Uncertainties in the production of p nuclei in massive stars obtained from Monte Carlo variations

Rauscher, T., Nishimura, N., Hirschi, R., Cescutti, G., Murphy, A. St J. and Heger, A. (2016) Uncertainties in the production of p nuclei in massive stars obtained from Monte Carlo variations. Monthly Notices of the Royal Astronomical Society (MNRAS), 463 (4). pp. 4153-4166. ISSN 0035-8711
Copy

Nuclear uncertainties in the production of $p$ nuclei in massive stars have been quantified in a Monte Carlo procedure. Bespoke temperature-dependent uncertainties were assigned to different types of reactions involving nuclei from Fe to Bi. Their simultaneous impact was studied in postprocessing explosive trajectories for three different stellar models. It was found that the grid of mass zones in the model of a 25 $M_\odot$ star, which is widely used for investigations of $p$ nucleosynthesis, is too crude to properly resolve the detailed temperature changes required for describing the production of $p$ nuclei. Using models with finer grids for 15 $M_\odot$ and 25 $M_\odot$ stars with initial solar metallicity, it was found that most of the production uncertainties introduced by nuclear reaction uncertainties are smaller than a factor of two. Since a large number of rates were varied at the same time in the Monte Carlo procedure, possible cancellation effects of several uncertainties could be taken into account. Key rates were identified for each $p$ nucleus, which provide the dominant contribution to the production uncertainty. These key rates were found by examining correlations between rate variations and resulting abundance changes. This method is superior to studying flow patterns, especially when the flows are complex, and to individual, sequential variation of a few rates.

visibility_off grid_on

grid_on
1606.05671v2
subject
Submitted Version
lock
Restricted to Repository staff only

Request Copy
picture_as_pdf

Published Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads