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Abstract: New generation of healthcare is represented by wearable health monitoring systems, which 8 

provide real-time monitoring of patient’s physiological parameters. It is expected that continuous 9 

ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal 10 

health management. In this paper, we present the implementation of a multimodal real-time system for 11 

epilepsy management. The proposed methodology is based on a data streaming architecture and 12 

efficient management of a big flow of physiological parameters. The performance of this architecture is 13 

examined for  varying spatial resolution of the recorded data. 14 

Keywords: Multimodal health data; data streaming; online processing. 15 

 16 

1. Introduction 17 

As healthcare costs are increasing and the world population is ageing [1], the need for 18 

monitoring patients in their home environment is growing. Patients with chronic conditions such as 19 

heart failure, dementia, sleep apnea, diabetes or epilepsy, need monitoring for several days. World 20 

Health Organization predicts that chronic diseases will become the most expensive problem faced by 21 

current health care systems and sees the integration of prevention into healthcare as the main solution 22 

for this problem [2]. Information and communication technologies are expected to respond to this 23 

problem by providing personalized, low-cost, citizen centered healthcare services [3]. Recent advances 24 

in sensor technology and microelectronics have enabled the long term monitoring and management of 25 

chronic disease patients and additionally detect urgent or emergent events. 26 

In order to monitor patients in a long term basis several systems have been developed and 27 

several products have been produced in the recent years. These systems and products aim at providing 28 

real-time feedback information about the patient's health condition [4, 5, 6, 7, 8]. The receivers of this 29 
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information are the patients themselves, a medical center or the supervising physician of the patient. 1 

Alert services are also provided in case of possible imminent health threatening conditions. To achieve 2 

these goals, these systems process the data flow continuously and additionally are expected to achieve 3 

low latency and high throughput. Specifically, the data processing must keep up with data ingest rates, 4 

while providing high quality results as quickly as possible. 5 

Our work focuses on a real time processing health system that addresses the needs of patients 6 

with epilepsy. Epilepsy is affecting approximately 1% of the world population and is the third most 7 

common neurological disorder in the United States after Alzheimer's disease and cerebrovascular 8 

events [9]. Detection of epileptic seizures is dependent upon the capture, analysis, aggregation and 9 

interpretation of large volumes of data. By utilizing a real time analysis tool, the patient's condition can 10 

be  assessed  without latency as is the case when manual analysis is performed. The use of continuous 11 

applications and stream processing of physiological data flow can improve the delivery of health care 12 

along several axes. The fundamental goal of stream processing is to process live data, providing real-13 

time information results to end-users, while monitoring and aggregating information in order to provide 14 

medium- and long-term support to decision making. 15 

The proposed system is designed to work with limited resources in a real time manner. Stream 16 

analysis over sliding windows is performed, based on a short time analysis scheme. Physiological 17 

signals are exploited in real time, while the whole design of the system is patient specific in order to 18 

adapt to each patient's characteristics. Abnormal events of higher level, such as status epilepticus, as 19 

well as high risk conditions are discovered by a continuous monitoring of the patient's condition. 20 

The remainder of this paper is organized as follows. Section 2 generally discusses previous 21 

research. Section 3 introduces the proposed framework and describes generic architecture. Section 4 22 

presents in detail the implementation of the online seizure detection platform. In section 5 the 23 

experiments performed for the evaluation of the system are presented, in terms of real time processing 24 

performance. Finally, the paper is concluded with a discussion of the experimental results.  25 

 26 

2. Related work 27 

During the past years, ambulatory monitoring of physiological parameters by wearable or 28 

implantable sensors is a research area with high interest [6, 10, 11]. Wearable health monitoring 29 

systems (WHMS) constitute a new means to address the issues of managing and monitoring chronic 30 
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diseases [12, 13, 14], elderly people, postoperative rehabilitation patients, and persons with special 1 

abilities [15, 16]. 2 

WHMS's are characterized by several constraints. Wearability, unobtrusiveness, low-cost, 3 

robustness, scalability, security, privacy of medical data, low-power consumption, ease of use and 4 

embedded decision support are some among them. As shown in [17] several of these specifications are 5 

difficult to be met, such as power issues, security of private information and system bulkiness. These 6 

issues are expected to be addressed by technology's advancements in microelectronics, low-energy IC 7 

design, wireless sensor networks and big data analytics techniques. 8 

Many systems are presented based on WHMS technology, which aim in providing real-time 9 

unobtrusive monitoring of patients’ physiological parameters. Prognosis [6] is a physiological data 10 

fusion model for a multisensor WHMS. It is designed to describe the current estimated health state and 11 

context of the patient, based on a fuzzy regular language for the generation of the prognoses of the 12 

health conditions of the patient. Although this system provides decision support for the current 13 

condition of the patient it doesn’t assess the patient’s physiology in real time. In [18] a portable and 14 

real-time monitoring system was developed. The system implemented a seizure detection algorithm in 15 

embedded systems for online monitoring EEGs and detecting seizure events, experimented on animals.  16 

The detection algorithm is based on a linear least-squares classifier. In [19] a middleware targeted on 17 

smart-phone like healthcare applications is presented focusing on the efficient management of sensor 18 

data, where several real–time monitoring applications of physiological parameters can be designed 19 

based on the presented middleware such as fitness monitoring, telemedicine and elderly care assistance. 20 

Several research prototypes are based on WHMS by integrating various technologies of 21 

wearable sensors. MyHeart project [20] aimed at fighting cardiovascular diseases (CVD) by prevention 22 

and early diagnosis. By adopting the use of smart clothing, the wearable system is very comfortable for 23 

the user. The developed system included an ECG and an activity sensor and was able to classify human 24 

activity. A heart belt was used for monitoring patient's heart condition. Human++ [21] has developed a 25 

body area network consisting of three sensor nodes and a base station. Each sensor is collecting and 26 

processing multichannel data from ECG, EEG and EMG, while the base station functions as a data 27 

collector in star topology, regulating the information flow. This system is improved in [22]. A small, 28 

lightweight and low power WPMS platform is developed for ambulatory and continuous monitoring 29 

for autonomic responses in real life applications. HeartToGo [23] is a cell phone-based wearable 30 
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platform, continuously monitoring ECG data. Real time analysis of electrocardiogram is performed to 1 

detect of abnormal events related to cardiovascular disease. 2 

Due to high computing and storage demands in most WHMS's, several studies have examined 3 

the solution of geo-distributed clouds. In [24] a data integration framework for mobile healthcare has 4 

been proposed. This framework is centered on the concept of ubiquitous healthcare services provided 5 

to the patients in distant from a hospital areas. In [7] the authors presented PHISP – a Public-oriented 6 

Health care Information Service Platform supporting numerous health care tasks. Among them the 7 

platform provides to individuals many intelligent and personalized services, and supports basic remote 8 

health care and guardianship. 9 

Among WHMS's constraints such as wearability, unobstractiveness, low cost, scalability have 10 

been improved by several studies performed in recent years. Less attention has been paid though, to the 11 

constraints imposed due to the real time processing of the huge amount of data in health care 12 

monitoring applications. In [5] a flexible framework that performs real-time analysis of physiological 13 

data to monitor the subject in his/her daily activities in the hospital environment is proposed. That 14 

study though focuses on the analysis algorithm needed to perform real time monitoring. Our work on 15 

the contrary focuses on data streaming characteristics, by presenting a multimodal big data streaming 16 

architecture applied in online seizure detection. Real time processing systems should fulfill a number of 17 

requirements. Particularly, low latency is essential in real time applications, as well as data fusion for 18 

being able to mine heterogeneous data sources. Additionally, the analysis algorithm should also be able 19 

to process events in real time over sliding windows. These requirements are characteristic to many 20 

streaming applications across various sectors. For example streaming applications are met in Web 21 

analytics, fraud detection, call center management, smart power meters and financial trading [25]. All 22 

these applications need to run continuous queries over high data rate streams, something that can be 23 

achieved by using a Data Stream Management System (DSMS) [25, 26, 27]. We present a health 24 

monitoring system, which by utilizing a DSMS is able to monitor and process a large continuous flow 25 

of physiological data in a real time and efficient manner. 26 

 27 

3. The ARMOR concept 28 

We present a flexible system performing real-time analysis of physiological data in order to 29 

detect events and high risk conditions related to epilepsy. Physiological parameters are analyzed by 30 
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means of data mining in order to assess the severity of the monitored patient's condition. To enable 1 

ubiquitous analysis, real time processing of recorded data is performed. High-risk situation alert and 2 

patient information management services are also performed by the proposed system. The presented 3 

system is part of the online analysis components of the Advanced multi-paRametric Monitoring and 4 

analysis for diagnosis and Optimal management of epilepsy and related bRain disorders project 5 

(ARMOR) [28]. Fig. 1 presents the framework of ARMOR.  6 

 7 

Fig. 1:Block diagram of the ARMOR's concept. 8 

 9 

 The first part of the ARMOR framework's chain of components consists of the physiological 10 

sensors. A variety of biosignals is measured in order to monitor several aspects of a patient's condition. 11 

In particular, electroencephalography (EEG) and electrocardiography (ECG) sensors in addition to 3-12 

axis accelerometers (ACC) are utilized. EEG and ECG data are captured by different sensors of the 13 

Movisens GmbH-Karlsruhe [29] sensor platform. The captured data are encrypted using a FPGA-based 14 

solution and are afterwards wirelessly transmitted using Bluetooth 4.0 technology. In order to control 15 

noise, signal-to-noise ratio and DC level are measured, issuing an alarm when some preset threshold is 16 

exceeded. A wireless network is formed to transmit the data recorded from the sensors, for the sake of 17 

convenience of the patient, since a set of cables can be both cumbersome and restrictive [30]. The 18 

transmitted data are formatted in Unisens [31] format.  Because a wireless protocol is followed for data 19 

transmission, an encryption phase is also required in order to avoid possible data interceptions. The 20 

encryption is based on a 128-bit block NIST-FIPS 197 Advanced Encryption Standard (AES) 21 

algorithm.  The data are transmitted to an independent component of the system called Home Gateway, 22 

located in the proximity of the patient. The first action of this system is to decrypt the received packets 23 

before any further processing. Once the data are transformed to their initial form they are directed to 24 

two separate data flows. The first data flow is directed in the online detection module, while the second 25 

one is uploaded via a secure network in a data warehouse called Personal Health Record (PHR). PHR 26 

systems' role is to manage all necessary medical information for each patient. These systems are 27 

consisted of several components, which provide storage, log history and a personal health profile. The 28 

storage component is offering permanent repository to the recorded data for each patient. Medical 29 

experts should have easy access to the contents of the PHR, thus an appropriate web interface should 30 
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be provided. Alarms received by the online analysis should also be managed appropriately by a 1 

notification service, in order to notify the corresponding to the patient clinicians for any detected high 2 

risk condition. Communication between the home gateway and the PHR is bidirectional. In addition to 3 

receiving the alarms produced by online analysis, the PHR provides all the necessary information to the 4 

online detection module, for adaptation to the needs of a specific patient. These parameters are 5 

configurable depending on the patient's condition and the purpose of the online analysis. The PHR has 6 

a bidirectional communication with another component that performs the offline analysis. The offline 7 

analysis server is an independent system which performs the automatic analysis of the data existing in 8 

the PHR. Since during the online monitoring there are limitations regarding processing time, memory 9 

used and complexity of the algorithms, there are certain aspects of the data that cannot be analyzed in 10 

details. The aim of the offline analysis is to perform further investigation of the recorded data, in order 11 

to discover additional knowledge of their nature.  12 

In general, the online analysis detection module is a subsystem that is constantly processing in 13 

real time the captured physiological data in order to monitor the patient's health condition and to detect 14 

any abnormal events. Physiological measures are analyzed by means of data mining over sliding 15 

windows, in order to assess the severity of risk in the patient's condition. Efficient online analysis 16 

requires the maintenance of temporal and spatial consistency in the collected data. Time domain data 17 

fusion is achieved by synchronizing the different data flows in time, while spatial domain fusion is 18 

performed by the analysis algorithms.  19 

The online analysis is performed on a stream of data, thus the data are split into windows. Each 20 

window corresponds to a specific time period, whose data are stored in a continuous block in memory 21 

called data block. Once a specific sample is received, it is ordered to a data block according to its time-22 

stamp. A data block is considered the smallest unit of data that can be analyzed. Hence it should be 23 

guaranteed that before each data block is sent for analysis, it was received entirely intact. The integrity 24 

of received data could be accomplished with check-sums implemented at the hardware level; software 25 

based solutions could also be developed by combining communication protocols and managing missing 26 

values. Data blocks represent  a  small  period  of time  of  patient’s  physiological  signals  and  27 

environmental state. The time period each block represents should not be too small, so that the analysis 28 

can access enough data to extract valuable information. On the other hand, if the corresponding time 29 
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period is too big it will just record the seizure event since small scale events will be obscured by the 1 

vast size of the period. 2 

In data streaming applications temporal aspects of massive and continuous data streams are to 3 

be dealt with. Real-time or almost-real-time response is achieved efficiently by DSMSs. A DSMS 4 

offers all the necessary tools for performing selections from one or more data streams in the form of 5 

continuous queries. These queries are applied on specific sub-sequences (data blocks) of the incoming 6 

data and are continuously executed as new data arrive. Querying procedures in a DSMS provide 7 

operations similar to traditional database queries.  Though unlike  traditional  static  queries  that  8 

operate  on  tables, continuous  queries  operate  on  data  streams  and  their  output  can  be  another  9 

data stream.  In  this  manner,  combining  data  from  multiple  sensors  can  be  expressed  as 10 

selections on multiple streams, enhanced with the functionality of query operators. With this 11 

functionalities provided, it is possible to retain the streaming nature of data. Buffers and queues are 12 

required at the inputs of the system as well as between query operators in order to handle continuously 13 

arriving data. At any given time, there may be many data sub-sequences in the input and inter-operators 14 

queues, especially if the arrival rate of input data is bursty or the consumption of sub-sequences is not 15 

fast enough. Thus, the DSMS's scheduler should decide which data blocks to process next. The 16 

simplest scheduling strategies involve the allocation of a processing time slice per data block in a 17 

round-robin or first-in-first-out fashion.  18 

Since input data flow arrives from various external sources, some samples may arrive out of 19 

order with respect to their generation time. Furthermore, data may not be received from a source for 20 

some time, which is the case when there are communication errors or the source is malfunctioning. In 21 

these cases, buffers should be maintained, which contain the previously received events of the 22 

corresponding data block. These buffers should be retained for a specific amount of time, which is 23 

usually unknown or varies through time. DSMSs incorporate a solution for this problem called 24 

punctuation [32]. Punctuation is a special event inserted to the data stream that contains a predicate, 25 

guaranteed to be satisfied by the remainder of the data stream. More specifically, punctuation 26 

guarantees that samples that have a timestamp, below the punctuation's own timestamp, will be 27 

dropped by the system. This case applies mostly on systems where data samples arrive in timestamp 28 

order. These punctuations that govern the timestamps of future events are generally called heartbeats 29 

[33, 34]. 30 
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The online detection module aims in the identification of an abnormal event. Once such an 1 

event is detected then an alarm is sent to every pre specified target such as the doctor's personal email 2 

or phone or to an automatic seizure contamination system. These alarms are also sent to a permanent 3 

data warehouse (PHR). In order to be more accurate and efficient, the detection module is also 4 

configurable based on a specific patient’s characteristics. These configurations regard to EEG 5 

electrodes' cardinality and placement, as well as the detectors sensitivity. All these parameters are pre 6 

specified by experts or semi-automatic analysis tools and could be unique for every patient. 7 

 8 

4. Architecture for multimodal big data streaming 9 

The home gateway (Fig. 2) is a system placed in the environment of the patient receiving 10 

wirelessly the transmitted data from the sensors. The online detection platform, which is part of the 11 

home gateway, is constantly receiving recorded data from the sensors and in real time is processing this 12 

data flow. As described previously the data arriving in the home gateway are encrypted packets. The 13 

decryption module is constantly receiving these packets and transforming them to their original form. 14 

After the decryption, recorded data flow is processed by the other components of the online analysis 15 

platform. 16 

 17 

Fig.2: Block diagram of the multimodal streaming data processing architecture. 18 

 19 

Before the online analysis, the decrypted data are aligned and synchronized in time. The data 20 

synchronization module is responsible for ensuring that the processed data are correctly placed and 21 

ordered with respect to time. Since different modalities are used, different recording devices are 22 

necessary. The sampling rate of these devices might vary upon their functional characteristics. It is 23 

therefore essential that the synchronization module is able to cope with the difference in devices' 24 

sampling frequencies. In each sample received from each sensor, a timestamp is assigned. Each 25 

timestamp can be estimated based on two different ways: 26 

a. Timestamp sent from sensor. In this case the timestamp is sent from the recording device (provided 27 

that this functionality is available). However a significant amount of the bandwidth of the wireless 28 

channel is consumed for transferring this information. In this case the data synchronization module 29 
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functions like a simple buffer, with reordering capabilities in case received samples arrive out of 1 

order. The received samples are time stamped with their generation time. 2 

b. Timestamp calculated in the data synchronization module. This case applies when the bandwidth of 3 

the transmission channel is limited, or the recording devices do not offer a service for transmitting 4 

the timestamp of the recorded samples. The data synchronization module in this case needs to 5 

calculate the timestamp of each received channel. In this case received data are assumed to be 6 

acquired in the correct order, since the generation time is not available. Received data are time-7 

stamped using the acquisition time of the first sample and the sampling rate of each device.   8 

 The data synchronization component should also contain a service which removes inconsistent 9 

measurements and handles missing values. Inconsistent values can be detected by imposing thresholds 10 

on the received signal. These values are marked for rejection from the online analysis. Missing values 11 

are caused by sensor failure and are also marked for rejection. An alternative strategy for handling 12 

missing values could be to resend the missing data, but due to the medical needs for real-time detection 13 

of potential seizure onsets was not adopted in our evaluation.  Communication errors are assumed to be 14 

handled by communication protocols, granting data recovery in admissible time delay. 15 

Once the synchronization problem is solved, the data flow is replicated and sent to two different 16 

subsystems, the online analysis subsystem and the data control. Fig. 3 presents the procedure followed 17 

for receiving the transmitted packets, decrypting them, marking them for rejection and reordering them 18 

if necessary and sending them to the next step of  the online analysis. 19 

 20 

Fig. 3: Operation of the synchronization and preprocessing module. Encrypted packets are decrypted, 21 

synchronized, ordered and marked for rejection if necessary. 22 

 23 

The online analysis subsystem hosts the online seizure detection module. In this subsystem data 24 

are analyzed in order to detect the seizure events captured by the sensors. There are two main parts 25 

combined to create this subsystem. The first one is the preprocessing module. In the preprocessing step 26 

the arriving data flow is segmented in windows, either according to the number of events arrived or to 27 

the time intervals. 28 

These two framing methods became the same in the case where all sampling frequencies are the 29 

same. Since different sensors are expected to send data in different sampling frequencies, the time 30 
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interval based segmentation is more appropriate in our case. Each window in this scenario has a start 1 

and an end timestamp. Each time sample received from every device, belongs to a set of windows only 2 

if the time intervals of these windows contain the sample's timestamp. Depending on the desired 3 

detection accuracy and detection algorithm's performance, windows can be overlapping or non-4 

overlapping. Our method is based on short-time analysis with constant length time sliding windows 5 

without overlap. For every window a data block is created. Each block's corresponding data are 6 

inserted incrementally between the start and end time of the block. At its end time a specific block 7 

stops receiving data and is transferred to the next level of the analysis. Each data block has a life 8 

expectancy, which starts when the first sample of this block arrives in the system and ends when the 9 

final step of the analysis is performed for this data block. During this period, the data block should be 10 

quickly retrieved when necessary. Therefore, the data blocks are stored in main memory. 11 

Once the life expectancy of a data block is over, the block is dropped in order to be replaced by 12 

a new one. This cycle of reusing space in main memory is a challenging procedure, since data should 13 

be consumed faster than they are produced. The efficiency of the memory management depends on the 14 

ability of the detection algorithm to process data faster than they are received, as well as the system's 15 

physical characteristics (memory size and speed, processing capabilities, etc). Memory management 16 

can be handled efficiently by utilizing a DSMS, as the responsible service for manipulating the data 17 

flow, buffers utilized for the maintenance of the streaming nature of data, as well as continuous query 18 

operations. 19 

 20 

Fig. 4: Operation of the framing module. Each time-stamped data sample is assigned to the set of 21 

windows it belongs to. Assignments are performed based on the timestamp of each data sample and 22 

each window's start and end time. Windows containing rejected data are dropped, while the ones whose 23 

end time has passed are sent to the detection module. New windows are created in every generation 24 

timestamp. 25 

 26 

In Fig. 4 the framing process is shown. As time marked data arrive in this module, they are 27 

assigned to a group of windows to which they belong. This group of windows constitutes the set of 28 

ActiveWindows and is constantly updated with new data. Once a window end time expires it stops 29 

receiving data and is sent to the detector. Windows which receive a value marked as rejected should be 30 
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ignored and therefore are removed from the set of ActiveWindows. Fig.5 shows the information 1 

structure after data synchronization and framing respectively. Specifically once the received packets 2 

are decrypted the received data are stored in the sensor input buffer. The received samples are stored in 3 

a structure containing the value and the sensor identification. Once the samples are processed by the 4 

data synchronization module, in the information structure is added the timestamp for each sample and 5 

the binary flag for rejection. The synchronization module in our system is working based on the 6 

timestamp of the first sample and the sampling frequency of the sensor. The first sample’s time stamp 7 

is calculated by the systems internal clock. Every new data sample is attributed with a timestamp, 8 

which is calculated by the number of already received samples. The formula for calculating a data 9 

sample’s timestamp is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑆𝑆 ∗ 𝑇𝑇, where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is the timestamp of the current sample, 10 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the timestamp of the first sample received, S is the number of the samples already received 11 

and T is the time difference between two different samples, which is considered as constant. The 12 

framing module results in the formation of data blocks, each one corresponding to every individual 13 

time window specified in the data flow. 14 

 15 

Fig. 5: Synchronization and processing data flow. 16 

 17 

The second module of the online analysis is the detector. The detection framework should be 18 

developed in such a way that a short time analysis of the received data blocks is possible. Since the 19 

data flow is constant, there are limitations in the time available to process each data block. Each data 20 

block should be processed in an amount of time smaller than its corresponding time interval. Generally 21 

in online frameworks an approximate result, with some reasonable guarantee on the quality of the 22 

approximation, is acceptable [35]. In the case of seizure detection though, the accuracy is of utmost 23 

importance. In order to perform the instantaneous detection of a seizure event all different modalities 24 

must be fused in order to the exploit all possible information for the patient. This fusion can be 25 

performed in two different ways:  26 

1. By blending the features extracted from every sensor's data block into a single vector resulting in 27 

one decision which encapsulates information from all modalities, or  28 
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2. By performing a detection for every individual sensor stream's data block and then fusing the 1 

individual decisions to a single one. This process will also result in a synthesis of the different 2 

information captured by the sensors. 3 

In the first case the feature space will be vast, thus either a lot of training data or an algorithm 4 

than can overcome the sparseness of the feature space (e.g. Support Vector Machines) are a necessity. 5 

In the second case each sensor's data flow is processed separately. Therefore a training set for every 6 

sensor should be available, which is, in some situations, a challenging procedure. Several detectors 7 

might be based on pre-trained models while others are developed using decision rules. In our case the 8 

models built to perform real time classification are patient specific, in order to match each patient's 9 

specific condition. As shown in Fig. 6, each patient specific model is introduced into the detector in the 10 

form of parameters. 11 

The seizure detector developed in our study utilizes the first fusion strategy. An 21-dimensional 12 

EEG signal along with an 1-dimensional ECG signal. The dimensionality of the EEG signal can be 13 

varied based on the set of N sensors (electrodes) used, thus the EEG signal will is refered as N-14 

dimensional signal.  The data blocks of these signals are processed in parallel by time-domain and 15 

frequency domain feature extraction algorithms. More specifically, each N-dimensional data block of 16 

EEG is processed by time-domain and frequency domain feature extraction algorithms for EEG. For 17 

each individual EEG channel the spectral magnitude, autoregressive filter coefficients, the continuous 18 

and discrete wavelet transform, the energy per brain wave band (delta, theta, beta, alpha), band pass 19 

based features and phase space representation are extracted. Additionally time domain features such as 20 

zero-crossing rate and temporal statistics are calculated. Consequently, for each EEG data block a 21 

feature vector  𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸  ∈  𝑅𝑅𝑁𝑁∗𝐹𝐹 is created, where N is the number of EEG channels and F the number of 22 

features for each channel. In our study F responds to 55 features per channel [36]. Each 1-dimensional 23 

ECG data block is processed by time-domain frequency algorithms for ECG. The resulting feature 24 

vector is 𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸  ∈  𝑅𝑅𝑃𝑃, where P is the number of ECG features, which in our study is equal to 12. Data 25 

fusion is performed by concatenating the feature vectors in one vector, 𝑋𝑋𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇𝐹𝐹  ∈  𝑅𝑅𝑁𝑁∗𝐹𝐹+𝑃𝑃 , before the 26 

classification step of the detection module. The fused feature vector is of size 1167 in our study. For 27 

further details about the method used for seizure detection which was adopted in the developed seizure 28 

detector see [36, 37].  29 

 30 
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Fig. 6: Operation of the detection module algorithm. For each window sent to the detector, a synopsis 1 

of the window's data is created. This synopsis is consisted by a set of features extracted by the 2 

FeatureExtraction method. The detection is performed by utilizing this synopsis with a set of 3 

parameters according to each patient's personal characteristics. If the window corresponds to a seizure, 4 

the RiskManagementAssessment service assesses the risk of the patient's condition. 5 

 6 

The detection module with the combination of a risk management assessment module can provide a 7 

higher level of decision support. As shown in Fig. 6 once the classification for a specific window is 8 

performed, a new event is created containing the decision whether the window's period is classified as 9 

being a part of seizure or not. All these events, which are constantly produced as data are arriving, 10 

compose a new stream. By performing a continuous query on this stream, several information 11 

regarding the status of the patient can be extracted. The most profound of all is the detection of a 12 

seizure period. Once the onset of a seizure is detected then an alarm is produced. This alarm is sent to 13 

the data control sub system for further processing. Furthermore, this stream can be used in order to 14 

detect higher level events, such as whether the seizure is lasting for more than five minutes, a condition 15 

known as status epilepticus. For each higher level detected event an action is performed (e.g. an email 16 

is sent to the responsible physician, an alarm goes off in the proximity of the patient, etc.). This 17 

analysis is performed by the risk assessment decision support module, which performs also additional 18 

analysis to the recorded data. For example, given a body position sensor, once the patient's body 19 

position is prone and status epilepticus is detected then a high risk alarm is produced. This module is 20 

adjusted to the patient's characteristics, since each situation's risk depends on the patient's condition. It 21 

should be noted that for this higher level of decision making, a fusion of different modalities and 22 

processing in sliding windows are necessities for real time processing of these events. 23 

The data control subsystem is a system that is responsible for manipulating the storage of data 24 

arriving to the home gateway, as well as the detected events produced by the online analysis. The data 25 

flow is segmented in epochs in order to be compressed and sent to the PHR. This way data are 26 

transferred more efficiently and possible network failures result in the loss of a smaller amount of data. 27 

The segmentation is performed by the data epoching module. The epoch segmentation can be 28 

performed in constant time intervals. The alarms produced by the online analysis should also be 29 

encapsulated in the information sent by the home gateway to the PHR. The automatic annotations 30 
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manager receives each alarm produced by the online analysis subsystem and creates an annotation for 1 

each received event. Each annotation contains the information regarding the nature of a detected event, 2 

besides its timestamp of occurrence. Every annotation is then sent to the format conversion module in 3 

order to be combined with the recorded data. Each epoch along with the structured information of the 4 

detected events, belonging to that epoch, is gathered to the format conversion tool. This tool 5 

concatenates each epoch's data with the detected events and their relevant information to a file. The 6 

format of this file should be compatible with the next steps of the analysis. A popular format used for 7 

these reasons is European Data Format (EDF) [38]. Using that format medical experts can view the 8 

results of the online analysis, while these results can be used and augmented by the offline analysis 9 

services.  10 

 11 

5. Evaluation of the online seizure detector 12 

The proposed system was validated by means of real processing time latency under different 13 

workloads. More specifically, the system's real time performance has been tested under a) different 14 

number of EEG electrodes and window sizes and b) different number of extracted features. The first 15 

case applies when spatial resolution of measured signals is sacrificed, in exchange for higher detection 16 

frequency. One scenario where this case may find practice is when the seizure events of the patient are 17 

focal, meaning they occur in a specific brain region. The second case applies when the online module's 18 

performance is favored (by processing less features), against the detector's accuracy. As shown in [36] 19 

by removing the worst ranked features, the detector does not suffer from significant accuracy losses, 20 

which supports the whole online operation. 21 

 22 

5.1. Experimental setup 23 

In our study the seizure detection algorithm as well as the feature extraction algorithms were 24 

implemented in Matlab. The developed detector was integrated in Microsoft's StreamInsight, which is 25 

the DSMS used in our study. The system's characteristics where the experiments were performed are 26 

summarized in Table 1. 27 

 28 

Table 1: Simulation system's characteristics 29 

 30 
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For evaluating the performance of the developed algorithm under different workloads, we 1 

examined the real processing time latency (RPTL) of the algorithm under two different case studies. As 2 

RPTL we consider the processing time the detector needs to produce a result for each corresponding 3 

second of real input data. RPTL is defined as: 4 

𝑅𝑅𝑃𝑃𝑇𝑇𝐿𝐿 =  𝑃𝑃
𝑁𝑁
∗ 1

1−𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝑜𝑜
                                                             (1) 5 

where P is the processing time for a window in seconds, N is the window's size in seconds and 6 

overlap ∈ [0, �1) � is the percentage of overlapping between two consecutive windows. 7 

RTPL should be less than one for every second on average, since otherwise the system will not be 8 

able to handle the continuous streaming nature of the data and have real-time response. Spontaneous 9 

increases of this time for a small number of data blocks are acceptable, since it is assumed that it can be 10 

handled by the DSMS. Our experiments included tests in windows of various sizes. 11 

The data used in our study consiste of 21 EEG electrodes (C3, C4, Cz, F3, F4, F7, F8, Fp1, Fp2, 12 

Fz, O1, O2, P3, P4, Pz, T1, T2, T3, T4, T5, T6) and one electrocardiographic channel. Data were 13 

recorded with sampling frequency equal to 250 Hz for EEG and 256 Hz for ECG. In our study we 14 

excluded EEG reference electrodes O1 and O2, for not offering a useful amount of information. Since 15 

the ECG stream was composed of one only stream and the corresponding feature extraction algorithm 16 

[36] is not computationally heavy, the ECG features used in every experiment were always the same. 17 

 18 

5.2. Evaluation 19 

To examine the performance of the detector for different spatial resolutions of the recorded data, 20 

average real processing time was evaluated for different numbers of EEG electrodes. This case applies 21 

when a smaller than the original set of electrodes is used for monitoring the patient's brain 22 

functionality. Defining the most appropriate set for every patient is not part of this study, so the choice 23 

of each electrode set was random. The ECG channel was part of every simulation. The sliding windows 24 

applied to the data stream were of size of 1, 2 and 4 seconds with no overlap. A number of 100 25 

windows were extracted from experiment data in each case, in order to estimate the average RTPL for 26 

every different window size. For each case the average execution time corresponding to each window 27 

is shown in Table 2.  28 

 29 

Table 2: Average execution time per window for various electrode sets and window sizes 30 
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 1 

As expected reducing the number of electrodes results in significantly shorter time needed for 2 

processing each data block. As it is observed from Table 2 using the whole set of electrodes (except 3 

O1-O2) results in best than one second of processing time per window in almost every case. The 4 

difference is negligible though for different window sizes, when the same number of electrodes is used. 5 

Subsequently, as shown in Fig. 7 the larger the size of the window the shorter real processing time that 6 

corresponds to each second of actual data. This is justified by the fact that the feature extraction 7 

algorithms are scalable in the size of the data block and the feature vector’s size  extracted for each 8 

window is invariable regardless of the window size. Thus, larger window sizes lead to shorter real 9 

processing time per second which in turn makes possible the usage of more overlap between 10 

consecutive windows. 11 

 12 

Fig. 7.Real time processing corresponding to one second of actual time, for various window sizes and 13 

number of electrodes. 14 

 15 

6. Discussion and Conclusion 16 

In this paper a multimodal big data streaming architecture is presented, which utilizes an 17 

online seizure detector. Real time analysis of patient's physiological data is performed in order to 18 

monitor the health condition of the patient and discover abnormal events and high risk conditions. 19 

Patient specific models are used, in order to provide suitable decision support to the patient's condition. 20 

The system performs streaming data analysis over sliding windows applied to physiological data flow 21 

and is using big data mining techniques to instantaneously analyze the condition of the patient. 22 

Experiments were performed to evaluate the real time processing of the developed detector in terms of 23 

spatial resolution of recorded signals and amount of information assessed from physiological signals. 24 

The large amount of information produced by the sensors should be processed in a specific 25 

amount of time, before the system overflows with unprocessed data. Specifically each segment of data 26 

corresponding to one second of actual time should be processed for one second at most. We showed 27 

that this problem can be tackled either by reducing the number of electrodes used to record the data, or 28 

alternatively by increasing the size of the windows, in which the data are segmented. These goals can 29 

be achieved because the feature extraction and detection algorithms utilized in our study are 30 

16 
 



independent from the window size the data are segmented to and depend only on the number of 1 

electrodes used to record the data. 2 

Given sufficient bandwidth the timestamp information of each sample can be sent by the 3 

recording devices. In our case there were bandwidth constraints for lower consumption, therefore 4 

synchronization of different sources was achieved by using timestamp information of the first sample 5 

sent from each source to calculate the timestamp of each following data sample, given the fact that the 6 

sampling frequency of each data source was stable. Fusion of different sources can also be achieved by 7 

extracting features from every data source in parallel and then utilizing a processing algorithm that 8 

incorporates all these features together. Alternatively, each data source can be mined separately and in 9 

parallel with the others, thus the fusion is achieved in the decision level. In our study, we approached 10 

the EEG and ECG fusion problem with concatenating the features extracted corresponding to each data 11 

source’s time window, while a  SVM classifier used in the detection module achieved robust 12 

performance. The modular structure of the proposed architecture allows the use of it, as a basis 13 

framework, to other similar applications with multimodal and/or heterogeneous streaming data. 14 

 15 
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 1 

Fig. 1:Block diagram of the ARMOR's concept. 2 
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 1 

Fig.2:Block diagram of the multimodal streaming data processing architecture. 2 
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 1 

Fig. 3: Operation of the synchronization and preprocessing module. Encrypted packets are decrypted, 2 

synchronized, ordered and marked for rejection if necessary. 3 
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1 
Fig. 4: Operation of the framing module. Each time-stamped data sample is assigned to the set of 2 

windows it belongs to. Assignments are performed based on the timestamp of each data sample and 3 

each window's start and end time. Windows containing rejected data are dropped, while the ones whose 4 

end time has passed are sent to the detection module. New windows are created in every generation 5 

timestamp.  6 
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 1 

Fig. 5: Synchronization and processing data flow. 2 
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1 
Fig. 6: Operation of the detection module algorithm. For each window sent to the detector, a synopsis 2 

of the window's data is created. This synopsis is consisted by a set of features extracted by the 3 

FeatureExtraction method. The detection is performed by utilizing this synopsis with a set of 4 

parameters according to each patient's personal characteristics. If the window corresponds to a seizure, 5 

the RiskManagementAssessment service assesses the risk of the patient's condition. 6 
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 1 

Fig. 7.Real time processing corresponding to each second of actual time, for various frame sizes and 2 

number of electrodes. 3 
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CPU Intel Xeon E5 @ 3.7 GHZ 

Cores 4 

Threads 8 

Cache Level 3 

RAM 16GB DDR3 @ 930 MHZ 

Table 1: Simulation system's characteristics 1 
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EEG channels w = 1 sec w = 2 secs w = 3 secs w = 4 secs 

19 0. 960 0. 960 0. 960 0. 960 

17 0. 852 0. 852 0. 852 0. 852 

15 0. 751 0. 751 0. 751 0. 751 

13 0. 654 0. 654 0. 654 0. 654 

11 0. 551 0. 551 0. 551 0. 551 

Table 2: Average execution time per window for various electrode sets and window sizes 1 
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