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Structure Generation and Design of Multiple Loop
Feedback OTA-Grounded
Capacitor Filters

Yichuang SunMember, IEEE and J. Kel Fidler

Abstract—This paper addresses the structure generation, anal- At present the performance of low-order OTA-C filters has
ySiS and Synthesis of multlple |00p feedback OTA-C filters. A been proved and a body of literature has been pub“shed for

systematic approach is proposed for all-pole filters, and the : B ~f n
generation and design of minimum component structures are the design of second-order OTA-C filters [3]-[8]. Research has

extensively exemplified. Two general methods for transmission turned to the realization of high-order specifications [8]—{21].
zero realization are also suggested and two architectures with sim- For high-order OTA-C filter synthesis, cascade design based
Plte de?ﬁg” fo”pu'ast,are i”UStLated- éJSi”% “?e the,gry ma“yk”eW on biquadratic sections has been most widely used. Research
interesting configurations can be produced alongside some known . . . .

structuresg. All tghe filter architec[:)tures containgonly grounded has been directed to simulation techniques [9]-[11] as well.
capacitors and all internal nodes in canonical realizations have Some researchers have also explored the feedback coupled-
a grounded capacitor. A general method for sensitivity analysis biquad method [12], [13], although this well-known filter

of the structures is formulated. Numerical design examples and design method has not received equal attention, compared with
simulation results are also presented. The essence of the theory isth ther t N tt hat th h. the filter struct
the establishment of the relationship between the filter structure e other two. No matter what the approach, the hilter structures

and the feedback matrix, which makes systematic structure almost always consist of integrators and amplifiers as the
generation and general design equation formulation possible. most basic building blocks, and have feedback loops in this
Index Terms—Active filters, analog circuit design, analog signal  basic level. A general approach may be therefore developed
processing, continuous-time filters, OTA-C filters. based on the multiple loop feedback structure constructed with
integrators and amplifiers.
Practical considerations in high frequency OTA-C filter

|. INTRODUCTION . . . ;
. _design may specify using grounded capacitors and reduc-
CTIVE FILTER DESIGN has been thoroughly investis,g e number of components. The former is because the

filtersga':%c:ef(e)rvsgl?rlfr:fvr\]/il \r%oéttz%?jsanlﬁg?eirsb?ﬁ:dczg?:xfj-e &?ounded capacitor can be implemented on a smaller area
biguadratic sections, simulation based on pasgi¢eladder an the floating counterpart and it can absorb equivalent

prototypes, and the multiple loop feedback have been very Wserllunt capacitive parasitics. The latter is due to the fact that

established [1]. However, it has been found that op amp ba?edarg_e numper of components may Increase power con-
active-RC filters are not suitable for high frequency operatiorsUMPtion, chip areas, noise, and parasitic effects. Thus the
fully integrated implementation, and electronic tuning, anesign method and resulting filter structures should be based
frequently are based on complex structures. on grounded capacitors and canonical architectures, although

Tremendous efforts have therefore been made over recefficanonical realizations may be required in some situations
years to develop new alternative techniques in high frequen@®achieve design flexibility or to satisfy some special spec-
continuous-time filters. The OTA-C approach, in particulaifications.
uses the operational transconductance amplifer to displacdhis paper will show how to generate, analyze and de-
the conventional operational voltage amplifer and associateign multiple integrator loop feedback filter structures using
resistors in active®C filters and has achieved outstandin@®TA’s and grounded capacitors for synthesis of both trans-
performance improvement in structural simplicity, electronimission poles and zeros. General theory with a systematic
tunability, high frequency capability, and monolithic integrascheme for generating all-pole filter structures is established in
bility. This technique has hence received most attention [8lection II, with concentration on minimum component OTA-C
and has become today the main approach for high-frequengylizations in Section Ill, where the exhaustive enumera-
full-integration filtering. tion of canonical filter structures is investigated. Section IV

introduces two general methods for generation of transmis-
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The currents flowing into and out of the feedback network
all are zero, since they are related to the input terminals of the
OTA's in the feedforward circuit or in the feedback network,
which are ideally infinite impedance. Noting this and denoting
time constants; = C;/g,,;, we can write the equations for
the feedforward network by inspection

@ (b)

Fig. 1. OTA-C building blocks: integrator and amplifier. s11Vor = Vin — Vfl
sTj+1Voj1 = Voj = Vi (3)
VL Feedback Notwork | where s is the complex frequency.
. ﬂ m ch‘f m V:? @ o N“’vam Equation (3) can also be condensed in a matrix form
ij—_f CZI C:s]—___ an—: ‘/0 — M(S)_l(l‘/ln _ Vf) (4)
Fig. 2. Multiple loop feedback OTA-C filter model. where the superscript1 represents the inversion operation
and
[I. GENERAL THEORY OF MULTIPLE 71
Loopr FEEDBACK OTA-C HLTERS 1 sn
A. Multiple Loop Feedback OTA-C Filter Model M(s) = —1 s _ (5)
The basic building blocks in the construction of OTA-C '
filters are integrators and amplifiers as shown in Fig. 1(a) —1 s
and (b), respectively. The voltage transfer functidiis) =
Vout/Vin (Vin is the noninverting voltage minus the inverting I=[L 0 - O ©6)
voltage of the related OTA) of the integrator and amplifier '
are simply shown adi(s) = 1/(sCi/gm) and H(s) =  Combining (2) and (4) we can obtain the equation for the
vij1/Geij2, T€Spectively. whole system as
The general multiple integrator loop feedback OTA-C model
with all capacitors being grounded to be addressed in the A(s)V, = IV )
paper is shown in Fig. 2. As depicted, this model is composed
of a feedforward network consisting of OTA-C integrators where the system coefficient matrix
connected in cascade and a feedback network that may contain
OTA voltage amplifiers and/or pure wire connections. A(s) = M(s)+ F. (8)
B. System Equations and Transfer Function Equation (7) establishes the relationship between the overall

To generally analyze the model, the feedback network mg!};cu!t Input and_the mtegrato_r outputs including the ov_eral_l
be described as Circuit output. Using this equation we can formulate the circuit

transfer function. Solving (7) yields

Vii=> fiiVej,  i=1,2,-,n @) v, .
where f;; is the voltage feedback coefficient from the output A1 (s)
of integrator; to the input of integratoi. The coefficientf;; 1 A1a(s)
can have zero and nonzero values, depending on whether there = |A(s)| : ()
is an open circuit or an amplifier (gaify;;1/gr:;2) between Al,;(s)

theith andjth integrators, respectively. The former means no

feedback exists, while the latter suits any amount of feedbagiere| A(s)| and A;;(s) represent the determinant and cofac-
In particular, for the direct feedback connection we may haygrs of A(s), respectively.

the unity feedbackf;; = 1. Since the overall circuit output,,; = Van, from (9) it can
Equation (1) can also be written in the matrix form. be readily identified that the system transfer function is given
V= FV, @ by H(s) = Vout/Vin = Al_n(s)/|A(s)|. Noting the str.uctur_al
feature ofM (s) and thatf" is an upper triangular matrix, using

whereV, = [V,1 Vo2 --- V,,]%, the output voltage vector (8) we can demonstrate that;, (s) = 1. Thus the transfer

of integrators,Vy = [Vj1 Vyo -+ Vp|f, the feedback function H(s) can be simplified as

voltage vector to the negative input terminals of integrators,

and F' = [fi;laxn, the feedback coefficient matrix. The H(s) = 1 (10)

superscriptt stands for transpose. |A(s)]
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C. Feedback Coefficient Matrix and Systematic fer function in (10) may therefore have the all-pole filter
Generation of Filter Structures characteristic.
The feedback matri¥ is defined by (2) and has the property The general form of all-pole low-pass transfer functions can
that be expressed as
~J#0 if there is feedback betwee¥; andV,; H _ Ao ' 11
f”{ =0 otherwise ' als) Bps® +Bn_ 15"+ + Bis+1 (11)

As can be seen from (2), if all the elements in a rowQf To synthesize this desired functidiy(s) we may follow the
say rows, are zero, the corresponding feedback voltdge generic procedure shown below.
will be zero and so is the conversgy; = 0 means that the  Based on (10), by expansion pi(s)| we attain the circuit
inverting terminal of the OTA in théth integrator is grounded. transfer function

Note thatF' is an upper triangular matrix; for all nonzero

elementsf;; there arei < j. If we further suppose that H(s) =

no inverting integrator terminals are grounded, the feedback 90(7n, fij)

matrix will also have the property that each row has ong.(7n, fi;)s" + gn—1(7s, fi;)s" ™t + -+ g1(mn, fij)s +1°
and only one nonzero element, which implies tifat, is (12)

always nonzero. The nonzero feedback coefficient can be . . .
realized using an OTA voltage amplifier and the unity feedbacl&.comparlng (.11) and (12), t_o _ach|eve th_e deswed_ character-
ic the following set of coefficient matching equations must

coefficient can also be achieved using pure wire connecti

as an alternative to using a unity gain amplifier. € satisfied:
In the following by the canonical or minimum component 9n(Th, fij) =Bn
realization we mean that for realizing the unity DC gaith- V=R
X , . gn—l(Thv fzg) = Dn-1,
order all-pole low-pass filter, only OTA’s andn capacitors N_p
(i.e., n integrators) are required [14], [15]. For the general 91(mn, fij) = B1
model in Fig. 2 the canonical realization is clearly equivalent go(7n, fij) = Ao. (13)

to no components existing in the feedback network. Alterna- Solving (13) we obtain, and f;;. To finish the design we
tively we can say that for canonical architectures, the feedba&lﬁﬂpute the values of eahccﬁ andzfq. from 7, and f;
J i

matrix I = [fi;]n-n defined by (2) obviously has only zero. e efficient expansion ofA(s)| to reach the polynomial

3_nd unit elemgnts, since feedback can only be achieved fBYm in s of (12) is the first step in the design. Some symbolic
Irect connection. analysis techniques may be required generally to deal with

It is apparent that there is an one-to-one corr_espor)derrgﬁsﬂ to get coefficient matching equations. However, the
between the feedback matrix and the circuit configuration ;. o may be quite easily handled for low-order and some

and different” will give rise to different circuit structures. To -, high-order filters as will be shown in the next section
show this we consider the situation that feedback is realizg he coefficient match equations are usually nonlinear Noté
only by direct connection and none of the OTA invertinghat to produce the items*, there is at least one group

terminals in the mtegrat_ors are grounded. According to t_'bef k integrators making a multiplicative contribution to the
features of the generdl discussed above, the feedback mat”éorresponding coefficient. Henag(m., f;;) will contain at
. \hoy Jeg

£ now becomes an upper triangular (0, 1) matrix and has o st one term of multiplication o integration constantsy,.

_?_?]d oply ofne tL;]mttEIerréent n galc?h row, Ie?dlngfégl T 1. In most cases a nonlinear equation solver may be invoked to
eretore for thenth-order modet there are: Comoinations  <qye the derived parameter value determination equations. In

of unit element_posmons n t_he matrix. Nc_)te that the_ Un&ection 111 we will show that the design equations of many
elementf;; = 1 in each combination is realized by a direcf -t res can also be easily solved explicitly.

connection between the negative input terminal of integrator.l.0 further determine each and C there existn degrees
¢ and the output of integratof. Thus we haven! different of freedom in the canonical realization and more than

c;)mbtlnatlons of feedback connections, i« different filter degrees in the noncanonical. Thus the transconductances or
structures. the capacitances can be arbitrarily assigned to be identical.

It is of particular interest that this also suggests a meth king the canonical realization as an example we may set
for generating all possible filter architectures that are canonical

) X : . . Jm1 = gm2 = *** = gmn = gm and then calculate’; = g,,,7;,
and wnhqut grounded integrator inverting term!nal_s. That ig, any;jorletC; = Cy = --- = C,, = C and then compute
for any given ordern, we first find all n! combinations of

my 7
unit element positions i@". Direct connections are then made™ ¢ .- 1o seen from (8) the network performance is a

corresponding to all unit feedback coefficients in each Comtﬂinction of F. Different F will lead to different transfer

nation; this is repeated for all! different combinations. This characteristics in (10)" is also linked with filter structures

method is extensively studied and exemplified in Section IIIand differentF" will correspond to different architectures. Thus
] ) o . the relationship between the performance and the structure is
D. Filter Synthesis Procedure Based on Coefficient Matchingsiapiished through the feedback matrix. The significance is

From (5) and (8) we can see that the determinfal{ts)] even more in that the generality and systematicality of the
may normally be amth-order polynomial ofs. The trans- design method is obtained due to the introductiorFof
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y o, | " . 't
Vin p—eVout o Vout Vin Vin
I C Cy Cs Ca ) [ Cai- CgI

C'; CQ; CSIE CWI CZI Cgi Cirenit ] = Ee =z = Cireyit 2 = = = =
() (b) qﬁ [ ] (=] lquq
| | | | e B o ey e =5 )
Fig. 3. Third-order canonical OTA-C filters. I St St Coe o G G G S
lIl. STRUCTURE AND DESIGN OFALL-POLE OTA-C HLTERS q Lo ]
i | = N 5 e G ) ] B e e =1 A Y S
In this section, we exemplify the application of the general T <= “r “T .o T T % “T

method proposed in Section Il. For simplicity and clarity, we

concentrate on exhaustive search of all possible canonical filter — =
configurations with no feedback voltages being grounded for Sl (Sraky Jomy Jondt—v
1 Ca 3I JI

\
Circuit 8 L

a given ordem using the method given in Section 1I-C. Some g7 = = Circuit 5 =

component value determination formulas are also presented.
T "I T

O @ G S Cireuit g

A. Third-Order OTA-C Filters Clreuit 9= =

For the third-order model that is a derivative version d?ig. 4. Fourth-order all-pole canonical OTA-C filter structures.
Fig. 2 corresponding ta = 3, with generalt’ and using (10)
we formulate the general transfer function as become cascaded by a first-order and a second-order canonical
H(S) = 1/{7‘17‘27‘383 + (7‘17‘2f33 + 7173 fo2 Se'([:'tri]onS.th . binati q . ical. Wh
2 e other two combinations do not seem practical. en
+7213f11)s” + [1a(f22 fas + fas) Fis a unity matrix, the structure becomes a (r;)ascade of three
+ 7of11fsz + 73(f1ifor + fro)ls first-order canonical sections, which can only realize some real
+ (fi1foafaz + fiifez + fi2fas + fi3)}. (14) poles. The structure corresponding fi = foo = f33 = 1
As proved in Section II-C, there are altogether six possibfld the otherf;; = 0 has no solutions for the Butterworth
configurations. It can be verified that the last item in th@hd Chebyshev approximations, which has been numerically
denominator of (14) is equal to 1 for all the structures, ar¥grified, and therefore is also rejected.
so Ag = 1 in (11).
When fi3 = fos = fas = 1 and the other elements areB. Fourth-Order OTA-C Filters
zero, we have the structure in Fig. 3(a) and the circuit transferFor the fourth-order general model of Fig. 2, again from
function in (14) becomes (8) and (10) the general transfer function can be written with
H(s) = ; 1 ; ' (15) some tedious manipulation as
T1ToT3S” + T1Tes* + Tys+ 1
The parameter value equations are demonstrated as

iH

H(s) =1/{(m1m27s74)s* + (117273 fas + T17274 f33
+ 11737a faz + To73Taf11)8° 4 [T172( f33 faa + fas)

" glg + 7173 f22 faa + T1Ta( S22 f33 + f23) + 273 f11 faa
2 B + ToTa f11 f33 + TaTa(f11 for + fi2)]s?
73:%_ (16) + [ri(fo2faafas + fo2faa + fosfaa + fo4)

B2 + 72 f11 f33faa + fr1fza) + 13(f11f22 fas

If we selectfi; = fo3 = f33 = 1 and the otherf;; = 0, the

filter architecture in Fig. 3(b) results. The corresponding trans- + fi2faa) + 7alfiafoafss + firfas

fer function and the parameter value determination formulas + fiafaz + fi3)ls + (firf22fa3 faa
are derived as + finfoafaa + frifaafos + f12fs3faa
H(s) = 5 ; (17) + fiifoa + fiafaa + frofaa + fra)} (19)
T1T2T38° + T1728% + (7’1 + 7'3)8 +1
For any particula#’ we can easily draw the associated struc-
Ty = Bs ture, obtain the corresponding transfer function, and calculate
B, the component values. There are altogether 24 combinations
Ty = B of possible filter configurations according to the discussion in
By — Bs Section 1I-C. Ten practical structures are shown in Fig. 4 and
B the corresponding’’s, transfer functions, and some design
=B — % (18) formulas are presented below. Note that in each casg;jte
By that are not written out are treated as zero and the realization

For £ with fi1 = fa3 = fss = 1 and the otherf;; = 0, of the unity dc gain all-pole characteristic in (11) witly = 1
or fiz2 = faa = fa3 = 1 and the otherf;; = 0, the circuits is dealt with.
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Circuit 1: fio = foo = faa = faa =1

H(s) =1/[rmm314s* + (117213 + T17374)8°
+ (7‘17‘2 + 7173 + 7'37'4)82 + (7’1 + 7'3)3 + 1]-

Circuit 2: f12 = f23 = f34 = f44 =1

H(s)

Circuit 6: fiz = foua = faa = faa =1

1

T1T2T3Tas® + T ma7383 + Ti72s? + (11 +74)s + 1

By
T4 = ——
H(s) =1/[m7omsmas® + 172738 + (172 + 1174 Bs
+7‘37‘4)82+(7’1 +73)s + 1] 7'3:%
2
B
T. :% 72 = 234
* T B, B~
3
T3 I% By
B T1=B1 — Ba.
B 3-
T2 = . .
B, - B3 Circuit 7: fia = foo = fau = faa = 1
B
B B3 H(s) =1/[rimem314s® 4+ (1172073 + T17374)8°
7_ f— — —
L 1 BBB +(7‘17‘2+7‘17‘3)82+7’13+1]
B =Dy — 2224 (20)
B3
o 71 =D
Circuit 3: fi2 = foa = faa = faa =1 Bi73 — Byr2 + Bary — By =0
H(s)= 1/[7172737434 + Ty ToT3Ss> + (1172 s = @ o
+ 7374)8% 4+ (11 + 73)5 + 1] By
By
By T4 = Bl
T4 = 5~ BQ
Bs T2\ - — T2
B, <Bl )
—T??—BQTg—i-Bg:O . .
Bs Circuit 8: fia = faz = faz3 = faa =1
B, - B
27 B, i H(s) =1/[rimm314s® 4+ (111273 + T17274) 8>
Y =
2 By -1 + (T + 7174)32 +7s+1]
T1=DB1—T73
Circuit 4: fi3 = foo = faa = faa =1 n=58
B17} — Bati + B3t — By =0
H(s) = 1/[r1 7273748 4+ (117273 + T17374)5° 17 274 874 * By
+ (rim2 + 1ima)s? + (11 4+ 1a)s + 1] nEp T
Circuit 5: fi3 = faz = fas = faa =1 %
1
_ T3 =

H(s)
1
T ToT3Tast + Ty 7o7383 + (o + TTa)s? + (11 + Ta)s + 1

Circuit 9: fiq4 = foz = fa4 = fauu =

1

By
_ P4 H(s) =
T4 Bs (s
Bs
T3 —
(- 52
Bs
By — B,
By B,
To = B4 - B_3
By — B—3
B
T1 —Bl et B—i

T ToTaT4st + T1ToT38% + (7‘17‘2 +7‘17‘4)82 +rs+1

T4 B—3
Bs
3 BB,
By By
n=3 "B,
T1 IBl.
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Circuit 10: fiu = foa = faa = faa =1
1

H(s) =
( ) TIToTaT4st + o83 +1ims?2 + s+ 1
=B = ﬁ
J— B2 : W N
To — —— o
B,
B Fig. 5. OTA-C filter model with output summation OTA network.
T3 = ——
3 32
B, Although only canonical structures with integrator inverting
T4 = By input terminals being ungrounded are illustrated, it should

) o be noted that the explicit expressions of transfer function of
It is observed that Circuits 2, 3, 5, 6, 9, and 10 can be easjlye third- and fourth-order models given in (14) and (19)

designed using the attached formulas. Circuits 7 and 8 negd general; they are actually suitable for any realizations of
the solution of a cubic equation. Circuit 1 can be solved eithgledpack coefficients. If some or all feedback coefficients are
by the factorization method or a nonlinear equation solVgggjized with OTA voltage amplifiers or grounded integrator
The nonlinear equation algorithm is also needed in the desigRerting terminals are allowed, more structure varieties can

of Circuit 4. _ _ of course be obtained. For example, if we selgct # 0,
In addition to the ten configurations presented above thejre__ 1,2, -+, n and the otheff;; = 0, with f,; being realized

are another 14 possible structure;. These 14 conflgurano(r)'?,OTA voltage amplifers, then the general FLF structure can
however, have been found not suitable for realizing the Bylz optained.

terworth and Chebyshev approximations; 10 of them are a

cascade of canonical sections of either four first-orders, or WO GENERATION AND SYNTHESIS OF TRANSMISSION ZEROS
first-orders and one second-order, or one first-order and one _ _ ) ) _
third-order, which cannot realize two pairs of complex poles, !N this section we address the issue of implementing the
while the other 4 (corresponding 2 = fos = fa3 = fauu = trans_mlssmn zeros, that is, the synthesis of the general transfer
11 f13 = f24 = f33 = f44 = 11 fl4 = f22 = f33 = f44 = 1: function:
and f14 = foqu = f3z = fasa = 1, respectively ) have no H(s)

CApst+ Ap 18" 4 Aps+ Ay
practical solutions of the associated design equations. -

Bps®+ B, _1s" 1 4+... 4+ Bis+1°

(21)

For a given input to some node, different nodes may support
different types of output characteristic, while for a fixed output
Generalnth-order architectures can also be derived in mode the output function may vary as the input node changes.
similar way. Rather than trying to exhaustivly enumerate allherefore by altering the input and output nodes we may
n! possible general structures due to the complexity of thealize some transmission zeros.
problem, we present some typical ones for the illustrative More generally, for a given input we may combine the
purpose. different node outputs with a summation OTA network to
If F'is chosen so that the elements in the last column giive the overall circuit output, or for a fixed output distribute
are unity and the other elements of the matrix are zero, thére overall input onto different circuit nodes using an OTA
the circuit has the inverse follow-the-leader-feedback (IFLFE)istribution network. A general transfer function can thus
structure [15], whose third-order version has also been giventia obtained. Then by properly selecting the summation or
Fig. 3(a) and fourth-order counterpart is Circuit 10 in Fig. distribution weights for respective cases one may attain any
The general design formulas can be explicitly obtained fditter characteristics. In the following we will formulate only
this nth-order IFLF circuit [15], [17], as will also be givendesign equations of the two methods. Detailed particulars
in Section IV. concerning the realization of various numerator characteristics
If the choice is made of;;;1) = 1,7 =1,2,---,n—1, using different architectures will not be given, because of the
fnn = 1, and all the otheyf;;'s are zero, then the leapfrog (LF)length of the paper.
configuration results [15]. The derivative third- and fourth-
order counterparts have been exhibited in Fig. 3(b) and A Output Summation of OTA Network

Circuit 2 of Fig. 4, respectively. (We may note that the third- Here we connect a summation OTA network to the circuit

order low-pass OTA-C filter in [18] and the ladder simulatior), Fig. 2, as shown in Fig. 5. Denotinéj;(s) = V,;/Vi, and
filter in [9] also belong to the LF structure category.) [ f deri ! o
i = Gaj/gr We derive

Finally whenn is even and

C. Generalnth-Order Architectures

_ ‘/out
F =diag{[} 1]} His) =+
the circuit becomes cascaded biquadratic sections, witktlthe = ko + Z k;jH;(s). (22)
section being the canonical structure. The fourth-order case =1

has been shown in Fig. 4, that is, Circuit 1.
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Using the results given in Section 1I-B (9) we know that | ST C——

Aii(s n
H;(s) = |X(i)|)' (23) o __V'
Cs Cn
Substituting (23) into (22) we have the circuit transfer E. L
function
9-3_ =
1 n
H(s) = ko + A3 > kjAy(s). (24)
i=1

Fig. 6. OTA-C filter model with input distribution OTA network.
The overall transfer function in (24) may have the general

It can be observed from numerator coefficient expressions
&’8) or (30) that the circuit may realize any special transfer
functions, since we can enable any coefficieht of the

! numerator to be any value including zero by properly choosin
Jj =1,2,---,n and the otherf;; = 0) with the output y 9 Y Properly 9

: : the values and signs @f,;, 7 < n — 4. On the other hand, for
summation OTA network [20], using (8) we can demonstratgny required zeros, thajt is, any values.bf we can easily

1 compute the associated parametgrdy means of (31). If the
calculatedk; is negative, we can simply interchange the two
o input terminals of the related OTA with,;. If the computed
Ai(8) =TiTive - 8" T Tiee o Taos value of k; is zero, then they,; OTA should be removed.

4o b TipaTia28t FTips+ 1 (26) Similarly we may also realize any special biquadratic filters
by appropriately selecting,;, j = 0, 1, 2 [5].

ductancesy,; through weightsk;.
As an illustration, for the canonical IFLF structurg,( = 1,

|A(s)| =12+ Tps" + 112 - Tpo18™

4+ mTes? + s+ 1 (25)
n—j—1

wherej = 1,2,3,---,n— 1.
Substitution of relations (25) and (26) into (24) yields th o
general circuit transfer function and comparing this function’ Input Distribution of OTA Network

with that in (21) we have the design equations: In this approach, the voltage signal is applied to circuit
nodes by an input OTA network as shown in Fig. 6. The

exactly same formulation process as that in Section II-B can
be followed to derive the design equations for this case. All
the relations in (1), (2), (4), (5), (7), and (8) apply here, with

n—j+i . : .
Ay = Z <kz H Th>7 (G=0,1,2 -, n—1) only one exception that instead 6f=[1 0 --- 0]* of (6)

J
Bj:HTiv (J:17 27"'7”) (27)

=1

«

J
= heiil in Section II-B, now
Ay = Z k.. (28) I=[8 po - Bl (32)
=0 where 3; = gqj/gmj, Since (3) in Section II-B becomes for
From the design viewpoint if the transfer characteristic ahe present case
(21) is desired the circuit parameters must then be determined

in terms of coefficients4; and B; from (27) and (28). With sT1Vor =61Vin — Vi
By = 1 it is easy to demonstrate that 5Ti41 Vi1 =Bit1Vin + (Voj — Vijr1). (33)
T = B»J , (1=1,2,3,---,n) (29) This exception is clearly due to the change of input form; in
i=1 Fig. 2 the input voltage is applied onto only the first integrator
j 2 ; : )
Bn_jti . output node and this is realized directly through the OTA in
Apn_j = Z <—Bi ) ki, (4=0,1,2,---,n). (30) the integrator, while in the present case the input voltage is

=0 distributed onto all the integrator output nodes and this is

Equation (29) can be directly used for calculation of integraccomplished by extra OTA's.
tion constants;. From (30) the iterative computation formulas First solving (7) forV,, then substituting (32) and finally
of summation weights:; can also be obtained, given by observingV,.; = V,,, we can formulate that

An |4
]{; = — H _ out
’ Bn ) (8) ‘/in
B, (Bt 1§
;==L _i= i Limha LA I 8 = 3; Ajn(s). 34
b=, A ;( 5 )" A 2 B o4
(J:17 27 37"'7”)' (31)

Note thatA,;(s) is at least one order less inthan|A(s)|.
The parameter value determination formulas in (29) and (3Ihe expression in (34) offers transfer functions of less than
apply to any order realizations, including the second-order [5jth order numerators. Now we consider the canonical IFLF
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structure with the distribution network. Using (8) we formulatenverse matrix differentiation formula and obtain the derivative
of V,/Vi, as

Aln(s) =1 V
Ajn =T17273 *** 7_j—lsj_lv J = 27 37 47 e, T (35) a<_0>
Vi) g1 246) g9 (3g)
and |A(s)| is given by (25). dx
Combining (35) into (34) we have the circuit transfewhere A(s) and were shown in (8) and (6), respectively.
function Whenz = 75, sincel’ is independent of;, using (5) and
i o (8), we have
H(S) = [ﬁnTlTQ e 7_n—l*; + ﬁn—lTlTQ s Tp—298 8A(s) _ 8M(s)
4+ oo 4 B3mi728” + Boris + /31]/|A(8)| (36) 8@» = 8@»
Comparing (36) with (21) whemni,, = 0 and noting that the Jth
7; are calculated using (29) we get :
= ... .| jth 39
By = Ay s J (39)
g, = il j=2,3 (37)
fi = B, 7o . Substituting (39) into (38), together with (6) yields
Any filters with A,, = 0 may be realized through adjusting B <£) ﬁ”g;ﬁ“g;
distribution weights3;, that is, the associateg,;. If the nth- Vi) _ __ 8 P (40)
order numerator of the transfer functiorl,[ # 0 in (21)] o |A(s)[? :
is required, one or two more OTA’s can be further added to Ajn(s)A1;(s)
sum the voltagé/,,, and the input voltage to form the overall From (40) we can identifygH (s)/dr;, which is the last
output. element in vectofd(V,/Viy)]/d7;. Thus using the sensitivity

Note that the distribution method actually involves th@efinition and incorporating (10) we can obtain the sensitivities

superposition theorem, since the responses corresponding Q. transfer functionH(s) with respect to integration
the different resulting node inputs are superposed at the outpyhstant

node. This method can therefore also be understood in the
way that the different node inputs are collected with weights SH(s) — _STM (41)
into a single input. In some realizations the input distribution g ’ |A(s)|

method is advantageous over the output summation techniquelext we consider the transfer function sensitivities to feed-

in that the former does not require any component matchipgck coefficientsf;;. Using (8) and considering that (s) is
or equality constraints. For instance if a zero coefficient isot related tof;; we derive
required, from (30) we may see that some restriction on

s7;, given by

the relations ofk; will be needed for the output summation 851(3) = gF
approach. However, inspection of (37) indicates that a zero fii Jij ‘
coefficient, sayA; = 0 can be achieved simply by setting Jth

fj+1 to zero, that is, eliminating the OTA with, ;1) :

V. GENERAL FORMULATION OF SENSITIVITY ANALYSIS

Sensitivity is one of the most important criteria in assessing Then substituting (42) into (38) (now = f;;) and incor-
the active filter quality. This section focuses on sensitivitgorating (6) we can obtain that

analysis of all-pole filters based on the proposed design v Ai(s)AL(s)
method. Instead of calculating the sensitivity of individual 8<V—°) 1 Aia(s)AL(5)
structures generated we will give a general approach. The m/ — ] . (43)
formulation of sensitivity relations needs referring back to 9fij |A(s)]? :
Section 1I-B. Ain(s)A1;(s)

The SenSitiVity definition to be adopted |§;/ = From (43) we can |dent|fyaH(3)/af“ and prove the
(z/Y)(9Y/0z). Since after calculation of ther; and rejative sensitivity functions as
fi; sensitivities we can further compute thg's and Asn(s) A1, (s)
C’s sensitivities using the relations; = C;/g,; and Sﬁ_(s) =y S i <j. (44)
fij = 9sij1/gvij2, in the following we deal with only the ’ [A(s)]
sensitivities tor; and f;;. Considering thatd;,(s) = 1, from (41) we can write the

simplified 7; sensitivity relations forj = 1, andj = n. We

A. General Sensitivity Relations can also simplify (44) for the sensitivities 3;, fin, and fi,.

Using (41) and (44), or from the structural feature of matrix

To formulate sensitivity functions we differential i R B
y pvIy funetions We ¢ A/ Vi A(s), we can also demonstraﬁegf )/Sg( ) = fii/87.

(9) with respect to circuit parameter using the well-known
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B. Sensitivities of Third- and Fourth-Order Filters TABLE |

e . . . PARAMETER VALUES FOR NORMALIZED FOURTH-ORDER BUTTERWORTH FILTER
The generat; sensitivity functions of the third-order struc-

ture are derived using (41). Cireut 7, T2 LE T
1 0765367 130656 184776 0541196
1.84776 0541196  0.765367  1.30656

H o 3 2
SHE) = — H(s)[rmarss® + (1172 f33 + 1173 f22)s 2 153073 157716 1.08239 0.382683
1 (fanfaz + f23)s] 3 1.76763 1.74847 0845492  0.382683
4 1.9453 0896275  0.858833  0.667826

H o 3 2
SHE) = — H(s)[nmarss® + (117233 + 1273 f11)s 5 2.23044 1.14805 1.02049 0.382683
¥ 7o f11 f335] 6 2.23044 153073 0765367  0.382683

7 261313 0667368  0.639195  0.8971

H o 3 2
SHE) = — H(s)[nmarss® + (1173 fo2 + 7273 f11)5 8 261313 0639195  0.8971 0.667368
- 7a(fir for + f2)s] 9 261313 0.92388 1.08239 0.382683
10 261313 1.30656 0765367  0.382683

where H(s) has been given in (14) in Section Ill-A.
When realizing the unity dc gain characteristiéy(= 1) in Vi
(11), the sensitivities forfis = fos = f33 = 1 and the other

fi; =0in F, i.e., the configuration in Fig. 3(a), are calculated All the examples in Sections Ill-V for all-pole filters,
with substitution of (16), given by finite transmission zero filters, and sensitivity calculation,

respectively have been confirmed by direct routine circuit

. DESIGN AND SIMULATION EXAMPLES

3 ) analysis. This straightforward confirmation also intuitively
ZBjSJ verifies the correctness of the general relations established in
GH(s) — _ j=h h=1.92 3 Sections II-V. In this section we further give some numerical
- - ) ) N

Th

3 o and simulation results.
Z BjS] +1
g=1 A. Numerical Design Examples

For F with fio = fo3 = fa3 = 1 and the otherf;; = 0, For the fourth-order Butterworth low-pass filter the normal-
i.e., the structure in Fig. 3(b), with incorporation of (18) thézed transfer function is
sensitivities can also be readily derived [14]. 1

Hy(s)

Now consider the fourth-order canonical LF structure, Cir- T s 126131355 + 3.4142152 + 2.61313s + L.
cuit 2 in Fig. 4. Again, based on the general relation in (41) andW the t ical struct . in Fig. 4 i
when the filter realizes the unity dc gain all-pole characterist'g € use the ten canonical SWUCIUres given in Fig. <

in (11), the sensitivity functions te; are demonstrated, with Bectl_onlllléB tf jrBeallie 2t2'153 fg aracotlegstli. :I;d;nigm?h that
(20) being incorporated, as 4= P8 = L& »and bz = . » the

parameter values of the structures are calculated by using the
. 5 By\ formulated explicit solutions or the nonlinear equation solving
Bys® + Bss® + <B2 - f) 57+ <Bl - f) 5 approach, which are given in Table I.

Sflr(s) =- Da(s) In Table | we list two sets of solutions for Circuit 1 in Fig. 4.
4 3 5 4 This is because the two biquadratic sections in the circuit are
gH(s) _ _Bas"+ Bss” + Bs interchangeable in cascade order. We have also realized the
" Dq(s) Chebyshev filters using the structures in Fig. 4 [15].
B484+3383+%82+%8
SHE) = _ 5 B B B. Sensitivity Analysis Results
B.B als) For the fourth-order LF canonical Butterworth filter, sub-
Byst+ 2t g2 stituting By = 1, By = By = 2.61313, B, = 3.41421
SHE) = ——__DBs into the expressions in Section V-B and utilizing (45) (where
Da(s) the second part is now zero) the Schoeffler's multiparameter
Dy(s) = Bys* + B3s® + Bys® + Bis + 1 sensitivity is computed as shown in Fig. 7.
B=B,- 5B , _
Bs C. Frequency Performance Simulation

From the sensitivity functions developed above, we may The realization of the fourth-order 455 kHz unity gain
easily obtain the magnitude and the phase sensitivities Bjtterworth filter using the LF structure (Circuit 2) in Fig. 4
H(jw), since they are the real and imaginary partssgi(j“) is simulated. The equal transconductance design is adopted

(x is 7; or f;;), respectively. The Schoeffler's measure [1] cafith the transconductance value being = 30.14 uS. The
also be readily calculated by normalized capacitances are calculated (s = 46.136,

Co = 47.536, C3 = 32.623, andCy = 11.534 pF from the

n ) n n . corresponding data in Table I. For the cut-off frequency 455
5= E |55(1 )|2 + E E |5f7.,fj )|2- (45)  KkHz, frequency denormalization leads to the nominal circuit
i=1 i=1 h=1,hzi capacitance’; = 16.138, Co = 16.628, C3 = 11.411,
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and the feedback connection; b) a variety of new structures
with different performances are generated, with both canonical

and noncanonical realizations being available; c) all capacitors
are grounded and canonical realization can guarantee that
all internal nodes have a grounded capacitor; and d) it is

also flexible in assigning element values and in various cases
simple explicit design formulas are applicable.

We have formulated general relations for all-pole and finite
transmission zero realizations. We have also demonstrated the
general expressions for sensititvity computation. Using the
one-to-one correspondence between the feedback connection
matrix and the circuit configuration one can deal with any
particular applications based on these general equations. For
Fig. 7. Schoeffler's multiparameter sensitivity of fourth-order canonical LEXample, if the circuit topology is known, we may write the
structure. feedback matrixt” and analyze the filtering characteristic and

sensitivity performance. For the desired transfer function, on
12 T T T . - . the other hand, ar¥, that is, a circuit structure, may be
| ronear - defined to realize the transfer function. In the paper extensive
N\ examples have been given. Although we have concentrated
on the demonstration of the powerfulness of the proposed
approach in generating high-order OTA-C filter structures, it is
very obvious that some first- and second-order filters [3] can
also be derived from the general model in Fig. 2.

The performance of multiple loop feedback OTA-C filters
taking OTA nonidealities into account should be evaluated.
OTA nonidealities may embrace finite input and output imped-
ances, frequency dependence of transconductance, noise and
) . nonlinearity of transconductance characteristic. They not only
! 10 100 W0 ome oo teds e influence the frequency responses and pose stability problems,

trequancy [Hz]
_ _ _but also limit the filter dynamic range, as have been discussed
Fig. 8. Simulated frequency response of fourth-order Butterworth LF fllte{h [21]

SH(x) —

muiti-parameter Schosttier sansitivity

N . .
0 0.5 1 15 2 25 a 3.5 4
normalized frequency

06

magnilude of transier function

02

0

_ ) Noncanonical realization with OTA amplifiers realizing
and C, = 4.035 pF. The S|ml_JIat_ed magnitude frequencyeneral feedback coefficients can provide some design flex-
response is shown in Fig. 8, which is the same as the expeqigithy and results in more useful architectures. However, the
characteristic. noncanonical synthesis produces some nonintegrating nodes

The nonideal performance is also simulated. The macrggr example, iff;; is realized with an OTA voltage amplifier,
model of the CMOS OTA [18] with the differential-modeihere will be a resistive node, which is the inverting input

input capacitanc&iy = 0.0385 pF, the common-mode inputierminal of the ith integrator). The parasitic capacitances

capacitance’;. = 0.0502 pF, the output ccznductanc(éo = associated with the node may thus influence the high frequency
113 nS, the output capacitanc€, = 0.52 pF and the performance, producing an unwanted pole. More OTA’s also
transconductance frequency dependette(s) = gm(l —  cause other problems as well: the total impact of OTA excess

sTp) with T), = 21.2 ns is utilized, which corresponds to theynases will dramatically increase, further degrading the high
nominal transconductance value 3048 [4]. The nonideal gequency performance, and larger chip areas and power
magnitude frequency response is also shown in Fig. 8, whigh,symption will also result. Since in the noncanonical re-
shows that the simulated result agrees with the expecigthation some circuit node may connect more OTA's, the
specification with slight deviation. ~ equivalent node conductance will be enhanced, which may
_For the transmission zero realization, for example, using tgyerely deteriorate the low-frequency performance. In both
input distribution method in Section 1V, the reader may referynonical and noncanonical realizations the input capacitance
to [21], where a very detailed study of a third-order elliptigy the jntegrator OTA will contribute to feedthrough effects

filter has been presented. (causing unwanted zeros). But in the canonical case it does
not cause parasitic poles, since the OTA input capacitance is
VII.- CONCLUSIONS in a loop containing two circuit capacitances and the number

A general multiple loop feedback approach for the reabf independent capacitances therefore remains the same.
ization of OTA-C filters has been proposed. The systematicThere exists equivalent transformation of the structures
generation, analysis and design of different filter configuratiomsth differential input OTA’'s and those with single input
have been addressed. The method has the following adv@TA’s. Ideally a differential input OTA can be equivalent
tages: a) it is systematic and general due to the introductitmtwo single input OTA’s with the same transconductance
of the feedback matrix?" and the relationship betweehR' value but opposite polarity. As discussed in [21], tradeoffs
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between the feedthrough effects (parasitic zeros) caused[by Y. Sun and J. K. Fidler, “Canonical realization of high-order all-pole

some differential input application and the large number of low-pass OTA-C filters,” inProc. Euro. Conf. Circuit Theory Design,
Davos, Switzerland, 1993, pp. 69-72.

OTA’s due_ t_o the single input app_lication _mUSt b_e Conswerqgﬂ ___, “Minimum component multiple integrator loop feedback OTA-
when deciding whether to exploit the differential or single  C all-pole filters,” inProc. Midwest Symp. Circuits Systafayette, LA,
input OTA's. 1994, pp. 983-986.

. . L . r%16] Y. Zhang and J. K. Fidler, “A design method for high-order OTA-C
Balanced structures using differential input and differen- = jow-pass filters with topological structure selection flexibility,”Rmoc.

tial output OTA’s are popular in integrated implementation, ] Int. gonf. Elec. Meeésusre. lnstrumlh,992. lation of hiah-order OTALC
. . . _ : . W. Guo, J. Liu, an . Yang, “The realization of high-order OTA-

which can achieve very high common-mode rejgcthn rgt filter,” Int. J. Electron..vol. 65, pp. 11531157, 1988.

(CMRR) and reduce both the even-order harmonic distortigrs] A. P. Nedungadi and R. L. Geiger, “High-frequency voltage-controlled

components and the effects of the power supply noise. The continuous-time lowpass filter using linearized CMOS integrators,”
| bal d del in Fig. 2 b ted i Electron. Lett.,vol. 22, pp. 729-731, 1986.
general unbalanced model In Fig. 2 can be converted INQ; v sun and J. K. Fidler, “High-order current-mode continuous-time

the balanced equivalent by using differential four input and = multiple output OTA capacitor filters,” iffroc. IEE 15th Saraga Collog.

two output OTA’s in integrators and mirroring the feedbacjz Digital and Analogue Filters and Filtering Systondon, England, 1995.
. , “OTA-C realization of general high-order transfer functions,

network in the upper part to the lower part. All the unbalanc Electron. Lett.vol. 29, pp. 1057—1058, 1993.

configurations given in the paper can be thus converted if&3] , “Performance analysis of multiple loop feedback OTA-C filters,”

the corresponding balanced counterparts.

in Proc. IEE Saraga Collog. Digital and Analogue Filters and Filtering
Syst.,London, England, 1994, pp. 9/1-9/7.
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