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Structure Generation and Design of Multiple Loop
Feedback OTA-Grounded

Capacitor Filters
Yichuang Sun,Member, IEEE, and J. Kel Fidler

Abstract—This paper addresses the structure generation, anal-
ysis and synthesis of multiple loop feedback OTA-C filters. A
systematic approach is proposed for all-pole filters, and the
generation and design of minimum component structures are
extensively exemplified. Two general methods for transmission
zero realization are also suggested and two architectures with sim-
ple design formulas are illustrated. Using the theory many new
interesting configurations can be produced alongside some known
structures. All the filter architectures contain only grounded
capacitors and all internal nodes in canonical realizations have
a grounded capacitor. A general method for sensitivity analysis
of the structures is formulated. Numerical design examples and
simulation results are also presented. The essence of the theory is
the establishment of the relationship between the filter structure
and the feedback matrix, which makes systematic structure
generation and general design equation formulation possible.

Index Terms—Active filters, analog circuit design, analog signal
processing, continuous-time filters, OTA-C filters.

I. INTRODUCTION

A CTIVE FILTER DESIGN has been thoroughly investi-
gated for operational voltage amplifier based active-

filters. Three well-known methods, that is, the cascade of
biquadratic sections, simulation based on passive ladder
prototypes, and the multiple loop feedback have been very well
established [1]. However, it has been found that op amp based
active- filters are not suitable for high frequency operation,
fully integrated implementation, and electronic tuning, and
frequently are based on complex structures.

Tremendous efforts have therefore been made over recent
years to develop new alternative techniques in high frequency
continuous-time filters. The OTA-C approach, in particular,
uses the operational transconductance amplifer to displace
the conventional operational voltage amplifer and associated
resistors in active- filters and has achieved outstanding
performance improvement in structural simplicity, electronic
tunability, high frequency capability, and monolithic integra-
bility. This technique has hence received most attention [2]
and has become today the main approach for high-frequency
full-integration filtering.
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At present the performance of low-order OTA-C filters has
been proved and a body of literature has been published for
the design of second-order OTA-C filters [3]–[8]. Research has
turned to the realization of high-order specifications [8]–[21].
For high-order OTA-C filter synthesis, cascade design based
on biquadratic sections has been most widely used. Research
has been directed to simulation techniques [9]–[11] as well.
Some researchers have also explored the feedback coupled-
biquad method [12], [13], although this well-known filter
design method has not received equal attention, compared with
the other two. No matter what the approach, the filter structures
almost always consist of integrators and amplifiers as the
most basic building blocks, and have feedback loops in this
basic level. A general approach may be therefore developed
based on the multiple loop feedback structure constructed with
integrators and amplifiers.

Practical considerations in high frequency OTA-C filter
design may specify using grounded capacitors and reduc-
ing the number of components. The former is because the
grounded capacitor can be implemented on a smaller area
than the floating counterpart and it can absorb equivalent
shunt capacitive parasitics. The latter is due to the fact that
a large number of components may increase power con-
sumption, chip areas, noise, and parasitic effects. Thus the
design method and resulting filter structures should be based
on grounded capacitors and canonical architectures, although
noncanonical realizations may be required in some situations
to achieve design flexibility or to satisfy some special spec-
ifications.

This paper will show how to generate, analyze and de-
sign multiple integrator loop feedback filter structures using
OTA’s and grounded capacitors for synthesis of both trans-
mission poles and zeros. General theory with a systematic
scheme for generating all-pole filter structures is established in
Section II, with concentration on minimum component OTA-C
realizations in Section III, where the exhaustive enumera-
tion of canonical filter structures is investigated. Section IV
introduces two general methods for generation of transmis-
sion zeros, together with illustrative examples. In Section V
general sensitivity relations are established and Section IV
presents some design and simulation examples. The paper
concludes with a brief summary and some further com-
ments.
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(a) (b)

Fig. 1. OTA-C building blocks: integrator and amplifier.

Fig. 2. Multiple loop feedback OTA-C filter model.

II. GENERAL THEORY OF MULTIPLE

LOOP FEEDBACK OTA-C FILTERS

A. Multiple Loop Feedback OTA-C Filter Model

The basic building blocks in the construction of OTA-C
filters are integrators and amplifiers as shown in Fig. 1(a)
and (b), respectively. The voltage transfer functions

( is the noninverting voltage minus the inverting
voltage of the related OTA) of the integrator and amplifier
are simply shown as and

, respectively.
The general multiple integrator loop feedback OTA-C model

with all capacitors being grounded to be addressed in the
paper is shown in Fig. 2. As depicted, this model is composed
of a feedforward network consisting of OTA-C integrators
connected in cascade and a feedback network that may contain
OTA voltage amplifiers and/or pure wire connections.

B. System Equations and Transfer Function

To generally analyze the model, the feedback network may
be described as

(1)

where is the voltage feedback coefficient from the output
of integrator to the input of integrator. The coefficient
can have zero and nonzero values, depending on whether there
is an open circuit or an amplifier (gain ) between
the th and th integrators, respectively. The former means no
feedback exists, while the latter suits any amount of feedback.
In particular, for the direct feedback connection we may have
the unity feedback .

Equation (1) can also be written in the matrix form.

(2)

where , the output voltage vector
of integrators, , the feedback
voltage vector to the negative input terminals of integrators,
and , the feedback coefficient matrix. The
superscript stands for transpose.

The currents flowing into and out of the feedback network
all are zero, since they are related to the input terminals of the
OTA’s in the feedforward circuit or in the feedback network,
which are ideally infinite impedance. Noting this and denoting
time constants , we can write the equations for
the feedforward network by inspection

(3)

where is the complex frequency.
Equation (3) can also be condensed in a matrix form

(4)

where the superscript represents the inversion operation
and

...
(5)

(6)

Combining (2) and (4) we can obtain the equation for the
whole system as

(7)

where the system coefficient matrix

(8)

Equation (7) establishes the relationship between the overall
circuit input and the integrator outputs including the overall
circuit output. Using this equation we can formulate the circuit
transfer function. Solving (7) yields

...
(9)

where and represent the determinant and cofac-
tors of , respectively.

Since the overall circuit output , from (9) it can
be readily identified that the system transfer function is given
by . Noting the structural
feature of and that is an upper triangular matrix, using
(8) we can demonstrate that . Thus the transfer
function can be simplified as

(10)
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C. Feedback Coefficient Matrix and Systematic
Generation of Filter Structures

The feedback matrix is defined by (2) and has the property
that

if there is feedback between and
otherwise

As can be seen from (2), if all the elements in a row of,
say row , are zero, the corresponding feedback voltage
will be zero and so is the converse. means that the
inverting terminal of the OTA in theth integrator is grounded.

Note that is an upper triangular matrix; for all nonzero
elements there are . If we further suppose that
no inverting integrator terminals are grounded, the feedback
matrix will also have the property that each row has one
and only one nonzero element, which implies that is
always nonzero. The nonzero feedback coefficient can be
realized using an OTA voltage amplifier and the unity feedback
coefficient can also be achieved using pure wire connection,
as an alternative to using a unity gain amplifier.

In the following by the canonical or minimum component
realization we mean that for realizing the unity DC gainth-
order all-pole low-pass filter, only OTA’s and capacitors
(i.e., integrators) are required [14], [15]. For the general
model in Fig. 2 the canonical realization is clearly equivalent
to no components existing in the feedback network. Alterna-
tively we can say that for canonical architectures, the feedback
matrix defined by (2) obviously has only zero
and unit elements, since feedback can only be achieved by
direct connection.

It is apparent that there is an one-to-one correspondence
between the feedback matrix and the circuit configuration
and different will give rise to different circuit structures. To
show this we consider the situation that feedback is realized
only by direct connection and none of the OTA inverting
terminals in the integrators are grounded. According to the
features of the general discussed above, the feedback matrix

now becomes an upper triangular (0, 1) matrix and has one
and only one unit element in each row, leading to .
Therefore for the th-order model there are combinations
of unit element positions in the matrix. Note that the unit
element in each combination is realized by a direct
connection between the negative input terminal of integrator

and the output of integrator. Thus we have different
combinations of feedback connections, i.e.,different filter
structures.

It is of particular interest that this also suggests a method
for generating all possible filter architectures that are canonical
and without grounded integrator inverting terminals. That is,
for any given order , we first find all combinations of
unit element positions in . Direct connections are then made
corresponding to all unit feedback coefficients in each combi-
nation; this is repeated for all different combinations. This
method is extensively studied and exemplified in Section III.

D. Filter Synthesis Procedure Based on Coefficient Matching

From (5) and (8) we can see that the determinant
may normally be an th-order polynomial of . The trans-

fer function in (10) may therefore have the all-pole filter
characteristic.

The general form of all-pole low-pass transfer functions can
be expressed as

(11)

To synthesize this desired function we may follow the
generic procedure shown below.

Based on (10), by expansion of we attain the circuit
transfer function

(12)

Comparing (11) and (12), to achieve the desired character-
istic the following set of coefficient matching equations must
be satisfied:

(13)

Solving (13) we obtain and . To finish the design we
compute the values of each and from and .

The efficient expansion of to reach the polynomial
form in of (12) is the first step in the design. Some symbolic
analysis techniques may be required generally to deal with

to get coefficient matching equations. However, the
issue may be quite easily handled for low-order and some
general high-order filters as will be shown in the next section.

The coefficient match equations are usually nonlinear. Note
that to produce the item , there is at least one group
of integrators making a multiplicative contribution to the
corresponding coefficient. Hence will contain at
least one term of multiplication of integration constants .
In most cases a nonlinear equation solver may be invoked to
solve the derived parameter value determination equations. In
Section III we will show that the design equations of many
structures can also be easily solved explicitly.

To further determine each and there exist degrees
of freedom in the canonical realization and more than
degrees in the noncanonical. Thus the transconductances or
the capacitances can be arbitrarily assigned to be identical.
Taking the canonical realization as an example we may set

and then calculate ,
for any or let and then compute

.
As can be seen from (8) the network performance is a

function of . Different will lead to different transfer
characteristics in (10). is also linked with filter structures
and different will correspond to different architectures. Thus
the relationship between the performance and the structure is
established through the feedback matrix. The significance is
even more in that the generality and systematicality of the
design method is obtained due to the introduction of.
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(a) (b)

Fig. 3. Third-order canonical OTA-C filters.

III. STRUCTURE AND DESIGN OFALL-POLE OTA-C FILTERS

In this section, we exemplify the application of the general
method proposed in Section II. For simplicity and clarity, we
concentrate on exhaustive search of all possible canonical filter
configurations with no feedback voltages being grounded for
a given order using the method given in Section II-C. Some
component value determination formulas are also presented.

A. Third-Order OTA-C Filters

For the third-order model that is a derivative version of
Fig. 2 corresponding to , with general and using (10)
we formulate the general transfer function as

(14)

As proved in Section II-C, there are altogether six possible
configurations. It can be verified that the last item in the
denominator of (14) is equal to 1 for all the structures, and
so in (11).

When and the other elements are
zero, we have the structure in Fig. 3(a) and the circuit transfer
function in (14) becomes

(15)

The parameter value equations are demonstrated as

(16)

If we select and the other , the
filter architecture in Fig. 3(b) results. The corresponding trans-
fer function and the parameter value determination formulas
are derived as

(17)

(18)

For with and the other ,
or and the other , the circuits

Fig. 4. Fourth-order all-pole canonical OTA-C filter structures.

become cascaded by a first-order and a second-order canonical
sections.

The other two combinations do not seem practical. When
is a unity matrix, the structure becomes a cascade of three

first-order canonical sections, which can only realize some real
poles. The structure corresponding to
and the other has no solutions for the Butterworth
and Chebyshev approximations, which has been numerically
verified, and therefore is also rejected.

B. Fourth-Order OTA-C Filters

For the fourth-order general model of Fig. 2, again from
(8) and (10) the general transfer function can be written with
some tedious manipulation as

(19)

For any particular we can easily draw the associated struc-
ture, obtain the corresponding transfer function, and calculate
the component values. There are altogether 24 combinations
of possible filter configurations according to the discussion in
Section II-C. Ten practical structures are shown in Fig. 4 and
the corresponding ’s, transfer functions, and some design
formulas are presented below. Note that in each case the’s
that are not written out are treated as zero and the realization
of the unity dc gain all-pole characteristic in (11) with
is dealt with.
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Circuit 1:

Circuit 2:

(20)

Circuit 3:

Circuit 4:

Circuit 5:

Circuit 6:

Circuit 7:

Circuit 8:

Circuit 9:
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Circuit 10:

It is observed that Circuits 2, 3, 5, 6, 9, and 10 can be easily
designed using the attached formulas. Circuits 7 and 8 need
the solution of a cubic equation. Circuit 1 can be solved either
by the factorization method or a nonlinear equation solver.
The nonlinear equation algorithm is also needed in the design
of Circuit 4.

In addition to the ten configurations presented above there
are another 14 possible structures. These 14 configurations,
however, have been found not suitable for realizing the But-
terworth and Chebyshev approximations; 10 of them are a
cascade of canonical sections of either four first-orders, or two
first-orders and one second-order, or one first-order and one
third-order, which cannot realize two pairs of complex poles,
while the other 4 (corresponding to
, , ,

and , respectively ) have no
practical solutions of the associated design equations.

C. General th-Order Architectures

General th-order architectures can also be derived in a
similar way. Rather than trying to exhaustivly enumerate all

possible general structures due to the complexity of the
problem, we present some typical ones for the illustrative
purpose.

If is chosen so that the elements in the last column all
are unity and the other elements of the matrix are zero, then
the circuit has the inverse follow-the-leader-feedback (IFLF)
structure [15], whose third-order version has also been given in
Fig. 3(a) and fourth-order counterpart is Circuit 10 in Fig. 4.
The general design formulas can be explicitly obtained for
this th-order IFLF circuit [15], [17], as will also be given
in Section IV.

If the choice is made of , ,
, and all the other ’s are zero, then the leapfrog (LF)

configuration results [15]. The derivative third- and fourth-
order counterparts have been exhibited in Fig. 3(b) and in
Circuit 2 of Fig. 4, respectively. (We may note that the third-
order low-pass OTA-C filter in [18] and the ladder simulation
filter in [9] also belong to the LF structure category.)

Finally when is even and

diag

the circuit becomes cascaded biquadratic sections, with theth
section being the canonical structure. The fourth-order case
has been shown in Fig. 4, that is, Circuit 1.

Fig. 5. OTA-C filter model with output summation OTA network.

Although only canonical structures with integrator inverting
input terminals being ungrounded are illustrated, it should
be noted that the explicit expressions of transfer function of
the third- and fourth-order models given in (14) and (19)
are general; they are actually suitable for any realizations of
feedback coefficients. If some or all feedback coefficients are
realized with OTA voltage amplifiers or grounded integrator
inverting terminals are allowed, more structure varieties can
of course be obtained. For example, if we select ,

and the other , with being realized
by OTA voltage amplifers, then the general FLF structure can
be obtained.

IV. GENERATION AND SYNTHESIS OFTRANSMISSION ZEROS

In this section we address the issue of implementing the
transmission zeros, that is, the synthesis of the general transfer
function:

(21)

For a given input to some node, different nodes may support
different types of output characteristic, while for a fixed output
node the output function may vary as the input node changes.
Therefore by altering the input and output nodes we may
realize some transmission zeros.

More generally, for a given input we may combine the
different node outputs with a summation OTA network to
give the overall circuit output, or for a fixed output distribute
the overall input onto different circuit nodes using an OTA
distribution network. A general transfer function can thus
be obtained. Then by properly selecting the summation or
distribution weights for respective cases one may attain any
filter characteristics. In the following we will formulate only
design equations of the two methods. Detailed particulars
concerning the realization of various numerator characteristics
using different architectures will not be given, because of the
length of the paper.

A. Output Summation of OTA Network

Here we connect a summation OTA network to the circuit
in Fig. 2, as shown in Fig. 5. Denoting and

we derive

(22)
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Using the results given in Section II-B (9) we know that

(23)

Substituting (23) into (22) we have the circuit transfer
function

(24)

The overall transfer function in (24) may have the general
form of (21) with reference to matrix in (8) and the
transmission zeros may be controlled arbitrarily by transcon-
ductances through weights .

As an illustration, for the canonical IFLF structure ( ,
and the other ) with the output

summation OTA network [20], using (8) we can demonstrate

(25)

(26)

where .
Substitution of relations (25) and (26) into (24) yields the

general circuit transfer function and comparing this function
with that in (21) we have the design equations:

(27)

(28)

From the design viewpoint if the transfer characteristic of
(21) is desired the circuit parameters must then be determined
in terms of coefficients and from (27) and (28). With

it is easy to demonstrate that

(29)

(30)

Equation (29) can be directly used for calculation of integra-
tion constants . From (30) the iterative computation formulas
of summation weights can also be obtained, given by

(31)

The parameter value determination formulas in (29) and (31)
apply to any order realizations, including the second-order [5].

Fig. 6. OTA-C filter model with input distribution OTA network.

It can be observed from numerator coefficient expressions
(28) or (30) that the circuit may realize any special transfer
functions, since we can enable any coefficient of the
numerator to be any value including zero by properly choosing
the values and signs of , . On the other hand, for
any required zeros, that is, any values of we can easily
compute the associated parametersby means of (31). If the
calculated is negative, we can simply interchange the two
input terminals of the related OTA with . If the computed
value of is zero, then the OTA should be removed.
Similarly we may also realize any special biquadratic filters
by appropriately selecting , [5].

B. Input Distribution of OTA Network

In this approach, the voltage signal is applied to circuit
nodes by an input OTA network as shown in Fig. 6. The
exactly same formulation process as that in Section II-B can
be followed to derive the design equations for this case. All
the relations in (1), (2), (4), (5), (7), and (8) apply here, with
only one exception that instead of of (6)
in Section II-B, now

(32)

where , since (3) in Section II-B becomes for
the present case

(33)

This exception is clearly due to the change of input form; in
Fig. 2 the input voltage is applied onto only the first integrator
output node and this is realized directly through the OTA in
the integrator, while in the present case the input voltage is
distributed onto all the integrator output nodes and this is
accomplished by extra OTA’s.

First solving (7) for , then substituting (32) and finally
observing we can formulate that

(34)

Note that is at least one order less inthan .
The expression in (34) offers transfer functions of less than

th order numerators. Now we consider the canonical IFLF
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structure with the distribution network. Using (8) we formulate

(35)

and is given by (25).
Combining (35) into (34) we have the circuit transfer

function

(36)

Comparing (36) with (21) when and noting that the
are calculated using (29) we get

(37)

Any filters with may be realized through adjusting
distribution weights , that is, the associated . If the th-
order numerator of the transfer function [ in (21)]
is required, one or two more OTA’s can be further added to
sum the voltage and the input voltage to form the overall
output.

Note that the distribution method actually involves the
superposition theorem, since the responses corresponding to
the different resulting node inputs are superposed at the output
node. This method can therefore also be understood in the
way that the different node inputs are collected with weights
into a single input. In some realizations the input distribution
method is advantageous over the output summation technique
in that the former does not require any component matching
or equality constraints. For instance if a zero coefficient is
required, from (30) we may see that some restriction on
the relations of will be needed for the output summation
approach. However, inspection of (37) indicates that a zero
coefficient, say can be achieved simply by setting

to zero, that is, eliminating the OTA with .

V. GENERAL FORMULATION OF SENSITIVITY ANALYSIS

Sensitivity is one of the most important criteria in assessing
the active filter quality. This section focuses on sensitivity
analysis of all-pole filters based on the proposed design
method. Instead of calculating the sensitivity of individual
structures generated we will give a general approach. The
formulation of sensitivity relations needs referring back to
Section II-B.

The sensitivity definition to be adopted is
. Since after calculation of the and

sensitivities we can further compute the’s and
’s sensitivities using the relations and

, in the following we deal with only the
sensitivities to and .

A. General Sensitivity Relations

To formulate sensitivity functions we differentiate in
(9) with respect to circuit parameter using the well-known

inverse matrix differentiation formula and obtain the derivative
of as

(38)

where and were shown in (8) and (6), respectively.
When , since is independent of , using (5) and

(8), we have

...

...

(39)

Substituting (39) into (38), together with (6) yields

...
(40)

From (40) we can identify , which is the last
element in vector . Thus using the sensitivity
definition and incorporating (10) we can obtain the sensitivities
of the transfer function with respect to integration
constants , given by

(41)

Next we consider the transfer function sensitivities to feed-
back coefficients . Using (8) and considering that is
not related to we derive

...

...

(42)

Then substituting (42) into (38) (now ) and incor-
porating (6) we can obtain that

...
(43)

From (43) we can identify and prove the
relative sensitivity functions as

(44)

Considering that , from (41) we can write the
simplified sensitivity relations for , and . We
can also simplify (44) for the sensitivities to , , and .
Using (41) and (44), or from the structural feature of matrix

, we can also demonstrate .
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B. Sensitivities of Third- and Fourth-Order Filters

The general sensitivity functions of the third-order struc-
ture are derived using (41).

where has been given in (14) in Section III-A.
When realizing the unity dc gain characteristic ( ) in

(11), the sensitivities for and the other
in , i.e., the configuration in Fig. 3(a), are calculated

with substitution of (16), given by

For with and the other ,
i.e., the structure in Fig. 3(b), with incorporation of (18) the
sensitivities can also be readily derived [14].

Now consider the fourth-order canonical LF structure, Cir-
cuit 2 in Fig. 4. Again, based on the general relation in (41) and
when the filter realizes the unity dc gain all-pole characteristic
in (11), the sensitivity functions to are demonstrated, with
(20) being incorporated, as

From the sensitivity functions developed above, we may
easily obtain the magnitude and the phase sensitivities of

, since they are the real and imaginary parts of
( is or ), respectively. The Schoeffler’s measure [1] can
also be readily calculated by

(45)

TABLE I
PARAMETER VALUES FOR NORMALIZED FOURTH-ORDER BUTTERWORTH FILTER

Circuit �1 �2 �3 �4

1 0.765 367 1.306 56 1.847 76 0.541 196
1.847 76 0.541 196 0.765 367 1.306 56

2 1.530 73 1.577 16 1.082 39 0.382 683
3 1.767 63 1.748 47 0.845 492 0.382 683
4 1.9453 0.896 275 0.858 833 0.667 826
5 2.230 44 1.148 05 1.020 49 0.382 683
6 2.230 44 1.530 73 0.765 367 0.382 683
7 2.613 13 0.667 368 0.639 195 0.8971
8 2.613 13 0.639 195 0.8971 0.667 368
9 2.613 13 0.923 88 1.082 39 0.382 683
10 2.613 13 1.306 56 0.765 367 0.382 683

VI. DESIGN AND SIMULATION EXAMPLES

All the examples in Sections III–V for all-pole filters,
finite transmission zero filters, and sensitivity calculation,
respectively have been confirmed by direct routine circuit
analysis. This straightforward confirmation also intuitively
verifies the correctness of the general relations established in
Sections II–V. In this section we further give some numerical
and simulation results.

A. Numerical Design Examples

For the fourth-order Butterworth low-pass filter the normal-
ized transfer function is

We use the ten canonical structures given in Fig. 4 in
Section III-B to realize this characteristic. Identifying that

, , and , the
parameter values of the structures are calculated by using the
formulated explicit solutions or the nonlinear equation solving
approach, which are given in Table I.

In Table I we list two sets of solutions for Circuit 1 in Fig. 4.
This is because the two biquadratic sections in the circuit are
interchangeable in cascade order. We have also realized the
Chebyshev filters using the structures in Fig. 4 [15].

B. Sensitivity Analysis Results

For the fourth-order LF canonical Butterworth filter, sub-
stituting , ,
into the expressions in Section V-B and utilizing (45) (where
the second part is now zero) the Schoeffler’s multiparameter
sensitivity is computed as shown in Fig. 7.

C. Frequency Performance Simulation

The realization of the fourth-order 455 kHz unity gain
Butterworth filter using the LF structure (Circuit 2) in Fig. 4
is simulated. The equal transconductance design is adopted
with the transconductance value being S. The
normalized capacitances are calculated as ,

, , and F from the
corresponding data in Table I. For the cut-off frequency 455
kHz, frequency denormalization leads to the nominal circuit
capacitances , , ,
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Fig. 7. Schoeffler’s multiparameter sensitivity of fourth-order canonical LF
structure.

Fig. 8. Simulated frequency response of fourth-order Butterworth LF filter.

and pF. The simulated magnitude frequency
response is shown in Fig. 8, which is the same as the expected
characteristic.

The nonideal performance is also simulated. The macro-
model of the CMOS OTA [18] with the differential-mode
input capacitance pF, the common-mode input
capacitance pF, the output conductance

nS, the output capacitance pF and the
transconductance frequency dependence

with ns is utilized, which corresponds to the
nominal transconductance value 30.14S [4]. The nonideal
magnitude frequency response is also shown in Fig. 8, which
shows that the simulated result agrees with the expected
specification with slight deviation.

For the transmission zero realization, for example, using the
input distribution method in Section IV, the reader may refer
to [21], where a very detailed study of a third-order elliptic
filter has been presented.

VII. CONCLUSIONS

A general multiple loop feedback approach for the real-
ization of OTA-C filters has been proposed. The systematic
generation, analysis and design of different filter configurations
have been addressed. The method has the following advan-
tages: a) it is systematic and general due to the introduction
of the feedback matrix and the relationship between

and the feedback connection; b) a variety of new structures
with different performances are generated, with both canonical
and noncanonical realizations being available; c) all capacitors
are grounded and canonical realization can guarantee that
all internal nodes have a grounded capacitor; and d) it is
also flexible in assigning element values and in various cases
simple explicit design formulas are applicable.

We have formulated general relations for all-pole and finite
transmission zero realizations. We have also demonstrated the
general expressions for sensititvity computation. Using the
one-to-one correspondence between the feedback connection
matrix and the circuit configuration one can deal with any
particular applications based on these general equations. For
example, if the circuit topology is known, we may write the
feedback matrix and analyze the filtering characteristic and
sensitivity performance. For the desired transfer function, on
the other hand, an , that is, a circuit structure, may be
defined to realize the transfer function. In the paper extensive
examples have been given. Although we have concentrated
on the demonstration of the powerfulness of the proposed
approach in generating high-order OTA-C filter structures, it is
very obvious that some first- and second-order filters [3] can
also be derived from the general model in Fig. 2.

The performance of multiple loop feedback OTA-C filters
taking OTA nonidealities into account should be evaluated.
OTA nonidealities may embrace finite input and output imped-
ances, frequency dependence of transconductance, noise and
nonlinearity of transconductance characteristic. They not only
influence the frequency responses and pose stability problems,
but also limit the filter dynamic range, as have been discussed
in [21].

Noncanonical realization with OTA amplifiers realizing
general feedback coefficients can provide some design flex-
ibility and results in more useful architectures. However, the
noncanonical synthesis produces some nonintegrating nodes
(for example, if is realized with an OTA voltage amplifier,
there will be a resistive node, which is the inverting input
terminal of the th integrator). The parasitic capacitances
associated with the node may thus influence the high frequency
performance, producing an unwanted pole. More OTA’s also
cause other problems as well; the total impact of OTA excess
phases will dramatically increase, further degrading the high
frequency performance, and larger chip areas and power
consumption will also result. Since in the noncanonical re-
alization some circuit node may connect more OTA’s, the
equivalent node conductance will be enhanced, which may
severely deteriorate the low-frequency performance. In both
canonical and noncanonical realizations the input capacitance
of the integrator OTA will contribute to feedthrough effects
(causing unwanted zeros). But in the canonical case it does
not cause parasitic poles, since the OTA input capacitance is
in a loop containing two circuit capacitances and the number
of independent capacitances therefore remains the same.

There exists equivalent transformation of the structures
with differential input OTA’s and those with single input
OTA’s. Ideally a differential input OTA can be equivalent
to two single input OTA’s with the same transconductance
value but opposite polarity. As discussed in [21], tradeoffs
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between the feedthrough effects (parasitic zeros) caused by
some differential input application and the large number of
OTA’s due to the single input application must be considered
when deciding whether to exploit the differential or single
input OTA’s.

Balanced structures using differential input and differen-
tial output OTA’s are popular in integrated implementation,
which can achieve very high common-mode rejection ratio
(CMRR) and reduce both the even-order harmonic distortion
components and the effects of the power supply noise. The
general unbalanced model in Fig. 2 can be converted into
the balanced equivalent by using differential four input and
two output OTA’s in integrators and mirroring the feedback
network in the upper part to the lower part. All the unbalanced
configurations given in the paper can be thus converted into
the corresponding balanced counterparts.

REFERENCES

[1] R. Schaumann, M. S. Ghausi, and K. R. Laker,Design of Analog Filters:
Passive, Active-RC, and Switched Capacitor.Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[2] R. L. Geiger and E. S´anchez-Sinencio, “Active filter design using oper-
ational transconductance amplifiers: A tutorial,”IEEE Circuits Devices
Mag., pp. 20–32, Mar. 1985.

[3] E. Sánchez-Sinencio, R. L. Geiger, and H. Nevárez-Lozano, “Generation
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