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Abstract 
Previous studies have demonstrated that haemostatic products with an absorptive 
mechanism of action retain their clotting efficiency in the presence of toxic materials 
and are effective in decontaminating chemical warfare (CW) agents when applied to 
normal, intact skin. The purpose of this in vitro study was to assess three candidate 
haemostatic products for effectiveness in the decontamination of superficially 
damaged porcine skin exposed to the radiolabelled CW agents soman (GD), VX and 
sulphur mustard (HD). Controlled physical damage (removal of the upper 100 µm 
skin layer) resulted in significant enhancement of the dermal absorption of all three 
CW agents. Of the haemostatic products assessed, WoundStat™ was consistently 
the most effective, being equivalent in performance to a standard military 
decontaminant (fuller’s earth). These data suggest that judicious application of 
haemostatic products to wounds contaminated with CW agents may be a viable 
option for the clinical management of casualties presenting with contaminated, 
haemorrhaging injuries. Further studies using a relevant animal model are required 
to confirm the potential clinical efficacy of WoundStat™ for treating wounds 
contaminated with CW agents. 
 

Short abstract 
This in vitro study assessed three candidate haemostatic products for effectiveness 
in the decontamination of superficially damaged porcine skin exposed to the 
radiolabelled CW agents soman (GD), VX and sulphur mustard (HD). Controlled 
physical damage (removal of the upper 100 µm skin layer) resulted in significant 
enhancement of the dermal absorption of all three CW agents. Of the haemostatic 
products assessed, WoundStat™ was consistently the most effective, being 
equivalent in performance to a standard military decontaminant (fuller’s earth).  
 

Keywords: 
O-pinacolyl methylphosphonofluoridate (GD); S-[2-(diisopropylamino)ethyl]-O-ethyl 
methylphosphonothioate (VX); bis(2-chloroethyl)sulphide (HD); chemical warfare 
agent; nerve agent; vesicant agent; haemostatic; decontamination; percutaneous 
absorption; diffusion cell. 
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Introduction 
Over the last two decades, the development of haemostatic products for the rapid 
treatment of non-compressible, haemorrhaging wounds has received much attention 
(Pusateri et al., 2003, 2006; Alam et al., 2004; Acheson et al., 2005; Kozen et al., 
2007; Ling et al., 2010). In particular, haemostatic products have shown 
demonstrable efficacy in experimental models of moderate and severe battlefield-
relevant haemorrhage (Arnaud et al., 2009; Kheirabadi et al., 2009; Littlejohn et al., 
2011; Li et al., 2016). Correspondingly, a number of haemostatic products have been 
commercialised for military application in battlefield, pre-hospital and combat support 
hospitals (Wedmore et al., 2006; Schreiber and Tieu, 2007; Cox et al., 2009). 
Haemostatic products are also increasingly used clinically in civilian cases 
(Shanmugam and Robinson, 2009; Leonard et al., 2016; te Grotenhuis et al., 2016). 

Haemostatic products (based on an absorptive mechanism of action) also 
have potential clinical application in sequestering toxic materials from within wounds: 
Previous studies have demonstrated that a number of products retain their clotting 
function in the presence of toxic chemicals (Hall et al., 2015) and that, following 
topical application to undamaged skin, certain haemostats are highly effective in 
preventing the dermal absorption of chemical warfare (CW) agents (Dalton et al., 
2015). Whilst normal skin can provide some protection against the ingress of 
xenobiotics, damage resulting from trauma associated with penetrating injury or any 
other insult that may compromise the stratum corneum (such as abrasions, 
excoriations or burns) could lead to enhanced local and systemic absorption (Chilcott 
et al., 2002; Wu et al., 2006). Thus, the purpose of this current work was to evaluate 
the effectiveness of commercially available haemostatic products for the 
decontamination of CW agents from superficially damaged skin. A secondary 
objective of this study was to quantify the effects of skin damage on the dermal 
absorption kinetics of CW agents. 

Materials and Methods 

Haemostatic products and chemicals 
Three haemostatic products identified from a previous study (Dalton et al., 2015) 
were included in the present study as test decontaminants: QuikClot Advanced 
Clotting Sponge Plus® (QC ACS+, Z-Medica Corporation, Wallingford, CT, USA); 
ProQR® (PQR, Biolife, Sarasota, FL, USA); and WoundStat™ (WS, TraumaCure, 
Bethesda, MD, USA). The current in-service decontaminant fuller’s earth (FE; Sigma 
Chemical Co., Dorset, UK), was included as a positive control. The storage and use 
of CW agents was in full compliance with the Chemical Weapons Convention (1986). 
The CW agents (S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), 
O-Pinacolyl methylphosphonofluoridate (GD) and bis(2-chloroethyl)sulphide (HD), 
and their (14C-) radiolabelled analogues were custom synthesised by TNO Defence, 
Security and Safety (Rijswijk, Netherlands). The radiolabelled analogue was mixed 
with 5 g of undiluted agent to provide a stock solution with a nominal activity of ~1 
mCi g-1 and stored for up to two months at 4 °C. Aliquots of each stock solution were 
diluted with unlabelled CW agent immediately prior to each experiment to provide a 
working solution with a nominal activity of ~0.5 µCi µl-1. Ultima Gold Liquid 
Scintillation Cocktail (LSC) was supplied by PerkinElmer and Sigma. 
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Damaged skin preparation 
The use of animals in this study was conducted in accordance with the Animals 
(Scientific Procedures) Act 1986. Full thickness skin was excised, post mortem, from 
the abdominal flank of male and female pigs (Sus scrofa, large white strain, six 
males, six females, weight range 20-30 kg). Skin samples were stored flat between 
aluminium foil sheets at -20 °C until required for a maximum of 6 months. When 
required, skin samples were thawed at 4 °C and carefully clipped to remove excess 
hair. The upper 100 µm of epidermis was removed using a dermatome (Humeca 
Model D42, Eurosurgical Ltd., Guildford, UK) in order to produce controlled, physical 
damage to the skin barrier layer. The remaining skin was subsequently dermatomed 
to a thickness of 400 µm, cut into square sections (~3 × 3 cm) and mounted into 
static diffusion cells. Similar size “undamaged” skin sections of 500 µm thickness 
(without removal of the upper 100 µm surface), were also prepared for comparison. 

Diffusion cell assembly 
Jacketed, Franz-type diffusion cells were purchased from PermeGear (Chicago, 
Illinois). The prepared skin sections were placed flat between the (upper) donor and 
receptor (lower) chambers and clamped in place with the epidermal surface facing 
the donor chamber. Receptor chambers were filled with 50% (v/v) ethanol in 
deionised water solution (“receptor fluid”), so that the meniscus was level with the 
skin surface, and the volume of receptor fluid was recorded for each chamber. Each 
cell was placed in a Perspex™ clamp, which contained a magnetic stirrer to mix the 
receptor fluid in each individual cell via a Teflon™-coated iron bar placed within the 
receptor chamber. The receptor chamber jackets were heated by water supplied via 
a manifold and a circulating water heater and pump (Model GD120, Grant 
Instruments, Cambridge, UK). This enabled the skin temperature to be maintained at 
~32 °C (measured with infrared thermography; FLIR Model P640 camera, 
Cambridge, UK). Assembled diffusion cells were left to equilibrate for 16-24 hours 
prior to starting the study. 

Experimental procedure 
The test groups included “damaged, untreated”, “undamaged, untreated” and 
“damaged, treated” skin. A finite dose (10 µL) of 14C-GD, 14C-HD or 14C-VX was 
applied to each skin section. For the “damaged, treated” group, test products (200 
mg) were applied to the exposure site of damaged skin sections 30 s after CW agent 
application. Six diffusion cells were used for each group. Samples of receptor fluid 
(250 µL) were withdrawn regularly from each diffusion cell over a 24-hour period and 
transferred directly into 5 mL LSC for analysis using a PerkinElmer Tri-Carb Model 
2810 TR scintillation counter. The receptor chambers were replenished following 
each sample by the addition of 250 µL fresh receptor chamber fluid. After 24 hours’ 
exposure, the dosing chamber was removed and dismantled. The surface of the skin 
was swabbed using a dry cotton-wool swab and then placed in isopropanol (10 mL) 
in glass vials. The decontaminant (where applied) was collected and also placed in 
10 mL isopropanol. Samples of each solvent extract (250 µL) were diluted in 5 mL 
LSC for scintillation counting. The mass of radiolabel contained in each receptor fluid 
sample (per unit diffusion area, mg cm-2) and extracted from swabs, skin and the test 
decontaminants was calculated in reference to calibration solutions containing 
known quantities of 14C-GD, 14C-HD or 14C-VX. The skin section was incubated in 20 
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mL Soluene-350 until fully dissolved, after which samples (250 µL) were diluted in 
LSC and analysed as above.  

Data and statistical analyses 
The endpoints analysed were 1) total amount of radiolabel in the receptor fluid at 
each time point; 2) maximum flux (Jmax); 3) mass of radiolabel quantified in each 
fraction (skin, swabs, receptor fluid, decontaminant). For direct comparisons 
between damaged and undamaged skin, chemical penetration data are presented as 
mg cm-3 to account for differences in skin thickness. Otherwise, chemical penetration 
data are presented as mg cm-2. The maximum mean penetration rate (Jmax) for each 
chemical (expressed as mg cm-2 h-1) were estimated from the gradient of the slope 
for the linear region of the penetration profile. Statistical analyses of the data were 
performed using GraphPad Prism (GraphPad Software, Inc., version 6.0). 
Significance was defined as a P-value <0.05. Jmax data were log transformed to fit 
the requirements for parametric analysis. Statistical differences in Jmax data among 
groups were determined using a one-way ANOVA with post hoc Dunnett’s multiple 
comparisons test. First, Jmax values for decontaminated groups were compared to the 
“damaged-untreated” group. Second, comparisons in Jmax values within the 
decontaminated groups were conducted between the test haemostats (QuikClot 
Advanced Clotting Sponge Plus®, ProQR® and WoundStat™) and the current in-
service decontaminant, fuller’s earth.  

Comparisons of data between “damaged-untreated” and “undamaged-
untreated” conditions were performed using the Mann–Whitney U test. For the 
remaining data, statistical differences between three or more groups were 
determined by Kruskal–Wallis multiple comparisons with post hoc Dunn’s tests. 
Quantification of 14C within each compartment (swab, skin and receptor fluid) was 
compared between the “damaged-treated” and “damaged-untreated” groups. 
Quantification of 14C within each decontaminant was compared between the test 
haemostats and the current in-service decontaminant, fuller’s earth. 

Results 

Removal of skin barrier layer increases percutaneous penetration and alters 
dose distribution of radiolabelled chemical warfare agents  
Penetration of all three chemicals (14C-HD, 14C-VX and 14C-GD) was significantly 
greater through damaged skin compared to undamaged skin, with significantly 
greater Jmax values (Figure 1). Correspondingly, the enhanced penetration rate of 
radiolabelled CW agents across damaged skin relative to undamaged skin was 
accompanied by a significantly greater amount of radiolabel detected in the receptor 
fluid at 24 hours post exposure (Figure 2).  

Skin damage did not affect the amount of CW agents remaining on the skin 
surface 24 hours post-exposure, as no significant difference was observed between 
the swabs for damaged or undamaged skin (Figure 2). However, there were 
chemical-specific differences in the amount of radiolabel remaining within the skin. 
There was a significantly greater amount of 14C-GD within the damaged skin 
samples relative to the undamaged skin samples (Figure 2A). Conversely, the 
amount of 14C-VX was significantly lower in the damaged skin samples than in the 
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undamaged skin samples (Figure 2C). No significant difference was observed 
between the amounts of 14C-HD within damaged and undamaged skin (Figure 2B).  

The effectiveness of commercial haemostats as decontaminants is chemical-
specific when CW agents are applied to damaged skin 
All treatments significantly reduced the maximum rate of penetration of 14C-GD 
across damaged skin (mg cm-2 h-1) in comparison to “damaged, untreated” skin 
(Figure 3A). In addition, all haemostats (ProQR®, WoundStat™ and QuikClot 
ACS+®) were as effective as fuller’s earth, with no significant difference in Jmax 
among the treatment groups. 

Treatment of damaged skin with ProQR® resulted in a significantly higher 
proportion (1.4 ± 1.1%) of the dose being recovered from swabs of the skin 
compared to swabs from “damaged, untreated” skin (Figure 4). For the other groups, 
the proportion of the applied mass of 14C-GD recovered from swabs of the skin did 
not differ significantly between the “damaged, untreated” and the “damaged, treated” 
groups. Fuller’s earth was the only treatment to significantly reduce the proportion of 
the applied mass of 14C-GD recovered from the skin in comparison to “damaged, 
untreated” skin (0.62 ± 0.64% and 9 ± 3% respectively). As indicated by the 
penetration profiles, the total proportion of 14C-GD quantified within the receptor fluid 
was significantly lower for damaged skin treated with fuller’s earth, ProQR® or 
WoundStat™ as compared to “damaged, untreated” skin (Figure 4). ProQR® and 
QuikClot ACS+® retained a significantly lower proportion of 14C (55 ± 10% and 24 ± 
5%, respectively) than fuller’s earth (85 ± 3%), whereas WoundStat™ did not differ 
significantly from fuller’s earth in this respect. 
 

The rate of penetration of 14C-HD was significantly lower for skin treated with fuller’s 
earth, WoundStat™ or QuikClot ACS+® relative to “damaged, untreated” skin (Figure 
3B). ProQR® was ineffective at reducing the rate of penetration, which was not 
significantly different from that in the “damaged, untreated” control (Figure 3B). 
QuikClot ACS+® was not as effective as fuller’s earth in reducing the rate of 
penetration (P=0.0004). However, WoundStat™ surpassed the effectiveness of the 
benchmark decontaminant, with a significantly lower rate of penetration compared to 
fuller’s earth (P=0.0115). 

Treatment of damaged skin with fuller’s earth or ProQR® resulted in a 
significantly higher proportion of the dose of 14C-HD being recovered from swabs of 
the skin than for “damaged, untreated” skin (Figure 5). For the other groups, the 
proportion of the applied mass of 14C-HD recovered from swabs of the skin was less 
than 0.02% and did not differ significantly from that of the “damaged, untreated” 
group (Figure 5). Application of fuller’s earth or WoundStat™ significantly reduced 
the proportion of the applied mass of 14C-HD recovered from the skin in comparison 
to “damaged, untreated” skin (Figure 5). The total proportion of 14C quantified within 
the receptor fluid was significantly lower for damaged skin treated with WoundStat™ 
or fuller’s earth, compared to “damaged, untreated” skin (Figure 5). A significantly 
lower proportion of 14C was quantified from the QuikClot ACS+® matrix in 
comparison to fuller’s earth (2 ± 0.1% and 21 ± 3%, respectively), whereas ProQR® 
and WoundStat™ did not differ significantly from fuller’s earth in this respect (Figure 
5). 

All treatments significantly reduced the maximum rate of penetration of 14C-
VX across damaged skin (mg cm-2 h-1) in comparison to “damaged, untreated” skin 
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(Figure 3C). However, unlike 14C-GD, all haemostats, ProQR®, WoundStat™ and 
QuikClot ACS+®, were significantly less effective than fuller’s earth in reducing the 
maximum rate of penetration, with P-values of 0.002, 0.02 and <0.0001, respectively. 

Treatment of damaged skin with QuikClot ACS+® and WoundStat™ resulted 
in a significantly lower proportion of the dose being recovered from swabs of the skin 
than for “damaged, untreated” skin (<0.1% vs. 1.9 ± 0.9%; Figure 6). For the other 
groups, the proportion of the applied mass of 14C-VX recovered from swabs of the 
skin did not differ significantly from that of the “damaged, untreated” group (Figure 
6). Application of ProQR® and WoundStat™ significantly reduced the proportion of 
the applied mass of 14C-VX recovered from the skin (<0.2%) in comparison to 
“damaged, untreated” skin (10 ± 2%; Figure 6). As previously indicated by the 
penetration profiles, the total proportion of 14C quantified within the receptor fluid was 
significantly lower for damaged skin treated with fuller’s earth, ProQR® or 
WoundStat™, in comparison to the “damaged, untreated” group (Figure 6). 
However, there was no significant difference in the amount of 14C quantified within 
the receptor fluid between the “damaged, untreated” group and the QuikClot ACS+® 
treated group at 24 hours post-exposure (Figure 6). A significantly higher proportion 
of 14C was quantified from the WoundStat™ matrix in comparison to fuller’s earth, 
whereas ProQR® and QuikClot ACS+® did not differ significantly from fuller’s earth in 
this respect (Figure 6). 

Discussion 
This study has demonstrated that superficial skin damage resulted in enhanced 
percutaneous penetration of radiolabelled chemical warfare agents (14C-GD, 14C-HD 
and 14C-VX) compared to undamaged porcine skin in vitro. Moreover, it identified a 
commercial haemostat (WoundStat™) capable of reducing 14C-GD, 14C-HD and 14C-
VX penetration through damaged pig skin in vitro with efficacy comparable to that of 
the in-service military decontaminant fuller’s earth.  

In vitro skin diffusion cells are a validated method for measuring percutaneous 
absorption of chemicals (OECD, 2004; Chilcott et al., 2005a), including chemical 
warfare agents such as GD, HD and VX (van Hooidonk et al., 1980; Chilcott et al., 
2001; Dalton et al., 2006; Vallet et al., 2008; Dalton et al., 2015). Human skin is the 
gold standard model for in vitro percutaneous absorption studies. However, supplies 
of human tissue as well as inter-individual variation in permeability limit its use for 
high-throughput screening of test decontaminants. Porcine skin is generally 
considered to be a relevant model for human skin absorption, displaying similarities 
in biochemistry, histology and physiology (Chilcott et al., 2001, 2005b; Dalton et al., 
2006; Freeman et al., 2015). In addition, the use of a single animal donor for each 
chemical minimised inter-individual variation, aiding comparisons and highlighting 
differences between the treatments tested. However, any extrapolation of our 
observations to human skin should be made with caution, given the possibility of 
differences between human and porcine skin in the penetration of these chemicals 
(Dalton et al., 2006). A further consideration is that the radiometric method used in 
the present study cannot differentiate between the original compound and products 
resulting from hydrolysis and/or metabolism (Munro et al., 1999; Chilcott et al., 2000; 
Creasy et al., 2012). However, this analysis represents a conservative, “worst-case” 
approach, as it assumes that all the recovered radiolabel is the original, toxic 
penetrant (Munro et al., 1999; Jokanović, 2009). 
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Whilst the effects of damage, such as needle punctures, abrasion or tape 
stripping, on general skin permeability have been assessed previously in vitro 
(Chilcott et al., 2002; Wu et al., 2006; Schlupp et al., 2014; Davies et al., 2015), to 
our knowledge this study is the first to use in vitro static diffusion cells to assess the 
penetration and decontamination of chemical warfare agents through damaged skin. 
Skin damage (removal of upper 100 µm layer) resulted in an increase in the amount 
of 14C-HD and 14C-GD detected in the receptor fluid compared to undamaged skin. 
Moreover, the maximum flux through damaged skin was greater compared with 
undamaged skin for all three CW agents. These observations are not surprising, 
given that the stratum corneum is considered the primary barrier to absorption 
(Scheuplein, 1976; Zhai and Maibach, 2002). The enhanced dermal absorption of 
CW agents would likely result in a more rapid onset of intoxication and/or more 
severe toxicity and thus emphasises the importance of identifying an effective wound 
decontamination product. 

 
WoundStat™ and fuller’s earth retained a large proportion of the 

organophosphate contaminants (>65% dose recovery), thus limiting the dose 
available for absorption. However, the retention of 14C-HD was lower for these 
decontaminants compared to retention of organophosphates (~75 – 90% for fuller’s 
earth and WoundStat™, respectively). Passive absorption is the primary mechanism 
in which haemostatic products stop bleeding and similarly, passive absorption is 
responsible for the decontaminant properties of fuller’s earth. In addition, the 
haemostats tested in this study also have negative surface charges to facilitate 
coagulation through activation of factor XII. Therefore, the differences in retention 
between HD and organophosphates are likely to be attributed to physiochemical 
properties differences with better absorption of more hydrophilic chemicals i.e. VX 
and GD compared to more lipophilic chemicals, such as HD. In addition, total 
recovery of HD was lower than the organophosphates. This was somewhat 
unexpected given GD is known to have a higher volatility than HD. However, 
permitting the test decontaminants to remain in place for the duration of the 
experiment may have prevented volatilisation of the chemicals from the skin surface 
with increased retention of organophosphates as discussed above.  

 
Standard military doctrine dictates that skin decontamination should normally 

be instigated within two minutes of exposure. In the present study, decontamination 
was performed after 30 seconds to model the time between sustaining a significant 
haemorrhaging injury and subsequent application of a haemostatic product under 
battlefield conditions. Since longer delays in treating a haemorrhaging wound could 
limit patient survival (Mabry et al., 2000), a 30-second delay provides a more realistic 
exposure scenario for performing wound decontamination. A second deviation from 
established protocol was to leave the haemostatic product in situ for the duration of 
the study. Normally, decontamination products have only transient contact with body 
surfaces. However, with potentially long evacuation times (Spalding et al., 1991; 
Mabry et al., 2000; Alam et al., 2003; Griffiths and Clasper, 2006), removal of wound 
dressings may be delayed in combat conditions; thus, the extended contact time 
used in this current study provides a more appropriate evaluation of product efficacy 
for wound decontamination. 
 

In summary, the in vitro static diffusion cell model was found suitable for 
investigating chemical absorption through superficially damaged skin and has 
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demonstrated that HD, GD, and to some extent VX have enhanced toxicokinetic 
profiles. Utilisation of this damaged skin model, in combination with other supporting 
data (Dalton et al., 2015; Hall et al., 2015), has facilitated the identification of 
haemostatic products that are ineffective as wound decontaminants. Overall, 
WoundStat™ was the only haemostatic formulation that demonstrated equivalence 
to the benchmark product (fuller’s earth) in reducing the rate and extent of dermal 
absorption of all three CW agents, and is known to retain coagulation efficacy in the 
presence of CW agents (Hall et al., 2015). Therefore, it is recommended that 
WoundStat™ should undergo further evaluation using an appropriate in vivo 
contaminated-wound model.  
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Figure legends 
 
Figure 1.  Cumulative penetration (mg cm-3) of 14C-labelled CW agents across 
“damaged, untreated” and “undamaged, untreated” porcine skin in vitro.  Data points 
represent mean values (± standard deviation) for “damaged, untreated” skin or 
“undamaged, untreated” skin exposed to (A) 14C-GD; (B) 14C-HD and (C) 14C-VX. 
Maximum penetration values (Jmax) were calculated as mg cm-2 h-1 from the linear 
slope and asterisks indicate significant differences between the damaged group and 
the undamaged group (**P<0.01; ****P<0.0001).   
 
Figure 2.  Quantification of radiolabel in swabs, skin, receptor fluid or decontaminant 
following 24-hour exposure of “damaged, untreated” and “undamaged, untreated” ex 
vivo skin sections to CW agents (A) 14C-GD; (B) 14C-HD and (C) 14C-VX.  Individual 
data points are shown, with the central line indicating the mean value. Asterisks 
indicate significant differences between the “damaged, untreated” group and 
“undamaged, untreated” groups for swab, skin or receptor fluid (**P<0.01).   
 
Figure 3.  Cumulative penetration (mg cm-2) of 14C-labelled CW agents across 
“damaged, untreated” and “damaged, treated” porcine skin in vitro.   
Data points represent mean values (± standard deviation) for “damaged, untreated” 
skin or damaged skin decontaminated with fuller’s earth, ProQR®, WoundStat™ or 
QuikClot ACS+® for each chemical contaminant: (A) 14C-GD; (B) 14C-HD and (C) 
14C-VX. Maximum penetration values (Jmax) were calculated as mg cm-2 h-1 from the 
linear slope and asterisks indicate significant differences between the “damaged, 
untreated” group and “damaged, treated” groups (***P<0.001; ****P<0.0001).   
 
Figure 4. Quantification of radiolabel in swabs, skin, receptor fluid or decontaminant 
following 24-hour exposure of “damaged, untreated” and “damaged, treated” ex vivo 
skin sections to 14C-GD.  Individual data points are shown, with the central line 
indicating the mean value. Asterisks indicate significant differences between the 
“damaged, untreated” group and “damaged, treated” groups (swab, skin and 
receptor fluid) or between fuller’s earth and the test decontaminants (*P<0.05; 
**P<0.01; ***P<0.001; ****P<0.0001).  
 
Figure 5. Quantification of radiolabel in swabs, skin, receptor fluid or decontaminant 
following 24-hour exposure of “damaged, untreated” and “damaged, treated” ex vivo 
skin sections to 14C-HD.  Individual data points are shown, with the central line 
indicating the mean value. Asterisks indicate significant differences between the 
“damaged, untreated” group and “damaged, treated” groups (swab, skin and 
receptor fluid) or between fuller’s earth and the test decontaminants (**P<0.05; 
**P<0.01; ****P<0.0001).   
 
Figure 6. Quantification of radiolabel in swabs, skin, receptor fluid or decontaminant 
following 24-hour exposure of “damaged, untreated” and “damaged, treated” ex vivo 
skin sections to 14C-VX.  Individual data points are shown, with the central line 
indicating the mean value. Asterisks indicate significant differences between the 
“damaged, untreated” group and “damaged, treated” groups (swab, skin and 
receptor fluid) or between fuller’s earth and the test decontaminants (**P<0.01; 
***P<0.001). 
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