures floating in the medium. It was, 

therefore, important to ensure that the cells were not allowed to reach super 

confluency (day 4 growth) in culture as this may affect their viability. All experiments 

were therefore carried out using cells at 75-85% confluency. 

 

  

Figure 3.3: Morphology of confluent P19 stem cell monolayer. 

Passage 12, P19 SCs were trypsinised using 1% trypsin-EDTA and seeded 3.5 x 105 
cells/mL. Cells were grown at 37oC, 95% air and 5% CO2. The cells were cultured in 
complete α-MEM containing 10% foetal calf serum (FCS) and 100 units/mL penicillin 
together with 100µg/mL streptomycin. Images were taken with an Olympus inverted 
microscope. Cells shown at 100% confluency, at 4X magnification. Areas representing 
free floating unattached cells and cell debris are circled above. 
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3.2 Establishing embryoid bodies from monolayers of P19 cells 

To induce differentiation, monolayers of cells had to initially be grown as three-

dimensional aggregates referred to as EBs. These were generated using either cells 

suspended in non-adherent Petri dishes or in ultra-low attachment 96-well plates in 

order to determine the efficiency of optimal embryoid bodies (EB) formation. 

3.2.1 Establishing embryoid bodies using Petri dish cell suspension 

Trypsinised P19 monolayers were seeded at a density of 3.7 x 105 cells/mL in P60 

microbiology non-adherent Petri dishes, suspended in 5mL of complete α-MEM.  The 

cultures were routinely maintained at 37°C, 95% air and 5% CO2 over 4 days. Figure 

3.4 below shows representative growth of EBs at varying morphological stages from 

days 2-4. Embryoid bodies at day 4 were considered morphologically adequate for 

seeding into cell culture plates and used for experimentation. However, it is clear from 

Figure 3.4 C & D that the EBs formed varied considerably in size. This has been 

indicated in other studies to be responsible for the lack of generation of consistent 

beating clusters of cardiomyocytes. 
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Figure 3.4: Morphology of EB in Petri dish culture, grown over 4 days. 

Passage 12, P19 SCs were seeded 3.5 x 105 cells/mL in P60 microbiology Petri dishes. 
Cells were grown at 37oC, 95% air and 5% CO2 and cultured in complete α-MEM 
containing 10% foetal calf serum (FCS) and 100 units/mL penicillin together with 
100µg/mL streptomycin. Images were taken with an Olympus inverted microscope. 
(A) EB formation at 24 hours. (B) At 48 hours. (C) At day 72 hours. (D) At 96 hours at 
4X magnification of the same set of cells.  
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3.2.2 Embryoid body differentiation into cardiomyocytes 

Four to six EBs were seeded into 24-well tissue culture plates to which the EBs adhered 

and cells migrated from the EB clusters, growing as single cell monolayers as seen in 

Figure 3.5. The monolayer showed similar morphology to initial P19 monolayer growth 

seen in Figure 3.4 above, sharing the distinctive tightly packed cobblestoned-like 

pattern shown at a higher magnification of 10X (Figure 3.5B) and 20X (Figure 3.5C) at 

day 12. 

 

 

 

 

 

Figure 3.5:  Growth of cells from EBs in culture  

Embryoid bodies were cultured over a period of 4 days, 3-4 EBs were seeded into 
individual wells in 12 well plates. Cells were grown at 37oC, 95% air and 5% CO2 and 
cultured in complete α-MEM containing 10% foetal calf serum (FCS) and 100 units/mL 
penicillin together with 100µg/mL streptomycin. Images were taken with an Olympus 
inverted microscope. (A) Growth at 24 hours at 4X magnification. (B) 10X 
magnification. (C) 20X magnification of the same set of cells. 
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3.2.3 Establishing embryoid bodies using low-attachment 96 well-plate cell 

suspension 

When seeded in ultra-low attachment 96-well plates, P19 cells aggregated to a more 

consistent diameter of 350-450 µm, within 48 hours. This is shown in Figure 3.6 where 

the shape and size of most of the EBs formed were consistent when compared to those 

seen using the Petri dish method. As opposed to the other conditions (attachment to 

Petri dishes) in which the sizes of EBs formed varied quite considerably within the 

same culture.  

To determine the optimal size of EBs, parallel experiments were carried out looking at 

differences in seeding densities and time point, using the ultra-low attachment 96-well 

plates. Figure 3.6 shows that a seeding density of 10,000 cells incubated for 48 hours 

produced the required EB diameter of 350-450 µm. However, higher seeding densities 

produced larger EBs. Incubations for 24 rather than 48 hours, produced masses of EBs 

with less defined outer borders. These differences are shown more clearly in Figure 

3.7 for a better comparison.  All experiments were carried out with 10,000 cells seeded 

for 48 hours for the required EBs to form. 
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Figure 3.6: Determination of optimum EB size and growth period in 96 well-plates. 

Passage 12, P19 SCs were seeded between 1 x 104 – 3.5 x 104 cells/mL in ultra-low 
attachment 96 well plates. Embryoid bodies were cultured over a period of 2 days. 
Cells were grown at 37oC, 95% air and 5% CO2 and were cultured in complete α-MEM 
containing 10% foetal calf serum (FCS) and 100 units/mL penicillin together with 
100µg/mL streptomycin. Images were taken with an EVOS® FL Cell Imaging microscope 
at 10X magnification.  
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Figure 3.7: Comparison of EB morphology during growth in Petri dish and 96 well 
plates. 

Passage 12, P19 SCs were seeded and formed in P60 microbiology Petri dishes and 
ultra-low attachment 96 well plates over a period of 2-4 days, then 3-4 EBs were 
seeded into individual wells in 24 well plates. Cells were grown at 37oC, 95% air and 
5% CO2 and cultured in complete α-MEM containing 10% foetal calf serum (FCS) and 
100 units/mL penicillin together with 100µg/mL streptomycin. Images were taken with 
an Olympus inverted and EVOS® FL Cell Imaging microscopes. (A) EBs were seeded in 
Petri dish. (B) EBs seeded in 96 well plates. (C) EBs grown in Petri dishes, plated. (D) 
EBs grown in 96 well-plates, plated. Images were taken at 4X magnification. 
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More importantly, we observed that EBs generated by the Petri dish method produced 

cardiomyocytes which needed to grow to very high confluency before beating clusters 

could be identified and this was not always consistent (Figure 3.8A). In contrast, EBs 

from the ultra-low attachment 96-well plates produced distinct beating 

cardiomyocytes within 3 days of plating (Figure 3.8B). Very often individual cells are 

spindle-shaped with an extended length, that are more morphologically associated 

with actin filaments, which were also seen beating in culture (Figure 3.8B) (Cros et al., 

2014) 
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Figure 3.8: Beating cardiomyocyte generated from EBs grown in Petri dish and 96 
well plates. 

Passage 12, P19 SCs were seeded and formed in P60 microbiology Petri dishes and 
ultra-low attachment 96 well plates over a period of 2-4 days, then 3-4 EBs were 
seeded into individual wells in 24 well plates. Cells were grown at 37oC, 95% air and 
5% CO2 and cultured in complete α-MEM containing 10% foetal calf serum (FCS) and 
100 units/mL penicillin together with 100µg/mL streptomycin. Images were taken with 
an Olympus inverted microscope. (A) Circles indicate the contractile region of 
cardiomyocyte from EBs grown in Petri dishes (4X magnification). (B) Arrows indicate 
contractile direction of individual cardiomyocytes generated from EBs grown using 
ultra-low attachment 96-well plate (10X magnification). 
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3.2.4 Effects of SA and ASA on EB formation in Petri dishes and ultra-low 

attachment 96-well plates in the presence and absence of LPA. 

To determine whether our treatment conditions altered the size of EBs formed, 

studies were carried out examining the effects of increasing concentrations of SA or 

ASA in the absence and presence of LPA using EBs from either the Petri dish or the 

ultra-low attachment 96-well plate models. Figure 3.9A shows a concentration-

dependent growth inhibition in EBs generated from Petri dishes when SA was used 

alone. The latter reduced EB size to around 25% at 0.3mM and to more than 50% at 

1mM. By comparison, ASA did not appear to significantly alter EB size (Figure 3.9A and 

B). The reason for this discrepancy is not clear, especially as the data in each case 

represent an n of at least 8 individual experiments. When combined with SA, LPA 

appeared to enhance (20-40%) EB size formation in the presence of 0.03-0.3 mM SA. 

In contrast, EB size was decreased (60-70%) in the presence of LPA and ASA at 0.3-

1mM expressed a decrease in overall EB diameter. In contrast to these findings above, 

parallel studies conducted with EBs grown in ultra-low attachment 96-well plates 

showed that none of the treatment conditions altered EB size which remained at the 

optimum diameter of around 350-450µm (Figure 3.10A and B). These are indeed 

important observations and may suggest that the consistency in the sizes of EBs 

generated with the ultra-low attachment model gives more reproducible data. 
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Figure 3.9: Effects of SA and ASA on EB formation and growth in Petri dishes. 

Embryoid bodies formed in P60 microbiology Petri dishes and cultured over a period 
of 4 days. Cells were grown at 37oC, 95% air and 5% CO2 and cultured in complete α-
MEM containing 10% foetal calf serum (FCS) and 100 units/mL penicillin together with 
100µg/mL streptomycin. (A) SA or SA + LPA (5 µM) treated cells (B) ASA or ASA + LPA 
(5 µM) treated cells. Statistical comparison was performed using two-way ANOVA with 
Dunnett's post Hoc test (α=0.05). 20-30 EBs per microscope field were examined at x3 
fields per well. The data represents the means ± S.E.M. of 8 individual experiments. 
(A)* Represents statistical comparison between SA relative to control # represents 
statistical comparison relative to LPA. (B) * denotes statistical comparison relative to 
LPA. 
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Figure 3.10: Diameter study on EB’s treated with SA and ASA, grown in 96 well plates. 

Embryoid bodies formed in ultra-low attachment 96 well plates and cultured over a 
period of 2 days. Cells were grown at 37oC, 95% air and 5% CO2 and cultured in 
complete α-MEM containing 10% foetal calf serum (FCS) and 100 units/mL penicillin 
together with 100µg/mL streptomycin. (A) SA or SA + LPA (5 µM) treated cells (B) ASA 
or ASA + LPA (5 µM) treated cells. Statistical comparison was performed using two-
way ANOVA with Dunnett's post Hoc test (α=0.05). 60 EBs per microscope field were 
examined at x3 fields. The data represents the means ± S.E.M. of 8 individual 
experiments.  
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3.3 Examining the effect of LPA on MLC-1v expression. 

To examine the effects of LPA alone on the differentiation of cardiomyocytes, P19 SCs 

were seeded with increasing concentrations of LPA ranging from 1µM, 5 µM, 10 µM, 

and 20µM. To examine the extent of LPA induced differentiation, the treatments were 

compared to DMSO 1% as a positive control and examined for the expression of the 

cardiac-specific marker MLC1-v using western blotting, the results in Figure 3.11 

showed a concentration-dependent expression of MLC-1v, reaching significant 

maximal induction of MLC-1v at 10µM. The levels of LPA dependent expression of 

MLC-1v at this concentration exceeded that of DMSO induced differentiation. 

Expression of MLC-1v in controls was at basal levels (25-30%) seen previously in 

studies carried out within our group. 

 

 

 

 

 

 

 

 

Figure 3.11: LPA concentration-dependent induction of MLC-1v expression. 

Passage 9, P19 SCs were seeded at 3.5 x 105 cells/mL in P60 microbiology Petri dishes. 
The cells were treated in the presence and absence of LPA (5 µM), 1-hour post treatment 

and grown at 37oC, 95% air and 5% CO2. The cells were cultured in complete -MEM 
medium and left to form EBs over 2 days. In this study, 6-8 EBs were plated into 24 well-
plates and cultured for 3 days and lysed to be probed for β-actin and MLC-1v expression 
by western blotting as described in the methods. Statistical comparison was performed 
using two-way ANOVA with Dunnett's post Hoc test (α=0.05). The data represents the 
means ± S.E.M. of 4 individual experiments.   
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3.3.1 Effect of SA on MLC-1v expression in the presence and absence of LPA. 

To examine the effects of SA on the differentiation process, EBs were seeded in the 

presence of increasing concentrations of SA (0mM, 0.1mM, 0.3mM and 1mM) in the 

absence and presence of LPA (5µM) and examined for the expression of MLC-1v using 

western blotting on lysates generated at days 3 and 6. The results in Figure 3.12A 

showed a concentration-dependent effect on the expression of MLC-1v up to 1mM SA 

and declining thereafter at day 3. The increase, however, was only statistically 

significant at 1mM, the rest were marginally above control. When used with LPA, MLC-

1v expression was further enhanced by SA but at 0.1mM (30% increase) with 0.3mM 

showing no difference to the response with LPA alone, whilst 1mM and 3mM inhibited 

LPA induced MLC-1v to 40 % and 15% respectively (Figure 3.12A). This suggests that 

while SA may potentiate MLC-1v expression independently it is also capable of 

suppressing the responses to LPA.  

When lysates were generated on day 6 and analysed, a different trend to that 

described above was observed. In this case, MLC-1v expression was inhibited 

concentration-dependently by SA alone which also inhibited the induction caused by 

LPA. In both cases, the maximum inhibition (12%) was obtained with 1-3mM of SA. It 

is worth noting that MLC-1v expression was relatively high in control in this set of 

experiments when compared to levels observed previously, suggesting that the batch 

of cells used in these studies may already have been partially induced to differentiate 

under basal conditions. In any case, the basal increase in MLC-1v expression was 

inhibited by SA in a manner similar to that seen when SA was applied with LPA (Figure 

3.12B). 
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Figure 3.12: Effect of SA on differentiation of P19 SCs. 

Embryoid bodies were grown in ultra-low attachment 96 well-plates and cells were 
treated with increasing concentrations of SA alone or in the presence of LPA (5 µM). 

Cells were grown at 37
o
C, 95% air and 5% CO

2
 and cultured in complete -MEM 

medium and left to form EBs over 2 days. In this study, 6-8 EBs were plated into 24 
well-plates and cultured for 3 and 6 days and lysed to be probed for MLC-1v expression 
normalised to β-actin by western blotting. (A) Lysates collected at day 3. (B) Lysates 
collected at day 6. Statistical comparison was performed using two-way ANOVA with 
Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. of 7 
individual experiments. * Represents statistical comparison relative to control # 
represents statistical comparison relative to LPA. 
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3.3.2 Effect of ASA on MLC-1v expression in the presence and absence of LPA. 

 

The results in Figure 3.13A shows data for lysates obtained at day 3 and demonstrate 

that ASA concentration-dependently enhanced expression of MLC-1v up to 1mM, 

which decreased in the presence of 3mM ASA. When applied in the presence of LPA, 

ASA concentration-dependently decreased MLC-1v expression induced by LPA, with 

the maximum inhibition (30%) observed with 3mM ASA.  

At day 6, lysates from control cells were found to express high levels of MLC-1v (75% 

of LPA response). These levels were not significantly affected by ASA, which also failed 

to alter the induction of MLC-1v by LPA. There was a decrease in the LPA response 

with 3mM ASA, but this was not statistically significant (Figure 3.13B).  
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Figure 3.13: Effect of ASA on differentiation of P19 SCs. 

Embryoid bodies were grown in ultra-low attachment 96 well-plates and cells were 
treated with increasing concentrations of ASA alone or in the presence of LPA (5 µM). 

Cells were grown at 37
o
C, 95% air and 5% CO

2
 and cultured in complete -MEM 

medium and left to form EBs over 2 days. In this study, 6-8 EBs were plated into 24 
well-plates and cultured for 3 and 6 days and lysed to be probed for MLC-1v expression 
normalised to β-actin by western blotting. (A) Lysates collected at day 3. (B) Lysates 
collected at day 6. Statistical comparison was performed using two-way ANOVA with 
Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. of 7 
individual experiments. * Represents statistical comparison relative to control # 
represents statistical comparison relative to LPA. 
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3.4 Cell viability assay 

3.4.1 MTT assay determining the toxicity of SA  

To determine whether SA induced cytotoxicity on P19 stem cell, the MTT assay was 

carried out as described in the experimental protocol in chapter 2. The data seen in 

Figure 3.14A shows concentration-dependent cytotoxicity in controls on day 3, in 

which the lower concentrations (0.1-0.3mM) had little or no cytotoxicity in both LPA 

and non-LPA treated cells. At 1mM SA there was a significant reduction (40%) of cell 

viability which increased to 55% with 3mM SA. In the presence of LPA (5 µM), SA was 

only found to be cytotoxic at 3mM, reducing viability to nearly 60%. LPA on its own 

appeared to suppress MTT metabolism when compared to controls, reducing this by 

about 20%. These trends on MTT metabolism were reflected when total cell count was 

determined at the end of each experiment. Similar to MTT metabolism SA had no 

effect on cell number at 0.1-0.3mM but reduced at 1-3mM. This was also seen in LPA 

treated cells but only reduced at 3mM (Figure 3.14B). 
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Figure 3.14: Effect of SA on cell viability in the absence and presence of LPA (day 3). 

Passage 9, P19 SCs were seeded at 1 x 104 cells/mL in 96 well plates and grown for 3 days. Cells 
were incubated with LPA (5µM) 1-hour post seeding and/or with increasing concentrations of 
SA. A final concentration of 0.1mg of MTT was incubated 4 hours prior to assessing cell viability 
as described in materials and method and grown at 37oC, 95% air and 5% CO2. (A) Percentage 
viability assay of treated cells. (B) MTT absorption of treated cells. Graph was derived from a 
standard curve of cell count vs MTT absorption at 570 nm. Statistical comparison was 
performed using one-way ANOVA with Dunnett's post Hoc test (α=0.05). The data represents 
the means ± S.E.M. of 4 individual experiments. (A)* Represents statistical comparison relative 
to control and # represents statistical comparison relative to LPA. (B) *# represent statistical 
comparison relative to control.  
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The data seen in Figure 3.15A shows MTT assays carried out on SA treated cells at day 

6 in which most of the concentrations (0.1-1mM) had little or no cytotoxicity in both 

LPA and non-LPA treated cells. At 3mM SA there was a significant reduction (75%) of 

cell viability. In the presence of LPA (5 µM), SA was only found to be cytotoxicity at 

3mM, reducing viability to nearly 60%. These trends on MTT metabolism were 

reflected when total cell count was determined at the end of each experiment. Similar 

to MTT metabolism SA had no effect on cell number at 0.1-1mM but reduced at 3mM. 

This was also seen in LPA treated cells, but the cell number was significantly increased 

at 0.3mM by about 50%. 
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Figure 3.15: Effect of SA on cell viability in the absence and presence of LPA (day 6). 

Passage 9, P19 SCs were seeded at 1 x 104 cells/mL in 96 well plates and grown for 6 days. 
Cells were incubated with LPA (5µM) 1-hour post seeding and/or with increasing 
concentrations of SA. A final concentration of 0.1mg of MTT was incubated 4 hours prior 
to assessing cell viability as described in materials and method and grown at 37oC, 95% air 
and 5% CO2. (A) Percentage viability assay of treated cells. (B) MTT absorption of treated 
cells. Graph was derived from a standard curve of cell count vs MTT absorption at 570 nm. 
Statistical comparison was performed using one-way ANOVA with Dunnett's post Hoc test 
(α=0.05). The data represents the means ± S.E.M. of 4 individual experiments. (A)* 
Represents statistical comparison relative to control and # represents statistical 
comparison relative to LPA. (B) * represent statistical comparison relative to control.  
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3.4.2 MTT assay determining the toxicity of ASA  

To determine whether ASA induced cytotoxicity onto the P19 stem cell, the MTT assay 

was carried out as described in the experimental protocol in chapter 2. The MTT data 

for ASA seen at day 3 (Figure 3.16) shows a similar trend in cytotoxicity as seen in SA 

treated cells in controls levels at day 6 (Figure 3.15), in which most of the 

concentrations (0.1-1mM) had little or no cytotoxicity in both LPA and non-LPA treated 

cells. At 3mM ASA there was a significant reduction (70%) of cell viability. In the 

presence of LPA (5 µM), ASA was only found to be cytotoxic at 3mM, reducing viability 

to nearly 90%. These trends on MTT metabolism were reflected when total cell count 

was determined at the end of each experiment. However, MTT metabolism data 

showed a significant reduction in cell number at 1-3mM. This was also seen in LPA 

treated cells. 
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Figure 3.16: Effect of ASA on cell viability in the absence and presence of LPA (day 3). 

Passage 9, P19 SCs were seeded at 1 x 104 cells/mL in 96 well plates and grown for 3 days. 
Cells were incubated with LPA (5µM) 1-hour post seeding and/or with increasing 
concentrations of ASA. A final concentration of 0.1mg of MTT was incubated 4 hours prior 
to assessing cell viability as described in materials and method and grown at 37oC, 95% air 
and 5% CO2. (A) Percentage viability assay of treated cells. (B) MTT absorption of treated 
cells. Graph was derived from a standard curve of cell count vs MTT absorption at 570 nm. 
Statistical comparison was performed using one-way ANOVA with Dunnett's post Hoc test 
(α=0.05). The data represents the means ± S.E.M. of 4 individual experiments. (A)* 
Represents statistical comparison relative to control and # represents statistical 
comparison relative to LPA. (B) *# represent statistical comparison relative to control.  
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The data seen in Figure 3.17 shows MTT assays carried out on ASA treated cells at day 

6 in which most of the concentrations (0.1-1mM) had little or no cytotoxicity in both 

LPA and non-LPA treated cells as similar to day 3 ASA. At 3mM SA there was a 

significant reduction (80%) of cell viability. In the presence of LPA (5 µM), ASA was only 

found to be cytotoxicity at 3mM, reducing viability to nearly 85%. These trends on MTT 

metabolism were reflected when total cell count was determined at the end of each 

experiment. Similar to MTT metabolism, ASA had no effect on cell number at 0.1-1mM 

but reduced at 3mM. However, in LPA treated cells, cell number was only significantly 

increased at 1-3mM.  
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Figure 3.17: Effect of ASA on cell viability in the absence and presence of LPA (day 
6). 

Passage 9, P19 SCs were seeded at 1 x 104 cells/mL in 96 well plates and grown for 6 
days. Cells were incubated with LPA (5µM) 1-hour post seeding and/or with increasing 
concentrations of ASA. A final concentration of 0.1mg of MTT was incubated 4 hours 
prior to assessing cell viability as described in materials and method and grown at 
37oC, 95% air and 5% CO2. (A) Percentage viability assay of treated cells. (B) MTT 
absorption of treated cells. Graph was derived from a standard curve of cell count vs 
MTT absorption at 570 nm. Statistical comparison was performed using one-way 
ANOVA with Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. 
of 4 individual experiments. (A)* Represents statistical comparison relative to control 
and # represents statistical comparison relative to LPA. (B) *# represent statistical 
comparison relative to control.  
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3.5 Effect of LPA, SA and ASA on p65-NFκB expression. 

To examine the effects of NFκB in the differentiation process, cells were seeded in 

suspension in the absence (Figure 3.18A) and presence of LPA (Figure 3.18B), SA 

(Figure 3.18C) and ASA (Figure 3.18D); lysates were generated at selected time points 

(5, 10, 15, 30 mins and 1, 3, 6, 9, 24 hours) to examine for the expression of p65-NFκB 

using western blotting. The results in Figure 3.18A showed no significant change in 

basal p65-NFκB expression at any of the time points when the densitometric data were 

compared. In the presence of LPA (5uM), total p65-NFκB expression was stable for the 

first 6 hours but decreased by more than 50% at 9 and 24 hours (Figure 3.18B). It is 

not clear why there was this decrease, but it is worth noting that the loading volume 

(20µg/µL) was greater at these two-time points than the rest of the other time points 

(data not shown). This would indicate a potential loss of cells which may reflect some 

degree of cytotoxicity. This was not previously seen in the long-time course studies 

and needs further investigation. Incubation with SA (1mM) or ASA (1mM) appears to 

cause time-dependent increases in total p65-NFκB levels, which was significant at 3 

hours in SA (Figure 3.18C) and between 30 mins and 3 hours with ASA (Figure 3.18D). 

With both drugs, levels of p65-NFκB declined from 6 hours onwards back to basal 

levels. These trends were however only evident when compared within the same 

experimental group. When compared to trends in cells treated with complete medium 

alone the changes in p65-NFκB levels did not show much of a significant difference to 

the latter condition.  For ease of comparison, the data has been replotted as seen in 

Figure 3.19, comparing cells incubated with complete medium alone, with LPA (Figure 

3.19A), SA (Figure 3.19B), ASA (Figure 3.19C).  These figures show that there was not 

much of a significant difference as already highlighted above. Where difference was 

observed, these were isolated and not easily explained. Similar comparisons have 

been carried out between LPA and SA (Figure 3.20A) and LPA and ASA (Figure 3.20B). 

In this case, the increasing trends seen with SA and ASA did not appear to be 

significantly different from the LPA responses. The reduction in p65-NFκB in the 

presence of LPA was however still evident and appears to be significant when 
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compared to ASA at 24 hours. The decline in p65-NFκB in the presence of ASA at 6 

hours appears to be significantly different from the levels seen in LPA treated cells. 

These trends would, however, appear random and it is, therefore, difficult to draw any 

firm conclusions.  
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Figure 3.18: Densitometric data for total p65-NFκB protein expression. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for p65-NFκB expression normalised to β-actin by western blotting 
as described in the methods. (A) Control, (B) LPA, (C) SA and (D) ASA treated cells. 
Statistical comparison was performed using one-way ANOVA with Dunnett's post Hoc 
test (α=0.05). The data represents the means ± S.E.M. of 4 individual experiments.  
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Figure 3.19: Control p65-NFκB densitometric data compared with LPA, SA and ASA p65-NFκB. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL microcentrifuge tubes for selected time points at 
37oC, 95% air and 5% CO2. Cells were lysed and probed for p65-NFκB expression normalised to β-actin by western blotting as described 
in the methods. (A) Control p65-NFκB compared to LPA p65-NFκB levels. (B) Control p65-NFκB compared to SA p65-NFκB levels. (C) 
Control p65-NFκB compared to ASA p65-NFκB levels. Statistical comparison was performed using two-way ANOVA with Dunnett's 
post Hoc test (α=0.05). The data represents the means ± S.E.M. of 4 individual experiments. 
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Figure 3.20: LPA p65-NFκB densitometric data compared with SA and ASA p65-NFκB. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for p65-NFκB expression normalised to β-actin by western blotting 
as described in the methods. (A) LPA p65-NFκB compared to SA p65-NFκB levels. (B) 
LPA p65-NFκB compared to ASA p65-NFκB levels. Statistical comparison was 
performed using two-way ANOVA with Dunnett's post Hoc test (α=0.05). The data 
represents the means ± S.E.M. of 4 individual experiments. 
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3.5.1 Effect of LPA, SA and ASA on phospho NFκB expression.  

To further examine the role of NFκB on the differentiation process, cells seeded in 

suspension were treated for selected time points (5, 10, 15, 30 mins and 1, 3, 6, 9, 24 

hours) with complete medium alone, LPA (5µM), SA (1mM) or ASA (1mM) and 

examined for the expression of phospho NFκB as an index of native NFκB, using 

western blotting. The results in Figure 3.21A show low basal levels of phospho NFκB 

which did not change over time in controls. When cells were treated with LPA, a time-

dependent, bell-shaped expression in phospho NFκB was observed, becoming evident 

at 3 hours, peaking at 6 hours and declining at 9 hours, returning to basal levels at 24 

hours (Figure 3.21B).  Similar trends were seen with SA (Figure 3.21C) and ASA (Figure 

3.21D) with the exception that the peak with SA was seen at 9 hours. These results 

show that NFκB can be phosphorylated on Ser 538 by LPA, SA and ASA independently 

in a delayed manner. For ease of comparison, the data has been replotted as seen in 

Figure 3.22, comparing cells incubated with complete medium alone with LPA (Figure 

3.22A), SA (Figure 3.22B), ASA (Figure 3.22C).  The trends mentioned above were 

further reflected in these figures, and significance was noted at both 6 and 9 hours in 

the presence of SA and ASA (Figure 3.22C). Similar comparisons have been carried out 

between LPA and SA (Figure 3.23A) or LPA and ASA (Figure 3.23B). In this case, 

significance was seen at both 6 and 9 hours in the presence of SA, where LPA treated 

cells peaked at 6 hours and delayed phosphorylation of NFκB was seen at 9 hours in 

SA treated cells. However, there was no significant difference seen in ASA treated cells 

when compared to LPA, as they shared a similar bell-shaped trend. 
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Figure 3.21: Densitometric data for total phospho NFκB protein expression. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for phospho NFκB expression normalised to β-actin by western 
blotting as described in the methods. (A) Control, (B) LPA, (C) SA and (D) ASA treated 
cells. Statistical comparison was performed using one-way ANOVA with Dunnett's post 
Hoc test (α=0.05). The data represents the means ± S.E.M. of 4 individual experiments.  
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Figure 3.22: Control phospho NFκB densitometric data compared with LPA, SA and ASA phospho NFκB. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL microcentrifuge tubes for selected time points at 
37oC, 95% air and 5% CO2. Cells were lysed and probed phospho NFκB expression normalised to β-actin by western blotting as 
described in the methods. (A) Control phospho NFκB compared to LPA phospho NFκB levels. (B) Control phospho NFκB compared to 
SA phospho NFκB levels. (C) Control phospho NFκB compared to ASA phospho NFκB levels. Statistical comparison was performed 
using two-way ANOVA with Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. of 4 individual experiments. 
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Figure 3.23: Phospho NFκB expression in LPA treated cells compared to SA or ASA 
treated cells. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for phospho NFκB expression normalised to β-actin by western 
blotting as described in the methods. (A) LPA phospho NFκB compared to SA phospho 
NFκB levels. (B) LPA phospho NFκB to ASA phospho NFκB levels. Statistical comparison 
was performed using two-way ANOVA with Dunnett's post Hoc test (α=0.05). The data 
represent the means ± S.E.M. of 4 individual experiments. 
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3.5.2 Effect of LPA, SA and ASA on IκB expression.  

In addition to NFκB, it was critical to examine the role of IκB; an inhibitory protein that 

maintains NFκB at an inactively bound state. Cells were seeded in suspension in the 

absence (Figure 3.24A) and presence of LPA (Figure 3.24B), SA (Figure 3.24C) and ASA 

(Figure 3.24D) and lysates were generated at selected time points (5, 10, 15, 30 mins 

and 1, 3, 6, 9, 24 hours) to examine for the expression of total and phosphorylated IκB 

using western blotting. The results in Figure 3.24A showed no significant change in 

basal IκB expression at any of the time points when the densitometric data were 

compared. In the presence of LPA (5µM), a time-dependent trend was seen in the 

expression of IκB where at 5, 10 and 15 mins IκB expression was lower than basal 

levels, returning back to basal levels at 30 mins and 1 hour and exceeding basal levels 

between 3, 6 and 9 hours but declining at 24 hours (Figure 3.24B). Incubation with SA 

(1mM) did not show much of a significant change in total IκB, but this declined at 9 

and 24 hours (Figure 3.24). This was also the case following ASA treatment and in the 

latter IκB was enhanced at 30 minutes post-treatment (Figure 3.24D). These trends 

were however only evident when compared within the same experimental group. For 

ease of comparison, the data has been replotted as seen in Figure 3.25, comparing 

cells incubated with complete medium alone with LPA (Figure 3.25A), SA (Figure 

3.25B), or ASA (Figure 3.25C).  These figures show that the changes in IκB levels did 

not show much of a significant difference in both drug conditions (SA and ASA).  The 

SA samples did not show any significant difference when compared to controls, but it 

is worth noting the significance seen at 30 minutes ASA was also seen in Figure 3.25C 

when compared to control IκB expression. The LPA treated samples also showed the 

same significant trend when compared to controls (Figure 3.25A). Similar comparisons 

have been carried out between LPA and SA (Figure 3.26A) and LPA and ASA (Figure 

3.26B). In this case, the trends seen with SA and ASA seem identical, showing 

significantly higher IκB expression at 5, 10, 15 mins in SA treated cells; with the 

addition of 30 mins in ASA treated cells when compared to the LPA samples. The 
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responses to LPA were however higher than those seen with SA and ASA at 6, 9 and 

24 hours for both conditions.  

 

  

Figure 3.24: Densitometric data for total IκB protein expression.  

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for IκB expression normalised to β-actin by western blotting as 
described in the methods. (A) Control, (B) LPA, (C) SA and (D) ASA treated cells. 
Statistical comparison was performed using one-way ANOVA with Dunnett's post Hoc 
test (α=0.05). The data represents the means ± S.E.M. of 4 individual experiments.  
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Figure 3.25: Control IκB densitometric data compared with LPA, SA and ASA IκB. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL microcentrifuge tubes for selected time points at 
37oC, 95% air and 5% CO2. Cells were lysed and probed for IκB expression normalised to β-actin by western blotting as described in 
the methods. (A) Control IκB compared to LPA IκB levels. (B) Control IκB compared to SA IκB levels. (C) Control IκB compared to ASA 
IκB levels. Statistical comparison was performed using two-way ANOVA with Dunnett's post Hoc test (α=0.05). The data represents 
the means ± S.E.M. of 4 individual experiments. 
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Figure 3.26: IκB expression in LPA treated cells compared to SA or ASA treated cells. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for IκB expression normalised to β-actin by western blotting as 
described in the methods. (A) LPA IκB compared to SA IκB levels. (B) LPA IκB compared 
to ASA IκB levels. Statistical comparison was performed using two-way ANOVA with 
Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. of 4 
individual experiments.  
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3.5.3 Effect of LPA, SA and ASA on phospho IκB expression.  

In addition to the experiments conducted above, we further investigated the 

phosphorylation of IκBα. Cells were seeded in suspension in the absence (Figure 3.27A) 

and presence of LPA (Figure 3.27B), SA (Figure 3.27C) and ASA (Figure 3.27D) and 

lysates were generated at selected time points (5, 10, 15, 30 mins and 1, 3, 6, 9, 24 

hours) to examine for the expression of phospho IκB using western blotting. The 

results in Figure 3.27A showed a statistically significant change in the overall basal 

phospho IκB expression between 1 to 24 hours, presenting a time-dependent bell-

shaped change in the densitometric data. These were however small changes, peaking 

at 6 hours and declining at 9 and 24 hours. In the presence of LPA (5µM), high 

expression of phospho IκB was seen between 5 and 15 minutes but declined back to 

basal levels thereafter (Figure 3.27B). Incubation with SA (1mM) (Figure 3.27C) or ASA 

(1mM) (Figure 3.27D) appeared did not show much of a time-dependent effect 

although peaks in phospho IκB were seen with both SA and ASA at 3 hours. However, 

the overall trends appear random and it is, therefore, difficult to draw any firm 

conclusions. The trends were also only evident when compared within the same 

experimental group. For ease of comparison, the data has been replotted as seen in 

Figure 3.28, comparing cells incubated with complete medium alone with LPA (Figure 

3.28A), SA (Figure 3.28B), ASA (Figure 3.28C).  Similar comparisons have also been 

carried out between LPA and SA (Figure 3.29A) and LPA and ASA (Figure 3.29B). The 

replotted data confirms the trends already highlighted above. 

 

 

 

 



94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Densitometric data for total phospho IκB protein expression. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for phospho IκB expression normalised to β-actin by western blotting 
as described in the methods. (A) Control, (B) LPA, (C) SA and (D) ASA treated cells. 
Statistical comparison was performed using one-way ANOVA with Dunnett's post Hoc 
test (α=0.05). The data represent the means ± S.E.M. of 4 individual experiments.  
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Figure 3.28: Control phospho IκB densitometric data compared with LPA, SA and ASA phospho IκB. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL microcentrifuge tubes for selected time points at 
37oC, 95% air and 5% CO2. Cells were lysed and probed for phospho IκB expression normalised to β-actin by western blotting as 
described in the methods. (A) Control phospho IκB compared to LPA phospho IκB levels. (B) Control phospho IκB compared to SA 
phospho IκB levels. (C) Control phospho IκB compared to ASA phospho IκB levels. Statistical comparison was performed using two-
way ANOVA with Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. of 4 individual experiments. 
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Figure 3.29: Phospho IκB expression in LPA treated cells compared to SA or ASA 
treated cells. 

Passage 9, P19 SCs were seeded in complete -MEM at 7 x 107 cells/mL in 1.5 mL 
microcentrifuge tubes for selected time points at 37oC, 95% air and 5% CO2. Cells were 
lysed and probed for phospho IκB expression normalised to β-actin by western blotting 
as described in the methods. (A) LPA phospho IκB compared to SA phospho IκB levels. 
(B) LPA phospho IκB to ASA phospho IκB levels. Statistical comparison was performed 
using two-way ANOVA with Dunnett's post Hoc test (α=0.05). The data represents the 
means ± S.E.M. of 4 individual experiments. 
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3.5.4 Effect of CAY10470 on LPA-induced MLC-1v expression.  

 

To confirm whether LPA acted on the NFκB transcription factor in establishing 

cardiomyocyte differentiation of P19 SCs, CAY10470 was incubated with P19 cell 

suspension throughout the EB formation phase. CAY10470 showed a concentration-

dependent decrease in MLC-1v expression in the presence of LPA (5µM), showing 

significance at 0.01 and 0.1 nM (Figure 3.30).   

 

 

 

 

 

 

 

 

 

 

Figure 3.30: Concentration-dependent effects of CAY10470 on MLC-1V expression in 
LPA activated P19 SCs. 

Passage 9, P19 SCs were seeded at 3.5 x 105 cells/mL in P60 microbiology Petri dishes. 
The cells were treated in the presence and absence of LPA (5µM) or LPA (5µM) and 
CAY10470. The latter was added to cells 1-hour post treatment with LPA and grown at 

37oC, 95% air and 5% CO2. The cells were cultured in complete -MEM and left to form 
EBs over 4 days. In this study, 6-8 EBs were plated into 24 well-plates and cultured for 
3 days and lysed to be probed for β-actin and MLC-1v expression by western blotting 
as described in the methods. Statistical comparison was performed using two-way 
ANOVA with Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. 
of 4 individual experiments.   

 

DMSO 1% Control 0 nM 0.001 nM 0.01 nM 0.1 nM 
0

25

50

75

100

125

150

%
 M

L
C

-1
v
 E

x
p

re
s
s
io

n
(R

e
la

ti
v
e
 t

o
 D

M
S

O
)

LPA (5mM) + CAY10470

*
*



98 
 

3.5.4.1 MTT assay determining the toxicity of CAY10470 

To determine whether the concentrations of CAY10470 used throughout the studies 

had any cytotoxic effects on the P19 SCs, the MTT assay was carried out as described 

in the experimental protocol in chapter 2. The data seen in Figure 3.31 shows that 

CAY10470 was well tolerated with little or no change in cell viability except with 1 nM 

CAY10470. The inhibition in MTT metabolism at this concentration, although small, 

was found to be statistically significant (Figure 3.31).  

 

 

 

 

 

 

 

 

 

 

Figure 3.31: Effect of CAY10470 on P19 SC viability. 

Passage 10, P19 SCs were seeded at 3.5 x 105 cells/mL and pre-incubated with 
CAY10470 for 1 hour before adding LPA (5µM). Monolayers were then grown until 70% 
confluency for 3 days. A final concentration of 0.1mg of MTT was added to the 
monolayers and incubated for 4 hours prior to assessing cell viability as described in 
materials and methods. Statistical comparison was performed using one-way ANOVA 
with Dunnett's post Hoc test (α=0.05). The data represents the means ± S.E.M. of 4 
individual experiments. 
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4. Discussion 
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Coronary artery disease (CAD) related complications pose a significant threat, with 

high mortality rates across the world. CAD results from atherosclerosis, the build-up 

of cholesterol-rich lipids and inflammatory cytokines within the arterial wall, leading 

to major cardiac events such as myocardial infarction. So far, the current and only 

feasible methods of treatment are management through pharmacological agents, 

medical interventions (coronary stents and bypass surgery) and heart transplantation.  

The increasing interests into stem cell-based research have shown the potential to 

produce promising alternatives in treating or reversing the damage caused on the 

myocardium using SCs.  The availability of SCs to differentiate into cardiomyocytes has 

led researchers to gain novel insights into the early development of the heart, one 

such model widely used experimentally is the murine P19 teratocarcinoma cell line, 

giving rise to all three primary germ layers (endoderm, mesoderm and ectoderm) 

(Datta, 2013). Although this model has been widely used for nearly 40 years, 

examining instrumental signal transduction pathway regulations and the expression of 

the cardiac-specific transcription factors, that lead onto cardiac differentiation has 

been the main focus in recent years (van der Heyden & Defize, 2003).  

One of the major hurdles in using P19 SCs is the availability of a viable inducing agent 

for differentiation. Currently, DMSO has been used extensively to initiate consistent 

differentiation of these P19 cells into cardiomyocytes. However, its toxicity prevents 

the use of DMSO in vivo studies. Our research group has therefore focused on the 

identification of endogenous bioactive small molecules which could mediate this 

process and are therefore of clinical relevance. One such molecule investigated by 

others in the group is LPA; a crucial lipid mediator in key physiological and 

pathophysiological processes, that has also shown cardioprotective characteristics, 

including protection against ischaemic injury; regulating the cardiovascular function of 

cardiac myocytes, endothelial and smooth muscle cells in response to major cardiac 

events such as myocardial infarction (X. Chen et al., 2003). In addition, research 

conducted within our group has demonstrated LPA acts on specific receptors (LPAR1/3 
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and 4) which are in turn coupled to downstream signalling pathways that regulate P19 

MSCs differentiation into cardiomyocytes (Pramod, 2015).  

The other focus of our research group is to understand how drugs used to treat 

patients with heart disease might regulate SC differentiation and therefore affect 

cardiomyocytes generation. One such drug of interest is ASA which is widely given as 

secondary prevention care for cardiovascular-related complications. Aspirin is a 

nonsteroidal anti-inflammatory drug (NSAID) that is an effective antithrombotic, 

antiplatelet and analgesic. The mechanism of action of ASA suppresses the production 

of prostaglandins and thromboxane through the irreversible inactivation of the 

cyclooxygenase (COX) enzyme. Aspirin may also regulate cell signalling mechanisms 

including the NFκB pathway which may play a role in stem cell differentiation. 

Considering that most patients with heart disease and requiring SC therapy (should 

this become clinically achievable) may also be on ASA treatment, we have investigated 

whether ASA and its active metabolite (SA) can regulate the differentiation process 

either directly or regulate the actions of LPA. Using NSAIDs such as aspirin to condition 

stem cell for cardiac therapy has been recently proposed, and studies have indicated 

a modulatory effect on cell proliferation, tissue regeneration and differentiation (Du 

et al., 2016). This has been thought to be achieved through the control of activating 

key signalling pathways, receptor modulation and transcriptional factor activity 

(Massimi et al., 2014). Thus, there is some evidence that ASA may be able to influence 

SC differentiation. However, it is not clear whether ASA can directly regulate the 

commitment of SCs into a cardiac lineage. We have therefore examined the effects of 

aspirin and/or salicylic acid alone and in combination with LPA on cardiomyocyte 

differentiation. DMSO was also used in some studies as a positive control to confirm 

differentiation. 

A viable cell culture model was first established, inducing P19 SCs from a confluent 

monolayer to embryoid bodies and then differentiating them into cardiomyocytes. 

Previously, the methodology used to differentiate P19 SCs into cardiomyocytes used 
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P60 microbiology non-adherent Petri dishes. This resulted in inconsistent EB growth 

patterns, in which a concentrated pool of seeded cells could have been exposed to 

varying concentrations of treatment, resulting in irregular growth morphology and 

size. Moreover, there were also significant differences in the sizes of the EBs formed 

which affected their differentiation efficiency, particularly with regards to generating 

beating cardiomyocyte clusters. In addition, the smaller EBs could have been less 

viable as they sustained higher cellular toxicity at the selected concentration range, as 

compared to larger and more pronounced EB sizes. This was exponentially reflected 

over the course of 4 days during the EB growth period. To minimise these variabilities, 

cells were grown in ultra-low attachment nunclon sphera 96-well plates, in which each 

well housed a singular EB. Cells were seeded at increasing concentrations to establish 

the optimum seeding density in which cells reached the required diameter (350-

450µm). Studies have shown the morphology and size of EB influenced the efficiency 

of stem cell differentiation, with smaller EB sizes (150-300 µm) being more associated 

with improved endothelial cell differentiation and larger EBs (350-450 µm) with 

cardiogenesis (Liyang et al., 2014). Therefore, it was crucial to factor in the size of EB 

diameter when optimising EB formation and morphology.  

It was evident that 10,000 cells per well (300µL) was sufficient for experimental use 

and furthermore, the duration in which EBs were formed and matured, developing the 

mesoderm was also considered. To examine this, cells were grown for 24 hours and 

48 hours. These time points were chosen as studies have established that, at 48 hours, 

EBs aggregate and form the mesoderm, this was evident by examining the expression 

of a vascular endothelial growth factor receptor and cell surface marker foetal liver 

kinase-1(Flk-1) (Dang et al., 2002). The justification of growing EBs for 2-4 days was 

further emphasised in a study examining multipotent Flk-1+ cardiovascular progenitor 

in ESC, in which colonies of suspended cells from day 2 onwards, expressed genes 

associated with cardiac development such as Nkx2.5, MLC2a, Tbx5, and Isl1 b (Kattman 

et al., 2006). From the results, the combination of seeding 10,000 cells for 48 hours 
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resulted in reliably consistent sizes of EB that established more defined outer borders 

characterising the EB morphology.  

The two previously stated methods showed a clear difference in their abilities to form 

EBs. Firstly, the Petri dish protocol required a longer period to develop (4 days) as 

compared to the optimised ultra-low attachment 96-well plate method (2 days). This 

longer growth period seen in Petri dishes resulted in hundreds of irregular shaped EB 

in morphology, making it further complicated to isolate 6-8 individual EB of equal or 

similar size to be plated. However, the individually grown EBs in ultra-low attachment 

96-well plates provided an easier and more reliable use of EBs for resulting 

experiments. In addition, EB grown in Petri dishes EB required to be grown for a longer 

time in culture to generate actively beating cardiomyocytes (6-12 days) and occurred 

with large confluent monolayers. Moreover, beating cardiomyocytes were not always 

evident showing a lack of consistency. Whereas, ultra-low attachment 96-well plate 

grown EBs resulted in consistently beating cardiomyocytes from day 3 onwards, with 

individual fibre shaped cells establishing a network of beating cells.  

It is worth noting, the difference seen in monolayers formed by the Petri dish and the 

individual cells formed by the ultra-low attachment 96-well plate was substantial, as 

the control cells showed more spontaneous beating cells in the absence of any 

inducers of differentiation on Petri dish grown EBs. The optimisation of our culture 

condition has therefore produced a new approach and model for EB formation and 

enhanced cardiomyocyte differentiation.  

In order to examine the effects of SA and ASA in the presence and absence of LPA 

(5µM) on EBs differentiation, cells were also grown in increasing concentrations 

ranging from 0.01, 0.03, 0.1, 0.3, 1mM. The inconsistency EB size was noticeable, as 

the effects of SA and ASA in both the presence and absence of LPA conditions showed 

varying sizes of EBs using the Petri dish method. However, when using the ultra-low 

attachment 96-well plate methods, EB sizes were consistent and all stayed within 350-

450µm in diameter.  
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The next experimental plan focused on establishing and replicating the effects of LPA 

in inducing MLC-1v expression on P19 SCs. Initial studies that were conducted, 

examined increasing non-cytotoxic concentrations of LPA (1, 5, 10, 20 μM) and were 

compared to a positive control (DMSO 1%). It was evident that cardiac differentiation 

was presented at all concentrations, however, maximal induction was achieved at 

5μM and mirrored that of DMSO 1%. These results imply LPA can consistently induce 

differentiation of cells into cardiomyocytes. In most studies, LPA was used at a 

concentration of 5µM which was within the group. This concentration was selected 

because it induces differentiation reproducibly and is well within the physiological 

range found in plasma concentrations (X. Chen et al., 2003). Using this concentration, 

P19 SCs were examined at days 3 and 6 in the plated phase to examine for the evidence 

of these cells differentiating into cardiomyocytes.   

 In addition to LPA, increasing concentrations of SA and ASA were used (0.1, 0.3, 1, 3 

mM) and lysates were collected at days 3 and day 6. Western blot analysis was 

subsequently undertaken, examining the differentiation of P19 SCs through the 

expression of a cardiac-specific marker (MLC-1v) and a commonly used housekeeping 

gene (β-actin). Findings indicated differentiation was induced at selected 

concentrations of ASA (0.3 -1mM, at day 3) and SA (1mM, at day 3). However, maximal 

induction was achieved at 1mM on day 3, which declined in response to an increase in 

SA and ASA concentration (3mM), implying SA and ASA can enhance EB differentiation 

individually, but the decrease in MLC-1v expression levels could be attributed to 

cytotoxicity, which was represented with higher loading volumes to achieve a 

consistent loading content (20µg/µL) at higher concentrations of SA and ASA. This is 

further supported by the MTT assay for cell viability and cell number; undertaken at 

days 3 and day 6. As MTT is primarily a cell viability assay, it could also be used to 

indicate cell proliferation, which was significantly reduced, indicating why the maximal 

expression of MLC-1v was only reached at 1mM.  
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For the first time, we have shown aspirin (ASA) and its active molecule (SA) are able to 

potentiate cardiomyocyte differentiation in a concentration-dependent manner on 

P19 ESCs. From this finding, further work would be required to understand the 

mechanism of the effect of SA on differentiation. Possible mechanisms include the 

canonical Wnt/β-catenin signalling pathway. Studies (Naito et al., 2006; Ueno et al., 

2007) have shown manipulation of this pathway can result in a biphasic response. 

Activation during the EB formation phase, in which the formation of the germ layer is 

yet to be developed, leading to the promotion of embryonic stems cell to differentiate. 

Contrastingly, the latter phases (post EB formation) results in the inhibition of 

cardiomyocyte formation, as programmed cardiomyocytes are redirected toward an 

alternate mesoderm fate.  It is possible that SA and ASA may be involved in the 

manipulation of the canonical Wnt/β-catenin signalling pathway mediated cardiac 

differentiation of P19 cells (Naito et al., 2006; Ueno et al., 2007). This, however, needs 

to be confirmed in our studies.  

Although SA and ASA were able to induce differentiation individually, when introduced 

with LPA (5µM) the effect of SA/ASA seem to inhibit the effectiveness of LPA to induce 

differentiation, acting as an antagonist. Interestingly, from the result, SA at 0.1mM in 

the presence LPA showed an increase in MLC-1v expression, it could be assumed low 

levels of SA could enhance LPA induced differentiation. Contrastingly, higher 

concentrations produce an inhibitory function. This hypothesis needs to be 

investigated in future studies, where a lower concentration range is used in 

combination with LPA to examine differentiation.  

Previous research from our group has established that LPA initiates differentiation 

through downstream signalling pathways involving the Rho-associated protein kinase 

(ROCK), PI3K, phosphoinositide 3-kinase (PKC), that converge on extracellular signal-

regulated kinase-1 and 2 (ERK1/2) (Maan, 2018; Pramod, 2015). A mechanism in which 

SA/ASA blocks the ability of LPA to induce differentiation could be explained by 

blocking the transient activation of the mitogen-activated protein kinase 



106 
 

(MAPK)/Erk1/2. Studies have shown by blocking the upstream kinase MEK and the 

subsequent inhibition of p-ERK 1/2 activation, prevented the differentiation of 

neuronal cells from cultured ES cells (Li et al., 2006). This is supported by another study 

examining rat spinal cord mixed culture, in which ASA was used to treat 

hypoxia/reoxygenation (H/R) damage. Results indicated ASA strongly inhibits ERK1/2 

activation (Vartiainen et al., 2003).  

An alternative mechanism could be presented by examining whether the PI3K/AKT 

pathway is inhibited by SA/ASA.  Research using a specific PI3K inhibitor (LY294002) 

has shown to reduce LPA’s effect on neuronal differentiation by roughly 53%. This 

suggests that the involvement of the PI3K/Akt pathway plays a vital role in inducing 

differentiation and subsequent inhibition could result in the loss of differentiation 

potential (Dottori et al., 2008). To further substantiate this hypothesis, studies 

examining lung tissues have shown ASA at varying concentrations resulted in the 

decreased expression of ERK, PI3K and Akt, indicating ASA downregulate the 

expression of these intracellular signalling pathways in rat lungs (Wang et al., 2013). 

It is crucial to note, at day 6 both SA and ASA conditions showed high control levels of 

MLC-1v expression, indicating the cells were already committed to a cardiomyocyte 

fate at this time point. To exclude this variability, cells batches were routinely changed 

to confirm spontaneous differentiation was not established due to poor cell line, 

anomalies or user error. To further substantiate this examination, each batch of cells 

were spot checked and probed for MLC-1v using western blotting to determine if the 

cells were already predisposed to a cardiac lineage in the absence of any treatments 

or inducers of cardiomyocyte differentiation. Batches of cells thought to be unsuitable 

for use were discarded. 

Following the studies examining the differentiated state of P19 SCs, our research 

focused on whether these drugs could mediate their effects through activation of 

NFκB as a target downstream of key upstream signalling pathways including ERK1/2. 

NFκB is often found in the variants p65 (RelA), p105/p50 (NF-IκB1), p100-p52 (NFκB2), 
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c-Rel (Rel), and RelB is a multi-functional transcription factor involved in various 

biological processes including apoptosis, inflammation and more relevantly the 

differentiation and proliferation of stem cells. In the resting state of mammalian cells, 

NFκB exists within the cytosol in an inactively bound state, preventing its nuclear 

localisation and transcriptional function, mediated through the inhibitory IκB kinase 

(IKK) complex. Upon activation, the degradation of IκBα is regulated by various signals 

such as phosphorylation of MAPK, similar upstream signalling pathways and IκB kinase 

(IKK); freeing the NFκB complex. NFκB is then able to translocate from the cytosol into 

the nucleus, enabling activated NFκB to bind to DNA-binding sites on specific genes, 

and regulating their expression.  

Studies have shown that aspirin potentiates the activation of NFκB, this can be seen in 

the research conducted by Stark et al, in which a time-dependent and dose-dependent 

increase of nuclear p65 was seen when treated with aspirin. Subsequently activating 

the NFκB pathway to induce apoptosis of the HT-29 colorectal cancer cell line (Stark et 

al., 2001). Alternatively, aspirin is also seen to mediate inhibition of NFκB activation, 

which is reflected in various studies. These studies concluded that aspirin inhibited the 

degradation of the IκBα from the NFκB complex, preventing NFκB from translocating 

from the cytosol to the nucleus (Kopp & Ghosh, 1994; McCarty & Block, 2006). 

Although the role of aspirin within the NFκB pathway, portray both inhibitory and 

stimulatory functions, its potential effect on NFκB in mediating cardiomyocyte 

differentiation is a topic of interest. Therefore, we examined the role of native p65 

NFκB variant, one of the central regulators of the transcriptional responses. Studies 

have also shown that NFκB plays a major cardioprotective role during acute hypoxia 

and reperfusion injury (Tranter et al., 2010). Our results indicated the native levels of 

NFκB remained relatively constant between control and LPA but appear to be 

potentiated by SA and ASA which increases total NFκB within 30 mins of incubation. It 

is not known why this occurred and appears too rapid a time course to see such a 

significant change in total NFκB protein expression. This may be a random effect but 

clearly needs further investigation. Worth noting also is the observation that native 
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levels of NFκB in LPA treatment seemed to unexpectedly drop at the later time points 

(9 and 24 hours). Again, it is not clear why this occurred but may be a result of potential 

cytotoxicity on the cells. Cytotoxicity assays were not carried out on this occasion 

because of time constraints but previous studies have shown that LPA was well 

tolerated at concentrations of up to 20 µM. The fact that the loading volume had to 

be increased in the more recent studies would suggest potential cytotoxicity leading 

to cell loss and therefore lower total cell protein. 

Although native NFκB was widely expressed in all conditions, it is the phosphorylation 

of the p65 NFκB subunit that is crucial as it regulates the transcriptional activity, 

enabling the translocation of activated NFκB from the cytosol into the nucleus. To 

further examine the role of NFκB in detail, experiments were carried out examining 

the time-dependent phosphorylation of NFκB in control, LPA, SA and ASA conditions. 

Results indicated control conditions had no variation across all time points and showed 

low levels of phosphorylated NFκB expression when examined by western blot, which 

indicates our cell line did not spontaneously phosphorylate NFκB. In contrast, LPA, SA 

and ASA appeared to induce substantial expression of phospho NFκB at the 6-9-hour 

time points. It could be assumed initiation of cardiomyocyte differentiation could be 

triggered as early as these time points resulting from phosphorylation of NFκB through 

various cell signalling pathways. Our findings are similar to studies conducted on 

fibroblasts isolated from p65 S276A knock-in mice, which showed inhibition of p65-

NFκB phosphorylation severely impaired the transcription of many tested genes 

(Hochrainer et al., 2013). This is also supported in Drosophila Rel protein studies, 

where signal-dependent dorsal phosphorylation occurs in the cytoplasm, rendering 

the process of phosphorylation essential in nuclear import from the cytoplasm to the 

nucleus (Drier et al., 1999). More substantially studies have implicated the 

upregulation of p65 NFκB in differentiation, as activation synergistically regulate TGF-

β induced differentiation of lung fibroblast, resulting from the translocation of p65 

NFκB into the nucleus and inducing gene expression (Sun et al., 2015). 
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The first identified IKK complex, is the initiating factor in the degradation of the NFκB 

complex, containing two catalytic subunits (IKKα and IKKβ), and a structural regulatory 

component named NEMO (IKKγ). This complex has been thought to promote assembly 

of the IKK by relaying upstream signals to IKK. Thereby, leading to the phosphorylation 

of IΚB and subsequent activation of NFκB. To investigate this, western blot analysis 

was conducted on cell lysates collected at defined time points and probed for both 

native and phospho-IκB. Results indicate, in control conditions, native IκB levels were 

consistent throughout, as expected. This was further reflected in phospho-IκB data 

sets. However, in the presence of LPA; a known biological inducer of cardiomyocyte 

differentiation, the native IκB decreased as phospho-IκB levels increased, implying 

phosphorylation of IκB is undertaken at earlier time points (5 to 30 mins), native IκB 

levels are proportionally lower and the opposite is seen. When the levels of 

phosphorylation are reduced, native IκB levels are overcome. Evidence of this is also 

seen in studies examining terminal differentiation of neural stem cells (NSCs); the 

results presented confirmed the activation of the canonical IKKβ/IκBα/p65 pathway 

during initial stages of neural differentiation induced by collagenase II treatment with 

TNF (Zhang et al., 2012). In addition, phorbol 12-myristate 13-acetate (PMA)-induced 

macrophage-differentiation was examined in U937 cells, by investigating the role of 

IκBα phosphorylation and the activity of NFκB. Results from this study indicated 

prolonged phosphorylation of IκBα enhanced differentiation by potentially regulating 

other molecules that initiate differentiation (Hu et al., 2000). This trend seen in our 

LPA studies is also partially seen in our studies examining SA and ASA condition, 

whereby levels of phosphorylation seem to occur at the later time point (3 hours) and 

native IκB levels reduce overtime. This indicates, although SA/ASA conditions seemed 

to show a similar pattern to that of LPA seen in NFκB studies, the results here 

examining the phosphorylation of IκB were dissimilar, suggesting that SA and ASA act 

on different signalling pathways in the process of NFκB-IκB degradation. Further 

studies are however needed to fully confirm the trends we have seen. In summary, 

NFκB transcriptional activity is regulated at multiple events, and the phosphorylation 
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of the p-65 NFκB dimer may play a vital role in both upstream and downstream related 

signalling pathways in activating the cascade, following the degradation of IκB 

proteins. These preliminary studies targeting the native NFκB and IκB complex with 

our selected treatments successfully investigate the appropriate time in which 

differentiation initiates, represented by the detection of phosphorylated NFκB and IκB. 

To further substantiate the role NFκB plays in mediating the actions of LPA in P19 cells 

differentiation, NFκB activity was inhibited using increasing concentrations of 

CAY10470, a highly potent and selective NFκB inhibitor (Wen et al., 2011). These 

experiments were undertaken in parallel with changes in MLC-1v expression.  The 

expression in MLC-1v showed a dose-dependent reduction in the presence of 

CAY10470, where maximal inhibition was reached at 0.1 nm. Cell viability assays (MTT) 

were carried out to rule out any effects of cytotoxicity caused by CAY10470. These 

studies showed no cytotoxicity at the concentrations of CAY10470 used, confirming 

the role of NFκB in cardiomyocyte differentiation. Thus, the link between NFκB and 

cardiomyocyte differentiation is vital, as the regulation of this transcription factor may 

be the key in identifying the mechanism and signalling pathways in which induction of 

differentiation can be established.  
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5. Conclusion 
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In conclusion, we have developed a new protocol for generating EBs by optimising the 

differentiation of P19 SCs into cardiomyocytes. This work highlighted the importance 

of EB growth and size, demonstrating that they both play a critical role in the efficiency 

and potential for cells to differentiate into cardiomyocytes. Furthermore, we were 

able to confirm that LPA is an inducer for cardiomyocyte differentiation. Thus, the 

introduction of LPA as a biological inducer for differentiation at low physiological 

concentrations provides a potential for future treatment plans. In addition, SA and ASA 

were partially able to replicate the results seen in LPA conditions individually, 

however, when subjected to combination treatment with LPA (5µM), both SA and ASA 

presented antagonistic characteristics. It is therefore assumed that although SA and 

ASA do possess the ability to induce differentiation independently, they may do so by 

mechanisms independent of those activated by LPA. In parallel studies, we were 

successfully able to analyse phospho and native proteins associated with the NFκB 

complex. These preliminary studies indicated that in SA and ASA conditions, expressed 

phospho NFκB levels that were similar in trend to LPA treated cells, implying a shared 

mechanism. However, the phosphorylated and non-phosphorylated IκB levels of 

ASA/SA did not share the same trend to LPA treatment. This supports the implication 

that SA and ASA work on independent signalling pathways to that of LPA in the NFκB 

activation cascade.  

In conclusion, the findings from this thesis make a case to critically evaluate patients 

undergoing SC therapy who are using aspirin for their underlying heart disease. Aspirin 

may suppress the efficiency and viability of repairing the heart by inhibiting the 

activation of vital signalling pathways. Its potential to induce the process cannot, 

however, be ruled out and therefore needs further investigation. 
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6. Future Works 

 

1) Our research has indicated, both SA and ASA independently initiate 

differentiation, however in the presence of LPA treatment, it has shown antagonistic 

characteristics. Studies from other groups have shown, aspirin has opposing 

characteristics at low and high concentrations, therefore future experiments could 

examine if concentrations beyond our selected range could prevent the antagonistic 

tendencies associated with SA/ASA + LPA treatments. 

2) Studies could also aim towards, examining the importance of prostaglandin 

synthesis and/or enhanced adenylyl cyclase activation on NFκB activation. Therefore, 

by blocking with aspirin, we could investigate the potential depletion of cyclic 

adenosine monophosphate (cAMP) levels, enhancing NFκB activation.  

3) Selective inhibition of the proteins MLC-1v and phospho-NFκB were seen in LPA 

treated cells, when treated with CAY10470. Due to the limited time and nature of this 

project, we were unable to examine the effect of CAY10470 on SA and ASA in the 

presence and absence of LPA (5µM). Therefore, experiments undertaking these 

investigations would present a better understanding that links SA and ASA to LPA’s 

mechanism of action.  

4) The studies examining the early differentiation time points of embryoid bodies 

showed a generic time range in which either phospho-NFκB or phospho-IκB peaked. 

However, a more refined time course is needed to provide a more accurate set of 

results to pinpoint the time in which the phosphorylation of the selected transcription 

factor is initiated.  

5) The conclusion gained from western blot studies are limited, therefore PCR 

studies would further support our research by examining the expression of selected 

genes such as MLC, GATA4, NFκB.   
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6) It is generally accepted that LPA may act through Mitogen-activated kinases 

(MAPKs) and PI3K which induces differentiation. However, it is not clear whether SA 

and ASA act in a similar manner. Experiments could be carried out examining whether 

SA and ASA regulate phosphorylation of targeted signalling pathways including MAPKs 

and PI3K. 

7) Studies conducted by our research group have implicated GATA4 in playing a 

crucial role in the differentiation of P19 SCs into cardiomyocytes. Consequently, a 

potential experimental plan could be initiated in examining how SA/ASA and SA/ASA 

+ LPA interact with the expression of GATA4.     
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