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ABSTRACT

We present a high spatial resolution (≈20 pc) of 12CO(2 −1) observations of the lenticular galaxy NGC 4526. We
identify 103 resolved giant molecular clouds (GMCs) and measure their properties: size R, velocity dispersion σv,
and luminosity L. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC
4526 is gravitationally bound, with a virial parameter α ∼ 1. The mass distribution, dN/dM∝M−2.39 ± 0.03, is
steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We
find no size–line width correlation for the NGC 4526 clouds, in contradiction to the expectation from Larson’s
relation. In general, the GMCs in NGC 4526 are more luminous, denser, and have a higher velocity dispersion than
equal-size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar
radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a
kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast
majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four
innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine
our data with the archival data of other galaxies to show that the surface density Σ of GMCs is not approximately
constant, as previously believed, but varies by ∼3 orders of magnitude. We also show that the size and velocity
dispersion of the GMC population across galaxies are related to the surface density, as expected from the
gravitational and pressure equilibrium, i.e., σv R

−1/2∝Σ1/2.

Key words: galaxies: elliptical and lenticular, cD – galaxies: individual (NGC 4526) – galaxies: ISM – ISM: clouds
– radio lines: ISM
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1. INTRODUCTION

Giant molecular clouds (GMCs) are the sites of star
formation in galaxies. The existing correlation between
molecular gas surface density and star formation rate (Wong
& Blitz 2002; Bigiel et al. 2008; Leroy et al. 2013) implies that
the formation and evolution of GMCs are essential to
understand the buildup of stellar masses in galaxies. However,
up-to-date studies of extragalactic GMC populations are limited
to Local Group galaxies; LMC (Fukui et al. 2008; Wong
et al. 2011), SMC (Mizuno et al. 2001), M31 (Roso-
lowsky 2007), M33 (Engargiola et al. 2003; Rosolowsky
et al. 2007; Gratier et al. 2012), and IC10 (Leroy et al. 2006),
the nearby spirals; M64 (Rosolowsky & Blitz 2005) and M51
(Colombo et al. 2014), and the nearby starburst; M82 (Keto
et al. 2005) and NGC 253 (Leroy et al. 2015), due to the
limited angular resolution and sensitivity of radio telescopes.
Galaxies in the Local Group are mostly dwarfs with few
spirals. Therefore, additional study of GMCs in the early-type
galaxies, such as NGC 4526, is needed to provide a
comprehensive analysis of GMC properties across different
galaxy environments.

There are three resolved GMC properties that we can directly
measure: size R, velocity dispersion σv, and luminosity L. The
relationships between these properties were first studied by
Larson (1981), who suggested the importance of turbulence in
the stability of GMCs against self-gravity. These relations were
then refined by Solomon et al. (1987, hereafter S87) for GMCs

in the Milky Way disk. Basically, GMC properties in the Milky
Way can be described by three Larson’s “laws”: (1) GMCs are
gravitationally bound objects, (2) the size and velocity
dispersion of GMCs follow a σv∝ R0.5 relation, and by
implication (3) the surface density of GMCs is approximately
constant (ΣGMC≈ 170Me pc−2; S87). Interestingly, these
relations also hold true, albeit with scatter, for extragalactic
GMCs in Local Group galaxies (Blitz et al. 2007; Bolatto
et al. 2008; Fukui & Kawamura 2010). At face value, this
suggests that GMC properties are universal.
However, further studies reveal that GMC properties can

deviate from Larson’s relations. Heyer et al. (2001) found that
low-mass GMCs (M⩽ 103Me) in the outer part of the Milky
Way are not gravitationally bound. Their luminous masses,
inferred from the CO-to-H2 conversion factor, are smaller than
their virial masses. The required external pressure to bind these
clouds is Pext/k ∼ 1 × 104 K cm−3. Furthermore, when re-
examining S87 clouds using more sensitive instruments, Heyer
et al. (2009) found that the surface density of Milky Way disk
GMCs varies from ∼10 to 200Me pc−2, and they deviate from
gravitational equilibrium. Field et al. (2011) suggest that these
clouds may be in pressure virial equilibrium, where the clouds’
mass and radius are described by a Bonnor–Ebert sphere with
various external pressures (Ebert 1955; Bonnor 1956). In
addition, several authors (e.g., Kegel 1989; Ballesteros-Paredes
& Mac Low 2002) argue that the observed constancy of surface
density might be affected by observational biases.
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If this is really the case, then what factors set the different
properties of GMCs? These parameters may be external
(environmental) effects, such as hydrostatic pressure (Elme-
green 1993; Blitz & Rosolowsky 2004; Meidt et al. 2013),
interstellar radiation field strength (ISRF, McKee 1989), and
shear from galaxy rotation (Koda et al. 2009; Miyamoto
et al. 2014), or internal, such as feedback of the star formation
that is embedded inside GMCs (McKee 1989). To answer this
question, we need a complete sample of GMCs across different
environments: from bulge to spiral-arm and inter-arm regions,
from late-type to early-type galaxies, and from low- to high-
metallicity galaxies.

In this respect, we analyze the GMC properties in the bulge
of NGC 4526, an S0-type galaxy in the Virgo cluster. NGC
4526 is unusual because all of the CO in the galaxy has been
observed at a linear resolution of ≈20 pc, sufficient to resolve
Milky-Way-sized GMCs. The galaxy has prominent central
dust lanes with mass ∼107Me (Ciesla et al. 2014) and
supersolar metallicity (log(Z/Ze) ≈ 0.2; Davis et al. 2013b)
but lacks star formation (SFR≈ 0.03Me yr−1; Amblard
et al. 2014) and is devoid of atomic gas (MH I < 1.9 × 107Me;
Lucero & Young 2013). The H I deficiency in this galaxy may
be caused by ram pressure or evaporation by hot gas (as the
galaxy resides in the Virgo cluster), or by abrupt conversion of
H I into molecular gas due to high pressure (Elmegreen 1993).
There is no indication of recent tidal interaction (Young
et al. 2008), suggesting that this mechanism is not the primary
cause of H I deficiency in NGC 4526.

In fact, the molecular gas in NGC 4526 is confined within
the central ∼1 kpc region (the top panel of Figure 1; Davis
et al. 2013c). The central regions of galaxies, such as in the
Milky Way, tend to have high interstellar pressures
(∼5 × 106 K cm−3; Spergel & Blitz 1992), strong magnetic
fields (∼1 mG; Yusef-Zadeh & Morris 1987), and lower than
expected star formation rate (Longmore et al. 2013). These
properties offer a unique environment for GMCs in NGC 4526,
significantly different than those studied in other galaxies.

This paper is organized as follows. In Section 2 we describe
the data and methodology to identify GMCs in NGC 4526. The
properties and kinematics of the GMCs are reported in Sections
3 and 4, respectively, and cataloged in Table 1. We discuss the
pressure balance of GMCs in Section 5.1, Larson’s “laws” in
Sections 5.2 and 5.3, and the effect of environment on the
GMC properties in Section 5.4. Lastly, we summarize our
findings in Section 6.

2. DATA AND METHODOLOGY

2.1. Data Descriptions

NGC 4526 was observed in the 12CO(2 −1) line (230 GHz
or 1.3 mm) using the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) in A, B, and C
configurations (Bock et al. 2006). The data were taken as part
of the mm-Wave Interferometric Survey of Dark Object Masses
project. Results for the innermost CO were reported by Davis
et al. (2013c), who showed that the kinematics of the central
CO imply the presence of a 4.5 × 108Me supermassive black
hole (SMBH).

The beamwidth of the observations is 0.278 × 0.173 arcsec2,
and the spectral resolution (after Hanning smoothing) is
10 km s−1. This beamwidth covers 5.56 × 3.46 pixels and
corresponds to a projected physical size of ≈22 × 14 pc2 at the

adopted distance of 16.4 Mpc (Tonry et al. 2001). These high-
resolution data enable us to resolve individual GMCs and
measure their properties, since typical Milky Way GMC size is
∼50 pc (e.g., Blitz et al. 1993).
The noise in our data is not uniform, with higher noise

appearing at the corners of the data cube. The overall pixel-by-
pixel rms noise σrms distribution is a positively skewed
Gaussian with minimum, average, and maximum values of
0.33, 0.71, and 1.33 K, respectively.

2.2. Methodology

We identify GMC candidates in NGC 4526 using the
modified CLUMPFIND algorithm (Williams et al. 1994),
implemented in the CPROPS program (Rosolowsky &
Leroy 2006, hereafter RL06). The main goal of this program
is to identify all real clouds and minimize false detections due
to noise fluctuations. Descriptions of the CPROPS program,
together with our chosen values of the input parameters of the
program, are given in Appendices A and B.
As a result of the CPROPS analysis, 241 GMCs are

identified in NGC 4526, of which 103 are resolved. We assume
all GMCs are real since the probability of false detections is
very small (Appendix C). In the bottom panel of Figure 1, we
show the integrated CO emission of connected regions that
have brightness temperatures Tb > 2σrms and have at least one
pixel with Tb ⩾ 3σrms. The locations of resolved and unresolved
clouds are marked as blue and red ellipses, respectively. The
peak S/N distribution of identified GMCs is shown as an inset.
The mean peak S/N of resolved and unresolved clouds is 5.6
and 4.7, respectively.
Most GMCs are located in the molecular ring, a few hundred

parsecs from the galactic center (Figure 1). This molecular ring
is the largest contiguous CO emission in our data. In addition,
there are a few clouds located in the central region. The outer
region of the molecular gas exhibits a spiral-arm structure,
possibly with an outer pseudo-ring, which fragments into
smaller structures consisting of one or multiple GMCs. Except
for one cloud that is described below, all identified GMCs are
within 900 pc of the galactic center, i.e., inside the bulge of
NGC 4526. Note that our primary beam covers all of the CO
emission in the galaxy, so our GMC catalog is complete.
There is one unresolved cloud that is located on the edge of

the data cube (not shown in Figure 1), out of the plane of the
CO emission. We overplotted the location of this cloud with the
Hubble Space Telescope (HST) archival image of the galaxy.
Although this cloud is likely to be real (Appendix C), its
distance is uncertain, i.e., it may be located outside the galaxy.
We exclude this cloud from the following analysis but keep it
in the catalog (as cloud no. 80 in Table 1). Inclusion of this
cloud does not alter the conclusions of our analysis.

3. CLOUD PROPERTIES

3.1. Definition of GMC Properties

Cloud properties, such as position, size, velocity dispersion,
luminosity, and mass, are cataloged in Table 1. Here, we briefly
describe the method used to measure the cloud properties. Full
explanations of the method are given in RL06.

2

The Astrophysical Journal, 803:16 (20pp), 2015 April 10 Utomo et al.



The cloud size, R, is measured using the deconvolved second
moment:

h s s s s= é
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where η is a factor that depends on the density distribution of
spherically symmetric clouds. A uniform sphere has h = 5 ,
while an isothermal sphere has η = 3. Here, we adopt η = 1.19,
a value from S87, to make it consistent with previous studies.
The major, σmaj, and minor, σmin, dispersions are the
spatial second moments, weighted by the intensity, along

the major and minor axis of the clouds, respectively. Both σmaj

and σmin are extrapolated to zero intensity (0 K) to avoid
bias due to the limited sensitivity of the instrument.
Deconvolution is applied, by the inclusion of the σbeam terms
in Equation (1), to avoid bias due to the finite beam resolution
(RL06). Since the beam is not circular, we take σbeam as
the geometrical mean of the major and minor axes of the beam.
The uncertainty, δR, is determined using bootstrap resampling.
In order to measure the clouds’ velocity dispersions, we

attempt Gaussian fitting to the composite spectrum of each
cloud through the following steps. First, we calculate the offset

Figure 1. Top: integrated intensity map of NGC 4526. The map is created by applying a Gaussian fit to each spectrum in the data cube. We exclude any Gaussian that
has peak less than 2.5 σrms. The ellipses divide the CO emission into three zones: inner region, molecular ring, and outer region. Bottom: identified GMCs in NGC
4526 overplotted on the masked integrated intensity map. The mask covers regions with connected emission above 2σrms and having at least one pixel with 3σrms. The
beam size and the projected physical size are indicated. The blue and red ellipses mark the location of the resolved and unresolved clouds, respectively. The
distribution of the peak S/N of clouds is shown as an inset in the bottom right corner.
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of the mean velocity at all lines of sight within the cloud (xi, yi),
with respect to the mean velocity at the center of the cloud (x0,
y0). This offset is caused by large-scale motions, such as the
cloud’s rotation or shear due to galactic rotation. Then, we shift
each line-of-sight velocity spectrum to match the mean velocity
of the central position of the cloud. Except for the innermost
clouds, this shift removes any velocity dispersions due to large-
scale motions and leaves only turbulence and thermal broad-
ening as sources of velocity dispersions. To make a composite
spectrum, we take the average velocity profile from each line of
sight. Finally, we fit the composite spectrum with a Gaussian.
The standard deviation of the Gaussian fit is taken as the
velocity dispersion, σv, of the cloud. We take the uncertainty,
δσv, from the bootstrap resampling.

RL06 shows that measurements of velocity dispersion suffer
bias toward higher values due to the finite spectral resolution
of the instruments. Therefore, we take the deconvolved value,
σv,dc, to remove this bias using the same prescription as in
RL06:

s s
d

=
æ

è
çççç

-
ö

ø
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v

π2
, (2)v v,dc

2
2 1 2

where δv is the spectral resolution and δv (2π)−0.5 is the
standard deviation of a Gaussian that has an integrated area
equal to a spectral channel with width δv. For brevity, we refer
to σv,dc as σv. Note that the deconvolved values of σv and R are
always smaller than their measured values (cf. Equations (1)
and (2)). Thus, any clouds that are barely resolved would have
the deconvolved value smaller than the resolution.

The cloud luminosity is the integrated CO flux over the
position–position–velocity volume occupied by the cloud
(RL06):
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where Tb,i is the brightness temperature of the ith pixel in K, δx
and δy are the pixel sizes in arcsec, D is the distance to NGC
4526 in pc, and LCO is the cloud luminosity in K km s−1 pc2.
The luminosity is extrapolated to 0 K intensity as described in
RL06. The uncertainty, δL, is determined using a bootstrap
resampling method. There is an additional ∼20% (absolute, but
systematic) flux calibration uncertainty that we do not include
in the analysis.
The luminosity is then converted to mass using the Milky

Way’s CO(1 −0)-to-H2 conversion factor XCO = 2 ×
1020 cm−2 (K km s−1)−1, which is assumed to be constant
throughout the galaxy. This is a reasonable assumption since
XCO does not vary significantly due to metallicity in the
supersolar metallicity regime (Bolatto et al. 2013 and
references therein). The ratio of 12CO(1−0) to 12CO(2 −1)
intensity in NGC 4526 is 1.15 (Crocker et al. 2012). We refer
to this XCO-derived mass as the luminous mass: Mlum/
Me = (4.4 × 1.15) (LCO(2 −1)/K km s−1pc2), which takes into
account the mass contribution by helium. The factor of 4.4
comes from our adopted XCO value.
We calculate each cloud’s distance from the center of NGC

4526 using the assumption that they are located in the plane of
the galaxy with an axis ratio of 0.216 and position angle of

Table 1
NGC 4526 Cloud Properties

ID R.A.(2000) Decl.(2000) VLSR
a Rb δRb σv

a δσv
a Lc δLc Mlum

d δMlum
d S/N Tb, max Ωshear

e df

(h:m:s) (°:′:″) (pc) (pc) (K) (pc)

1 12:34:3.5 7:41:54.7 276.0 24.00 7.65 6.90 0.48 3.76 1.24 1.88 0.62 5.0 7.7 0.52 667
2 12:34:3.5 7:41:54.9 283.4 L L 6.14 1.30 0.67 0.60 0.33 0.30 4.1 6.3 0.55 619
3 12:34:3.4 7:41:55.1 286.7 L L 6.37 1.21 0.27 0.19 0.14 0.09 3.4 4.7 0.57 587
4 12:34:3.6 7:41:54.3 279.6 22.16 5.54 5.42 0.55 2.35 0.70 1.18 0.35 6.6 10.4 0.44 798
5 12:34:3.5 7:41:55.2 286.7 L L 5.64 1.55 0.71 0.68 0.35 0.34 4.6 6.7 0.57 583
6 12:34:3.4 7:41:55.4 293.2 L L 9.74 2.35 1.13 0.60 0.57 0.30 5.2 6.7 0.58 563
7 12:34:3.5 7:41:55.4 298.3 22.01 5.52 7.23 0.96 2.39 0.76 1.20 0.38 5.7 8.1 0.56 599
8 12:34:3.4 7:41:55.1 298.5 L L 6.28 1.67 0.67 0.99 0.33 0.50 3.6 5.1 0.58 559
9 12:34:3.4 7:41:55.6 297.2 29.60 6.81 7.25 0.63 5.75 1.35 2.88 0.68 6.2 9.0 0.61 492
10 12:34:3.3 7:41:55.5 311.0 12.11 9.12 8.01 1.41 1.42 1.35 0.71 0.68 4.4 6.4 0.61 480
11 12:34:3.3 7:41:55.7 314.9 L L 6.27 0.55 1.05 0.68 0.53 0.34 5.1 7.1 0.62 440
12 12:34:3.3 7:41:56.1 309.0 28.58 5.57 7.12 0.33 5.52 1.16 2.77 0.58 7.3 10.2 0.63 424
13 12:34:3.3 7:41:56.4 323.3 31.38 5.24 7.81 0.86 5.84 1.08 2.93 0.54 7.3 10.3 0.66 348
14 12:34:3.3 7:41:55.2 323.5 13.38 8.55 8.21 4.00 2.01 0.87 1.01 0.44 5.1 7.4 0.59 543
15 12:34:3.3 7:41:56.4 333.7 18.72 5.54 9.56 2.32 3.18 0.87 1.59 0.44 6.6 8.9 0.64 388
16 12:34:3.2 7:41:56.5 344.0 16.65 7.01 8.75 2.44 2.00 0.83 1.00 0.41 5.8 7.8 0.76 293
17 12:34:3.2 7:41:56.8 328.9 L L 7.64 1.41 0.29 0.21 0.14 0.11 4.1 5.8 0.70 320
18 12:34:3.4 7:41:56.1 335.7 L L 7.39 3.21 0.80 0.91 0.40 0.46 4.4 6.0 0.60 499
19 12:34:3.3 7:41:56.2 330.3 10.48 7.41 8.53 1.50 1.47 0.64 0.74 0.32 5.5 7.9 0.66 360
20 12:34:3.2 7:41:56.3 337.5 7.57 11.12 6.44 1.74 0.96 0.97 0.48 0.49 3.9 5.9 0.68 336

Note. Table 1 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.
a Units are km s−1.
b The size of unresolved clouds is less than the linear size of the beam, denoted as R = ....
c Units are 105 K km s−1 pc2.
d Units are 106 Me.
e Units are km s−1 pc−1.
f Distance from the center of NGC 4526, assuming clouds are in the plane of the galaxy with an axis ratio of 0.216 and position angle of 20◦. 2.

(This table is available in its entirety in a machine-readable form.)
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290◦. 2. The position angle is measured from the north, counter-
clockwise to the receding part of the kinematical major axis of
the galaxy. The axis ratio and position angle are calculated
using part of the multi-Gaussian expansion (MGE) fit of
Cappellari (2002).

3.2. Gravitational Equilibrium of Clouds

The mass of a gravitationally bound cloud is given by
(Bertoldi & McKee 1992, hereafter BM92)

s s
= »

æ
è
ççç

ö
ø
÷÷÷
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è
ççç

ö

ø
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G
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where σv is the 1D velocity dispersion of the CO line. We refer
to this mass as the virial mass. If the luminous mass is equal, or
comparable, to the virial mass, then the cloud is in gravitational
equilibrium, where the kinetic energy balances its self-gravity.
If the luminous mass is smaller than the virial mass, then, in
addition to gravity, the clouds must be held together by
the external pressure of the ambient medium, Pext, to
reach dynamical equilibrium. Such clouds are pressure-bound
clouds.

We can also define the virial parameter as the ratio between
twice the kinetic energy and the gravitational energy,

a
s

º =
R

GM

M

M

5
. (5)v

2

lum

vir

lum

According to BM92, clouds with α ≈ 1.13 are gravitationally
bound and clouds with α 1 are pressure-bound. In Figure 2,
we plot the luminous versus virial masses of the resolved
clouds, together with the distribution of log α as an inset. A
log-normal fit to the distribution yields a mean α = 0.99 ± 0.02
and a standard deviation of 0.14 dex. Roughly 99% of the
resolved clouds have 0.3 ⩽ α ⩽ 3, and 89% of the resolved

clouds have 0.5 ⩽ α ⩽ 2. Therefore, the GMC population in
NGC 4526 is in a state of gravitational equilibrium.
In Equation (4), we assume that all clouds are spherically

symmetric and have a uniform density distribution. If the
clouds were isothermal spheres, then the virial masses would
be 60% lower than our calculation. Moreover, the uncertainty
in XCO also affects the luminous mass measurements. From
observations of local galaxies, the typical uncertainty in XCO is
about 0.3 dex (Bolatto et al. 2013 and references therein).
Taken all together, this introduces an uncertainty of ∼0.5 dex in
the worst case.
Variations of the input parameters of the CPROPS program

do not affect our result that the cloud population is
gravitationally bound. However, we have to keep in mind that
we do not yet take into account the magnetic pressure and
rotation of the clouds. The effect of rotation is discussed in
Section 4.3. Furthermore, we find no correlation between the
mass of a GMC and its distance from the galactic center,
possibly because all GMCs are distributed in a small region
(within a radius of 900 pc) inside the bulge of the galaxy, so
environmental variations from GMC to GMC, such as ambient
pressure and the interstellar radiation field, are small.

3.3. Cloud Mass Distribution

We use the luminous mass to determine the mass function
because it is well defined even for unresolved clouds. Since the
GMC population in NGC 4526 is in gravitational equilibrium
(Mlum≈Mvir), we should not expect variation of the mass
function between the two mass measurements. We determine
the mass function using three different methods: equal bin
width, equal bin size, and the cumulative distribution function.
All measurements are taken from the most massive clouds in
our sample (Mlum≈ 5.9 × 106 Me) down to the completeness
level of the observations.
To determine the completeness level of our observations, we

create simulated Gaussian clouds. Their properties are related
through known scaling relationships: σv∝ R0.5 and M∝ R2

(e.g., S87). To mimic the observed data, we add the typical
noise of our observations into the simulated data cubes. In total,

Figure 2. Correlation between virial and luminous masses of GMCs. The solid
line is the one-to-one relationship. The distribution of log α with a lognormal
fit is shown as an inset. The mean of the log-normal fit is α ≈ 0.99 with a
standard deviation of 0.14 dex. Thus, the GMC population in NGC 4526 is in
gravitational equilibrium.

Figure 3. Fraction of recovered clouds as a function of cloud mass, from the
simulation described in the text. Simulated clouds with M ⩾ 5 × 105 Me are
well recovered by the program (solid line), contaminated by only a small
fraction of false clouds (dashed line). The fraction of false clouds is negligible
for the low-mass regime because these clouds are too small and faint, and
hence undetected by the CPROPS program. We adopt log(M/Me) = 5.7 as the
completeness level of our observations.
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we consider 1600 mock clouds with log(M/Me) ranging from
4.9 to 6.7, with an increment of 0.2, and feed these mock
clouds into the CPROPS program. A cloud is defined as
recovered if its location in the data cube is within one
beamwidth of its input location. Otherwise, this cloud is
defined as false detection. The false detection rate is effectively
zero for the least massive clouds because these false clouds, if
they exist, are too small to be recovered. We find that clouds
with log(M/Me) ⩾ 5.9 are well recovered by the program,
while more than 80% of clouds with log(M/Me) ≈ 5.7 are
recovered (Figure 3). Therefore, we adopt the completeness
level as log(M/Me) = 5.7.

3.3.1. Equal Bin Width

In the equal bin width method, we group the masses into bins
of equal width in log-space. Then, each histogram is fit with a
straight line, weighted by the uncertainty of dN/dM, from the
highest mass bin down to the completeness level. The slope of
the best-fit line, x, is the exponent of the mass function
dN/dM∝Mx.

We calculate the uncertainty of the number of clouds in each
bin as follows. First, the uncertainties of the masses δM are
calculated through a bootstrap resampling method (RL06).
Then, we use δM to calculate the uncertainty in dN/dM using
Monte Carlo simulations. In these simulations, we resample the
masses of the cloud, given a log-normal probability function
with a mean M and a standard deviation δM. The resampled
masses are grouped into the same mass bins as the data, so that
each simulation gives a new mass distribution. We repeat these
steps 10,000 times and take the uncertainty in dN/dM as the
standard deviation of these 10,000 simulations.

To check the robustness of our results, we vary the number
of bins from 6 to 20. We find that x varies from −2.67 to −2.16
(left panel of Figure 4). The uncertainty of the slope is taken
from the covariance matrix of the fit. From these variations of
x, we conclude that the equal bin-width method has large
scatter due to the choice of the number of bins.

3.3.2. Equal Bin Size

D’Agostino & Stephens (1986) and Maíz Apellániz &
Úbeda (2005) found that variable bin widths with equally
divided numbers of data points per bin can minimize the

binning uncertainty and hence are more robust. This is because
no bin has a much smaller number of data points than the
others, in contrast to the equal bin-width method. For our data,
the actual number of data points in a bin is not exactly the
same; it can differ from that in other bins by one data point, due
to non-integer numbers after division. To check the robustness
of the result, we vary the number of bins as in the equal bin-
width method and fit the resulting histogram with a straight
line. The results are indeed more robust than the equal bin-
width method, with a maximum slope of −2.31 and a minimum
slope of −2.41 (left panel of Figure 4).

3.3.3. Cumulative Distribution

In addition, we also calculate the mass function using the
(truncated) cumulative distribution function (e.g., Williams &
McKee 1997; Rosolowsky 2005),
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and the simple (non-truncated) power-law distribution func-
tion,
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where M0 is the cutoff mass of the distribution and N0 is the
number of clouds with M > 21/(x + 1) M0, i.e., the cutoff point of
the distribution. The truncated mass distribution takes into
account that the mass distribution of a population lack clouds
more massive than M0. The cumulative distribution function is
robust against the number of bins since we do not bin the data
into a histogram.
We fit the cumulative distributions of masses using the

orthogonal distance regression method in Scipy (Boggs &
Rogers 1990). The fit is made for all data above the
completeness level. We find x = −2.39 ± 0.03 and
M0 = (4.12± 0.08) × 106Me, in agreement with the equal
bin-size method. The data are inconsistent with simple (non-
truncated) power-law mass distributions (middle panel of
Figure 4). We find that the GMC mass distribution in NGC
4526 is steeper than in the inner MW (x= −1.5; Roso-
lowsky 2005), but comparable to the GMC mass distribution in

Figure 4. Left: best-fit slope of the mass function against the number of bins. The equal bin width method (blue squares) has large scatter due to the choice of the
number of bins, while the equal bin size method (red circles) is in agreement with the cumulative distribution mass function (dashed line). Middle: fits to the
cumulative mass function with and without truncation. The data favor the truncated (solid blue curve) over the non-truncated (dashed blue curve) mass function.
Right: cumulative mass distribution of the inner region (blue), molecular ring (green), and outer region (red), with the overlaid truncated fits.
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the outer MW (x= −2.1; Rosolowsky 2005) and central M33
(x= −2.0; Rosolowsky et al. 2007).

All three methods of measurements suggest that x < −2. In
this case, most of the mass resides in the low-mass clouds.
Furthermore, the total mass diverges for integration down to an
infinitely small mass. Hence, there must be a lower limit to the
cloud masses or a change in the slope, i.e., x > −2 for lower
mass clouds below our completeness level, so that the total
mass remains finite.

We further divide the galaxy into three distinct regions: inner
(0 < d⩽ 170 pc), molecular ring (170 < d⩽ 580 pc), and outer
(580 < d⩽ 900 pc) region (concentric ellipses in Figure 1), and
measure their mass distributions (right panel of Figure 4). The
molecular ring and the outer region have similar mass
distributions with an exponent of x ≈ −2.4, while the inner
region is much flatter (x ≈ −1.4), albeit with a large uncertainty
due to the small number of clouds in the inner region. The best-
fit parameters are compiled in Table 2. A radial dependence of
the mass function was also discovered in M33 (Gratier
et al. 2012) and M51 (Colombo et al. 2014).

We calculate the total mass of detected GMCs (including the
non-resolved clouds) to be MGMC = (2.0± 0.1) × 108 Me. The
total H2 mass is M(H2) = (3.8± 1.1) × 108Me (Young
et al. 2008),6 so the fraction of molecular mass that resides in
GMCs is MGMC/M(H2) ≈ 0.53. This value is formally a lower
limit, since there are GMCs with masses below the complete-
ness level of our observations that are undetected. The rest of
the molecular gas may be in the form of diffuse gas that is
undetected by interferometric observations.

3.4. Larson’s Relations

Larson (1981) found that the velocity dispersion of GMCs is
correlated with their size through a power-law relation with
exponent of ∼0.3. This correlation supports the expectation that
turbulence governs the velocity dispersion within clouds as
described by the Kolmogorov law. In subsequent work, S87
refined the exponent to be 0.5± 0.05 for GMCs in the Milky
Way’s inner disk.
Larson’s relations in the Milky Way consist of two

independent equations (e.g., S87, Bolatto et al. 2008):
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Since the line width, ΔV, is just sD =V 8 ln 2v , we refer to
Equation (8) as the size–line width relation. For extragalactic
clouds in the Local Group, Bolatto et al. (2008) found
σv∝ R0.6, LCO∝ R2.54, and sµL vCO

3.35, which is close to the
Milky Way relations.
Interestingly, we find no size–line width correlation for NGC

4526 (left panel of Figure 5), which is parameterized by very
weak Pearson and Spearman correlation coefficients
(rps= −0.18 and rsp= −0.14). This result is in line with GMCs
in M33 (Gratier et al. 2012) and M51 (Colombo et al. 2014),
where no clear trend was observed (rsp= 0.12 and 0.16 for
M33 and M51, respectively). The NGC 4526 data are located
above the Milky Way’s relation, which means that for a given
size, GMCs in the bulge of NGC 4526 have a higher velocity
dispersion than those in the Milky Way disk GMCs by a factor
of ∼3. This could be due to an environmental effect, since

Table 2
Best-fit Parameters of the Cumulative Mass Distributions

Region Distance
(pc)

x M0

(106 Me)
N0

All 0 < d ⩽ 900 −2.39 ± 0.03 4.12 ± 0.08 9.40 ± 0.70
Inner 0 < d ⩽ 170 −1.40 ± 1.19 1.88 ± 0.23 9.13 ± 33.21
Ring 170 < d ⩽ 580 −2.38 ± 0.03 4.66 ± 0.11 5.66 ± 0.47
Outer 580 < d ⩽ 900 −2.46 ± 0.12 2.56 ± 0.12 4.67 ± 1.12

Figure 5. GMCs properties (radius, velocity dispersion, and luminosity) are plotted relative to one another. The color codes are for inner GMCs (distance ⩽ 65 pc;
red squares) and outer GMCs (distance > 65 pc; blue dots). The fits of all data points (including the inner clouds) are shown as solid lines. The typical uncertainty is
shown as a cross sign in the corner of each panel. For clarity, we do not plot the uncertainties of individual data. However, we fit the data points by including the non-
uniform error bar of the individual data point, not only the typical uncertainty. The dashed lines are Larson’s relations for the Milky Way disk (S87), and the dotted
lines are Larson’s relations with different normalization factors: 3, 5, and 0.03 from left to right panel, respectively. It shows that GMCs in NGC 4526 are more
turbulent and more luminous than equal-size clouds in the Milky Way disk. There is no size–line width relation, in contradiction to the expectation from Larson’s
relation (left panel).
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Shetty et al. (2012) and Colombo et al. (2014) found evidence
that GMCs in the central regions of the Milky Way and M51
have a higher velocity dispersion than those in the disks. We
discuss this environmental effect in Section 5.4.

We also plot cloud luminosity against velocity dispersion
and size in the middle and right panels of Figure 5. The results
of the error-weighted fit are
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which is shallower than the exponents in the Milky Way
relations (Equations 9 and 10). The correlation coefficients are
moderate for the luminosity–size relation (rps= 0.63 and
rsp= 0.67) and weak for the luminosity–velocity dispersion
relation (rps= 0.33 and rsp= 0.36).

The quoted results above take into account all resolved
clouds. In Figure 5, the inner clouds with distance ⩽65 pc from
the galactic center tend to have higher velocity dispersion,
which may be due to contamination by the galactic shear (see
Section 4 for detailed discussion of cloud kinematics). The
conclusions for the size–line width and size–luminosity relation
are not affected if we exclude these inner clouds. However, the
slope of the line width–luminosity relation become steeper by
excluding those inner clouds ( sµ L vCO

3.8 0.6).
In the right panel of Figure 5, the clouds in NGC 4526 lie

below the Milky Way line width–luminosity relation. Thus, for
a given velocity dispersion, the clouds are less luminous than
GMCs in the disk of the Milky Way. Because CO luminosity is
a tracer of the amount of molecular gas, the clouds in NGC
4526 are more turbulent per unit mass than those in the Milky
Way. Also, from the middle panel of Figure 5, clouds in NGC
4526 are ∼5 times more luminous than equal-size clouds in
the Milky Way, which means they have a higher surface
density. This result is in agreement with GMCs in M51
(Colombo et al. 2014), where GMCs in the central region are
brighter than those in the inter-arm region. Again, this could be
due to environmental effects, which are discussed in
Section 5.4.

Finally, we find no bias that affects the results due to the
choice of input parameters of the CPROPS program. Even
though the properties of individual clouds vary by changing the
input parameters, the overall distributions are similar (see
Appendix D for details).

4. CLOUD KINEMATICS

4.1. Velocity Gradient of the Cloud

Previous studies (e.g., Goodman et al. 1993; Kane &
Clemens 1997; Phillips 1999; Rosolowsky et al. 2003; Imara
et al. 2011) have found velocity gradients across atomic and
molecular clouds and clumps, which are interpreted as rotation
of the GMCs. Moreover, most of the GMC rotation exhibits
solid-body rotation. Here, we perform analyses on the resolved
clouds to gain insight into the origin of their kinematics and the
role of rotation in the dynamical stability of GMCs.

In order to quantify any rotation signature, we do the
following. First, the velocity field (first-moment map) of the
cloud is smoothed with a Gaussian kernel, where the dispersion
of the Gaussian kernel is half the telescope beamwidth. The
aim of this smoothing is to “average” the velocity field at the
cost of losing independence among the neighboring pixels (left
panels of Figure 6). Then, we fit the first-moment map of
individual clouds with a plane (e.g., Goodman et al. 1993;
Rosolowsky et al. 2003; Imara et al. 2011):

= + - + -v v a x x b y y( ) ( ), (13)los 0 0 0

where (x0, y0) is the cloud’s central pixel coordinate and
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are the velocity gradients along the x- and y-axes. v0, a, and b
are free parameters to be determined from the fit.
The angle from the positive x-axis to the receding part of

kinematical major axis of the cloud is tan−1 (b/a), and hence
the angle to the cloud rotation axis, i.e., the angular momentum
vector, is θ = tan−1 (b/a) + 90° (right-hand rule).
The angular speed of the cloud is given by
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where ψ is the angle from the cloud rotation axis to the sky
plane. Since we cannot measure ψ directly, we drop the cos(ψ)
term from Equation (15). Thus, the true angular speed is
underestimated by a factor of cos(ψ), i.e., Ωprojected = Ωtrue

cos(ψ).
The next step is to check whether the clouds show solid-

body or differential rotation. We plot the mean velocity of each
pixel within a cloud against its perpendicular distance from the
cloud rotation axis, i.e., v⊥ versus d (Figure 6), and then we fit
the data with a straight line. Solid-body rotators should show a
clear linear behavior on this plot, where the constant slope is
the angular speed, i.e., v⊥ = Ω d. On the other hand, the slope
of Keplerian rotators varies with distance from the center, i.e.,
the slope gets shallower outside (resembles an S-shape;
v⊥∝ d−0.5), while bow-shock motions tend to have a parabolic
shape (Kane & Clemens 1997).
Finally, we divide the clouds into two groups: clouds that

show solid-body rotation (SB) and clouds that show deviations
from solid-body rotation (NSB). This division is based on the
reduced χ2 value from the binned v⊥ (blue squares in Figure 6)
to the straight line fit. We classify clouds with χν

2,line ⩽ 1.5 as
SB and the rest as NSB. For NSB, we also fit v⊥(d) with a
parabolic curve and calculate its χν

2,para. Eye inspections
confirm that this classification is reasonable. As a result, 46
of 103 resolved clouds are classified as SB, while the rest are
NSB. Examples of SB and NSB clouds are shown in Figure 6.

4.2. Origin of Velocity Gradients

A purely rotating galaxy with an inclination angle i has a
line-of-sight velocity component of Vlos = Vsys + V(R) cos(ϕ)
sin(i) at (R, ϕ), where Vsys is the systemic velocity of the
galaxy, V(R) is the circular velocity at radius R from the
galactic center, and ϕ is the angle from the kinematic major
axis of the galaxy. In the simplest case, for a region with a flat
rotation curve, i.e., V(R) = constant, the observed isovelocity6 We recalculate the total H2 mass using XCO as in this paper.

8

The Astrophysical Journal, 803:16 (20pp), 2015 April 10 Utomo et al.



Figure 6. Examples of plane fitting to find the rotation signature of GMCs. The right panels are GMC first-moment maps with the rotation axis (black line)
overplotted. On the left panels, the mean velocity of each pixel is plotted against its perpendicular distance from the rotation axis. The black line is the fit and
blue squares are the mean of the velocity in bins of perpendicular distance from the rotation axis (i.e., v⊥ vs. d). The cloud in the top panels shows the signature
of solid-body rotation with χν

2
, line ≈ 0.18, while the cloud in the bottom panels shows bow-shock motions and is well fitted by a parabolic curve with χν

2
, para

≈ 0.68.
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contours of the galaxy are given by contours of equal ϕ.
Therefore, velocity gradients exist along any path that
perpendicularly crosses those isovelocity contours. The last
statement is true for any rotation curve, not just for a flat
rotation curve.

In NGC 4526, we also find a velocity gradient in any of the
small patches of the data that occupy the GMC regions. This
velocity gradient can be due to a projection of the galaxy
rotation and therefore can mimic the cloud rotation. In Figure 7,
we show the angular momentum vectors of GMCs, overplotted
with the isovelocity contours of NGC 4526. The tendency of
the angular momentum vectors of the clouds to be tangential to

the isovelocity contours of the galaxy suggests that the velocity
gradients of the clouds are actually just a projection of the
galaxy rotation.
In order to quantify our finding, we create a gas dynamical

model using the KinMS (Kinematic Molecular Simulation)
package of Davis et al. (2013a). This model is basically
a purely rotating disk based on a rotation curve of the
galaxy, i.e., this is what the galaxy looks like if its dynamics are
just due to rotation. The rotation curve is calculated from the
MGE fit of Cappellari (2002) to the I-band images of HST and
the MDM 1.3 m telescope, and includes the presence of an
SMBH at the center (Davis et al. 2013c). This MGE fit gives

Figure 7. Angular momentum vectors of GMCs (black arrows), overplotted with the isovelocity contours of NGC 4526 (color coded by their projected velocities)
convolved with a Gaussian kernel. There is a strong tendency for the vectors to be tangential to the isovelocity contours, as expected if the measured velocity gradients
of GMCs are just the projection of the galaxy rotation. Correlations between the angular momentum of the clouds and isovelocity contours of the galaxy are shown in
Figure 8.

Figure 8. Correlations between the model and observed angular speed Ω (left panel) and the angle of rotation axis θ (right panel). The observed Ω and θ are calculated
from the best fit of the velocity field of the cloud (e.g., Goodman et al. 1993). The model Ω and θ are purely based on the galaxy rotation and created using the KinMS
package of Davis et al. (2013a) as described in the text. The error bars are derived from the covariance matrix of the best fit. The excellent one-to-one correlations
(solid line) indicate that the velocity gradients that we measure are actually just a projection of the galaxy rotation. The dashed lines on the left panel are the standard
deviation from Monte Carlo simulations that gives the upper limit of the angular speed of the cloud. We color code each data point by the GMC mass.
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the mass distribution of the galaxy, and hence the galaxy
rotation curve, parameterized by the stellar mass-to-light ratio
and the galaxy inclination. The model is inclined so that it
matches the inclination of the observed galaxy (i≈ 79°). Any
deviations of the data from the model can be caused by small-
scale turbulence, inflow or outflow gas motion, and the cloud
rotation.

We measure the angular momentum of the model at the
location of the observed clouds by using the same method as
described in Section 4.1. We find a strong one-to-one
correlation for both angular speed and rotation angle between
the model and the data, albeit with small scatter (Figure 8). The
correlation holds true for both SB and NSB groups. This
reinforces our inference that the velocity gradients of the clouds
are just a consequence of the underlying velocity field due to
galaxy rotation, i.e., the gas within clouds moves following the
galaxy rotation. Therefore, Ω that is calculated using the plane-
fitting method (Equation 15) is not the intrinsic angular speed
of the cloud.

In this case, the gas within the cloud must rotate due to the
galactic shear. The amount of shear is given by the Oort
constant A (Fleck & Clark 1981):
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where the subscripts 0 denote the evaluation at the location of
the GMCs, and V(R) is the rotation curve of the galaxy.
Hereafter, we take this shear as the angular speed of the cloud,
not Ω from Equation (15). Furthermore, the angle of the
rotation axis θ from the plane-fitting is not physically
meaningful anymore, because if the cloud rotation is due to
galactic shear, then the couldʼs rotation axes tend to be parallel
to the galaxy rotation axis.

The intrinsic scatters in Figure 8 may be due to the intrinsic
angular momentum of the cloud, Ωcloud, that does not originate
from the galactic shear. From 1000 Monte Carlo simulations,
we determine the upper limit of the cloud’s angular speed to be
Ωcloud < 8.6 × 10−2 km s−1 pc−1 (dashed line in Figure 8),
which is comparable to the angular speed of GMCs and H I

clouds in M33 (Rosolowsky et al. 2003; Imara et al. 2011).
This upper limit is generally smaller than the galactic shear at
the cloud’s location, i.e., Ωcloud < Ωshear, so that Ω ≈ Ωshear. No
correlation between Ωshear and the cloud’s mass is found
(Figure 8).
Based on our analysis, any measurement of the velocity

gradient of an extragalactic cloud must be performed carefully,
to avoid bias due to the projection of galaxy rotation. The only
exception is if the galaxy is nearly face-on (i≈ 0°), as the line-
of-sight velocity due to galaxy rotation is negligible.

4.3. Stability of Rotating Clouds

In Section 3.2, we assume that the clouds are supported by
turbulence only. In the presence of rotation (due to shear), the
rotational energy also contributes to the clouds’ stability
against gravitational collapse. Here, we define the parameter
γrot as the ratio of rotational over turbulent energy:

g
s
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p RΩ

3
, (17)

v
rot

2 2

2

where p = 2/5, the value for a uniform sphere (Goodman
et al. 1993).
In Figure 9, we show the histogram of the γrot values of the

clouds. A log-normal fit to the distribution yields a mean γrot ≈
0.24 with a standard deviation of 0.37 dex. Roughly 92% of the
resolved clouds have γrot < 1. This means that the rotational
energy is smaller than the turbulent energy for the vast majority
of the clouds. There is also a correlation with mass as
g µ Mrot lum

1.23 0.16, so that the relative importance of rotation
over turbulence is increasing for more massive clouds.
It is also useful to define the ratio between rotational kinetic

energy and self-gravitational energy:
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where p/q = 2/3, the value for a uniform sphere (Goodman
et al. 1993). Clouds with βrot ≈ 1 are rotationally stable against
gravitational collapse. About 96% of the resolved clouds have

Figure 9. Distribution of γrot, defined as the ratio between rotational and
turbulent energy. The dashed line is the mean of the log-normal fit (red). For
the majority of the clouds, the rotational energy due to galactic shear is smaller
than the turbulent energy. From the correlation between γrot and luminous mass
(shown as an inset), we infer that the relative importance of rotation over
turbulence is increasing for more massive clouds.

Figure 10. Same as Figure 9, but for βrot, which is defined as the ratio between
rotational and gravitational energy. Most of the clouds are not in rotational
equilibrium, i.e., βrot < 1. The four clouds in the tail of the distribution are the
innermost clouds that suffer strong shear. From the correlation between βrot and
luminous mass (shown as an inset), we infer that the relative importance of
rotation over gravity is increasing for more massive clouds.
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β < 1. A log-normal fit to the distribution yields a mean βrot ≈
0.14 with a standard deviation of 0.36 dex (Figure 10). This
means that the rotational energy is smaller than the gravita-
tional energy for the vast majority of the clouds. Furthermore,
there is a correlation with mass as b µ Mrot lum

0.70 0.21, so that
the relative importance of rotation over gravity is increasing for
more massive clouds.

Finally, the virial parameter α, which includes turbulence,
gravity, and rotation, can be expressed as

a b
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Non-magnetic, rotating clouds with α ≈ 1.13 are in virial
equilibrium (BM92), while clouds with α  1 are either
pressure-confined clouds or gravitationally bound but with an
underestimated CO-to-H2 conversion factor.

The distribution of α values is shown in Figure 11, where it
can be approximated by a log-normal distribution with a tail at
the high end. The log-normal mean is α ≈ 1.26 with a standard
deviation of 0.15 dex. This suggests that the GMC population
in NGC 4526 is gravitationally bound, even after the inclusion
of rotational energy. If we define non-gravitational equilibrium
as having α > 3.5 ≈ 0.5 dex (i.e., the tail of the distribution),
then only ≈ 4% of resolved clouds are not gravitationally
bound. As shown in the inset in Figure 11, by excluding those
four clouds, α has a shallow correlation with mass as
a µ - Mlum

0.19 0.05.
Further investigation reveals that the four gravitationally

unbound clouds (with log α > 0.5) are the clouds closest to the
center of the galaxy, at a distance of ≈10, 34, 42, and 54 pc.
These clouds suffer strong shear (D D ~∣ ∣v r 10 km s−1 pc−1)
due to the presence of an SMBH at the center of NGC
4526, with MBH ≈ 4.5 × 108 Me and radius of influence of
≈45 pc (Davis et al. 2013c). This SMBH makes the circular
velocity curve of the galaxy increase abruptly toward the
galactic center (Figure 12) and hence yields a large Oort A
constant.

5. DISCUSSION

5.1. Pressure Balance

In general, the dynamical equilibrium state of a cloud can be
written as

+ = +P P P P , (20)B Gint ext

where Pint ≈ Pturb (1 + γrot) is the internal pressure of the
cloud, including the correction factor (1 + γrot), due to the
contribution of rotation. rs=P ¯ vturb

2 is the kinetic pressure due
to turbulence, Pext is the external pressure of the ambient
medium, and PB = B2/8π is the magnetic pressure. Here, we
assume that the thermal pressure is much smaller than the
pressure due to turbulent motion, and it is neglected. PG is the
internal gas pressure that is required to support the cloud
against gravity in the absence of any other forces (BM92):
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where f̄G is a dimensionless factor that measures the ratio
between the gravitational pressure of ellipsoidal and spherical
clouds and depends only on the cloud’s axis ratio: σmaj/σmin for
prolate clouds and σmin/σmaj for oblate clouds. Here, we assume
all clouds are prolate. The value of fḠ for oblate clouds is
within the uncertainty of that for prolate clouds.

Figure 11. Same as Figure 9, but for the virial parameter α. The dashed line is
the mean Gaussian fit, and the dotted line is α = 1.13. The four clouds in the
tail of the distribution are the innermost clouds that undergo a strong shear.
Except for those four clouds, the cloud population is in gravitational
equilibrium, i.e., the mean α ≈ 1.26. The inset shows anti-correlation between
the virial parameter and the luminous mass.

Figure 12. Top: ratio of internal and gravitational pressure as a function of
distance from the galactic center. Except for the four innermost clouds, the data
points are consistent with gravitationally bound clouds. The 1σ scatters are
indicated with dashed lines. The SMBH radii of influence (≈45 pc) are
indicated as vertical dotted lines. Bottom: galaxy circular velocity curve. The
sharp increase near the center is due to the presence of an SMBH (Davis
et al. 2013c).
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For non-magnetic, rotating, gravitationally bound clouds,
Pint ≈ PG. In Figure 12, we plot log(Pint/PG) versus the
distance of clouds from the galactic center. Except for the four
innermost clouds, log(Pint/PG) has a mean value of ≈ −0.03
and standard deviation of ≈ 0.18 dex, consistent with a
gravitationally bound state. We do not include the error bars
of individual data points to calculate those values.

As we mentioned in Section 4.3, there are four central clouds
that experience strong galactic shear. By using Equation (20)
and an assumption of zero magnetic pressure, the external
pressure that is required to bind the clouds against galactic
shear is Pext ∼ 109 K cm−3, which is extremely high and
unrealistic. We argue that these are unbound clouds. If nothing
balances the shear, then these clouds will be ripped apart by
strong shear within a timescale of~ D D ~∣ ∣π v r2 1Myr. This
timescale is smaller than the expected lifetimes of GMCs
(≈30Myr; Blitz & Shu 1980) based on the clumpy nature of
GMCs and destruction processes from massive star formation
inside GMC complexes. Other evidence of the role of shear in
the destruction of GMCs is found in the M51 disk, where
Miyamoto et al. (2014) reported that the locations of giant
molecular associations are anti-correlated with the shear
strength.

5.2. Does a Size–Line-Width Relation Really Exist?

Clouds in NGC 4526 do not show a size–line width relation
(see Figure 5), in contrast to the previous arguments that
supported Larson’s “law” (e.g., in the Milky Way disk; S87,
and Local Group galaxies; Bolatto et al. 2008). Most of the
Local Group members are late-type galaxies, while our clouds
reside in the bulge of an S0-type galaxy. Does this discrepancy
suggest that GMC properties in the early-type galaxies are
intrinsically different? Here, we argue that the size–line width
relation may not exist in all galaxy morphologies, because the
cloud’s size and line width within a single galaxy only have
weak to modest correlation coefficients.

Recent studies of GMCs in spirals, such as M33 (Gratier
et al. 2012) and M51 (Colombo et al. 2014), also found no
clear size–line width relation, with a Spearman correlation
coefficient rsp of 0.12 and 0.16, respectively. A modest
correlation (rsp= 0.51) was found by Heyer et al. (2009),
who re-examined S87 clouds in the Milky Way disk using
more sensitive instruments. Furthermore, clouds in the LMC
also show a weak correlation (rsp= 0.37; Wong et al. 2011;
Hughes et al. 2013). This evidence suggests that the size–line
width relation may not exist in all galaxy morphologies.

If the argument for a size–line width relation is not conclusive
for GMCs within a single galaxy, then what about a compilation
of GMC data from various galaxies (e.g., Bolatto et al. 2008)? In
this case, one must pay attention to different data sets that have
different physical resolutions and sensitivities. Coarse resolution
and low-S/N observations can only measure average properties
within a larger area, without the ability to decompose the CO
structure into multiple smaller clouds, while finer resolution
observations tend to over-decompose CO emission into smaller
scale structures. This means that the identified GMCs in different
data sets are likely to probe different scales of CO emission. This
bias, which is due to the ability to decompose structure in GMCs,
is separate from the bias of measured properties due to finite
resolution and sensitivity, which has been minimized by the
CPROPS program. Hence, plotting those data in a size–line
width diagram leads us to compare different structures of GMCs.

For example, Bolatto et al. (2008) compare composite
extragalactic GMCs that have been observed with a range of
resolution from ∼6 pc (about the size of a clump) to ∼117 pc
(about the size of a giant molecular association). Therefore, any
scatter in the size versus line width diagram is overcome by the
large range of GMC size, which gives rise to a slope. Even in this
case, however, the correlation coefficient is still moderate
(rsp= 0.57).
A self-consistent study of the size–line width relation, then,

requires a common physical resolution and sensitivity across
the extragalactic GMC data sets. Any similarity or discrepancy
among the extragalactic GMCs measured in this way would
then be genuine. In recent work, Hughes et al. (2013) showed
that a size–line width relation is apparent when M51, M33, and
LMC data were analyzed at their original (different) resolutions
and sensitivities (as in Bolatto et al. 2008), but no compelling
evidence was found when the data were degraded to a single
(“matched”) common resolution and sensitivity. From the
“matched” data, they infered that GMCs in M51 are in general
larger, brighter, and have higher velocity dispersions than
equivalent structures in M33 and the LMC, which can be
interpreted as a genuine variation of GMC properties.
In this respect, we can compare NGC 4526 and LMC data

(Wong et al. 2011), since they have comparable physical
resolutions and sensitivities (∼20 pc and σrms≈ 0.7 K for NGC
4526, and ∼11 pc and σrms≈ 0.3 K for LMC). We find that
GMCs in NGC 4526 tend to have higher velocity dispersions
than equal-size clouds in the LMC (Figure 13). With respect to
the Milky Way disk, clouds in NGC 4526 lie above the Milky
Way disk size–line width relation (S87) by a factor of ∼3

Figure 13. Plots of size vs. velocity dispersion for extragalactic GMC
populations. The contours enclose 68% of the distribution of data points of a
given galaxy: NGC 4526 (black; this paper), Milky Way disk (blue; Heyer
et al. 2009), Milky Way center (cyan; Oka et al. 1998), LMC (red; Wong
et al. 2011), M51 (green; Colombo et al. 2014), and M33 (magenta; Gratier
et al. 2012). The centers of a Gaussian fit to each distribution are shown as
filled circles. The dashed line is the Milky Way disk relationship (S87), the
dotted line is the Milky Way center relationship (Oka et al. 1998), and the solid
line is the Local Group relationship (Bolatto et al. 2008).
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(Figure 13) and above the Milky Way size–luminosity relation
by a factor of ∼5 (Figure 5), which implies that clouds in NGC
4526 are brighter and more turbulent than similarly sized
clouds in the Milky Way. In contrast, NGC 4526 clouds are
less turbulent than the Galactic center clouds by a factor of
∼0.4 dex (Figure 13). This genuine variation of GMC proper-
ties may be influenced by different environments between
galaxies (Hughes et al. 2013) and is discussed in Section 5.4.

5.3. Variations of GMC Surface Density

If the standard size–line width relation (σv∝ R1/2) is valid for
GMCs, then as a consequence, the mass of gravitationally bound
clouds is Mvir∝ R2 (cf. Equation (4)), and hence the mass
surface density Σ=Mvir / π R2 is constant. However, Heyer et al.
(2009), who revisited the GMCs of S87 using more sensitive and
better sampled data, found that the surface density is actually not
constant, and the coefficient of the size–line width relation
(C0= σv R

−1/2) correlates with the surface density as C0∝Σ1/2.
This relation is expected from gravitational equilibrium (Equation
(4)) and does not depend on whether the clouds follow the size–
line width relation or not. The same relation (C0∝Σ1/2) also
holds for pressure equilibrium, but with S = S µ Pc ext

1 2 (Field
et al. 2011), where Σc is the critical surface density of a Bonnor–
Ebert sphere (Ebert 1955; Bonnor 1956). The difference between
the two is that pressure equilibrium has a higher normalization
than the gravitational equilibrium. The Heyer et al. (2009) data
favor pressure equilibrium rather than gravitational equilibrium
(Field et al. 2011).

In Figure 14, we compile extragalactic GMC data. The
contours enclose 68% of the distribution of data points of each
galaxy. Our compilation of extragalactic GMC data shows that
the surface density is not constant, but varies from ∼10 to 3000
Me pc−2. GMCs in the Milky Way disk, LMC, and M33 have
lower surface densities than GMCs in M51 and NGC 4526.
The median surface density of the NGC 4526 clouds is Σmed ≈
1.2 × 103 Me pc−2, which is ∼7 times greater than in the Milky
Way disk clouds (170Me pc−2; S87). However, NGC 4526

clouds have similar surface density as the Galactic center
clouds. This high surface density may be a common feature for
clouds in the galaxy bulge.
In Figure 14, we also see that there is a correlation between

σv R−1/2 and surface density, as expected from gravitational
(and pressure) equilibrium. The Milky Way disk, LMC, M33,
M51, and NGC 4526 clouds roughly follow σv R−1/2∝Σ1/2,
but the Milky Way, LMC, and M33 clouds have higher
normalizations, i.e., they lie above the gravitational equilibrium
relation (dotted line). As Field et al. (2011) suggested, Milky
Way disk clouds are likely to be in pressure equilibrium
(dashed line) rather than gravitational equilibrium and hence
have a higher normalization factor. With the exception of
Galactic center clouds, it is interesting to note the trend that
GMCs with lower surface densities tend to be in pressure
equilibrium. The Galactic center clouds are unique because
they are pressure-bound clouds with Mvir ∼ 10 Mlum and they
reside in the high external pressure environment (Oka
et al. 1998; Miyazaki & Tsuboi 2000).
Based on this finding (Figure 14), we argue against the

current mainstream view regarding the constancy of cloud
surface density. Indeed, theoretical studies (e.g., Kegel 1989;
Ballesteros-Paredes & Mac Low 2002) found that limited
observational sensitivities can give biased results, so that
previous measurements of the surface density of GMCs appear
constant. Moreover, size, velocity dispersion, and surface
density are correlated with each other as expected from
gravitational equilibrium (or pressure equilibrium as in the
Milky Way, LMC, and M33).
Here, we propose a modified version of Larson’s relations.

(1) The clouds are in either gravitational or pressure
equilibrium; the relative contribution of gravity and external
pressure to cloud stability needs further study on a cloud-by-
cloud basis. (2) The coefficient of the size–line width relation
depends on the cloud surface density as C0∝Σ1/2. This
relation also holds true in the pressure equilibrium case, where
surface density depends on the external pressure of the ambient
medium (S µ Pext

1 2; Field et al. 2011). (3) The cloud surface
densities are not all the same, but may depend on the
environment, such as the external pressure (Elmegreen 1993),
ISRF (McKee 1989), and interstellar gas flow and turbulence
(Vázquez-Semadeni et al. 2007), which need further investiga-
tion. These environmental dependencies could explain varia-
tions of GMC properties across different galaxies (Rosolowsky
& Blitz 2005; Hughes et al. 2010).

5.4. Environmental Effects

GMCs in NGC 4526 are denser and more turbulent than
those in the Galactic disk, but have similar surface density and
less turbulence than those in the Galactic center (Figures 13
and 14). These differences may be caused by different
environments, such as the ISRF and the external ambient
pressure (Pext), between NGC 4526 and the Milky Way. Here,
we infer the ISRF and Pext based on the global properties of the
galaxy and discuss their possible roles to explain the
differences between GMCs in NGC 4526 and the Milky Way.

5.4.1. Comparison with GMCs in the Milky Way Disk

Ciesla et al. (2014) have used the Herschel photometric data
to derive the dust spectral energy distribution of 322 nearby
galaxies, including NGC 4526. They fit the data with the dust

Figure 14. Correlation between σv R
−1/2 and surface density for extragalactic

GMC populations (color coded as in Figure 13). The contours enclose 68% of
the distribution of data points of a given galaxy. The solid “V”-curves are the
pressure equilibrium condition of an isothermal sphere for various external
pressures (Pext/k = 107, 106, 105, 104, and 0 K cm−3, respectively, from top to
bottom; Field et al. 2011). The dashed line is the locus of critical surface
density for a Bonnor–Ebert sphere. The dotted line is the gravitational
equilibrium of a constant-density sphere. This plot shows that the surface
density of GMCs is not constant as previously believed. Inset: surface density
function of the clouds in NGC 4526.
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emission model of Draine & Li (2007). In this model, a large
fraction of dust is located in the diffuse interstellar medium,
exposed to a single ISRF with intensity U = Umin. We define U
as the intensity normalized to the Milky Way value, i.e.,
ISRF = U × ISRFMW, where ISRFMW is the ISRF of the Milky
Way (Mathis et al. 1983). In addition, there is a small fraction
(γ) of dust located in regions where the ISRF is more intense
(e.g., photodissociation regions), with ISRF ranging from Umin

to Umax and described by a power law U−α. Draine & Li (2007)
found that Umax = 106 and α = 2 are the best fit to the SINGS
sample (Kennicutt et al. 2003). The free parameters of the
model are then reduced to Umin and γ.7 Ciesla et al. (2014)
found the best-fit parameters of Umin = 3.92 ± 0.32 and
γ = (0.19± 0.09)% for NGC 4526.

Then, we can calculate the mean ISRF (Ū) in NGC 4526,
weighted by the dust mass, by using Equation (17) of Draine &
Li (2007):
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Thus, the ISRF in NGC 4526 is ∼4 times higher than in the
Milky Way.

This higher ISRF means a higher photoionization rate of the
molecular gas, so that the CO emission emerges from a deeper
layer within the cold gas, i.e., at higher extinction (AV) than in
the typical Milky Way disk. This higher extinction translates
into higher gas surface density via (McKee 1989)

d
S = -


A

M22.3 pc , (23)V
H

gr

2
2

where δgr is the ratio of the extinction per hydrogen nucleus in
the cloud to the standard value given by Spitzer (1978).
Generally, δgr = 1 in the Milky Way. We do not know the
value of δgr in NGC 4526, but we can assume that δgr is
proportional to the metallicity as δgr ∼ Z/Ze (Bolatto
et al. 2008). By using Equation (23) and log(Z/Ze) ≈ 0.2
(Davis et al. 2013b), we can estimate the value of AV that is
required to reproduce the observed surface density of GMCs in
NGC 4526. Cloud surface density in NGC 4526 is ∼7 times
higher than those values in the Milky Way disk (Figure 14), so
that AV in NGC 4526 is estimated to be 4.4 times higher than
that in the Milky Way disk.

Furthermore, McKee (1989) predicts that the velocity
dispersion of GMCs is proportional to the square root of AV

and the cloud size as σv∝ (AV/δgr)
1/2 R1/2. This relation arises

naturally from the gravitational equilibrium state and by using
AV as a proxy of surface density as in Equation (23). By using
the estimated value of AV above, the theory predicts that the
velocity dispersion in NGC 4526 clouds is about 2.1 times
higher than the velocity dispersion of equal-size clouds in the
Milky Way disk. This prediction is in agreement with our
measurements, which show that the velocity dispersion of
equal-size clouds in NGC 4526 is higher than those in the
Milky Way disk by a factor of ∼3 (Figures 5 and 13). Thus, we
speculate that the surface density and velocity dispersion in
NGC 4526 clouds are higher because those clouds have higher
extinction than clouds in the Milky Way disk.

5.4.2. Comparison with GMCs in the Galactic Center

Clouds in NGC 4526 have similar surface density and a
smaller velocity dispersion than equal-size clouds in the
Galactic center (Oka et al. 1998) by a factor of ∼0.4 dex
(Figures 13 and 14). This may be due to the fact that Oka et al.
(1998) clouds and Miyazaki & Tsuboi (2000) clumps are in
pressure equilibrium, rather than gravitational equilibrium as in
NGC 4526 clouds. From Equation (20), by neglecting the
magnetic pressure term, this means that the internal pressure of
pressure-bound clouds needs to balance against gravity and
external pressure, while gravitationally bound clouds need to
balance against gravity only. Therefore, for a given cloud mass
and radius, the velocity dispersion of pressure-bound clouds is
higher than the velocity dispersion of gravitationally bound
clouds in order to maintain a dynamical equilibrium state.
We do the following calculations to support our argument.

By neglecting the magnetic field, gravitationally bound clouds
have s r= -Pv G,vir

2 1, while pressure-bound clouds have

s r= + -P P( )v G,pres
2

ext
1, where ρ∝ΣR−1 and PG∝Σ2

(BM92). For equal-size clouds with similar density, the ratio
between the two is
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For spherical clouds, like those in NGC 4526, with mass
∼106Me and radius ∼20 pc, PG is ∼8 × 106 K cm−3. The
external pressure Pext in the Galactic center is rather uncertain.
For Pext/k between ∼5 × 106 (Spergel & Blitz 1992) and ∼
1 × 108 (Miyazaki & Tsuboi 2000), the Galactic center clouds
are expected to have higher velocity dispersion by a factor of
1.3 to 3.7 (cf. Equation (24)). This range is also in agreement
with our measurement (∼0.4 dex≈ 2.5; Figure 13).
If this is true, then why are the clouds in the NGC 4526

bulge in gravitational equilibrium but clouds in the Galactic
center pressure bound? To get insight into this question, we
estimate the global ambient hydrostatic pressure Ph in NGC
4526 as a proxy of the external pressure (Elmegreen 1989):
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where Σg ≡ ΣH I is the ambient gas surface density, Σ* is the
stellar surface density, σg is the ambient gas velocity
dispersion, and σ* is the stellar velocity dispersion.
We use ATLAS-3D (Cappellari et al. 2011) results to get the

stellar properties of NGC 4526: σ* ≈ 233.3 km s−1 (in the
central 1 kpc), L ≈ 3.13 × 1010 Le,r (Cappellari et al. 2013b),
stellar M/Lr ≈ 5.6 Me/Le,r (Cappellari et al. 2013a), and Re ≈
74″.1 ≈ 5.9 kpc (Krajnović et al. 2013). The quoted luminosity
value is global, so the enclosed luminosity at Re is simply
half the quoted value, i.e., L(Re) ≈ 1.57 × 1010 Le. Thus,
the stellar surface density can be estimated as S »*

» -
M R πR M( ) 804 pce e

2 2.
H I is undetected in NGC 4526 with an upper limit of

MH I < 1.9 × 107 Me (Lucero & Young 2013). The linear
resolution of their observations is 5.4 × 4.2 kpc2. This gives an
upper limit of the gas surface density as Σg < 0.27 Me pc−2.
We do not know the value of σg, so we assume σg = 10 km s−1

(Blitz & Rosolowsky 2006).
Taken all together, we estimate the external pressure to be

Ph/k < 1.5 × 106 K cm−3. Thus, unlike the Galactic center

7 There is a third parameter of the model, namely, the fraction of dust mass
contributed by polycyclic aromatic hydrocarbons, but we do not need it to
calculate the mean ISRF.
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clouds, where Pext ∼ PG, NGC 4526 clouds have Pext < PG.
This may cause the Galactic center clouds to be pressure
bound, while clouds in NGC 4526 are gravitationally bound
(since the external pressure is small with respect to the gravity).
This small external pressure is presumably due to lack of H I in
NGC 4526, which may be caused by ram pressure or hot gas
evaporation because the galaxy resides in the Virgo cluster.

6. SUMMARY

We identify 241 GMCs based on 12CO(2 −1) observation at
≈ 20 pc resolution in the galaxy NGC 4526 using the CPROPS
program (RL06), where 103 of them are spatially resolved. As
a population, the clouds are in gravitational equilibrium. A log-
normal fit to the population yields a mean virial parameter α ≈
0.99 with a standard deviation of ∼0.14 dex.

The cloud mass distribution follows dN/dM∝M −2.39±0.03,
which is steeper than in the inner Milky Way but comparable to
what others find in several other galaxies. Since the exponent is
less than −2, the total number of clouds is dominated by the
contribution of low-mass clouds. The data favor a truncated
distribution with truncation mass of 4.12 × 106 Me.

In general, clouds in NGC 4526 are more luminous and more
turbulent than equal-size clouds in the Milky Way disk by a
factor of ∼5 and ∼3, respectively. Moreover, the surface
density of GMCs in NGC 4526 is ∼7 times higher than those in
the Milky Way disk. These differences may be due to a higher
ISRF and cloud extinction (AV) in NGC 4526, so that the CO
emission emerges from a deeper layer in the cold gas and hence
a higher gas density region.

On the other hand, NGC 4526 clouds are less turbulent than
the Galactic center clouds. This may be caused by the different
equilibrium state of GMCs: Galactic center clouds are pressure-
bound, while clouds in NGC 4526 are gravitationally bound.
The velocity dispersion of the pressure-bound clouds needs to
balance both gravity and the external pressure, while
gravitationally bound clouds just need to balance gravity only.
Indeed, our estimation shows that the external pressure in NGC
4526 is smaller than the gravity, so that the external pressure is
less important in the dynamical state of NGC 4526 clouds. This
situation is different in the Galactic center, where the external
pressure is comparable to or higher than the cloud self-gravity.

We find no size–line width correlation in NGC 4526 in
contrast to what is expected from Larson’s relation. This
finding is robust against the choice of the input parameters of
the CPROPS program or different measurement methods
(Appendix D). This implies that the surface density of GMCs
is not constant, but follows the relation σv R−1/2∝Σ 1/2 as
expected from gravitational equilibrium.

In the kinematic analysis, we find that the velocity gradient
of individual clouds is just a consequence of galactic rotation.
In this case, if the clouds are rotating, then the rotation follows
the galactic shear given by the Oort A constant at the
location of the cloud. We calculate Ωshear and find that 92%
of resolved clouds have a turbulent energy exceeding the
rotational energy, and 96% of resolved clouds have a
gravitational energy exceeding the rotational energy. This
means rotational energy is a minor contribution to the clouds’
dynamical stability.

Even with the inclusion of rotational energy, the cloud
population is still in gravitational equilibrium. The distribution
of the virial parameter can be approximated by a log-normal
distribution with a tail at the high end. The mean of the

distribution is α ≈ 1.26 with a standard deviation of ∼0.15 dex.
There are only four clouds with α  3.5. These clouds are the
innermost clouds and undergo extreme galactic shear. These
unbound clouds should be ripped apart in a timescale of less
than ∼1Myr.
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APPENDIX A
CLOUD IDENTIFICATION ALGORITHM

We use the modified CLUMPFIND algorithm (Williams
et al. 1994), implemented in the CPROPS program (RL06) to
identify GMCs in NGC 4526. Below are descriptions of the
code, together with our chosen values of input parameters.
First, the program identifies connected regions of significant

emission as islands. An island is defined as CO emission that
has at least one pixel higher than 3σrms (the threshold
parameter of the program) and extends to all connected pixels
with emission higher than 2σrms (the edge parameter of the
program). An island consists of one or more clouds after the
decomposition process. We set the minimum volume of islands
to be 1 beamwidth ´ 12 velocity channel. We choose these
values to include any possible small island in our data, since
our resolution is somewhat comparable to the typical size of
Milky Way GMCs.
The decomposition of each island begins by looking for local

maxima. Local maxima are identified by looking for pixels that
are greater than or equal to all neighbors in a 1 beamwidth ´2 1
velocity channel volume. Our choice of these values is to
separate an island into potentially smaller clouds.
For each local maximum, working from the local maximum

that has the lowest emission to the highest, the algorithm
identifies pixels associated exclusively with each local max-
imum by contouring the data cube in three dimensions. If the
emission of a local maximum is less than nσrms above the
merge level with neighboring local maxima, or there are fewer
than m × beamwidth pixels associated with the local maxima,
then the local maximum is removed from consideration. The
merge level is the contour level that encloses two neighboring
local maxima. The purpose of this decimation process is to
remove spurious peaks of noise, i.e., false clouds. Higher
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values of n and m give a smaller probability of false clouds, at
the cost of losing small genuine clouds. We adopt m = 0.5 to
account for small clouds and determine the best value of n from
simulations (described in Appendix B).

Then, the program decides whether two neighboring clouds
are a merged cloud or distinct clouds. The algorithm compares
the values of emission moments for the separated and

combined clouds. If the flux F and moment σ of an individual
cloud differ by more than a fraction of the flux and the moment
of the merged cloud (δF/F and δσ/σ), then the local maxima
are categorized as distinct. The values of δF/F and δσ/σ are
chosen from the simulations (Appendix B).
At the end of the process, the program calculates the

properties of the clouds (described in Section 3.1) and records
them into a catalog (Table 1).

APPENDIX B
DECOMPOSITION PARAMETERS

In order to choose the best decomposition parameters (n, δF/
F, and δσ/σ) that are suitable for our data, we create two
simulated clouds with a 3D Gaussian shape in a single data
cube and add the typical noise of our observations. The
dispersions of the Gaussian are σx = σy = 1 beamwidth and
σv = 1 velocity channel, so that they are resolved by the
antenna beam and spectral channels. We vary the separation
distance (center-to-center) of those Gaussians in units of R,
which is defined as R = 2σx. Two Gaussians are almost fully
resolved if they are separated by a distance larger than 2R. We
also vary the peak S/N of the Gaussians from 3σrms to 6σrms, to
take into account any possible dependence of our simulations
on S/N. We run 10 simulations for each choice of separation
distance and peak S/N, so that the results are statistically
robust.
We feed the simulated data cubes into the CPROPS program

and vary the three input parameters that drive the decomposi-
tion of the clouds (n, δF/F, and δσ/σ) from 0 to 3 with an
increment of 0.5. The program then identifies the number of
clouds in a given data cube. For various decomposition
parameters and peak S/N, we plot the average number of clouds
identified by the program against the separation distance in
Figure A1. The program successfully resolves two clouds for a
separation distance larger than 2R. However, for blended
Gaussians (separated by a distance shorter than 2R), the values
of n = δF/F = δσ/σ = 1 best recover the correct number of
clouds at all S/N. Therefore, we adopt these values as the
decomposition parameters for our data. In Appendix D, we
further show that the results of our studies are not sensitive to
the choice of decomposition parameters.

APPENDIX C
PROBABILITY ANALYSIS OF REAL DETECTIONS

In order to check the probability that the identified clouds are
real, we do a probability analysis similar to that given in
Engargiola et al. (2003). If we have n-adjacent channels with
the same brightness temperature Tb = kσrms, then the
probability of this being a false detection is
Pn(k) = [0.5 × erfc(k/ 2 )]n, where erfc is the Gaussian
complementary error function. The probability of real detection
is Preal = 1 − Ntrial Pn(k) for NtrialPn(k) 1. Here, Ntrial = N/n,
where N ≈ 2.37 × 107 is the number of pixels in our data cube.
If the pixels are not independent due to beam convolution and
spectral smoothing, then the inferred Preal is smaller than the
true Preal. We set the edge parameter of the CPROPS program
to be 2σrms, so that all pixels in a cloud must have Tb ⩾ 2σrms.
Hence, the probability that a cloud occupying n-adjacent
channels is a real detection is Preal > 1 −Ntrial Pn(2σrms). In this
case, Preal > 0.97 for n = 5. The smallest identified cloud has
total number of pixels n = 13. This suggests that it is unlikely

Figure A1. Average number of recovered clouds as a function of the separation
distance (center-to-center) between two clouds. The separation distance is in
units of R = 2σx, where σx is the dispersion of the Gaussian clouds. Different
panels show different peak S/N of the simulated clouds. In each panel, different
values of the decomposition parameters (n, δF/F, and δσ/σ) are shown in
different colors. The correct number of clouds is indicated by the dashed lines.
The program recovers approximately two clouds for separations of at least 2R.
Unity input parameters approach the correct number of clouds even for blended
clouds.

Table A1
Spearman Correlation Coefficients for Various Input

Parameters and Measurement Methods

Parameters R vs. σv σv vs. L R vs. L

n = δF/F = δσ/σ=1 −0.14 0.51 0.67
d ds s= =n F F = 2 0.04 0.45 0.81

n = δF/F = δσ/σ = 3 0.09 0.37 0.87

(Edge,threshold) = (2σ,3σ) −0.14 0.51 0.67
(Edge,threshold) = (2σ,4σ) −0.09 0.53 0.69
(Edge,threshold) = (3σ,4σ) 0.06 0.40 0.68

No extrapolation −0.12 0.48 0.68
No deconvolution 0.21 0.51 0.83
No extrapolation and no deconvolution 0.28 0.48 0.94
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that we detect false clouds, so we assume all identified GMCs
are real structures.

APPENDIX D
CHECKING BIAS AGAINST THE CHOICE

OF INPUT PARAMETERS

We evaluate how our results are affected by the choice of
input parameters of the CPROPS program (as described in
Appendix B) and the methods to measure the cloud properties
(as described in Section 3). We rerun the program and

recalculate the cloud properties (radius, velocity dispersion,
and luminosity) using various decomposition parameters
(n, δF/F, and δσ/σ), edge and threshold parameters for islands,
and methods of measurement (by excluding deconvolution,
excluding extrapolation, and excluding both deconvolution and
extrapolation).
The decomposition parameters are varied from 1 to 3 with

unity increment (first column of Figure A2), the edge
parameter varies from 2σrms to 3σrms, and the threshold
parameter varies from 3σrms to 4σrms (second column of
Figure A2). Different methods of measurements are given in

Figure A2. Plots of GMC properties (radius, velocity dispersion, and luminosity) for various decomposition parameters (left), islands parameters (middle), and
methods of measurement (right). The black lines are Larson’s relations, and the dashed lines are Larson’s relations with higher or lower normalization factors. There is
no obvious bias due to the choice of input parameters of the program.
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the third column of Figure A2. Each row in Figure A2 shows
the plots between various cloud properties, i.e., size versus line
width in the first row, line width versus luminosity in the
second row, and size versus luminosity in the third row.
Larson’s relations for the Milky Way are shown as the solid
lines. For comparison, the dashed lines are Larson’s relations
with different normalization factors: 3, 0.05, and 5 for R versus
σv, σv versus L, and R versus L, respectively. To check how
strong the correlation between various cloud properties is, we
tabulate the Spearman correlation coefficients rsp in Table A1.

For each plot, we build an estimate of the probability density
function (PDF) based on the data scatter in two dimensions,
using the kernel-density-estimate method in Scipy. The
contours in Figure A2 enclose to the 68% confidence level of
the PDFs. We also fit the PDFs with a 2D Gaussian and show
the Gaussian centers as filled circles in Figure A2. The center
and dispersion of the Gaussians are tabulated in Table A2. For
clarity, we do not show the data points. In addition, we check
whether the PDFs in a given panel of Figure A2 are sampled
from the same parent distribution or not. This is tested with the
two-dimensional Kolmogorov–Smirnov (K-S) probability
value (Table A3). The higher the probability, the more likely
the PDFs are drawn from the same parent distribution.

For the first column in Figure A2, we see that higher
decomposition parameters (e.g., n= δF/F= δσ/σ= 3, green
contours) yield larger scatter than lower decomposition
parameters (red and blue contours). The number of clouds
for higher decomposition parameters is less than for lower
decomposition parameters, so this larger scatter is not due to a
larger number of data points. The larger scatter is probably due
to the tendency of the program to combine small, neighboring
clouds into bigger, merged clouds in the molecular ring island,
while leaving the outer small islands as small clouds (Figure 1).
This tendency can be seen in Figure A2, as the PDFs of higher
decomposition parameters extend to larger radii and higher
luminosities. The Gaussian centers of higher decomposition
parameters also have larger radii and higher luminosities than
those of lower decomposition parameters. In any case,
none of those distributions show a size–line width relation
(−0.14⩽ rsp⩽ 0.09), and they have different normalization
factors than Larson’s relations.
For the second column in Figure A2, the parameters (edge,

threshold) = (2σrms, 3σrms) almost have the same PDF as
(edge, threshold) = (2σrms, 4σrms). The K-S test yields a
probability value of ∼1. This is because we only lose a few
clouds with peak S/N < 4σrms. However, for parameters (edge,
threshold)=(3σrms, 4σrms), we lose many clouds because the

Table A3
Two-dimensional Kolmogorov–Smirnov Test

R vs. σv

Parameters 1 2 3 Parameters (2σ,3σ) (2σ,4σ) (3σ,4σ) Parameters noex nodc noexdc
1 1.00 L L (2σ,3σ) 1.00 L L noex 1.00 L L
2 0.11 1.00 L (2σ,4σ) 1.00 1.00 L nodc 0.00 1.00 L
3 0.01 0.72 1.00 (3σ,4σ) 0.05 0.04 1.00 noexdc 0.08 0.00 1.00

σv vs. L

Parameters 1 2 3 Parameters (2σ,3σ) (2σ,4σ) (3σ,4σ) Parameters noex nodc noexdc
1 1.00 L L (2σ,3σ) 1.00 L L noex 1.00 L L
2 0.13 1.00 L (2σ,4σ) 1.00 1.00 L nodc 0.00 1.00 L
3 0.15 0.74 1.00 (3σ,4σ) 0.005 0.004 1.00 noexdc 0.00 0.00 1.00

R vs. L

Parameters 1 2 3 Parameters (2σ,3σ) (2σ,4σ) (3σ,4σ) Parameters noex nodc noexdc
1 1.00 L L (2σ,3σ) 1.00 L L noex 1.00 L L
2 0.07 1.00 L (2σ,4σ) 1.00 1.00 L nodc 0.00 1.00 L
3 0.01 0.74 1.00 (3σ,4σ) 0.02 0.02 1.00 noexdc 0.00 0.00 1.00

Table A2
Gaussian Fit Coefficients of the Distributions in Figure A2

Parameters Gaussian Center Gaussian Dispersion

R vs. σv σv vs. L R vs. L R vs. σv σv vs. L R vs. L

n = δF/F = δσ/σ = 1 (34.39, 14.14) (16.98, 8.04) (31.05, 13.04) (24.11, 8.47) (6.86, 8.67) (16.72, 9.27)
n = δF/F = δσ/σ=2 (11.97, 14.88) (16.12, 1.40) (14.85, 3.86) (11.62, 10.62) (8.73, 5.97) (7.02, 5.91)
n = δF/F = δσ/σ=3 (12.50, 13.95) (13.93, 1.25) (16.61, 4.74) (14.46, 12.73) (10.29, 7.94) (7.75, 7.26)
(Edge,threshold)=(2σ,3σ) (34.39, 14.14) (16.98, 8.04) (31.05, 13.04) (24.11, 8.47) (6.86, 8.67) (16.72, 9.27)
(Edge,threshold)=(2σ,4σ) (33.49, 14.42) (16.83, 7.74) (30.00, 13.09) (24.95, 8.94) (7.17, 9.11) (15.70, 9.51)
(Edge,threshold)=(3σ,4σ) (51.39, 27.88) (38.92, 11.43) (52.06, 31.64) (32.53, 14.59) (9.08, 21.79) (25.97, 16.04)
No extrapolation (28.00, 34.30) (17.00, 5.54) (25.50, 12.18) (35.47, 17.38) (6.86, 7.71) (22.53, 12.72)
No deconvolution (32.10, 15.19) (14.96, 7.99) (30.12, 7.65) (14.26, 6.91) (6.54, 8.68) (9.50, 6.04)
No extrapolation and no deconvolution (24.78, 15.22) (14.99, 5.50) (23.20, 5.70) (14.90, 6.88) (6.55, 7.71) (8.77, 4.66)

19

The Astrophysical Journal, 803:16 (20pp), 2015 April 10 Utomo et al.



islands only extend to connected pixels with Tb > 3σrms (i.e.,
the islands get smaller), and hence the spread of the PDF
decreases due to a smaller number of data points. None of the
distributions show a size–line width relation, and they have
different normalization factors than Larson’s relations.

For the third column in Figure A2, there is no distribution
that yields the size–line width relation found in the Milky Way.
In the line width versus luminosity plot, the non-deconvolved
distributions (red and green contours) yield larger velocity
dispersions, as expected from Equation (2) by excluding the
δ v2/2π term, and the extrapolated distribution (red contour)
yields higher luminosities. All distributions in the line width
versus luminosity plot lie below Larson’s relation. In the size
versus luminosity plot, the non-deconvolved distribution (red
contour) yields a larger size, as expected from Equation (1) by
excluding the sbeam

2 terms. All distributions in the size versus
luminosity plot lie above Larson’s relation.

Overall, we conclude that there is no significant effect on our
general results due to the choice of input parameters and
measurement methods. In particular, the absence of a size–line
width relation and the different normalization factors of
Larson’s relations still remain.
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