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Abstract 

The rapid increasing interest in wireless communication has led to the continuous 

development of wireless devices and technologies. The modern convergence and 

interoperability of wireless technologies has further increased the amount of services that can 

be provided, leading to the substantial demand for access to the radio frequency spectrum in 

an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum 

in an opportunistic manner promises to overcome the evident spectrum underutilization 

caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and 

proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital 

when CR systems are experiencing deep shadowing and in a fading environment. In this 

thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize 

detection performance in an efficient and implementable manner taking into consideration: 

diversity performance, detection accuracy, low complexity, and reporting channel bandwidth 

reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. 

Comparative analysis and simulation results highlights the different pros, cons and 

performance criteria of a practical CSS scheme leading to the problem formulation of the 

thesis. Motivated by the problem of diversity performance in a CR network, the thesis then 

focuses on designing a novel relay based CSS architecture for CR. A major cooperative 

transmission protocol with low complexity and overhead - Amplify and Forward (AF) 

cooperative protocol and an improved double energy detection scheme in a single relay and 

multiple cognitive relay networks are designed. Simulation results demonstrated that the 

developed algorithm is capable of reducing the error of missed detection and improving 

detection probability of a primary user (PU). 
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To improve spectrum sensing reliability while increasing agility, a CSS scheme based on 

evidence theory is next considered in this thesis. This focuses on a data fusion combination 

rule. The combination of conflicting evidences from secondary users (SUs) with the classical 

Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining 

SUs sensing data leading to poor CSS performance. In order to overcome and minimise the 

effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel 

state of the art evidence based decision fusion scheme is developed. The proposed approach 

is based on the credibility of evidence and a dissociability degree measure of the SUs sensing 

data evidence. Simulation results illustrate the proposed scheme improves detection 

performance and reduces error probability when compared to other related evidence based 

schemes under robust practcial scenarios.  

Finally, motivated by the need for a low complexity and minmum bandwidth reporting 

channels which can be significant in high data rate applications, novel CSS quantization 

schemes are proposed. Quantization methods are considered for a maximum likelihood 

estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel 

uniform and optimal output entropy quantization scheme is proposed to provide fewer 

overhead complexities and improved throughput. While for the Evidence based CSS scheme, 

a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being 

sent to the FC is designed. The proposed scheme takes into consideration the characteristics 

of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal 

based on the optimal output entropy. Simulation results demonstrate that the proposed 

quantization CSS scheme improves sensing performance with minimum number of quantized 

bits when compared to other related approaches. 
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1 Introduction 

This chapter provides a brief introduction of the thesis. This includes the motivation of 

the research, the research scope and objectives, the original contributions and the 

thesis structure. 

1.1 Motivation 

Wireless communication and the utilization of the radio frequency spectrum have 

experienced a remarkable rise in the past few decades. The vast number of wireless devices 

(e.g., smart phones, laptops, tablet, remote controlling devices) and technologies (e.g., mobile 

telephony and wireless internets) available, the unprecedented increase in the number of 

mobile-cellular subscribers is growing exponentially from less than a hundred million 

subscribers in 1996 to nearly 7 billion in Aprils 2015 [1] as shown in Figure 1.1. The 

introduction of new applications such as wireless sensor networks, smart home systems, 

telemedicine, automated vehicles, various emerging applications from research ideas to 

concrete systems and the continuous need for high quality data rates are reasons for the radio 

frequency spectrum becoming more saturated [2]. With this growth the accessibility of high 

quality wireless frequency spectrum has become severely limited which is evident from the 

spectrum frequency allocation for the United Kingdom [3]. This has led to a widespread 

belief that the spectrum frequency is a scarce resource and it is difficult to locate spectrum 

frequency from a new application. However, real-time spectrum measurements carried out in 

various regions around the globe have shown that the frequency spectrum is inefficiently 

utilised with spectrum utilization ranging between five and fifty percent [4-6]. Consequently,
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the real challenge is not the frequency spectrum scarcity but the incompetent spectrum 

utilization. 

 

Figure 1.1 Global ICT developments, 2001-2015 [1]. 

Furthermore, this advance brings about the need for systems, devices, and technologies that 

are aware of their neighbouring radio frequency environment, consequently facilitating non-

complex, efficient, consistent operations and utilization of the available spectral resources. 

Wireless communication systems ought to gather information about the radio frequency 

spectrum in order to adjust their operations and behaviour to provide an improved match to 

the prevailing conditions. Consequently, cognitive radio (CR) has become vital to recent and 

future wireless communication systems for identifying underutilized frequency spectrums, 

characterizing interference and consequently achieving reliable and competent operations. 
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In [7, 8] the term CR was referred to as an intelligent radio that is aware of its surrounding 

environment. In addition, a CR is capable of learning, adapting its behaviour and operation to 

provide an improved match to its surrounding environment as well as to the user’s 

requirements. Learning is based on the feedback received from the environment. The 

feedback is realised as the outcome of the CR decisions and actions [7, 8]. 

The present spectrum regulation is based on a fixed frequency allocation policy. According to 

these polices, licenses are granted the rights for exclusive use. Examples of licensed 

technologies are 4G long term evolution (LTE) advanced [9] and global system for mobile 

communication (GSM) [10].  The frequency spectrum is split into frequency bands with each 

frequency band given to a certain wireless system which results in an irregular spectrum 

utilization that varies deeply based on frequency, time and spatial location in a rigid manner. 

For example, the frequency band 890-960 MHz is assigned to the GSM cellular system [10].  

This means that only the GSM system can access this spectrum band at any time. This static 

allocation of the available spectrum resources, leads to several portions of the licensed bands 

being unused or underused at many times and/or locations. These unused channels are called 

spectrum holes or white spaces [11] as shown in Figure 1.2.   

In CR terminology, a PU is defined as licensed user who has higher rights on particular part 

of spectrum whilst unlicensed cognitive users with lower priority are defined as SU. A SU 

can access the spectral resources of a PU when the PU is utilizing them. However, the SU has 

to vacate the frequency band or may stay in the same band but alters its power level and 

modulation method for avoiding interference to the existing licensed users in that band 

immediately the PU becomes active. Opportunistic access of the PU resources by the SU has 

been described as dynamic spectrum access (DSA) [12]. Presently, the major application area 

of CR’s is DSA. To access the spectrum in a dynamic manner the CR’s are required to sense 
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the spectrum to make out spectrum opportunities and to prevent interfering with the licensed 

users. 

  

 
Figure 1.2 Spectrum Holes (White Space)    

Spectrum sensing is an essential part in CR as it involves the monitoring of the available 

radio spectrum, gathering information and detection of the spectrum holes. It lets the SU 

discover and take advantage of the vacant PU frequency spectrum efficiently. In addition, it is 

essential for managing the interference caused to the PU’s of the spectrum. Spectrum sensing 

fundamentally can be conducted at each individual cognitive user based on the detection of 

signals transmitted from the primary transmitter. This is called a single sensing node, local 

sensing or local detection. However, a single sensing node in facing propagation 

environments like multi-path fading, Doppler spread, and shadowing may lead to the hidden 

terminal problems. When such a situation occurs a SU has to differentiate between a 



Chapter 1  Introduction   

5 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

spectrum hole, where there is no primary signal, and a deep fade, where it is difficult to detect 

the PU signal. In order to minimise the hidden terminal problem, cooperative spectrum 

sensing (CSS) where different SU work in partnership to detect the presence of a PU and 

provides diversity gains to tackle the fading and shadowing effects that have been considered 

in several works [13, 14]. CSS also helps to increase the signal to noise ratio (SNR) gain and 

CR network coverage, decrease the detection time, and simplify the design of the sensing 

detector. Nevertheless, for an optimal implementation of a CSS scheme in a practical CR 

network, it is still a challenge and requires more research to improve the reliability and 

efficiency. Motivated by the aforementioned, this research primarily concentrates on the 

design and development methods for an optimal performance of a CSS scheme. 

 

1.2 Scope and Objectives of the Thesis  

Spectrum sensing is a fundamental function for a CR network to protect transmission of 

primary system as mentioned above in section 1.1. CSS, which can assist in increasing 

sensing performance, is regarded as one of the most promising methods in realizing a reliable 

CR network. Therefore, the main aim of the research is to design and development of optimal 

CSS schemes for CR network which maximize the probability of detecting unused frequency 

spectrum while meeting a required reliability of detecting PU activity where there is minimal 

knowledge about the primary signal at the same time still possessing the means to 

differentiate among different signals as well as being robust to noise uncertainties. There are 

four major objectives considered in this research of CSS for CR: 

• diversity performance , 

• detection accuracy performance, 

• low computational complexity and 
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• cooperative reporting channel bandwidth reduction. 

Firstly, an amplify-and-forward relay-based CSS using an improved double threshold energy 

detector is proposed to overcome the imperfection in the reporting channels, in order that a 

SU experiencing a weak sensing channel and a strong reporting channel and a SU 

experiencing a strong sensing channel and a weak reporting channel, can complement and 

cooperate with each other to overcome the effects of fading and improve the overall 

performance of the CSS.   

To overcome the hidden terminal problem and increase the spectrum sensing reliability while 

increasing SU agility an evidence based CSS scheme will be considered. This will focus on 

the fusion combination rule in a centralized CSS where the basic probability assignment 

(BPA) of the sensing data is received from each involved SU. A novel evidence-based 

decision fusion CSS that uses both the credibility and dissociability degree measure of SUs 

sensing data evidence is proposed. 

Finally, the most important incentive for the use of CR is spectrum efficiency whereby it is 

not practical to use a wideband for collecting the raw sensing data. Therefore, quantized soft 

combining schemes where each SU quantize their local sensing data and forwards the 

quantized data for fusion at the FC to lessen the control channel communication overhead is 

proposed to reduce cooperative reporting channel bandwidth and sensing time. The 

quantization methods are proposed including evidence based CSS quantization scheme and a 

maximum likelihood estimate (MLE) entropy quantizer based CSS scheme.  
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1.3 Thesis Contribution 

The major contributions of this thesis are summarized as follows: 

Chapter 3 

The design of a novel relay-based AF CSS architecture for CR networks using an improved 

cooperative ED to achieve high sensing efficiency and sensing accuracy of PUs. 

• Combining the PU and relay (SUs) transmissions to achieve diversity against 

fading using AF cooperation which has the potential of reduced complexity and 

cost. 

• Analytically deriving expressions for a “soft 1-bit” double threshold 

combination scheme to reduce the communication overhead, improve the local 

probability of detection and hence the global probability of detection taking into 

account all sensing performance to exploit all the observed information from 

local SUs. 

Chapter 4 

The design of a novel evidence-based decision fusion scheme CSS for CR networks that uses 

both the credibility of SUs sensing data evidence and dissociability degree measure of SUs 

sensing data evidence, in the form of a weighted averaging factor. To increase sensing 

reliability and SU agility 

• Analytically deriving expressions for the credibility of evidence from the SUs 

sensing data which represents the similarity or the relation among different SUs 

sensing data evidence. In addition, deriving the correlation coefficients between 
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the local decisions using a distance of evidence rule and a correlation matrix 

(CM). 

• Evaluating and deriving expressions for a dissociability degree measure of 

evidence from the SUs sensing data which indicates the quality or clarity of the 

SUs sensing data evidence.  

• Developing an algorithm for a weighted averaging factor and final fusion 

determined by the credibility value and dissociability degree measure of the SU 

sensing data evidence. 

 

Chapter 5 

The design of a novel optimal entropy quantization for (MLE) for CSS for CR networks 

using a uniform threshold quantizer (UTQ) and an output entropy quantization scheme to 

reduce reporting channel over head and increase throughput.  

• Deriving a maximum likelihood estimator (MLE) for a CSS scheme and optimize 

it by adjusting the parameter associate with the threshold distribution. 

• Deriving Maximum Likelihood estimator for a CSS scheme and optimize it by 

adjusting the parameter associate with the threshold distribution.  

• Evaluate and deriving expressions for a proposed (UTQ) and an output entropy 

quantizer and evaluating their performance for a low SNR range. 

 

Designing a novel evidence-based decision fusion CSS quantization scheme for CR network. 

• Evaluating and deriving expressions for a proposed (UTQ) and an output entropy 

quantizer using a log likelihood ratio of the sensing data. 
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• Developing an algorithm for the quantization of the credibility value and 

dissociability degree measure of the SU sensing data evidence. 

1.4 Structure of Thesis 

The remainder of this thesis is structured as follows: 

In chapter 2, an overview on spectrum sensing for CR and problem formulation was 

presented. The rest of chapter 2 is organized as follows: Firstly in section 2.2, a general 

description of CR for dynamic spectrum access was described. Brief overviews are presented 

on different problems related to the dynamic spectrum access and standardization efforts are 

presented in section 2.3 and section 2.4, respectively. A review of the fundamentals of 

spectrum sensing and state of the art spectrum sensing techniques such as matched filtered, 

energy detection and feature detection and their performance criteria are presented in section 

2.5 and section 2.6, respectively. In section 2.7 and section 2.8, spectrum sensing test 

statistics and detection criteria are presented, respectively. Various spectrum sensing 

techniques are present in section 2.9 and section 2.10. A comparative analysis of spectrum 

sensing is presented in section 2.11. CSS that is collaboration between multiple SUs are 

considered and different data fusion algorithms presented in section 2.12 and section 2.13, 

respectively. CSS techniques are presented in section 2.14. A literature review and problem 

formulation of CSS is presented in section 2.15 and section 2.16, respectively. Finally 

conclusions are drawn in section 2.18. 

In chapter 3, an amplify-and-forward relay-based CSS using an improved double threshold 

energy detector was presented. The rest of chapter 3 is organized as follows: A non-

cooperative and a CSS with an improved ED are presented in section 3.2 and 3.3, 

respectively. In section 3.4 the proposed relay-based AF CSS system model are presented and 
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analysed in detail. In section 3.5 and section 3.6 an AF CSS with a single relay and multiples 

are presented, respectively. In section 3.7 a direct in was presented. Performance analysis and 

simulation results are presented in section 3.5 and 3.9, respectively. Finally, conclusions are 

drawn in section 3.10. 

In chapter 4 evidence based decision fusion scheme for CSS is designed. The rest of chapter 

4 is organized as follows. The rest of this chapter is organised as follows: A CSS system 

model and the detection problems for local sensing at SUs are presented in section 4.2. A 

review of DS theory of evidence has been presented in section 4.3. In section 4.4, the 

proposed evidence based CSS scheme and the local SUs energy detection algorithm are 

introduced. In section 4.5, the BPA estimation of the SUs sensing data is presented. The 

evaluation of the credibility and dissociability degrees are presented in section 4.6 and 4.7, 

respectively. The analysis of the modified combination rule and the analysis of the final 

decision are detailed in section 4.8 and 4.9, respectively. In section 4.10, a summary of the 

proposed algorithm is outlined. Simulation results and analysis are presented through receiver 

operating characteristics (ROC) curves, and other performance related curves in section 4.11. 

Finally, conclusions are drawn in section 4.12. 

In chapter 5, quantization schemes for CSS are presented. In section 5.2 a Lloyd-Max 

quantization algorithm, which nearly all quantization methods are primarily based on is 

discussed. In section 5.3, MLE optimal entropy quantization CSS schemes are presented 

which include a proposed uniform threshold and output entropy scheme, simulation results 

are also presented. In section 5.4, an evidence based CSS quantization scheme is covered 

followed, simulation results are presented. Finally, conclusions are drawn in section 5.5 

Finally, chapter 6 summarizes the thesis and states possible future research. 



2 Spectrum Sensing for Cognitive Radio: An 

Overview and Problem Formulation 

The availability of the radio frequency spectrum has in recent times been hampered 

by the growth of radio access technologies. This is due to the fact that the higher rate 

requirements of these new technologies are more bandwidth demanding, thus utilizing 

more spectrum resources. Cognitive radio (with emphasis on spectrum sensing) has 

emerged as a viable solution that will optimize radio spectrum utilization and allow 

these new technologies to be deployed. In this chapter, a general description of 

cognitive radio for dynamic spectrum access (DSA) is presented. Brief overviews are 

presented on different problems related to the DSA and standardization efforts. An 

overview of spectrum sensing, which is one of the fundamental prerequisites for the 

successful deployment of cognitive radio networks is presented. The most common 

spectrum sensing techniques, with which the cognitive radio users are able to monitor 

the activities of the primary user, are outlined. A review and comparative analysis of 

the fundamentals of spectrum sensing algorithms such as matched filter, energy 

detection, feature detection, and other sensing techniques and their performance 

criteria are presented. To address the limitations of the spectrum sensing techniques 

by a single secondary user, cooperative spectrum sensing and its main elements are 

discussed. Several fusion rules such as the maximum ratio combining (MRC), equal 

gain combining (EGC), K-out-of-N and Chair-Varshney rule are discussed. A general 

system model for the problem formulation is presented. Finally conclusions are drawn 

on issues surrounding spectrum sensing as well as their possible solutions. 
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2.1 Introduction 

The increased demand for higher data rates in wireless communications, even in the face of 

limited spectral resources has motivated the introduction of CR [15, 16]. The present 

spectrum regulation is modelled on a fixed spectrum allocation (FSA) policy and according 

to these policies, licensees are granted the rights for exclusive use on a long term basis over 

fixed geographical areas. These policies are normally decided by the regulatory bodies in 

each country such as The Office of Communications (Ofcom) in the United Kingdom. 

Though the present frequency allocation scheme assures low interference, due to each system 

operating in a different spectrum band, it is also very strict and rigid. Furthermore, this static 

allocation of the available spectrum resources leads to several portions of the licensed bands 

being unused or underutilized at many times and/or locations [4, 17], especially when the 

licensed users are idle. However, despite these unused portions of the spectrum, the FSA 

policy forbids its exploitation [8]. Research conducted by Ofcom on the radio frequency 

spectrum suggests that there is justified demand for more efficient utilization of the radio 

spectrum through an alternative policy termed dynamic spectrum allocation (DSA) policy. 

With DSA, the spectrum is still allocated to the licensed users, but its usage is not exclusively 

granted. Unlicensed users, referred to as secondary users (SU) are also able to access the 

radio spectrum when the licensed (primary) users are idle [8, 18]. To support DSA, SUs are 

required to sense the radio frequency spectrum environment, and an SU with such a cognition 

capability is also called a cognitive radio (CR) [8]. Cognitive Radio (CR) is a new concept 

that utilizes the licensed spectrum in an unlicensed manner [11, 19]. A CR network typically 

consists of the primary users (PU) and SUs, and its operation typically revolves around the 

main functionalities of spectrum sensing, spectrum sharing and cognitive processing of 

which, spectrum sensing is the most essential function of CR [8]. The process of spectrum 
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sensing, where SUs are constantly seeking for opportunities to make use of the frequency 

spectrum when the PUs are inactive [11, 19] tends to be a source of increased interference to 

the PU system [7]. As such, its impact on the PU system ought to be kept at levels below 

certain thresholds. There are other methods of avoiding excessive interference to the PU 

system such as overlay and underlay systems, making use of algorithms such as dirty paper 

coding that have been researched in literature [20, 21], but they are outside the scope of this 

thesis. 

In spectrum sensing, CR users search for the vacant resources commonly referred to as 

spectrum holes or white spaces in the frequency bands, and if found transmits on that 

particular frequency [16]. In some rare cases, frequency bands are allocated to a PU system, 

even though they are unused [7]. Such spectrum holes could also be employed by SUs. There 

are various techniques used for the spectrum sensing, each one has its own limitations. 

Generally, three different techniques are used for spectrum sensing, including transmitter 

detection, cooperative detection, and interference based detection [22, 23] 

In this chapter, some areas in spectrum sensing for CR, which have been of enormous interest 

in recent research activities, are discussed. Some formulation problems and current 

techniques for signal detection in spectrum sensing are highlighted. A model for signal 

detection is presented along with state of the art detectors such as energy detector. Some 

essential limits for spectrum detection are also discussed. In addition, feature detectors which 

exploit knowledge about the signal to be detected are presented and the concepts of CSS 

detection are outlined. Several fusion rules are described such as log ratio test (LRT), 

maximum ratio combing (MRC), equal gain combing (EGC), Chair-Varshney (CV), and K-

out-of-N. The focus of this work in this chapter is on transmission detection techniques. 

Particular attention is paid to techniques with practical purposes in this thesis. 



Chapter 2                                               Spectrum Sensing for Cognitive Radio: An overview 
 

14 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

2.2 Cognitive Radio 

2.2.1 Definitions 

In general CR is a broad theory and has diverse interpretation in several literatures [4, 7, 11]. 

The term CR was coined by Mitola as “an intelligent radio which is aware of its surrounding 

environment and capable of changing its behaviour to optimise the user experience” [7, 11]. 

A more applicable definition of a CR is given by Haykin [11]: 

“Cognitive radio is an intelligent wireless communication system that is aware of its 

surrounding environment (i.e., outside world), and uses the methodology of 

understanding-by-building to learn from the environment and adapt its internal states 

to statistical variations in the incoming RF stimuli by making corresponding changes 

in certain operating parameters (e.g., transmit-power, carrier-frequency, and 

modulation strategy) in real-time, with two primary objectives in mind: 

• Highly reliable communications whenever and wherever needed. 

• Efficient utilisation of the radio spectrum.” 

2.2.2 Applications and Technologies 

CR has numerous innovative applications apart from DSA. For example, CR can be applied 

to simplify location services, uninterrupted mobility, optimal performance and existence of 

heterogeneous wireless communication systems [24]. CR can offer location services by 

enabling the user to find services like fuel station, shopping centres, bus stations, schools, etc. 

CR can also assist uninterrupted mobility through interoperability with diverse systems such 

as, WMAN, Bluetooth, WIFI, WLAN etc. CR can be constructive in obtaining optimal 

performance of spectrum utilisation, data rates, economics, energy reduction and energy 
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efficiency. Coexistence of heterogeneous technologies in the same spectrum bands e.g., IEEE 

802.15.4 Zigbee [25] and IEEE 802.11 [26]. WLAN can lead to harsh interference [27] 

degrading the system performance. CR can provide answers relating to interference among 

the coexisting heterogeneous wireless systems and improves their performance [28]. One 

thing that all these applications have in common is that they all require various other 

technologies to merge in order to affect the outcome of the cognitive abilities [29]. Such 

technologies include software technologies, software defined radio (SDR) and sensors [28] 

[7, 29]. 

Software technologies, which are enabling CR, include policy engine, machine learning, 

advanced signal processing, and networking protocols [28]. 

SDR is a radio communication system where components implemented in hardware are 

implemented in software by means of digital signal processing (DSP). Hence, replacing 

software programs can totally change the function of the radio [7, 29]. 

Sensors are needed to generate awareness about the spectrum surroundings [29]. Some 

examples of sensors are RF receiver, microphone, camera, biometric scanners (fingerprint, 

iris, retina), global positioning system (GPS). Sensors such as microphone, camera, and 

biometric scanners can be used for user awareness, which is helpful in avoiding unauthorised 

access and providing user centric experience in a multiuser scenario. GPS enables several 

useful applications for a CR by providing the location awareness [29]. 

2.3 Dynamic Spectrum Access 

DSA continues to generate interest among policy makers, regulators, network operators, and 

researchers [4, 16, 30]. The main functions of DSA include [15]: 
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• Spectrum awareness, 

• Spectrum sharing, and 

• Cognitive processing. 

Spectrum awareness generates awareness about the frequency spectrum [19]. Spectrum 

awareness can be obtained in two ways by using either active or/and passive methods. In the 

active method or spectrum sensing, the radios become spectrum aware by detecting and 

estimating the spectrum. Active methods have broader application areas and lower 

infrastructure requirement. In passive methods, the information regarding the unoccupied 

spectrum is provided to the SU [19]. 

Spectrum sharing offers techniques to take advantage of the existing spectrum opportunities 

for efficient reuse [15]. Spectrum sharing process consists of five major steps namely: 

spectrum sensing, spectrum allocation, spectrum access, transmitter-receiver handshake and 
spectrum mobility [15]. 

Cognitive processing is the intelligence and decision making function which includes quite a 

few subtasks such as learning about the radio environment, designing efficient sensing, and 

access policies alongside managing interference for coexistence of the SU and PU systems [7, 

15]. 

2.4 Standardization 

In the midst of the increasing interest in CR, wireless standards being developed in recent 

times have started incorporating cognitive characteristics. IEEE 802.22 [31] is the first 

worldwide attempt to define a wireless standard based on CR techniques for the opportunistic 

use of TV white spaces (TVWS) [32]. The main application of this standard is fixed 
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broadband access especially for difficult to access, small population areas such as rural 

regions [29]. Other standardization initiatives related to CRs include IEEE 802.11af [32], 

dynamic spectrum access networks standards committee (DySPAN- SC) [33], IEEE 802.16 

[34] and IEEE 802.19 [35].  

IEEE 802.11af standard, defines modifications to IEEE 802.11 PHY/MAC for TVWS 

operation [32]. IEEE 802.16h [34] defines modifications to IEEE 802.16 PHY/MAC for 

coordinated and uncoordinated coexistence among homogeneous or heterogeneous users in 

an unlicensed band. The DySPAN-SC develops standards for radio and spectrum 

management [33]. IEEE 802.19 [35] focuses on coexistence between different unlicensed 

wireless networks in 802.11 group of standards like IEEE 802.11 (WLAN), IEEE 802.15 

(WPAN), 802.16 (WMAN), and 802.22. 

2.5 State of the Art Spectrum Sensing Techniques 

One of the most prominent features of CR networks will be the ability to switch between 

radio access technologies, transmitting in different portions of the radio spectrum as unused 

frequency band slots become available [8, 11, 15]. This spectrum sensing feature is off course 

one of the fundamental requirements for transmitters to adapt to varying channel quality, 

network congestion, interference and service requirements [8, 11, 15]. Sensing techniques are 

further broken down into four broad categories. The first two broad categories are coherent 

and non-coherent [15]. In coherent detection, a priori knowledge of the PU signals is needed. 

In non-coherent detection, a priori knowledge of PU signals is not required [15]. The other 

categories, based on the bandwidth requirements for sensing, are the narrowband and 

wideband detection techniques. The classifications of sensing algorithms are shown in Figure 

2.1 [36]. Spectrum sensing proposed in literature [11, 15, 28, 29, 36-39] can be divided into 
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three classes based on the PU information: energy based detector, feature detector, and 

matched filter detector. A description of the workings and implementation of the three 

primary detection techniques are analysed under the non-cooperative spectrum sensing 

techniques in section 2.9. 
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Figure 2.1 Classification of spectrum sensing techniques. 

2.5.1 Interference Management and Spectrum Sensing 

In order to share the spectrum with PU networks, CR networks will have to operate according 

to a set of policies, as defined by regulatory agencies [4, 11, 15, 18]. These policies are based 

on the idea where secondary systems which are allowed to use the licensed spectrum as long 

as they do not disturb the communications of the primary systems. In summary, these policies 

deal with controlling the amount of interference that the SUs can incur to PUs. Thus, the 
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problem is one of interference management [11, 15], which can be addressed from two 

different points of view: receiver centric or transmitter centric. 

2.5.2 Receiver Centric Interference Management 

In the receiver centric approach [11, 15], an interference limit at the receiver is calculated and 

used to determine the restriction on the power of the transmitters around it. This interference 

limit, called the interference temperature, is chosen to be the worst interference level that can 

be accepted without disturbing the receivers operation beyond its operating point. Although 

very interesting, this approach requires knowledge of the interference limits of all receivers in 

a PU system. Such knowledge depends on many variables, including individual locations, 

fading situations, modulations, coding schemes and services [11, 15].  

2.5.3 Transmitter Centric Interference Management 

In the transmitter centric approach, the focus is shifted to the source of interference [11, 15]. 

The transmitter does not know the interference temperature, but by means of sensing, it tries 

to detect spectrum holes. The sensing procedure allows the transmitter to classify the channel 

status to decide whether it can transmit and with how much power. In actual systems, 

however, since the transmitter does not know the location of the receivers or their channel 

conditions, it is not able to infer how much interference these receivers can tolerate. Thus, 

spectrum sensing solves the problem for worst case scenario, assuming strong interference 

channels, so the secondary system transmits only when it senses a vacant channel [11, 15]. 

2.6 The General Spectrum Sensing Problem 

There are several algorithms available for spectrum sensing, each with its own set of 

advantages and disadvantages that depends on the specific scenario. Ultimately, a spectrum 

sensing device must be able to give a general picture of the medium over the entire radio 
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spectrum. This allows the CR network to analyze all degrees of freedom (time, frequency and 

space) in order to predict the spectrum usage. 

2.6.1 Fundamentals of Spectrum Sensing Techniques 

Spectrum sensing is based on a well-known technique called signal detection [40]. In a 

nutshell, signal detection can be described as a method for identifying the presence of a signal 

in a noisy environment. Analytically, signal detection can be reduced to a simple 

identification problem, formalised as a hypothesis test [41]: 
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                                                    (2.1)                                                                                                        

for 1,...,t M= . Here t  represents the discrete time index and M denotes the number of 

observation, H0 and H1 are the hypotheses of indicating a vacant channel and occupied 

channel of the PU’s signal, respectively, y(t) denotes the received signal at the SU, h(t) 

represents the channel gain between PU and SU, s(t) is the signal transmitted from the PU 

and n(t) is noise of variance 2σ .  

2.6.2 Performance Criteria 

The performance of spectrum sensing techniques can differ in different scenarios. Hence, it is 

imperative to evaluate and chose the most adequate scheme for a given scenario. Different 

characteristics that can be used to evaluate the sensing algorithms are discussed in this 

section.  

• Probability of false alarm: It is the probability that the detector declares the presence 

of the PU, when the PU is actually absent. Considering a binary hypothesis test there 
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are two types of errors that can be made, type I and type II errors, respectively [28]. A 

type I error is made if H1 is accepted when Ho is true. The probability of making a 

type I error is often called the probability of false alarm, which is a significant design 

parameter since false alarms leads to missing spectral opportunities [28]. Therefore, 

controlling the probability false alarm is crucial for efficient spectrum usage [28]. 

• Probability of missed detection: It is the probability that the detector declares the 

absence of PU, when the PU is actually present. A type II error is made if H0 is 

accepted when H1 is true. Missed detection probability also called type II error, comes 

about as a result of probability of missed detection and can lead to collisions with the 

PU transmission and hence, reduced rate for both the PU and SU, respectively [28]. 

Establishing distributions of decision statistics helps in controlling the probabilities of 

missed detection and false alarm [28]. 

On the whole a CR system ought to satisfy constraints on both the false alarm and missed 

detection probability respectively [42]. Designing a detection rule brings about a trade-off 

between both probabilities. Nevertheless, if the detectors behaves reasonably, as the number 

of samples increases, both constraints may be satisfied by selecting the number of samples to 

be big enough [39]. For implementation it is advantageous to have the schemes whose 

threshold and performance may be set analytically. In a practical scenario the probability of 

detection and the samples required to achieve a given detection probability will have to be 

determined experimentally because of variables, such as the fading channel, channel errors, 

and noise power uncertainty affecting their observations [39]. 

• Signal-to-noise-ratio (SNR): Type I and type II errors are linked to each other 

through sensing time, SNR, and detection threshold. The SNR at the SUs depends on 



Chapter 2                                               Spectrum Sensing for Cognitive Radio: An overview 
 

22 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

the PU transmitted power and the spectrum environment. The detection performance 

improves with an increase in the SNR. 

• Sensing time: If the receiver is time-duplexed for both receiving and sensing, it is 

advantageous to have shorter sensing and longer data times [29]. If the sensing time is 

too long, the data transmission duration reduces thereby reducing the throughput of 

the SUs [29].   

• Detection range: It is an important performance criterion as it is the limit on the 

distance between the SU and the PU for a detector to sense the PU accurately [7]. It 

depends on the detection performance of the SU, sensing time, SNR at the receiver 

and spectrum environment.  

• Complexity: It is advantageous to have straightforward sensing techniques that are 

energy efficient. The hardware economics and energy efficiency through 

computational complexity of the technique is a vital criterion [29]. 

2.7 Test Statistics 

Generally, in practical scenarios, a scalar test statistic is calculated from the observation 

vector x and a threshold η splits the observation into two regions [39]. Detection is based on 

comparing the test statistic T to the threshold η in such a scenario. If the test is greater than 

the threshold, then H1 is affirmed true if not H0 is affirmed true. The chosen threshold value 

depends on the decision making scheme and the test statistics distributions under different 

hypotheses. The choice of the test statistic and decision scheme also depends on the desired 

performance parameters [39]. The received observations are assumed to be independent from 

each SU, the optimal test statistic for a simple hypothesis test under quite a few detection 

criteria is the likelihood ratio test (LRT) [43]. The LRT statistic lrtT  is given by [43]: 
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In the event that the received PU signal depends on unknown characteristics, the test 

develops into a composite hypothesis cT  [43]: 
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where iθ  for 0,1i = , are the unknown random characteristics.  

An alternative is to estimate the unknown characteristics using the maximum likelihood (ML) 

estimator and substitute the obtained parameters into the LRT. The resulting test is called the 

generalised likelihood ratio test (GLRT) [39]. The GLRT is given by [39]:                                               
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2.8 Detection Criteria 

The choice of a detection criterion is based on the optimization of the desired objective 

function involving different performance parameters discussed in section 2.6.2. There are 

several detection criteria [39]: 
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• Neyman-Pearson, 

• Bayesian, 

• locally optimum, 

• sequential detection, etc 

Neyman-Pearson (NP) increases the probability of detection for a given constraint on the 

false alarm probability [39]. Noise statistics are necessary for implementation and may be 

estimated. Bayesian formulations are used to reduce the Bayes’ risk, which depends on the 

prior probabilities of two hypotheses, cost assignments, and conditional densities of the 

observations under the two hypotheses [39]. Locally optimum detection is the optimal 

detection scheme for weak signal detection as it increases the slope of the probability of 

detection at a point where the signal strength tends to be minimal [39]. Sequential detection 

reduces the detection time for fixed false alarm and missed detection probabilities, 

respectively [39]. 

2.8.1 Optimality Criteria: Bayesian versus Non-Bayesian  

Given two decision rules (detectors) 1δ  and 2δ , one detector may be better than another 

detector in one aspect but not in another aspect. For example, detector 1δ  might be 

computationally more efficient, in that it gives the output faster compared to 2δ , whereas 

decisions of the detector 2δ  might appear to be accurate more often than those of 1δ  [44]. 

2.8.2 The Bayesian approach 

In general, there is no best trade-off. It depends on what is considered as the suitable trade-

off. The Bayesian approach is to treat the two hypotheses 0H  and 1H as being random 

themselves. That is, with the relative frequency interpretation of the probabilities, sometimes, 
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the underlying hypothesis may be 0H , and other times, the underlying hypothesis may be 1H  

[44]. The Bayesian approach assumes that there are a priori probabilities, 0p  and 1p , 

associated with each of the hypotheses 0H  and 1H  being true, respectively. If an ensemble of 

observations is considered, some of them will correspond to an underlying hypothesis 0H , 

while the others will correspond to an underlying hypothesis 1H  [44]. A given detector will 

have a MP  miss probability on those observations corresponding to an underlying true 

hypothesis 1H , while it will have a FP  false alarm probability on those observations 

corresponding to an underlying true hypothesis 0H  [44]. It is known that no detector can 

minimise both these probabilities simultaneously. However, now to find a detector that 

minimises the average (overall) error probability denoted as EP , over the whole ensemble of 

0H  and 1H hypotheses [44]: 

                                1 0 0 0 1 1

0 1

( | ) ( ) ( | ) ( )

    =p
E

F M

P H H H H H H

P p P

    


                       (2.5) 

A decision rule that minimises this average error probability Pe is called a Bayesian optimal 

decision rule or more precisely, a Bayesian minimum probability of error decision rule. In 

general, any detector that minimises a cost function averaged over a priori probabilities is 

called an optimal detector [45]. Hence, minimum average error probability detection is just 

one special case of the Bayesian optimal detection. The distinguishing feature of the Bayesian 

approach is the averaging of an assumed cost function with respect to the priori probabilities. 

Hence, the Bayesian approach presumes that [44, 45]: 

i.  Hypotheses can be modelled as endowed with a certain prior distribution. 
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ii.  This prior distribution is known. 

2.8.3 A Non-Bayesian Approach: Neyman–Pearson Optimality Criterion 

There are situations in which either or both the two key assumptions of the Bayesian 

approach may not be valid. There are situations in which either the Bayesian assumption may 

not be justified or that the prior distribution of the hypotheses may not be known. Then, there 

is a situation in which Bayesian averaging cannot be justified or cannot be evaluated [45]. 

There are many natural problems in which this is the case, including the CR spectrum sensing 

problem. When the Bayesian approach is not applicable or possible, a suitable alternative 

optimality criteria for binary hypothesis testing is needed [45, 46]. 

The two types of errors in a binary hypothesis testing problem are the missed and false 

alarms. Simultaneous minimisation of both these errors is the natural optimality criterion 

[44]. The need for alternatives arises because it is not possible to simultaneously minimise 

these two types of errors. Reducing one type of errors increases the errors of the other type, 

hence the need for a trade-off. The Bayesian minimum error probability approach was to 

minimise the weighted sum of these two types of errors, in which weights were chosen to be 

equal to the priori probabilities of the two hypotheses. Essentially, it gives the two types of 

errors an importance that is proportional to the relative frequencies of the two hypotheses [34, 

44].  

Every time the detector falsely declares the presence of a PU, network resources are still 

spent. So, there is a price, or a cost, to pay for each false alarm. If there was no cost attached 

to these false alarms, then a detector that always declared hypothesis 1H  might be reasonable 

[45]. But all practical situations of interest involve some cost attached to false alarms. In such 
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scenarios, there is a maximum limit on how much false alarms can be tolerated on average. 

This then gives a natural alternative optimality criterion that does not require Bayesian prior 

probabilities [45]. A constrained optimisation problem can be posed to find the detector that 

maximises the detection probability subject to a given maximum level of false alarms [47]. 

This is called the Neyman–Pearson optimality criterion [48]. It is a non-Bayesian approach 

since it does not assume nor does not need a prior distribution. A detector that maximises the 

detection probability subject to a maximum false alarm probability constraint is thus called a 

Neyman–Pearson optimal [44, 47]. The Neyman–Pearson formulation also arises naturally in 

the context of dynamic spectrum sharing CR systems [48]. 

2.8.4 Bayesian Optimal Detection 

Assuming a FC combines data from M local SUs, which is denoted by 1 2,...,{ , }My y y=Ty , 

The Bayesian’ criterion is to determine the decision rule so that the average cost [ ]E C , also 

known as risk ℜ , is minimised. The average cost is calculated by [45]:  

00 10 0 01 11 1
[ ] [ (1 ) ] [ (1 ) ]

F F D D
E C C P C P p C P C P p                        (2.6) 

where the cost { }, ( 0,1; 0,1),ijC C i j= = =  is the cost incurred by choosing hypothesis iH  

when hypothesis jH  is true, 0p  and 1p are the priori probabilities of hypothesis 0H  and 1H , 

respectively. FP  and DP  is corresponding to the false alarm and miss detection probability 

and are defined by [45]: 
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and 
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where , ( 0,1),jZ j =  is the region of deciding jH hypothesis and 
1| ( | )H jf Hy y , ( 0,1)j = , is the 

PDF of y  when hypothesis jH is true. Substituting equation (2.8) and equation (2.7) into 

equation (2.6), the risk function is determined by [45]: 
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Considering the terms inside the brackets of the integrand, the risk is minimised by selecting 

the decision region 0Z  to include only those points of ( )y for which the second term is larger, 

and hence the integrand is negative. Specifically, the region 0Z  are assigned to those points 

for which [45]: 
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p C C f H P C C f x H  y yy                         (2.10) 

All values for which the second term is greater will be excluded from 0Z  and assigned to 1.Z  

The values for which the two terms are equal do not affect the risk, and can be assigned to 

either 0Z  or 1Z  [45]. Consequently, if  

           
1 01 01 11 | 1 0 10 00 | 0

( ) ( | ) ( ) ( | )
H H

p C C f H P C C f x H  y yy                       (2.11) 



Chapter 2                                               Spectrum Sensing for Cognitive Radio: An overview 
 

29 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

then 1H is decided, otherwise 0H  is decided. Hence, the decision rule resulting from the 

Bayesian’ criterion is the likelihood ratio test as follows [45, 47]: 
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The likelihood ratio (LR)  ( )L y is defined by [45, 47]: 
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It is assumed the collected local data from different detectors are independent, the LR can be 

re-written as [45, 47]: 
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Substituting (2.14) into (2.12) and taking the logarithms of both sides, the log likelihood ratio 

(LLR) test statistic is obtained as follows: 
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where tΛ  denotes the LLR value of the t-th local detector and llrη is the Bayesian optimum 

threshold for making final decision. The LLR of t-th detector is determined by [12]:  
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The threshold llrη , which minimises the average cost or risk function, is calculated by [12]: 
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If the cost of an error and the cost of a correct decision are selected to be one and zero, 

respectively; that is, 01 10 1,C C= =  and 11 00 0,C C= =  then the risk function reduces to 
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Thus, in this case, minimising the average cost ℜ is equivalent to minimising the probability 

of error EP . The Bayesian’ criterion is now the minimum probability of error criterion. The 

threshold reduces to [12]: 
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2.9 Non-Cooperative Sensing Techniques  

In a realistic spectrum sensing scenario, there are situations in which only one sensing 

terminal is available, or in which no cooperation is allowed due to the lack of communication 

between sensing terminals. Single user sensing schemes are presented in this section, some of 

which will serve as basis for the development of the cooperative ones, investigated in section 

2.14. Considerable study has been done on single user spectrum sensing approaches because 

of its relationship to signal detection [11, 15, 28, 29, 36-39]. Some of these approaches 

include the energy detector [41, 49], the matched filter [21, 50] and the cyclostationary 

feature detection [5, 51]. 

2.9.1 Energy Detector  

The most well-known spectrum sensing technique is the energy detector [49]. It is based on 

the principle that the energy of the signal to be detected is always higher than the energy of 

the noise [49]. The energy detector is said to be a blind signal detector because it ignores the 

structure of the signal. It estimates the presence of a signal by comparing the energy received 

with a known threshold η  [41, 49, 52], derived from the statistic of the noise 2σ . In practice, 

instead of using the actual received energy power E, the energy detector uses the 

approximation Ê  for E  [49], where  

                                                  
2

1

1ˆ ( ) .
M

t
E y t

M =
∑                                                    (2.20)                 

As the number of samples M becomes large, then by the law of the large numbers and the 

Central Limit Theorem (CLT) Ê  converges to E  [53]. The energy detector is one of the 
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simplest signal detectors. Its operation is very straight forward and it is easy to implement, 

since it depends only on readily available information [41]. 

In spite of its simplicity, the energy detector is far from a perfect solution. One of its weak 

aspects is based on the approximation of signal energy E gets better as M increases. Thus, the 

performance of the energy detector is directly linked to the number of sample. A larger 

number of samples may lead to a longer sensing time. Furthermore, the energy detector relies 

completely on the variance of the noise 2σ  which is taken as a fixed value [41]. This is 

generally not true in practice, where the noise floor varies. Essentially this means that the 

energy detector will generate errors during those variations, especially when the average SNR 

is very low, when there is an area of uncertainty surrounding the threshold in contrast with 

when perfect noise knowledge is considered [41, 49]. 

2.9.2 Characterisation of Energy Detector in AWGN Channels 

The energy detection is the optimal signal detector in AWGN considering no prior 

information on the signal structure [21]. In order to understand the inner workings of the 

energy detector in this scenario, an understanding of how the probability of detection 

1
ˆ{ | }DP E Hη= Ρ >  and probability false alarm 0

ˆ{ | }FP E Hη= Ρ >  behaves with the measured 

received signal energy is required. 

Let’s take 2( ) (0, )n t σ   be the AWGN noise sample. It is known that for the noise only 

case, the distribution of the energy of n can be approximated by a zero mean chi-square 

distribution 2
2uχ  [41], where u  is the time bandwidth product. Similarly, the energy of a 

signal plus noise, can be represented by a non-central chi-square distribution 2
2 (2 )uχ γ , where 

γ  is the non-centrality parameter [41]. Briefly: 
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With these considerations, DP  and FP can be restated as: 

         ( 2 , )D uP Q γ η=                                                      (2.22) 

                                             
( , / 2)

( )F
uP

u
ηΓ

=
Γ

                                                          (2.23) 

where (.,.)uQ  is the generalised Marcum Q-function, (.)Γ  is the gamma function and (.,.)Γ  

is the incomplete gamma function. 

2.9.3 Characterization of Energy Detector in Fading Channels 

The performance of the energy detector in fading channels was studied in [52]. Analytical 

expressions for the energy detector over the Rayleigh fading channel case also analysed the 

Rician and Nakagami cases numerically in [52]. The problem was revisited in [49], who 

provided an alternative analytical development for these three kinds of fading channels. In 

this section, however, we will restrict the analysis to the more commonly adopted Rayleigh 

fading. Taking equation (2.21) into consideration, let the statistics of the energy of the signal 

for both the 0H  and 1H cases, be under the assumption that ( )h t  is Rayleigh distributed [49]: 
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where 22( 1)
e

ξ +
is the exponential distribution with parameter 22( 1)α ξ= +  with PDF function 

( , ) yf y e αα α −=  and ξ  is the SNR.  
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.                                                      (2.25) 

Notice that in this case the probability of false alarm FP  remains the same as in the AWGN 

case, since it is independent of the SNR [49]. However, the 1H  case behaves differently and 

by using equation (2.22) the probability of detection DP  is given by [49]: 
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                                                                                                                                (2.26) 

Although an energy detection technique can be used in an environment that has no prior 

information about the PU signal characteristics [41], it still has some boundaries:  

(i) reduced performance under low SNR situation due to not precisely establishing 

the noise variance at low SNR [54].  

(ii) its failure to differentiate between interference from other SUs sharing the PU 

channel [54].  

(iii) long sensing time to accomplish a given probability of detection [54]. 

In this thesis, we focus on energy detection due to its advantages as well as its practical uses. 
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2.9.4 Matched Filter Detector 

As described in the section 2.9.1, the best sensing technique in an AWGN environment 

without any knowledge of the signal structure is the energy detector. If some knowledge of 

the signal structure is assumed, then an improved performance can be achieved [36]. Majority 

of the wireless technologies in operation include the transmission of some sort of pilot 

sequence, to allow channel estimation, to beacon its presence to other terminals and to give a 

synchronisation reference for subsequent messages. SU systems can exploit pilot signals in 

order to detect the presence of transmissions of primary systems in their vicinity. 

If a pilot signal is known, then the matched filter signal detector achieves the optimal 

detection performance in AWGN channel [5], as it maximises the SNR. The following 

assumptions can be made [36, 55]: 

1. The signal detector knows the pilot sequence ( ),x t  the bandwidth and the centre 

frequency in which the signal will be transmitted. 

2. The pilot sequence is always appended to each primary system’s transmission. 

3. The signal detector can always receive coherently. 

If ( )y t  is a sequence of received samples at the SU, for 1,...,t M= . The decision rule can be 

stated as [50]: 
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̂  is the decision criterion, η  is the threshold to be compared and *( )x t is the transpose 

conjugate of the pilot sequence. The threshold η  is not the noise variance as it was for the 

energy detector. The hypothesis decision is simplified as the matched filter maximises the 

power of ̂  as seen in equation (2.28). This means it performs well even in a low SNR 

regime. Matched filter pilot detection for CRs has been proposed in [50, 56], for digital video 

broadcasting - terrestrial (DVB-T) standard in order to take advantage of the well-defined 

pilot structure in the DVB-T signal. 

The matched filter has some drawbacks. A SU spectrum sensor might not know which 

networks are in operation in the environment at a given moment. Therefore it may not know 

which sets of pilots to look for. If it tries to match an incorrect pilot, it will sense an absence 

of the PU signal and incorrectly conclude that the medium is free. The matched filter requires 

that every medium access be “signed” by a pilot transmission, but this is not the case in 

general. Furthermore, pilot sequences are only transmitted in the downlink direction. This 

leaves the uplink transmissions uncovered. Finally, the matched filter requires coherent 

reception, which is generally hard to achieve in practice [36]. 

2.9.5 Characterisation of the Matched Filter 

Signal detection using the matched filter was studied in [50], and shown that ̂  is Gaussian 

[50]: 
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where 2
n

  is the variance of the noise and 
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Based on this information, the probabilities of false alarm DP  and detection FP  are: 
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2.9.6 Cyclostationary Feature Detection 

Radio frequency signals are generally non-stationary with statistical properties that exhibit 

periodicity. Since the periodicity varies periodically with time, radio signals and other 

associated signals that exhibit periodicity, are referred to as cyclostationary signals [57]. In 

wireless communication, periodicity may be caused by sampling, multiplexing, modulation, 

and coding operations [57] or can also be intentionally produced to aid channel estimation 

and synchronisation. As described in section 2.9.4, although it performs well, even in the low 

SNR regime, the matched filter requires a good knowledge of the signal structure, which SUs 

may not have. The next consideration is to find out whether spectrum sensing can be 

performed with a limited knowledge of the signal structure, perhaps based on a characteristic 

that is common to most known transmitted signals [36]. 
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The cyclostationary feature detector relies on the fact that most signals exhibit periodic 

features present in pilots, cyclic prefixes, modulations, carriers and other repetitive 

characteristics [5, 51, 58, 59]. Since the noise is not periodic, the signal can be successfully 

detected. In [58] the cyclostationary feature detector is based on the magnitude-squared of the 

spectral coherence, which for any random process X  is given by [58]; 
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where XS  is the spectral correlation density function, α  is the cyclic frequency and f  is the 

spectral frequency. In the specific case of the cyclostationary feature detector, substituting 

( )Xp fα  by ˆ ( )Xp fα  and XS  by ˆ
XS , which are the estimated versions of the same quantities, 

the decision metric is given by [58]: 
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which goes into the decision statistic, given by [50]: 
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It is thought that the cyclostationary feature detector is the most promising signal detection 

technique, as it combines good performance with low requirements on the knowledge of the 

signal structure [60]. It is an optimised technique that can easily isolate the noise from the 
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PU’s signal. This is because noise is a stationary signal with no correlation, while modulated 

signals are cyclostationary signals with spectral correlation due to the embedded redundancy 

of signal periodicity [15]. This makes cyclostationary feature detection outperform energy 

detection when discriminating against noise due to its robustness to the uncertainty in noise 

power [15]. However, the drawbacks of cyclostationary feature detection, when compared 

with energy detection, are the need for a priori knowledge of the PU’s signal such as the 

modulation scheme and its implementation complexity. Another disadvantage of the 

cyclostationary detection method is its poor performance when an SU experiences shadowing 

or fading effects. This is because the method cannot distinguish between an unused band and 

a deep fade in such cases [61]. 

2.10  Other Spectrum Sensing Techniques  

2.10.1 Autocorrelation Detection 

In many cases, the autocorrelation function (ACF) of the signal is not only non-stationary, but 

is also periodic [48]. Most man-made signals show periodic patterns related to symbol rate, 

chip rate, channel code or cyclic prefix [48]. Such second order periodic signals can be 

appropriately modelled as second-order cyclostationary random processes [48]. It is highly 

probable that most of the PUs will be OFDM based systems. Hence, detecting an OFDM 

based system in a CR scenario is crucial. 

 

Figure 2.2 (a) CP based OFDM symbol (b) Corresponding autocorrelation function [36]. 
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Figure 2.2 [36] shows a CP based OFDM symbol. Let ,   and d c sT T T  be the number of data 

samples, CP and total number of samples, respectively, in an OFDM symbol, 

                                              s c dT T T= +                                                                   (2.36) 

The last cT  samples of the data information block are copied to the front of the data block.  

This results in the autocorrelation function ( , ) [ ( ) *( )]r t E y t y tτ τ= +  at lags dTτ = ±  to be 

periodic as shown in Figure 2.2. Where ( )y t  is the signal received by SUs for 1,...,t M= . 

Here t  represents the discrete time index and M  denotes the number of observation. The 

periodic autocorrelation can be expressed using the Fourier series [62] as:                                          
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where ( )kR τ is the cyclic autocorrelation function at the cycle frequency / sk T  and given by 

[62]:  
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If the received observations are denoted by [ (0),..., ( 1)]y y M τ+ − , then the ML estimate 

autocorrelation at the lagτ is given by [63]: 
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Quite a few detectors based on the correlation characteristics have been proposed to detect 

the OFDM signal in [63]. 

2.10.2 Wavelet Detection 

The wavelet detection method uses the principle of wavelet transformation where multi-

resolution analysis mechanisms decompose the input signal into different frequency 

components [64]. Each component is then studied with resolutions matched to its scales. 

Wavelet transform uses irregularly-shaped wavelets as basic functions and offers better tools 

to represent sharp changes [65]. To identify the locations of idle frequency bands, the entire 

wideband is modelled as a train of consecutive frequency sub-bands where the power spectral 

properties are smooth within each sub-band, but changes suddenly on the border of two 

neighbouring sub-bands [66]. By analysing the irregularities in the PSD properties with 

wavelet transformation, the spectrum hole can be located. Its advantage is that it can perform 

optimally without a priori knowledge information of the PU’s signal [66]. 

2.10.3 Compressed Sensing 

Energy or cyclostationary detection is based on a set of observations sampled by an analogue-

digital converter (ADC) at Nyquist rate in the band of interest [45]. In either, the spectrum 

sensing scheme senses one band at a time because of their hardware limitations on the 

sampling speed. In order to sense multiple frequency bands using either technique, the CR or 

the SU needs to use multiple radio frequency front-ends for sensing multiple bands. Hence, 

using these techniques for wideband sensing will either cause a long sensing delay or incur 

higher computational complexity and hardware cost. Recent advances in compressed sensing 

enables the sampling of the wideband signals at sub-Nyquist rate to relax the ADC 

requirements [67, 68]. Based on the assumption that the spectrum is underutilised compressed 
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sensing can be utilised to approximate and recover the sensed spectrum, which facilitates the 

detection of sparse primary signals in wideband spectrum. The techniques of compressed 

sensing provide promising solutions to promptly recover wideband signals and facilitate 

wide-bands sensing at a reasonable computational complexity [67, 68]. 

In a conventional compressed sensing scheme [69], the first step is to generate measurements 

ty  of size 1K ×  by sub-Nyquist-rate random sampling. If tr  of size 1M ×  is the discrete-

time vector of the received wideband signal ( )r t , the compressed sensing process be 

represented by ,T
t t=y S r  where TS  is the M K× projection matrix, .K M<  The second step 

is to reconstruct wideband spectrum f M t=r F r  from ty , where MF is M - point discrete 

Fourier transform. To achieve this, efficient reconstruction methods such as basis pursuit 

(BP) [25, 69], can be used to solve the following convex optimisation problem with the 

sparseness constraint in fr  [25]: 

         1
1

ˆ arg min ,    s.t. ( ) .
f

T
f t M f

−= =
r

r r y S F r                                     (2.40) 

2.10.4 Sequential Detection 

Sequential hypothesis testing has been of great interest in statistics and also in signal 

detection for many years [70]. In centralised schemes for signal detection, sequential testing 

offers the possibility of making final decisions within a given reliability requirement as soon 

as enough data has been collected to stop further data acquisition and declare a result [70]. 

Sequential procedures are useful when data acquisition is costly and when both reliability and 

decision delay are important considerations [70]. Sequential detection needs a smaller amount 
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of samples to achieve a similar performance levels as the fixed sample size (FSS) test [46]. 

The sequential detection test statistics after receiving i data samples is given by [46]: 
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where iT  is the test statistic after i data samples while aη  and bη  are the upper and lower 

thresholds. 0aη <  and 0bη >  are predetermined constants according to the sensing object.  

Detailed literature on sequential detection can be found in [39, 46, 71]. Most of the proposed 

sequential detectors are based on the sequential probability ratio test (SPRT) proposed by 

[34]. In terms of the LLRs, the SPRT [70] after receiving k data samples is 
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where mL  is the LLR corresponding to the m-th observation, 1 s

s

BA
α
−

=  and 
1

s

s

BB
α

=
−

. Here 

sα  and sB are the constraints on the probabilities of false alarm and missed detection, 

respectively. The performance of sequential detectors is generally expressed in terms of the 

average sample number (ASN) for given sα  and sB . Among all the tests with equal and or 

smaller error probabilities, the SPRT is optimal for testing simple hypotheses test as it 

minimises the ASN under 0H  and 1H  [72]. 
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2.10.5 MIMO Detector 

Multiple input multiple output (MIMO) technology uses multiple antennas at the transmitter 

and receiver to improve communication performance. MIMO systems provide direction of 

arrival information of the signal. Due to these advantages, MIMO has attracted a lot of 

attention in the field of wireless communication. MIMO is an important part of wireless 

communication standards e.g. WLAN IEEE 802.11, (3GPP) LTE-Adavnced, WiMAX. These 

multiple antennas in MIMO can also be used for the spectrum sensing tasks. MIMO can be a 

trade-off between beamforming gain, parallel sensing gain and diversity gain for detecting 

the PU. Beamforming helps improve the received average SNR while parallel sensing 

reduces the sensing time and diversity gain helps overcome the effects of the hidden terminal 

multipath fading channel which is the main focus of this thesis. Numerous MIMO sensing 

algorithms have been proposed in literature [73, 74]. 

Other methods of spectrum sensing techniques found in literature include waveform based, 

multi-taper spectral estimation, and radio identification etc. It is common to find a 

combination of sensing techniques to improve time response or save computation. Some 

solutions are more specific regarding their application and exploit some prior degree of 

knowledge about the sensing environment, either as part of the sensing strategy, or by 

definition of the approach [38]. 

2.11  Comparative Analysis of State of the Art Spectrum Sensing 

Techniques 

Various state-of-the-art sensing techniques have been presented in this chapter. In this 

section, comparisons performance simulation on some of the described spectrum sensing 
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techniques described for particular scenarios are considered. Table 2.1 shows performance 

comparison of representative spectrum sensing schemes belonging to different categories. 

Table 2.1 Comparison of spectrum sensing techniques 

Spectrum sensing technique Advantages Disadvantages 

Energy detection • Low complexity 

• No primary knowledge 

required 

• Poor performance for low SNR 

• Cannot differentiate primary 

user’s signals 

• Long sensing time 

Matched filter detection • Optimal performance 

• Low computational cost 

• Requires prior knowledge of the 

primary user's signal 

Cyclostationary detection • Robust in low SNR 

region 

• Robust against 

interference 

• Requires partial prior information 

• High computational cost 

Wavelet Detection • Efficient for wideband 

signal detection 

• Requires high sampling rate 

analog-to-digital converter 

• High computational cost 

Compressed sensing • Low sampling rate 

• Low signal acquisition 

cost 

• Efficient for wideband 

signal detection 

• Sensitive to design imperfections 

Multitaper spectral estimation • Near optimal 

performance for 

wideband signals 

• No primary knowledge 

required 

• High implementation complexity 
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It is obvious from the performance comparison Table 2.1 and discussion on advantages and 

disadvantages of the detectors, that not one single detector has the best performance for all 

scenarios. 

2.11.1 Primary Signal - DVB-T2 Signal  

The PU network signal used is assumed to be a Digital Video Broadcasting - Second 

Generation Terrestrial (DVB-T2) signal [75], hence a brief description of a DVB-T2 signal is 

given in this section.  

In CR systems, DVB-T signals are one of the most important types used by PUs in TV bands 

[75]. DVB-T2 is the world’s most advanced digital terrestrial television (DTT) system, 

offering more robustness, flexibility and 50% more efficiency than any other DTT system. It 

supports SD, HD, UHD, mobile TV, radio, or any combination thereof [75]. DVB-T2 signals 

are more resilient against certain types of interference than DVB-T. Since its publication in 

1997, over 70 countries have deployed DVB-T services and 69 countries have now adopted 

or deployed DVB-T2 [75]. This well-established standard benefits from massive economies 

of scale and very low receiver prices. Due to the European analogue switch-off and 

increasing scarcity of spectrum, DVB drew up commercial requirements for a more 

spectrum-efficient and updated standard [75]. DVB-T2 easily fulfils these requirements, 

including increased capacity, robustness and the ability to reuse existing reception antennas 

[75]. 

From a spectrum sensing point of view, important DVB-T2 parameters (see also Table 2.2) 

are represented by: channel bandwidth (that ranges from 1.7 to 10 MHz), the OFDM Cyclic 

Prefix (CP) length (that ranges from 1/128 to 1/4 of the OFDM symbol length), and the 

presence of OFDM pilots (continual and scattered) [84]. DVB-T2 uses the same error 
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correction coding as used in DVB-S2 and DVB-C2: LDPC (Low Density Parity Check) 

coding combined with BCH (Bose-Chaudhuri-Hocquengham) coding, offering a very robust 

signal. The number of carriers, guard interval sizes and pilot signals can be adjusted, so that 

the overheads can be optimised for any target transmission channel [75]. The presence of pre-

determined patterns in the transmitted DVB-T2 signal determines the cyclostationary 

property shown by OFDM signals. DVB-T2 uses OFDM modulation with a large number of 

sub-carriers delivering a robust signal, and offers a range of different modes, making it a very 

flexible standard [75]. 

Table 2.2 Main parameter of DVB-T2 

 DVB-T2 

FEC LDPC + BCH 1/2 , 3/5, 2/3, 3/4, 4/5, 5/6 

Modes QPSK, 16QAM, 64QAM, 256QAM 

Guard interval 1/4, 19/256, 1/8, 19/128, 1/16, 1/32, 1/128 

FFT size 1K, 2K, 4K, 8K, 16K, 32K 

Scattered Pilots  1%, 2%, 4%,8% of total 

Continual Pilots  0.4%-2.4%(0.4%-0.8% in 8K-32K) 

Bandwidth 1.7, 5, 6, 7, 8, 10 MHz 

Typical data rate (UK) 40 Mbit/s 

Max. data rate (@20 dB C/N) 45.5 Mbit/s (using 8M Hz/) 

Required C/N ratio (@24 Mbit/s 10.8 dB 

 

As a common assumption in the literature on spectrum sensing, the primary signal is 

modelled as a Gaussian process. In [75], it is shown that in the case of DVB-T2 signals, this 

assumption is well motivated. In this thesis, in most chapters a DVB-T2 signal is assumed to 

be the PU signal. 
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2.11.2 Simulation Results 

In order to evaluate the performance of some of the main techniques for spectrum sensing, 

simulation are carried out using theoretical test statistics, which can be found in Table 2.3. 

The energy detector requires the noise power 2
nσ  to be known. The Autocorrelation detector 

does not require any knowledge about the noise power 2
nσ , but the number of data samples 

dT  is known. For the pilot detector the noise power 2
nσ , the number of data samples dT  and 

cT  the number of samples in the CP are known.  

Table 2.3 Summary of Detectors 

Detector Reference Test Statistic Prior 

Knowledge 

Pilot [76] 1

{0,1,...,4( ) 1} 0
max [ ] *[ ]
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pT T k
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− −

∈ + −
=
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Autocorrelation [48] 1
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dT  

  where  

dT : number of data samples,  

cT : number of samples in the CP 

M : total number of samples 

ps : deterministic signal 

[ ]y k  : time discrete received sequence  

[ ]r k : sample value product 
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The PU network is assumed to be a DVB-T2 signal as in [78], the bandwidth of the PU signal 

is 8 MHz, and modulation type QPSK. The average occupancy rate for the PU is set to 50%, 

i.e. the probability of presence and absence of the PU signal is fixed to an equal probability 

(0.5), respectively. AWGN, Rayleigh and Rician channels are considered.  

The simulation was based on the Monte Carlo method in MATLAB with 100,000 iterations. 

The three main sensing schemes are considered i.e. energy detector, matched filter and 

autocorrelation detector. A summary of the simulation parameters which is common for all 

scenarios for analysing the detectors algorithm’s performance evaluation is shown in Table 

2.4. 

Table 2.4 Simulation parameters for the detector’s algorithm 

Parameter Value 

PU bandwidth 8 MHz 

Local sensing 50 µs 

Frame length 60 

FEC blocks per frame 50 

Channel condition AWGN, Rayleigh 

SNR range -40dB to 0 dB 

Iterations 100,000 

DVB-T2 signal mode 2K 

False alarm probability  0.05 

SU 1 

Sensing time 10ms, 50ms 
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Figure 2.3 Probability of detection comparison between “Energy detector”, “Matched filter” 
and “Autocorrelation detector” under conditions with SNR = -40 dB to 0 dB for an AWGN 

channel. Sensing time = 10 ms. 

 

 

Figure 2.4 Probability of detection comparison between “Energy detector”, “Matched filter” 
and “Autocorrelation detector” under conditions with SNR = -40 dB to 0 dB for Rayleigh 

fading. Sensing time = 10 ms. 
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In Figure 2.3 and Figure 2.4 a probability of detection as a function of SNR for a pilot, 

energy and autocorrelation detector are illustrated, with SNR ranging from -40dB to 0dB and 

probability of false alarm 0.05FP = . An AGWN channel and Rayleigh channel with 10 ms 

sensing time was considered in Figure 2.3 and Figure 2.4, respectively. It has been observed 

that the pilot based detector outperforms both the energy detector and the autocorrelation-

based detector. For example, at -25dB under Rayleigh conditions, the pilot detector had an 

improvement in detection of approximately 66% and 80% over the energy detector, and 

autocorrelation-based detector, respectively. Apart from the pilot based detector the other 

presented algorithms do not rely on the information about the structure of the PU signal. The 

only assumption is that the length of the cyclic prefixes and total duration of the symbol are 

known for the autocorrelation detector.  

 
Figure 2.5 Probability of detection comparison between “Energy detector”, “Matched filter” 

and “Autocorrelation detector” under conditions with SNR = -40dB to 0dB for Rayleigh fading. 
Sensing time = 50 ms. 
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of false alarm 0.05FP = . A Rayleigh channel with 50 ms sensing time was considered. That 

is, the sensing time was increased in Figure 2.5 compared to that of Figure 2.4 while keeping 

all other parameters the same. It was observed that as the sensing time increased from 10 ms 

to 50 ms the detection probability increased for all the detectors. For example in the pilot 

detector at SNR = -30dB there was a detection increase rate of approximately 12%. While for 

energy detector and autocorrelation detector, there was an increase of approximately 10 % 

and 5 % respectively. It was observed that the pilot detection has the highest detection gain at 

a low SNR (-40dB). However, it requires perfect synchronisation making it highly vulnerable 

to frequency offsets.  

 

Figure 2.6 Probability of detection comparison between “Energy detector”, “Matched filter” 
and “Autocorrelation detector” under conditions with SNR = -40dB to 0dB for Rician fading. 

Sensing time = 10 ms. 

In Figure 2.6, a probability of detection as a function of SNR for a pilot, energy and 

autocorrelation detector are illustrated, with SNR ranging from -40dB to 0dB and probability 

of false alarm 0.05FP = . A Rician fading (K=5) channel with 10 ms sensing time was 

considered. It has been observed that the pilot based detector outperforms both the energy 
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detector, and autocorrelation-based detector just as in the AWGN and Rayleigh case. A 

general observation when comparing all the scenarios is that the channel type does not 

influence the performance of the presented algorithms by a great deal, with the exception of 

the pilot based detector. Thus, even when the channel is frequency selective, the PU signal 

can be exploited for detection. In spite of which spectrum sensing scheme is employed, each 

algorithm provides a trade-off between the probability of false alarm and the probability of 

detection.  

2.12  Cooperative Spectrum Sensing 

In CSS, information from multiple SUs are incorporated for the detection of the primary 

signal. In the literature, cooperation is discussed as a solution to problems that arise in 

spectrum sensing due to the hidden terminal problem [5, 79]. 

The hidden terminal 

The hidden terminal problem in CSS is similar to the hidden node problem in Carrier Sense 

Multiple Accessing (CSMA) [36]. This problem can be caused by many factors including 

severe multipath fading or shadowing that SUs observe while scanning PUs transmissions 

[36]. Figure 2.7 shows an illustration of the hidden terminal problem, where the building 

causes unwanted interference to the primary transmitter signal leading to multipath fading 

and shadowing on the signal received by an SU [61]. 

Spectrum sensing using a single CR has a number of limitations. Firstly, the sensitivity of one 

sensing device might be limited due to energy constraints. Furthermore, in wireless channels, 

the hidden terminal problem will lead to a very low SNR [61]. Although the CR might be out 

of sight from the PU’s transmitter, this does not mean it is also blocked from the PU’s 
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receiver. As a result, the PU is not detected but the secondary transmission could still 

significantly interfere at the PU’s receiver. In this thesis, CSS is considered to optimise, 

improve the sensitivity of CR spectrum sensing and to make it more robust against the hidden 

terminal problem. 

SU

PU

SU

SU

SU

SU

SU

FC

PU: Primacy User
SU: Secondary User
FC: Fusion Centre

Shadowing 

Multi-path fading

 

Figure 2.7 Illustration of the hidden terminal problem in cognitive radio systems. 

The main idea of CSS is to use multiple CR users and combine or fuse their measurements 

into one global decision. There are typically two components in a CSS scheme; namely the 

local sensor and the fusion centre (FC). The local sensor can be any of the detectors which 

were presented in section 2.9, in this thesis the local sensor is assumed to be embedded to the 

SU. Consequently, each local SU will collect the information of the primary signal, such as 
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energy, basic probability estimate (BPA), maximum likelihood estimate (MLE) and log-

likelihood ratio (LLR). Give that not all spatially distributed SUs in a CR environment will 

simultaneously experience similar shadowing or fading i.e. the hidden terminal problem. 

Hence, when the SUs cooperate with each other and share the spectrum sensing results 

among each other, the combined cooperative decision derived from the spatially collected 

observations can overcome the deficiency of individual observation of each SU. 

2.12.1 Advantages of Cooperative Spectrum Sensing 

The performance of spectrum sensing depends on the local channel conditions of the CR, i.e. 

it depends on the multipath, shadowing and local interference. These conditions can result in 

regimes where the SNR is below the detection threshold of the local CR, resulting in missed 

detections and in false alarms creating the impact mapping illustrated in Figure 2.8. To 

overcome this limitation the use of cooperation has been proposed in several works [42, 45, 

64, 80-82]. Advantages of CSS over non-CSS include: 

i) Diversity gain: Since the signal strength varies with the CRs location, the worst 

fading conditions can be avoided, if multiple CRs in different spatial locations 

share their local sensing measurement, i.e. take advantage of the spatial diversity. 

Taking advantage of spatial diversity leads to a higher accuracy of detection of the 

primary due to a higher accuracy in signal detection multipath, shadowing and 

local interference [36].  

ii) Sensing time: The longer the sensing time of a CR the higher the probability of 

detecting the PU signal but the less the throughput. Using multiple CRs the 

sensing time can be reduced. CSS reduces the sensing time, and thus it increases 

transmission throughput [61] .  
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iii) Robustness: Robustness to changing networks and fast convergence is yet another 

advantage of CSS [61]. Other advantage of CSS includes increased coverage and 

simpler detector design. 

 Some draw backs of CSS include [36]: 

• Higher complexity to the CR system collaboration, higher power demands, and 

increased overhead traffic. 

• The information forwarded to FC implies requires a dedicated control channel and a 

consequent coarse synchronisation to avoid a modification of the electromagnetic 

environment during the spectrum sensing phase. 

• The increase of the number of SUs leads to a consequent increment in costs. 

 

Figure 2.8 Impact mapping of the radio environment and sensed radio environment [36]. 

CSS are categorised into three classes based on how cooperating CR users share the sensing 

measurement within the network namely centralised, distributed and relay-assisted, and they 

are illustrated in Figure 2.9, Figure 2.10 and Figure 2.11, respectively. 
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2.12.2 Centralised Cooperative Spectrum Sensing 

In a centralised CSS, a central node called the master node or FC controls the three step 

process of CSS. Firstly, the FC selects a channel or a frequency band of interest for sensing 

and instructs all cooperating SUs to individually perform local sensing. Secondly, all 

cooperating CR users report their sensing results via the control channel. Then the FC 

combines the received local sensing information, determines the presence of PUs, and 

diffuses the decision back to cooperating SUs. As shown in Figure 2.9, the FC is the master 

node and SU1-SU5 are the cooperative SUs performing local sensing and reporting the 

sensing data back to the FC. The FC collects sensing information from SU1-SU5, identifies 

the vacant spectrum and broadcasts the information to SU1-SU5 [36]. The centralised CSS 

can occur in either a centralised or distributed CR networks. In centralised CR networks, a 

CR base station (BS) is naturally the FC. Alternatively, in CR adhoc networks (CRAHNs) 

where a CR BS is not present, any SU can act as a FC to coordinate CSS and combine the 

sensing information from the cooperating neighbours [83]. 

 

Figure 2.9 Centralised Cooperative Spectrum Sensing [36]. 
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2.12.3 Distributed Cooperative Spectrum Sensing 

Distributed CSS, as shown in Figure 2.10 does not rely on the FC for making the final global 

decision. In this case, SUs communicate among themselves and converge to a unified 

decision on the presence or absence of PUs by iterations. As shown in Figure 2.10, after local 

sensing, SU1-SU5 share their local sensing results amongst each other and make their own 

decisions as to which part of the spectrum they can utilise. If there are no evident decisions 

after this initial process, SUs pass their combined results to other users and repeat the sensing 

process until the scheme is converged and a decision is reached [16]. The disadvantage of 

distributed CSS is a decision delay possibility because several iterations may be required to 

reach a unanimous cooperative decision hence increasing the chance of the PU interference. 

To overcome this limitation, different decision strategies may be used, which result in 

different delay [36]. 

 

Figure 2.10 Distributed Cooperative Spectrum Sensing [36]. 
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2.12.4 Relay-assisted Cooperative Spectrum Sensing 

A relay-assisted CSS can be used to overcome the imperfection in both sensing and reporting 

channels. Meaning, a SU experiencing a weak sensing channel and a strong reporting 

channel, and a SU experiencing a strong sensing channel and a weak reporting channel can 

complement and collaborate with each other to improve the overall performance of the CSS 

[66]. In Figure 2.11, SU1, SU4, and SU5, who observe strong PU signals, may suffer from a 

weak reporting channel. SU2 and SU3 who have strong reporting channels serve as relays to 

assist in forwarding sensing results from SU1, SU4, and SU5 to the FC. The reporting channels 

from SU2 and SU3 are known as relay channels [36]. Although Figure 2.11 shows a 

centralised structure, the relay-assisted CSS can exist in a distributed scheme. In fact, when 

the sensing results need to be forwarded by multiple hops to reach the intended receive node, 

all the intermediate hops are relays. Thus, if both centralised and distributed structures are 

one-hop CSS, the relay-assisted structure can be considered as multi-hop CSS. 

 

Figure 2.11 Relay-assisted Cooperative Spectrum Sensing [36]. 
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2.13  Data fusion Schemes 

In CSS, data fusion is an element of CSS for combining local sensing data for hypothesis 

testing. Reported sensing results maybe of different forms, types, and sizes depending on the 

control channel bandwidth requirement. In common, the sensing data sent to the FC or shared 

with neighbouring users can be combined in three different ways [84]:  

• Hard Combining: CR users make a local decision and transmit the one-bit decision 

for hard combining at the FC. 

• Soft Combining: CR users can transmit the entire local sensing samples or the 

complete local test statistics for soft decision.  

• Quantised Soft Combining: CR users can quantise the local sensing results and send 

only the quantised data to the FC for soft combining in order to alleviate the control 

channel communication overhead.  

Soft combining at the FC can achieve the best detection performance among all the three but 

at the cost of control channel overhead, while the quantised soft combining and hard 

combining require much less control channel bandwidth with possibly degraded performance, 

due to the loss of information from quantisation. The fusion rules for the CSS schemes can be 

classified as lossless fusion and lossy fusion [36]. 

2.13.1 Lossless fusion 

Each SU can send an adequate statistic, such as, a maximum likelihood ratio (MLR) or LLR 

of its observations to the FC, where it is possible to fuse the decision statistics such that there 

are no performance losses in such a CSS scheme. Each of the N cooperating SUs evaluates a 

LLR Ln and sends it to the FC. The LLR Ln at the n-th SU is given by [85]: 



Chapter 2                                               Spectrum Sensing for Cognitive Radio: An overview 
 

61 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

   
1

1

0
1

( ( ) )
log

( ( ) )

M

n
t

n M

n
t

p y t H
L

p y t H

=

=

=
∏

∏
                                                   (2.43) 

where ( )ny t  are the observations at the n-th SU. For t = 1,2,…, M, here t represents the 

discrete time index and M denotes the number of observations. Assuming the independence 

of the observations at the SUs are conditioned on either hypothesis, the optimal statistics 

formed at the FC is given by [85]: 
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While the equivalent LLRT is given by [85]: 

                                             
1

0

H

llr llrH
T η>= <                                                           (2.45) 

where llrη  is the threshold at the FC. 

2.13.2 Lossy fusion 

Soft Fusion 

It may become impractical to implement a lossless fusion rule at the FC at certain times due 

to the difficulty in evaluating the sufficient statistic or the threshold [36]. An alternative is to 

use the maximum ratio combining (MRC) or equal gain combining (EGC) for N cooperating 

SUs by using a linear fusion rule given by [86]: 
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=∑  [39]. ( )y t  is the observations at the n-th SU. For t = 1, . . . , M, here t represents the 

discrete time index and M denotes the number of observations. The optimal combining 

coefficients can be found for the MRC if the source signal power received by each user is 

known [39]. For the low SNR scenario, the optimal weights [14] are given by 
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w σ σ
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= ∑ , where 2
,s nσ  is the received signal power at the n-th SU. If there is no 

information on the source signal power received by each user, EGC can be used where the 

weighting coefficients are given by 1/ ,n nw N= ∀  [36]. 

Hard Fusion 

In hard decision (HD) combining, each of the SUs sends a one-bit HD to the FC which fuses 

these decisions to arrive at the global decision. Examples of one-bit HD combining are 

Boolean fusion rules such as OR, AND, and majority which are special cases of the general 

K-out-of-N rule. Those decision fusion rules can be summarised as below [87]: 

• K-out-of-N rule: In this fusion rule, the FC decides on the presence of the PUs 

transmission if, and only if, K or more than K SUs out of the total N cooperating SUs 

report the detection of the PU signal, where [1, ].K N∈  Therefore, in the K-out-of-N 

rule, if K users or more decide in favour of 1H , then the cooperative decision declares 
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that 1H  is true. If the decisions from all the SUs are independent, the network 

probabilities of detection and false alarm are, respectively, given by [14]: 
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where ,d nP and ,f nP  are the probabilities of detection and false alarm of the n-th SU 

and ! .
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• Majority voting (MV) rule: In the MV fusion rule, also known as half voting rule, if 

half, or more than half, the local SUs decide that there is a PUs transmission, then the 

final decision at the FC declares that there is a PUs transmission [87]. Therefore, for 

the MV rule, the cooperative decision declares 1H only if half or more than half of the 

SUs decide on 1H , i.e., 
2
NK  =   

 in equation (2.47) and equation (2.48), where 
2
N 

  

denotes the smallest integer not less than 
2
N . If the decisions from all the SUs are 

independent, the network probabilities of detection and false alarm are given by [14]: 
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• Logical OR rule: In this fusion rule, the fusion decides on the presence of PUs 

transmission if any of the SUs reports the detection of the PUs transmission. 

Therefore, for the OR rule, the cooperative decision declares 1H  if any of the SUs 

decide on 1H , i.e., setting 1K =  in equation (2.47) and equation (2.48). Since a SU 

occupying a licensed frequency band may cause interference to the PUs, the risk of 

SUs causing interference to the PUs is minimised using the logical OR rule. If the 

decisions from all the SUs are independent, the network probabilities of detection and 

false alarm are, respectively, given by [14]: 
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• Logical AND rule: In the AND fusion rule, if all local detectors decide that there is a 

PUs transmission, then the final decision at the FC declares that there is a PUs 

transmission [87]. Therefore, for the AND rule, the cooperative decision declares 1H

only if all of the SUs decide on 1H , i.e., setting K = N in (2.47) and equation (2.48). 
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Using this fusion rule, the probability of false alarm is minimised, but the risk of 

causing interference to PUs will increase. If the decisions from all the SUs are 

independent, the network probabilities of detection and false alarm are, respectively, 

given by [14]: 
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Advantages of HD combining include being easy to implement and reducing the bandwidth 

requirement on the reporting channel between the SUs and the FC. These advantages come at 

the cost of performance loss resulting from the quantisation. HD combining has been studied 

in the detection literature [39, 88]. If nx  is the decision sent by the n-th SU, then the optimal 

fusion rule for both the Bayesian formulation and NP formulation is a likelihood ratio [39]. 
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This fusion rule is also known as the Chair-Varshney fusion rule and is a weighted sum of 

incoming local decisions, where the weights are dependent on the local probabilities of false 

alarm ,f iP  and missed detection ,m iP .  
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In general, it can be concluded that there is more performance gain with soft combining than 

in the case of hard combining. However, the performance difference between soft and hard 

combining can be relatively small [89]. 

2.14  Cooperative Spectrum sensing techniques 

In this section, some of the state-of-the-art CSS techniques will be discussed. 

2.14.1 Voting Based Sensing 

It is expected that among several SUs, even though some will suffer from fading or 

imprecision due to the choice of the threshold, some will be able to correctly sense the PU. 

This is the main idea behind the collaborative spectrum sensing based on voting, researched 

in a number of works [50, 79, 90]. In a voting spectrum sensing scheme each secondary 

receiver iRX  uses spectrum sensing to form its own decision. Consider the vector of all 

responses r   such that: 

                                             1 2 3[   ... ],Mr r r r=r                                                          (2.56) 

where {1,0}ir ∈  is the binary response for each sensor I, M denotes the number of 

observations. After all measurements are gathered the voting procedure takes place [50, 79, 

90]: 

                                         0
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where 
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The voting schemes selects 1H  if at least one of the SUs decides for 1H , which is known as 

the OR rule. Although this may seem too pessimistic, as it will favour false alarms, according 

to [50, 79, 90], this already gives improvements over the simple energy detection case even 

for two users. The probabilities of detection and false alarm for the cooperative approach are 

[23]: 

 1 (1 )M
F FQ P= − −                                                          (2.59) 

and 

   1 (1 )M
D DQ P= − − ,                                                  (2.60) 

respectively.  

2.14.2  Eigenvalue Based Sensing 

Eigenvalue based sensing is a CSS technique, based on evaluating the eigenvalues of a matrix 

formed by the samples collected by multiple sensors in relation to the Marchenko-Pastur law 

[91]. In order to better understand how this spectrum sensing procedure works, the following 

assumptions are made: The K base stations in the secondary system share information 

between them. This can be performed by transmission over a wired high speed backbone, 

where the base stations are analysing the same portion of the spectrum. Considering the 

following M N×  matrix consisting of the samples received by all the M SUs iRX  [91]: 
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Then, the objective of the eigenvalue based approach is to perform a test of independence of 

the signals received at iRX . In the 1H case, all the received samples are expected to be 

correlated, whereas when in the 0H  case, the samples are decorrelated [92]. The eigenvalues 

of the covariance matrix are computed, and in turn, are used to compute the test statistic as 

given in [92]. Two test statistics are proposed by [92] based on the maximum max( )ε  and the 

minimum min( )ε  eigenvalues. The test statistic is given by [73]:  

 max
1

min
evT ε η

ε
>= <                                                              (2.62) 

known as the max-min eigenvalue (MME) technique with threshold 1η , and 

 
min

evT ξ
ε

=                                                                  (2.63) 

known as the energy with minimum eigenvalue (EME) technique with threshold 2 ,η where ξ

is the energy of the sensed signal. The detection methods based on the test statistics above do 

not require the knowledge of the noise power but are based purely on the sensed signal itself, 

thus considered to be fully blind sensing techniques [92].  
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2.15 Performance Criteria for CSS 

Cooperation among SUs leads to gain and overhead as compared to a single local sensing 

case. Cooperation gain can be any improvement in one or more of the performance 

parameters while cooperation overhead can be any degradation in one or more of the sensing 

performance parameters. Generally, most of the performance parameters for a CSS algorithm 

are the same as for the local sensing algorithms explained in section 2.6.2. A few parameters 

which are specific to CSS are: 

Delay: It is the time taken to report the decision statistics from the SUs to the FC and 

processing the statistics at the FC. Cooperation delay adds to the local sensing time hence 

increasing the overall sensing time band. Therefore this constraint should be as small as 

possible. 

Reporting overhead: A reporting channel is needed for sharing sensing information with the 

FC or other SUs. The reporting channel can be a dedicated channel in licensed or unlicensed 

bands. Reporting overhead is the amount of bandwidth and energy required for reporting the 

sensing information through the reporting channels hence determines the size of cooperation 

between SUs. 

Number of SU: Performance gain in CSS depends on the number of SUs. It is a good idea to 

have as few SUs as possible since the reporting overhead increases with an increase in the 

number of SUs. For AWGN channels, the gain is predominantly SNR gain that increases with 

the number of cooperating SUs. On the other hand, the diversity gain for multipath channels 

is obtained with diminishing returns as the number of SUs increases.  
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Security: Sensing a frequency band requires energy and time. Therefore, SUs have a 

motivation to sense for a shorter duration. The resource allocation of the vacant frequency 

bands is based on the quality of decisions the SUs send. Therefore, there is an incentive for 

malicious users to fake the detection results. The presence of un-trusted SUs has been shown 

to degrade CSS performance [37, 93, 94]. 

Imperfect reporting channels: Erroneous reporting channels corrupt the decision statistics 

sent by the SUs to the FC. This may increase the probabilities of error at the FC [95] and thus 

affect the CSS performance. 

2.16 Literature Reviews and Problem Formation 

There are many research problems that need to be investigated in CSS in CR network 

systems. Firstly many researchers have concentrated on improving the accuracy of the 

detection. In [90, 96] a double threshold energy detector is used. A censoring method using 

double thresholds in energy detection was proposed to reduce the communication traffic [97].  

Deriving from this idea and in contrast to [97], in chapter 3 a relay based Amplify and 

Forward (AF) CSS using, an improved cooperative ED to improve the local probability of 

detection and hence, the global probability of detection and in making sure the sensed data is 

accurately received at the FC is proposed. One of the main advantages of using AF 

cooperation is the potential for reduced complexity of relay's architecture [98]. The relay is 

not required to decode, and is not required to know what coding strategy is employed. 

Secondly, researchers have focused on sensing performance problem. An adaptive rule and a 

linear quadratic rule at the FC were considered in [99] and [83], respectively. However, using 

weighting factors [47, 100, 101] are the most popular method due to computational 



Chapter 2                                               Spectrum Sensing for Cognitive Radio: An overview 
 

71 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

complexity. The weighting factor can be the credibility of each local node based on local 

SNR, between PU and SUs. By fusing the weighting factor at FC, the local sensing data 

becomes more reliable and gives a greater contribution to the overall global decision. As a 

result, an improved detection performance can be achieved. Deriving from this idea, in 

chapter 4, A novel evidence-based decision fusion scheme CSS for CR networks that uses 

both a credibility of SUs sensing data evidence and dissociability degree measure of SUs 

sensing data evidence, in the form of a weighted averaging factor that is then taken into 

account when making the final decision at the FC was proposed. 

The final issue considered in CSS was to reduce the bandwidth of the reporting sensing data 

from the SUs to the FCs.  Reducing the bandwidth decreases the sensing time hence 

increasing detection probability, increasing through put and reducing interference. This 

problem is crucial in a soft decision based CSS scheme. A lot of research focuses on 

quantisation of the soft sensing data [12, 102-104] to reduce the bandwidth of the reporting 

channel. Nevertheless, more or less these works have drawback. As a result, the problem of 

quantisation for CSS is investigated in chapter 5. 

2.17 General System Model 

To investigate, design and analyse the problems mentioned in section 2.16, a general system 

model which will be used in the next chapters of this thesis, unless stated otherwise, is 

described in this section.  
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Figure 2.12 General system model: cooperative spectrum sensing 

The CSS scheme considered for detecting PU’s signal is shown Figure 2.12. Each SU 

performs a local sensing process and subsequently reports the sensing data to the FC. The 

global decision on the occupation of the PU signal is made at the FC. The spectrum sensing 

frame in Figure 2.13 describes the process. 

Sensing Frame

Sensing Data Transmission 

FC
Request
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channel 
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Reporting 
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Figure 2.13 System model cooperative spectrum sensing frame. 
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The sensing frame starts with the FC sending a sensing request message to the SUs. All the 

individual SUs enter into a quiet mode i.e. none utilise the channel and perform local 

spectrum sensing in the sensing phase. Each SU using a reporting mechanism then sends their 

sensing data to the FC in the reporting phase. Hence, the SUs send their local sensing 

information in intervals of one’s per sensing frame. 

2.17.1 Local Spectrum Sensing Algorithm 

Individual SUs perform local spectrum sensing in a distributed manner for detecting the PU 

signal. Local sensing is in effect a binary hypotheses testing predicament as described in 

section (2.6.1). Comparing the different algorithms for spectrum sensing, energy detection 

has been established to be the least complex one that reduces overhead, and is quickly able to 

detect the PU signal, even if the PU signal is unknown [49]. In this thesis, energy measure 

detection is considered for local spectrum sensing in all chapters unless otherwise stated.  

2.17.2 Energy Measure 

To measure the value of a single power in a practical frequency band in time domain, a band 

pass filter is applied to the received primary signal at the SUs and the power of the signal 

samples is subsequently measured as shown in Figure 2.14 

 

Bandpass 
Filter ADC

( )y t Ey
2

1

N

E i
i

y y
=

=∑
 

Figure 2.14 Block Diagram of an energy detection scheme. 

The decision statistic is an estimation of the received signal power which is given at each SU 

by the sensing matrix: 
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where yi is the i-th sample of received signal and N = 2TW, where T and W are correspondent 

to detection time and signal bandwidth in Hz, respectively. It was proved in [77] that the 

probability density function of the received PUs signal energy at an SU Ey , is a Chi-square 

distribution such that 
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where 2
Nχ  is the central Chi-square distribution with N degree of freedom, and 2 ( )N Nχ γ  is a 

non-central Chi-square distribution with N degree of freedom and a non-centrality parameter 

Nγ . γ  is the SNR of the PU signal at the SUs. In the absence of knowledge of the PU signal, 

when the number of required samples N is relatively large, Ey  can be approximated a 

Gaussian random variable under both hypotheses H0 and H1, with mean 1µ , 0µ  and variance 

2
1σ , 2

0σ , respectively, such that [49]: 
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where the SNR γ  is a constant in a non-fading AWGN environment. However, in a fading 

channel scenario, the SNR γ  is a random variable [49, 79, 105, 106].  
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2.17.3 Physical phenomena for fading channels 

In this section, various fading channels are considered. Multipath fading is due to the 

constructive and destructive combination of randomly delayed, reflected, scattered, and 

diffracted signal components. This type of fading is relatively fast and is therefore 

responsible for the short-term signal variations. Depending on the nature of the radio 

propagation environment, there are different models describing the statistical behaviour of the 

multipath fading envelope.  

When fading affects narrowband systems, the received carrier amplitude is modulated by the 

fading amplitude α , where α  is a random variable with mean-square value 2αΩ = and 

probability density function (PDF) ( )fα α , which is dependent on the nature of the radio 

propagation environment. The received instantaneous signal power is modulated by 2α . Thus 

we define the instantaneous SNR per symbol by 2
0sE Nγ α=  and the average SNR per 

symbol by 0 ,sE Nγ = Ω  where sE  is the energy per symbol. In addition, the PDF of γ  is 

obtained by introducing a change of variables in the expression for the fading PDF ( )fα α  of 

α , yielding [107]:  

                                              
 
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2
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

 








                                              (2.67) 

In this thesis, for Shadowing, Rayleigh fading, Nakagami fading and Rican fading the 

following assumption are made below: 

Shadow fading: In terrestrial and satellite land-mobile systems, the link quality is also 

affected by slow variation of the mean signal level due to the shadowing from terrain, 
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buildings, and trees. Based on empirical measurements, there is a general consensus that 

shadowing can be modelled by a log-normal distribution for various outdoor and indoor 

environments in which case the path SNR γ  of the PU signal at the i-th SU has a PDF given 

by the standard log-normal expression [107]: 

         
2

10
2

(10log )( ) exp   
22

fγ
γ µξγ

σπσγ
 −

= − 
 

                                    (2.68) 

where 10 / ln10ξ = , ( )dBµ  and ( )dBσ  are the mean and standard deviation of 1010 log ,γ   

respectively. 

Rayleigh fading: The Rayleigh channel model is a fading channel model, which is often 

used to describe propagation where there is no line-of-sight (LOS) from the PU to the SUs, 

such as in mobile links, ionospheric and tropospheric scattering, and ship to ship radio links. 

The amplitude of the signal follows a Rayleigh distribution. In this case the channel fading 

amplitude, is distributed according to [107]: 
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and hence, following (2.67), the instantaneous SNR γ of the PU signal at the i-th SU follows 

an exponential distribution [105] whose PDF is given by: 
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γγ γ
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                                              (2.70) 

Nakagami-m fading: The Nakagami-m channel model is a general multipath fading model. 

It is used to model attenuation of signals traversing multiple paths. It is often used to describe 
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fading in both indoor and outdoor mobile radio links as well as in ionospheric radio links. 

The Nakagami-m PDF is in essence a central chi-square distribution given by [107]: 
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where m is the Nakagami-m fading parameter which ranges from 1
2

 to ∞  and measures the 

severity of the effect of multipath fading. Applying (2.67) the SNR γ of the PU signal at the 

i-th SU, is distributed according to a gamma distribution given by [107]: 
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                                      (2.72) 

Smaller values of m indicate more severe fading, while larger values indicate less severe 

fading.  

Rician fading:  The Rician distribution, also known as the Ricean, Rice or Nakagami-n 

distribution, is a further general model describing the effects of multipath fading. It is often 

used to model propagation paths consisting of one strong direct LOS component and many 

random weaker components. It finds most use in the analysis of urban and suburban mobile 

radio links, pico-cellular indoor radio links, satellite links and ship to ship radio links. The 

channel fading amplitude follows the distribution [107]: 
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                                                                                                                                            (2.73) 
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where n is the Nakagami-n fading parameter which ranges from 0 to ∞  and which is related 

to the Rician K factor by 2.K n=  K measures the severity of the effects of the multipath 

fading. Applying (2.67) the SNR γ of the PU signal at the i-th SU, is distributed according to 

a non-central chi-square distribution given by [107]: 

22 2 2

0
(1 ) (1 ) (1 )( ) exp 2 ,       0

nn e n nf I nγ
γ γγ γ

γ γ γ

−   + + +
= − ≥       

     (2.74)                                                                         

 where 0 ( )I z  represents the zeroth order modified Bessel function of the first kind. 

2.18  Conclusion  

This chapter presented the concept of spectrum sensing which is one of the fundamental 

prerequisites for the successful deployment of CR networks. Reviews have been presented on 

different problems related to the DSA and standardisation efforts. Several important aspects 

of spectrum sensing schemes have been reviewed such as detection strategies, performance 

parameters and test statistics. State-of-the-art sensing algorithms were reviewed and is seen 

that several tools from diverse fields like spectrum estimation, compressive sensing, MIMO 

systems, etc., have been applied to design the sensing schemes for CRs. 

 
The most common spectrum sensing techniques with which the SUs are able to monitor the 

activities of the PU were discussed. Various spectrum sensing techniques are used in the 

literature depending on how much knowledge about the primary signal is available to the 

SUs. In general, the spectrum sensing techniques can be classified as energy-based sensing, 

feature-based sensing, matched filter-based sensing and other sensing techniques. It is 

assumed that the probability of detection can be improved with the increase in the knowledge 

of the PU signal and noise at the cost of complexity.  
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Physical characteristics of a DVB-T2 signal which is one of the most important types used by 

PUs in TV bands and which will be used for as the PU signal network for the rest of the 

thesis have been presented. It is clear from the simulated performance comparison and 

discussion on the pros and cons of the detectors that no one detector has the best performance 

for all scenarios. Energy detection is the most commonly used technique for spectrum sensing 

since it has low computational and implementation complexities and prior knowledge of the 

PUs signal is not needed. However it has the serious issue of SNR walls in the presence of 

noise uncertainty. Autocorrelation detectors have advantages of reasonable performance, low 

complexity and robustness to most of the non-idealities. However they cannot be used to 

detect PU signals other than OFDM. An added advantage of the energy and autocorrelation 

detector is that they do not often need any extra hardware as the functions used by these two 

detectors are very basic and incorporated in almost every radio receiver. The matched filter 

detector has the best performance to detect a known PU signal in AWGN. However it is 

computationally costly and sensitive to synchronisation errors and frequency selective fading 

channels. Cyclostationary detectors have several advantages like good performance, 

robustness and can detect and distinguish any PU or SU signals. If complexity is not an issue, 

they are the best choice. 

Even though there has been a lot of research on sensing, and many algorithms have been 

proposed for the local detector, there is performance degradation caused by the hidden 

terminal problem which was presented. Therefore, single user detection may not be sufficient 

to achieve the desired performance and cooperation between different SUs may be needed. 

Moreover, each individual detector can be simpler with cooperative detection while 

maintaining the overall detection performance at a desired level. CSS schemes have been 

discussed. Different cooperation models such as the centralised, distributed and relay-assisted 
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have been presented. Several fusion rules are discussed such as LRT, MRC, EGC, Chair-

Varshney, and K-out-of-N. Based on the quality of decisions, the fusion rules can be 

classified as hard combining and soft combining. The choice of a fusion rule depends on 

various performance criteria such as the detection performance, false alarm control, sensing 

efficiency, available information, complexity, energy consumption e.t.c. The Chair-Varshney 

fusion rule performs best among hard decision combining schemes under the assumptions 

that the local false alarm and missed detection probabilities are known. CSS techniques such 

as the voting based sensing and eigenvalue based sensing are presented. There are several 

performance parameters that are discussed, like probability of detection, probability of false 

alarm, sensing time, cooperation delay, SNR, cooperation footprint, number of SUs, 

robustness against non-idealities and computational complexity. The general system model 

and fundamentals, such as the local detection session and sensing frame used in the rest of the 

thesis have also been presented.  

Literature reviews about the current research problem were discussed. The research 

challenges and unresolved issues in CSS have been identified such as sensing accuracy, 

sensing efficiency, power, overhead, security, numbers of SU and reporting channels. In the 

next chapter, the problem of sensing accuracy and sensing efficiency in CSS is focused on. 

An amplify-and-forward relay-based CSS using an improved threshold energy detector is 

proposed.



3 Relay-Based Cooperative Spectrum Sensing 

with Improved Energy Detection in 

Cognitive Radio Networks 

Cognitive radio has become a promising technique to solve the underutilisation 

problem of the spectrum as discussed in chapter 2. In this chapter an amplify-and-

forward relay-based cooperative spectrum sensing (CSS) using an improved threshold 

energy detector was proposed. In this improved detector, each SU makes a local 

decision on spectrum occupancy based on two energy detection thresholds. If an SU 

detects the value out of both thresholds, it makes a decision first, amplifies and 

forwards the local result to the FC. If the detected value is between both thresholds, it 

amplifies and forwards this detected value to the FC. Finally, energy fusion and 

decision fusion are conducted at the FC using a “soft 1-bit” combination scheme to 

determine the PU’s status. Cooperative probability of detection, probability of missed 

detection and probability of false alarm expressions are derived with and without 

direct communication between the PU and FC. Simulation results presented, show that 

the proposed algorithm achieves a good sensing performance when compared to 

traditional schemes. The effects of different parameters on the proposed algorithm 

were examined, such as the number of SUs, channel type, channel availability and 

different values of the SNR. 
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3.1 Introduction  

Spectrum sensing is essentially a fundamental technique in cognitive radio (CR) networks [7] 

that enables CR systems adapt to the environment by sensing and detecting spectrum holes 

i.e. portions of the licensed spectrum unused by the primary users (PU) [15]. However, it is 

difficult in reality, for a CR to have a direct measure of the channel between the PU’s 

receiver and a transmitter. As a consequence, the most recent research works focus on 

primary transmitter detection based on local observations of secondary cognitive users [2, 14, 

33, 108-110]. The number of SUs in a CR network that partakes in spectrum sensing enables 

classification of SS into non-cooperative and cooperative techniques. Non-cooperative SS is 

usually associated with poor spectrum utilisation caused by severe multi-path fading and 

shadowing effects that eventually lead to the hidden terminal problem (discussed in chapter 

2). In cooperative spectrum sensing (CSS ), a number of secondary users (SU) coordinate to 

perform spectrum sensing by each individually performing SS and reporting their 

observations to a fusion centre (FC), in order to achieve improved sensing and detection 

performance [35, 80, 81, 111-113]. The work done in [23] also provided another method of 

increasing detection performance. Interestingly, [23] showed that when one SU acts as a relay 

for another SU, detection probability increases.  

In this chapter, a relay based amplify-and-forward (AF) CSS using an improved cooperative 

energy detection was proposed. Among the traditional methods used to perform spectrum 

sensing [5, 90, 114]: energy detection has been widely applied for its low complexity and 

feasibility, hence its relevance also in this work. It also does not require prior knowledge of 

the unknown signal. Typically, energy detection works by measuring the energy associated 

with the received signal over a specified time duration and bandwidth and comparing this 

measured value with an appropriately selected threshold to determine the presence or the 
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absence of the PU signal. In [97, 115-117], a censoring method using double thresholds in 

energy detection was proposed to reduce the communication traffic at the expense of some 

loss in sensing performance. In contrast, the proposed method was designed to improve the 

local probability of detection and hence the global probability of detection, exploiting all the 

observed information from local SUs. In the proposed system, the relay nodes (SUs) convey 

sensing information to the FC. By combining the primary and relay transmissions, SUs can 

achieve diversity against fading. One of the main advantages of using AF cooperation was 

the potential of reduced complexity of the relay's architecture. In this case, the relay was not 

required to decode, and was not required to know what coding strategy was employed.  

The main contributions of this chapter can be described as follows: 

• Designing a novel relay-based AF CSS architecture for CR networks using an 

improved cooperative ED to achieve high sensing efficiency and sensing 

accuracy of PUs. 

• Combining the PU and relay (SUs) transmissions to achieve diversity against 

fading using AF cooperation which has the potential of reduced complexity and 

cost. 

• Analytically derive expressions for a “soft 1-bit” double threshold combination 

scheme to reduce the communication overhead, improve the local probability of 

detection and hence the global probability of detection taking into account all 

sensing performance to exploit all the observed information from local SUs. 

• Derive the CRs network cooperative probabilities of detection, false alarm and 

missed detection for the relay-based AF CSS scheme over AWGN and Rayleigh 

fading channels. 
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• Examine, evaluate and discuss the effect of different key parameters such as the 

PU signal type, the number of SUs, channel type and the signal-to-noise ratio on 

the performance of the proposed relay-based AF CSS algorithm. 

The rest of this chapter is organised as follows: A non-cooperative and a CSS with an 

improved ED are presented in section 3.2 and 3.3, respectively. In section 3.4 the proposed 

relay-based AF CSS system model are presented and analysed in detail. Performance analysis 

and simulation results are presented in section 3.5 and 3.6, respectively. Finally, conclusions 

are drawn in section 3.7. 

3.2 Double Threshold Energy Detector  

In the following section, a CR network that includes M SUs and a common receiver that 

functions as a FC, and manages the CR network as well as all the associated SUs is 

considered. It is assumed that each SU performs energy detection independently during the 

sensing period. For local detection, SUs have to distinguish between the following two 

hypotheses [79] 

 0
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( )        ,   
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( ) ( ),    

n t H
y t

s t n t H

  
                                                    (4.1) 

where ( )y t  is the signal received by SU, ( )s t  is the received PU signal and ( )n t  is additive 

Gaussian noise (AWGN) with zero mean and variance 2.nσ  Hypotheses H0 and H1 represent 

absence and presence of the PU, respectively. 

According to energy detection theory [49] under AWGN channel, the energy observed ( )
i

E

by the i-th SU has the following distribution: 
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where u  is the time bandwidth product of the energy detector, γ  denotes the instantaneous 

signal-to-noise-ratio (SNR), 2
2uχ  and 2

2 (2 )uχ γ  are central and non-central chi-square 

distribution respectively, each with 2u  degrees of freedom and a non-centrality parameter of 

2γ  for the latter one. 

In conventional energy detection theory, each SU makes its local decisions by comparing its 

observational value with a pre-determined threshold, as shown in Figure 3.1(a) [49], 

 

Figure 3.1 (a) Conventional energy detection and (b) Double threshold energy detection. 

where Ei denotes the collected energy measurement of the i-th SU, H0 and H1 are 

correspondent to hypotheses of absence and presence of PU’s signal respectively. Decision 

H0 and H1 is made when Ei is less or greater than the threshold value λ  respectively. A 

double threshold scheme is shown in Figure 3.1(b), where two thresholds are utilised to assist 
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the statistical choice of the SU. If the energy value is greater than 2λ , then the user reports 

H1. If Ei is less than 1λ , decision H0 is made. Otherwise, if Ei is between 1λ  and 2λ , then the 

SU reports its observational energy value i.e. Ei. Hence, the FC receives two different kinds 

of data; a local binary data and observational value of the SU. 

3.3 Double Threshold Energy Detector Based Cooperative Spectrum 

Sensing  

Each SUi, for i = 1, 2,…,M, performs energy detection individually. It is assumed that each SU 

has identical threshold values. If Ei satisfies 1 2iEλ λ≤ < , subsequently the i-th SU sends the 

measured energy value Ei to the FC. If not, it reports its local decision Li according to Ei. Let 

Ri denote the information that the FC receives from the i-th SU. Then it can be given by 
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Consequently, the SUs make two kinds of decisions, which are the local decisions and the 

observed energy value. Without loss of generality, it is assumed that the FC receives 1K  and 

2K  local decisions that support 0H  and 1H  respectively, and 1 2M K K− −  energy values 

from M SUs. The FC then makes a final decision with the received information. First, a hard 

combination 1D  by using ‘n-ratio’ rule [118] is made as follows 
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let n be a rational number such that 1 n M≤ ≤  and then using a soft combination rule, all 

energy value are combined to make a final energy decision 2D  as follows 
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where FCλ  is the fixed threshold value of the FC according to an appropriate false alarm 

probability. The FC makes a final decision F  according to the following rule 
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3.4 System Model: Amplify and Forward Cooperation  

In this section, the system models are described, and the AF-CSS schemes to improve the 

detection performance of cognitive radio networks are proposed. 
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3.4.1 Single Cognitive Relay  

Primary Transmitter
CR Fusion Centre

hrd

R1

hpd

hpr

R Relay Secondary Users
T1

T2

 

Figure 3.2 Relay based cooperative spectrum sensing. 

Firstly, taking into consideration a single relay system as shown in  

Figure 3.2 without the direct link pdh , there are three nodes: the PU, the cognitive relay (SU) 

denoted by R1 and the FC. The SUs continuously monitors the signal from the PU as described 

in the general system model in chapter 2. The received signal at the cognitive relay is given 

by: 

             pr pr ry xh nθ= +                                  (4.8)                     

where x is the transmitted signal from the PU at time T1, θ  denotes the presence of the PU. 

θ  is equal to 1 when the PU is present or 0 when PU is absent if the energy detector value Ei 

satisfies (4.3), otherwise the local decision value Li replaces θ . prh  is the channel gain 

between the PU and relay, and rn  is the noise signal at the cognitive relay. The cognitive 

relay acts as a variable gain AF relay, which is more practical than the decode-and-forward 

relay operation [119]. The relay uses a variable gain AF scheme to forward the local decision 

to the FC. The cognitive relay has a transmission power constraint. To remain within its 
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power constraint the amplifying relay must use a amplification factor (gain) rβ  [82], given 

by the formula: 

 22
0

r
r

p pr

E
E h N

β
θ

=
+

                                                       (4.9)

 

where pE is the transmitted signal power from the PU, rE  is the transmit power of the relay 

and 0N the noise. Thus, at time T2 the received signal at the FC, denoted rdy , is given as 

       
     =

rd r pr rd d

r pr rd r rd r d

y y h n

h h x h n n

β

θ β β

= +

+ +
                                  (4.10)

           

where rdh  is the channel gain between the relay and the FC, dn  is the noise signal at the FC. 

The received signal at the FC follows a binary hypothesis: 

 0

1

         ,   
 ,   rd

n H
y

hx n H


=  +
                                                       (4.11)                                             

As described in [41] using an ED (described in section 2.9.2)., the received signal is first pre-

filtered by an ideal band pass filter with centre frequency fc and bandwidth W to normalise the 

noise variance. The filter output is squared and integrated over a time interval T, to 

subsequently produce a measure of the energy of the received waveform. The integrator 

outputs act as the test statistic [41]. The total received end-to-end SNR using MRC at the FC is 

given by: 
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 _ 1
pr rd

d s
pr rd

γ γ
γ

γ γ
=

+ +
                                                         (4.12)

where 
2

0/pr pr ph E Nγ =  and 2
0/rd rd rh E Nγ =  are SNRs from the PU to the cognitive relay 

and from the cognitive relay to the FC, respectively. 

3.4.2 Multiple Cognitive Relays  

Primary Transmitter
CR Fusion Centre

R1

Ri

Rm

R : Relay (Secondary Users)

hpr1

hpri

hprm

hpd

hr1d

hrid

hrmd

T1

T2

 

Figure 3.3 Multiple relay based cooperative spectrum sensing 

With multiple cognitive relays, it is assumed that there are M SUs between the PU and the 

FC, as shown in Figure 3.3, prih , rdih  and pdh  denote the channel gains between the PU and 

the SU Ri at time T1, between the i-th SU and the FC at time T2, and between the PU and the 

FC at time T1, respectively. All SUs simultaneously receive PU signal through independent 

fading channels. Each SU amplifies the received primary signal by an amplification factor:    
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                                   22
0

ri
ri

p pri

E
E h N

β
θ

=
+

                                              (4.13)

and forwards to the FC. The SUs use orthogonal channels to forward the received primary 

signal. The received signal at the FC can then be considered as independent copies through 

orthogonal channels. After an integrator, the final test statistic is obtained. Without taking 

into consideration the direct link 
pd

h , the total end-to-end SNR using MRC is given by: 

 _
1 1

M
pri rdi

d m
i pri rdi

γ γ
γ

γ γ=

=
+ +∑                                                      (4.14) 

where priγ  and rdiγ  are SNRs of the links from the PU to the cognitive relay Ri and from the 

cognitive relay Ri to the FC, respectively. 

3.4.3 Direct Link 

In sections 3.4.1 and 3.4.2, transmission from the PU to the FC takes place through relays. 

However, the FC can also receive the signal of the PU through a direct link from PU to FC 

when the PU is closer to the FC. Therefore, the total SNR at the FC for a single relay and 

direct link as shown in Figure 3.3 given by 

 _ _dd s pd d sγ γ γ= +                                                           (4.15)

where the SNR from the PU to the FC 
2

0/pd pd ph E Nγ = . The total SNR at the FC for 

multiple relays and direct link is given by 

 _ _dd m pd d mγ γ γ= +                                                          (4.16)
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3.5 Performance Analysis  

In this section, the spectrum sensing performance of the proposed scheme is analysed. In the 

case of a single threshold, the probability of false alarm fP  can be expressed as [49]: 

 
2

0
( , / (2 ))

( )
n

f

u
P

u

 



                                                      (4.17) 

where (.)Γ  is the gamma function and (.,.)Γ is the incomplete gamma function. Given the 

target false probability fP , the threshold 0λ  can be determined by: 

 2 1
0

2 ( , ( ))
n f

u P u                                                         (4.18) 

where 1(.,.)−Γ  denotes the inverse of the incomplete gamma function. It is assumed that the 

noise uncertainty in the wireless environment is described as 2 2[1/ , ],n nρσ ρσ  where 1ρ >  is a 

parameter that quantifies the size of the uncertainty. In the proposed double threshold 

decision, the lower threshold 1λ  is selected according to the minimum noise variance, and the 

upper threshold 2λ  is selected according to the maximum noise variance. Therefore, 

 2 1
1

2 / ( , ( ))
n f

u P u                                                      (4.19) 

 2 1
2

2 / ( , ( ))
n f

u P u                                                      (4.20) 
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The local decision iL  will be made by following the logic rule in (3.1). It is assumed 1,d iP  and 

1,f iP  denotes the detection and false alarm probability of the i-th SU corresponding to the 

lower threshold 1,λ  while 2,d iP  and 2,f iP  denote the detection and false alarm probability of 

the i-th SU corresponding to the upper threshold 2λ . For convenience, it is assumed the noise 

is a unit variance [49], then 

  { }1, 1 1 1| ( 2 , )d i i uP P E H Qλ γ λ= ≥ =                                        (4.21) 

 { } 1
1, 1 0

( , / 2)|
( )f i i

uP P E H
u
λλ Γ

= ≥ =
Γ

                                          (4.22) 

 { }2, 2 1 2| ( 2 , )d i i uP P E H Qλ γ λ= ≥ =                                        (4.23) 

 { } 2
2, 2 0

( , / 2)|
( )f i i

uP P E H
u
λλ Γ

= ≥ =
Γ

                                         (4.24) 

where (.,.)uQ  is the generalized Marcum Q-function, let 0, 1,,i i∆ ∆  denote the probability of 

1 2iEλ λ≤ <  for the i-th SU under hypothesis 0H  and 1H , the following can be derived 

 { }1, 1 2 1 1, 2,|i i d i d iP E H P Pλ λ∆ = ≤ < = −                                        (4.25) 

 { }0, 1 2 0 1, 2,|i i f i f iP E H P Pλ λ∆ = ≤ < = −                                       (4.26) 

Let , , ,, ,d i m i f iP P P  denote the probabilities of detection, missed and false alarm, respectively, at 

the i-th SU respectively, then it can be derived that  
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, 2 1 2,

{ | }
d i i d i

P P E H P                                                (4.27) 

 
, 1 1 1, 2,

{ | } 1
m i i i d i

P P E H P                                        (4.28) 

  
, 2 0 2,

{ | }
f i i f i

P P E H P                                                (4.29) 

The FC receives two kinds of information: 1 2K K+  local decisions and 1 2M K K− − energy 

values, which have to be fused to make the final decision. As shown in (4.5) an ‘n-ratio’ rule 

is used to combine the local decision. There are 1 2M K K− −  observed energy values that fall 

between the two thresholds. It shows that these 1 2M K K− −  SUs could not distinguish 

between the absence and presence of the PU, thus the FC makes a soft combination of the 

observation. Form [49], it can be derived that 1 2

1

M K K
ii

E− −

=
Ω =∑  follows the distribution: 

 
0

2
2 1 2 0

(2 )2
2 1 2 1

( )     ,  

( ) ,  

M K K u H

M K K u H





     
                                          (4.30) 

where 1 2

0 1

M k k
ii

γ γ− −

=
=∑  is the sum of SNR form (4.16) 

Hence, the probability of detection and false alarm with Ω  corresponding to a thresholdλ  

can be expressed as 

                               
2 1 2( ) 0

( 2 , )
D d M K K u

P Q                                                   (4.31) 
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1 2

1 2

(( ) , / 2)

(( ) )D f

M K K u
P

M K K u

  


  
 .                                         (4.32) 

Now for a target false alarm probability fP  based on (4.32), the threshold can easily be 

obtained as  

 1
1 2 1 2

2 (( ) , (( ) ))
f

M K K u P M K K u                                 (4.33) 

Finally, the FC makes a final decision according to (4.7), either the soft combination or the 

hard combination is ‘1’ the FC will decide 1H  and vice versa. Based on the detection method 

discussed above, if dQ  is used to denote the cooperative probability of detection and fQ  to 

denote false alarm, then the overall sensing performance derivation can be obtained. 

3.5.1 Probability of Detection   

The cooperative probability of detection _d nQ for the ‘n-ratio’ is derived. First, the expression 

for “1–ratio” is derived. Then subsequently the ‘n-ratio’ expression is derived. For “1-ratio”, 

under 1H  when 1 2K K<  according to (4.5), the FC will decide 1H . When 2 0K = , for 

detection 1 1K ≤   

 1 1

1

2 1
_ 1 ,1

1

M
M K K

d n d
K

K K
Q P

M M




              
                                          (4.34) 

when 2 1K = , for detection 1 2K ≤   
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_ 1 ,1
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K K
Q P P

M M K


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

              
                         (4.35) 

and so on and so forth. 

When 2 1( / 2 1),  K M K> −    will always be less than or equal to 1K , and in this case 

contributions to the probability of detection will be zero. Hence, the dQ  expression for “1-

ratio” logic is given as follows:  

  
2

1 2 1 2

2 1 2

/2 1
2 1

_ 1 ,1
0 1 2

   M M K
M K K K K

d n d m
K K K

K K
Q P P

M M K

    
 

  

                   
                   (4.36)

for the ‘n-ratio’, when 2 ( 1) / ( 1K n M n> − +   , 1K will be less than or equal to 2 /K n   , and 

in this case contribution to the probability of detection will be zero. For the ‘n-ratio’, the 

summation of 1K  will change from 1( / 1)K n +    to 2( )M K− . The final ‘n-ratio’, expression 

is given by: 

2

1 2 1 2

2 1 2

( 1)/( 1) 1 1
2 1

_ 1 ,1
0 / 2

   n M n M K
M K K K K

d n d m
K K K n

K K
Q P P

M M K
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 

    

                   
                   (4.37) 

Substituting the ‘n-ratio’ and soft fusion into (4.7), the overall sensing performance 

expression can be given as: 
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                                                                           (4.38)                                                                                                                                                                                                                                                                          

3.5.2 Probability of False Alarm  

Under H0 when 2 1( )n K K∗ > , the FC will decide 1H . Similar to dQ , fQ  can be expressed as 
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                                                                           (4.39) 

The probability of missed detection can be expressed as  

 1d mQ Q= −                                                                (4.40) 

3.5.3 Performance over fading channel  

In this section, the average detection probabilities over Rayleigh channels are derived. The 

same double thresholds models are used for flat fading Rayleigh channel. Under Rayleigh 

fading channel, probability of false alarm fP  will remain the same as in the case of AGWN 

channel, as it depends only on the distribution of the noise. Since under the Rayleigh channel, 
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the signal amplitude follows a Rayleigh distribution [49]. The SNR γ  follows an exponential 

PDF given by [49]: 

           
1

( ) exp ,         0,f


 
 
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                                       (4.41) 

The average dP  in this case denoted by dRayP can be evaluated by averaging (4.21) over (4.41) 

from [49, 120] yielding: 

 

2
/2

0
1

2
2(1 ) 2

0

1
! 2

1 1
         

! 2(1 )

n
u

dRay
n

u
u

n

P e
n

e e
n



 




 
 





  



      
                      




                        (4.42) 

Using equation (4.42), similar to the AWGN case, the cooperative probability of detection 

can be derived using the same steps and method described in section (3.5.1).  

3.6 Simulation Results 

In this section, to evaluate the performance of the proposed AF CSS scheme, simulation 

results are shown to compare the proposed approach with the tradition approaches based on 

the receiver operating characteristic (ROC). The effects of different parameters on the 

proposed algorithm were examined, such as the number of SUs and channels, channel 

availability and different values of the signal-to-noise-ratio. Links from the PU to the 

cognitive relays (SUs) and from the SUs to the FC are assumed to be independent and 

identical.  
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For the simulation in this chapter, the PU network is assumed to be a DVB-T2 signal [78], 

the bandwidth of the PU signal is 8 MHz, modulation type is QPSK. The average occupancy 

rate for the PU is set to 50%, i.e. the probability of presence and absence of the PU signal is 

fixed to an equal probability (0.5), respectively. The simulation is based on the Monte Carlo 

in MATLAB method with 50,000 iterations. The summary of the simulation parameters for 

analysing the developed CSS algorithm’s performance evaluation is shown in Table 3.1. 

These simulation results are presented through receiver operating characteristics (ROC) 

curves and probability of detection curves in relation to SNR. 

 

Table 3.1 Simulation parameters for the developed CSS AF algorithm 

Parameter Value 

PU bandwidth 8 MHz 

Local sensing 50 µs 

Frame length 60 

FEC blocks per frame 50 

Channel condition AWGN, Rayleigh 

SNR range -10dB to 10dB 

Iterations 50,000 

Number of SUs (Relay’s) 1-10 
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Figure 3.4 Performance comparison of a conventional single threshold, a conventional double 
threshold and a “soft 1-bit” double threshold energy detector with single relay AF scheme.  

Figure 3.4 shows a ROC curve highlighting the performance of the conventional single 

threshold detection, conventional double threshold detection and a “soft 1-bit” double 

threshold energy detector using the proposed AF CSS algorithm under AWGN and Rayleigh 

fading channels, respectively. There is a single relay in the system and the SNR between the 

PU and SUs is 10dB. The local sensing time is 50 µs. Figure 3.4 indicates that the double 

threshold AF CSS method has better performance detection than the conventional 

cooperative method, while the proposed AF CSS “soft 1-bit” double threshold gave a better 

performance than the other methods. As the probability of false alarm increases, the 

probability of detection increases for all the algorithms, but the detection rate for the “soft 1-

bit” double threshold is at a higher rate due to the higher accuracy of energy measure at the 

local SUs. For example, when the probability of false alarm is 310−  under Rayleigh fading, 

the probability of detection is 0.54 for the conventional single threshold detection, 0.83 for 
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the conventional double threshold detection and 0.99 for the “soft 1-bit” double threshold. It 

can be seen from the plots that there exist a particular value of fQ  that maximizes sensing 

performance. This value depends on the channel condition. A general observation is that 

spectrum sensing detection slightly decreases under Rayleigh fading channel when compared 

to AWGN conditions. 

 

Figure 3.5 Probability of detection vs. SNR of a conventional single threshold, a conventional 
double threshold and a “soft 1-bit” double threshold energy detector with Qf = 0.1 and 0.01, R = 

10 AF relay scheme over AWGN channel. 

Figure 3.5 and Figure 3.6 show the probability of detection in relationship to SNR (dB) with 

10 AF relay nodes, using the proposed AF CSS algorithm with Qf = 0.1 and 0.01 and SNR 

ranging from -10dB to 10dB for both AWGN and Rayleigh channels, respectively. The local 

sensing time is 50 µs. 
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Figure 3.6 Probability of detection vs SNR of a conventional single threshold, a conventional 
double threshold and a “soft 1-bit” double threshold energy detector with Qf = 0.1 and 0.01, R = 

10 AF relay scheme over Rayleigh channel. 

It can be observed that at a lower SNR the probability of detection for a “soft 1-bit” double 

threshold compared to that of the conventional ED and double threshold ED shows 

performance is improved, but this improvement slightly decreases as the SNR increases but is 

still significantly higher than the other two schemes. For example, in Figure 3.6, at an SNR of 

2dB, 0.1fQ =  under Rayleigh fading channel the probability of detection is 0.94 for the 

conventional single threshold detection, 0.96 for the conventional double threshold detection 

and 0.98 for the “soft 1-bit” double threshold. While at SNR of -10dB under the same 

conditions, the probability of detection is 0.75 for the conventional single threshold detection, 

0.8 for conventional double threshold detection and 0.85 for the “soft 1-bit” double threshold. 

Hence, the scheme at both low and high SNR provides a significant detection performance 

improvement.  
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Figure 3.7 Probability of detection of the AF CSS scheme with multiple relays Qf = 0.1 over 
AWGN and Rayleigh channels. 

Figure 3.7 shows the probability of detection in relationship to SNR with different numbers 

of relay nodes (1, 2 and 5) using the proposed AF CSS algorithm with and without the direct 

link. Qf = 0.01 and SNR ranging from -10dB to 10dB for both AWGN and Rayleigh fading 

channels. Firstly, Figure 3.7 shows that by increasing the number of SUs in the scheme the 

probability of detection is increased as a result of increased spatial diversity. In addition, as 

the SNR increases under all conditions the probability of detection increased. For example, in 

Figure 3.7 at 2dB when the numbers of SUs are 1, 2 and 5, the probability of detection under 

Rayleigh fading are 0.34, 0.56 and 0.78 respectively. When the direct link is incorporated the 

rate of detection increases significantly at low SNR. For example, when the SNR is -10dB 

and number of SUs are 5 the probability of detection difference between the non-direct link 
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and direct link under Rayleigh channels increased by approximately 0.7dB.  

 

Figure 3.8 ROC curves of the AF CSS with direct link and non-cooperative schemes under 
Rayleigh Fading. 

Figure 3.8 shows a ROC curve highlighting the detection performance probability of the 

proposed AF CSS scheme when a direct link is considered. A single SU and 2 SUs are spread 

in the network to perform local sensing. A non-cooperative scheme using different numbers 

of SUs are shown for comparison. The SNR between the PU and SUs is 10dB under a 

Rayleigh fading channel. The local sensing time is 50 µs. It can be observed that the 

probability of detection increased as the probably of false alarm increased in all the curves, 

but the detection rate for the proposed scheme with the direct link had a higher detection rate 

even at a higher false alarm rate. For example, when 0.1fQ = , and 2 SUs are considered, the 

probability of detection of the proposed scheme that included a direct link increased by 

approximately 17% under the same conditions as compared to one without a direct link. 
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3.7 Conclusion 

In this chapter, two important design criteria for cooperative spectrum sensing were focused 

on, which are the sensing accuracy and the sensing efficiency. A novel relay-based AF CSS 

architecture for CR networks using an improved cooperative ED has been considered. The 

proposed architecture combined the PU and relay (SUs) transmissions to achieve diversity 

against fading, using AF cooperation which has the potential of reduced complexity and cost. 

Analytically expressions for a “soft-1 bit” double threshold combination scheme to reduce the 

communication overhead, improve the local probability of detection and hence the global 

probability of detection were derived taking into account all sensing performance to exploit 

all the observed information from local secondary users. The proposed CRs network 

cooperative probabilities of detection, false alarm and missed detection for the proposed 

relay-based AF CSS scheme over AWGN and Rayleigh fading channels using multiple relays 

were formulated. 

The effects of different parameters on the proposed algorithm were examined such as the 

number of SUs and channels, channel availability and different values of the signal-to-noise-

ratio. Firstly, through simulation the performance of the conventional single threshold 

detection, conventional double threshold detection and a “soft 1-bit” double threshold energy 

detector using the proposed AF CSS algorithm under AWGN and Rayleigh fading channels 

were presented. The simulation results demonstrated the proposed AF CSS “soft 1-bit” 

double threshold had a much better detection performance of up to approximately 40% than 

the other methods. Secondly, simulation results demonstrated that at a lower SNR the 

probability of detection for a “soft 1-bit” double threshold, compared to that of the 

conventional ED and double threshold ED performance is improved under the same 

conditions (approximately 11% detection increase), but this improvement slightly decreases 
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(approximately 4% detection increase) as the SNR increases but is still significantly higher 

than the other two schemes. Subsequently, simulation results demonstrated the probability of 

detection in relationship to SNR (dB) with different numbers of relay nodes using the 

proposed AF CSS algorithm with and without the direct links as the SNR increased under all 

conditions the probability of detection increases. Finally, ROC curves highlighting the 

detection performance probability of the proposed AF CSS scheme were presented. It was 

observed that the detection probability of the proposed AF CSS under Rayleigh fading 

scheme increased when the direct link was incorporated and also as the number of SUs 

increased, the detection probability increased.  

In this chapter the problem of sensing accuracy and the sensing efficiency in cooperative 

spectrum sensing are focused on. The simulation results showed that the proposed scheme 

significantly reduced the error of missed detection and increased the probability of detection. 

Increase in detection probability is important since CRs are designed to continuously monitor 

spectrum and detect the presence of the PU’s. However, the main drawback of the proposed 

scheme as well as other CSS in literature is that under practical conditions, the differences in 

local sensing reliability between the SUs are not considered. Hence, in the next chapter, the 

problem of spectrum sensing reliability and SU agility are addressed. An evidence based CSS 

schemes is considered which instead of treating all sensing terminals indiscriminatingly, 

treats each SU in the CR network in a practical independent manner by assigning a credibility 

value.



4 Evidence-based Decision Fusion Scheme for 

CSS in Cognitive Radio Networks 

In this chapter, an evidence based decision fusion CSS schemes has been considered for 

overcoming the hidden terminal problem, improving reliability, and increasing SU 

agility. Under practical conditions, the combination of conflicting evidences with the 

classical Dempster Shafer theory (DS theory) rule may produce counter-intuitive results 

when combining the SUs sensing data evidence leading to poor CSS performance. In 

order to overcome and minimise the effect of conflicting data, and to enhance 

performance of the CSS system, a novel evidence-based decision fusion scheme CSS is 

proposed in this chapter. The approach is based on the credibility of evidence from the 

SUs sensing decision, which represents the similarity or the relation among the different 

SUs sensing data evidence, and a dissociability degree measure which indicates the 

quality or clarity of the SUs sensing data evidence. Furthermore, a weighted averaging 

factor determined by the credibility and dissociability of the SU sensing data evidence is 

proposed. Simulation results presented show that under practical conditions the 

proposed scheme enhances the performance of the CSS system when compared to 

traditional fusion rules such as AND rule, OR rule, that do not take into account the 

difference in local sensing reliability between the SUs. When compared to other fusion 

rules such as the Chair Varshney (CV) rule [101] and DS theory fusion [121] it also 

demonstrated an improved performance. The effects of different parameters such as the 

number of SUs, channel type, channel availability and different values of the average 

SNR, on the proposed algorithm were examined. 
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4.1 Introduction 

In wireless channels, the hidden terminal problem which can lead to a very low SNR at the 

SUs is one of the biggest challenges of implementing spectrum sensing. In a case whereby a 

single SU sensing is shadowed, in severe multipath fading and shadowing effects, the SU 

may not reliably detect the PU signal and access the channel when there is a primary signal 

present causing interference to the licensed PU [2, 5]. As discussed in chapter 2, CSS is 

considered for overcoming the hidden terminal problem. To overcome the hidden terminal 

problem and increase the spectrum sensing reliability, CSS has been studied in [2, 13, 100, 

109, 114, 121-126]. 

In general, CSS can be classified as either being centralised or distributed. Centralised CSS 

operates in two categorised as follows: a) the observations are pre-processed by the SUs to 

produce their measurement or test statistics. From the reported measurement, the FC makes 

the final judgment [14, 37, 42, 47, 79, 103, 109, 127, 128]; b) the FC processes the total 

received samples forwarded from each SU to make the final decision [47, 86, 114, 124, 125, 

129]. Category b) requires a large portion of overhead as SUs report their collected samples. 

Therefore, the gain from cooperation may be exhausted by the overhead of communication. 

Thus, category a) attracts wider interest [36], hence, this chapter focuses on the fusion rule in 

category a) centralised CSS where the FC makes a final sensing decision based on the Basic 

Probability Assignment (BPA) of the sensing data received from each involved SU. The 

detection probability and false alarm probability are determined by the fusion rule. 

In [100], an optimal data fusion rule, originally mentioned in [101], was applied by 

combining with a counting rule. Though it gave a good detection performance when the 

channel state changes, it required a long time period to converge which under practical 
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condition can lead to poor performance. In [122] an optimal half voting rule was proposed, 

but it only gave a good performance under impractical condition i.e. when identical threshold 

for all SUs are considered. In [121] a method was proposed for combining all SUs spectrum 

decisions and their self-assessed credibility of each decision by means of Dempster Shafer 

theory (DS theory) of evidence, which is suitable for fast-changing radio frequency (RF) 

environments, due to its ability to assign uncertainty to propositions. However, under 

practical conditions, illogical results may be obtained by the DS theory combination rule 

when the conflicts between SUs sensing data are high [130-132], leading to low performance. 

In [123], a method was proposed to try to overcome this problem by assigning a relative 

relationship between SUs to adjust the credibility of the decision. It directly sets the weight 

for each user by assuming certain knowledge of each SUs average SNR, which is not easy to 

obtain, especially in low a SNR regime.  

Unfortunately, the combination of conflicting evidences with the classical DS theory rule 

may produce counter-intuitive results when combining the SUs sensing data evidence leading 

to poor CSS performance. Hence, in order to minimise the effect of conflicting data along the 

trend of research in [131-135], a novel evidence-based decision fusion scheme CSS is 

proposed in this chapter. This approach is based on the credibility of evidence from the SUs 

which represents the similarity or the relation among different SUs sensing data evidence, 

and a dissociability degree measure which indicates the quality or clarity of the SUs sensing 

data evidence. Furthermore, a weighted averaging factor determined by the credibility and 

dissociability of the SU sensing data evidence is proposed. 

In most of the previous work on CSS that considers weighted contribution from each user, the 

focus was on the following: (i) how to obtain the optimal weight for each user based on some 
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performance criteria, by assuming knowledge of the local probabilities of false alarm and 

detection of each local detector which may not be known in practice, [136, 137] (ii) directly 

setting the weight for each user by assuming certain knowledge of each user's SNR, which is 

not easy to obtain, especially in low SNR a regime [123, 125, 138, 139]. Contrary to previous 

works, this work does not assume any knowledge of the performance of each SU detector, 

but rather uses the local decisions made by the SUs to estimate the BPA for each SU. The 

BPAs are obtained without the knowledge of each SUs SNR, which makes the proposed 

evidence-based scheme more practical. 

In this chapter, a CR network with one PU and multiple SUs, which are operated in a time-

slotted mode, have been considered. In general, the current CSS research including the hard 

decision fusion rule [109, 124, 128, 140] and soft decision rule [42, 141-143], assume that the 

received average SNRs are approximately the same at each of the SU. This assumption 

simplifies the calculation of the final sensing performance, including the probability of 

detection and probability of false alarm. On the other hand, when considering the channel 

shadowing effect, it cannot handle the practical inhomogeneous situations, where the average 

SNR varies among cooperative users. Instead of treating all sensing terminals 

indiscriminatingly, the proposed scheme treats each SU in the CR network in a practical 

independent manner by assigning a credibility value and a dissociability measure to the SUs 

sensing data evidence.  

The main contributions of this chapter can be described as follows: 

• Designing a novel evidence-based decision fusion scheme CSS for CR networks that 

uses both the credibility of SUs sensing data evidence and dissociability degree 
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measure of SUs sensing data evidence, in the form of a weighted averaging factor 

which is then taken into account when making the final decision at the FC. 

• Analytically deriving expressions for the credibility of evidence from the SUs sensing 

data which represents the similarity or the relation among different SUs sensing data 

evidence. 

• Deriving the correlation coefficients between the local decisions using a distance of 

evidence rule and a correlation matrix (CM), this gives an insight into the agreement 

between the sensing decisions evidence. 

• Evaluating and deriving expressions for a dissociability degree measure of evidence 

from the SUs sensing data which indicates the quality or clarity of the SUs sensing 

data evidence.  

• Developing an algorithm for a weighted averaging factor and final fusion determined 

by the credibility value and dissociability degree measure of the SU sensing data 

evidence. 

• Simulation and discussion of the effect of different key parameters such as the 

number of SUs, channel type, probability of false alarm, probability of missed 

detection and the average SNR on the performance of the proposed evidence-based 

decision fusion scheme. 

 

The rest of this chapter is organised as follows: A CSS system model and the detection 

problems for local sensing at SUs are presented in section 4.2. A review of DS theory of 

evidence has been presented in section 4.3. In section 4.4, the proposed evidence based CSS 

scheme and the local SUs energy detection algorithm are introduced. In section 4.5, the BPA 

estimation of the SUs sensing data is presented. The evaluation of the credibility and 
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dissociability degrees are presented in section 4.6 and 4.7, respectively. The analysis of the 

modified combination rule and the analysis of the final decision are detailed in section 4.8 

and 4.9, respectively. In section 4.10, a summary of the proposed algorithm is outlined. 

Simulation results and analysis are presented through receiver operating characteristics 

(ROC) curves, and other performance related curves in section 4.11. Finally, conclusions are 

drawn in section 4.12. 

4.2 System Model  

A system model which is similar to the general system model described in section 2 is 

considered. In order to increase detection reliability of a CR network, a CSS scheme is 

considered instead of a single SU as illustrated in Figure 2.12. The SUs conduct local 

spectrum sensing by applying an energy detector to measure the PU’s signal energy in each 

sensing frame. After the spectrum sensing process, each SU computes its own local detection 

and the decision along with a corresponding credibility denoted by crd are then transmitted to 

the FC, where a global decision is made. The whole CSS process can be categorised into two 

stages: 

1. Local sensing at the SUs. 

2. Final decision at the FC. 

4.2.1 Local Spectrum Sensing Algorithm 

Individual SUs perform local spectrum sensing in a distributed manner for detecting the PU 

signal. The detection problem for local sensing is in effect a binary hypotheses testing 

predicament that can be represented as follows [41]: 
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                                       0

1

:    ( ) ( )
:    ( ) ( ) ( ) ( )

H y t n t
H y t h t s t n t

=
 = +

                                            (4.1) 

for 1,..., ,t M=  where t  represents the discrete time index and M denotes the number of 

observation, H0 and H1 are correspond to hypotheses of absence and presence of the PU 

signal, respectively, ( )y t  represents the received data at the i-th SU, ( )h t  represents the 

channel gain, ( )s t is the PU’s transmitted signal and ( )n t  is the additive white Gaussian 

noise. The following assumptions are made: 

• The PU, SUs and FC are considered to be in the same region where they share a 

common spectrum allocation. 

• The channels corresponding to the different SUs are independent. 

• The noise n(t) is a independent complex Gaussian random variable.  

• The PU’s signal s(t) is an independent random process. 

• The PU’s signal s(t) is independent of the noise n(t). 

Different SUs are presented with unique credibility based on its local sensing owing to 

changes in channel conditions between the PU and SUs. Therefore, the parameter 

“credibility” Crd  is a variable that changes with corresponding channel condition ih  and the 

distance iD  between the PU and the i-th SU. 

                                                                            ( , )i i iCrd f h D=                                                                         (4.2)    

where iCrd  represents the detection credibility from the i-th SU. Each SU has different 

possibilities for hypotheses H0 and H1, and a total credibility for its detection. Therefore, the 
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detection result can be divided into three parts as illustrated in Figure 4.1, where 0( )Crd H

and 1( )Crd H  are the credibility for hypotheses H0, and H1 to be true based on local sensing at 

the i-th SU, respectively. 1 2{ , }H HΩ =  can be interpreted that either hypothesis could be 

true. Therefore, ( )Crd Ω  conveys total uncertainty of local detection at the i-th SU. 

 

Figure 4.1. Decision Result Construction at the i-th SU 

4.2.2 Final Decision at the Fusion Centre  

Having analysed the decisions and their associated credibility iCrd , at each i-th SU, the FC 

has the task of combining the received data using the DS theory of evidence combination 

which an adequate choice (see section 4.3). But the combination of conflicting evidences 

with the classical DS theory combination rule may produce counter-intuitive results when 

combining the SUs sensing data evidence. Hence, it is proposed that the FC employs an 

enhanced DS theory combination scheme in softly combing the two types of data, and 

making a final decision on whether the PU is present.  
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4.3 A Review of Dempster-Shafer Evidence Theory  

DS theory is an approach to represent uncertain knowledge and to accomplish the uncertainty 

reasoning [144]. It has become an important method in data fusion [144]. DS theory of 

evidence has attracted much attention in a wide variety of fields such as intelligence, 

identification, automotive, fuzzy and wireless communication [131-134]. Due to the 

stochastic characteristics of wireless communication channels, there is uncertainty in local 

detection results at SUs. Considering that DS theory is used in managing uncertainty, it is a 

good choice for decision making in CR systems. In this section, a brief review of DS theory 

of evidence is carried out. A more complete introduction can be found in Shafer’s original 

work [145]. 

4.3.1 Basic Probability Assignment (BPA) 

Let 1 2{ , ,... }nA A AΩ =  be a finite set of mutually exclusive possible hypotheses, referred to as 

the frame of discernment. The power set 2Ω  is the set of all subsets of Ω  including itself and 

the null set ∅  [132].  

DS theory assigns a mass (degree of belief) to each subset in the power set 2Ω . While 

traditional probability theory employs a measure of probability to assign to each atomic 

hypothesis iA  in the frame of discernment, the mass in DS theory is assigned not only to each 

atomic hypothesis, but also to combinations of hypotheses. Hence, each subset in the power 

set is assigned a mass. The function m , that assigns a mass in the range of [0,  1] to each 

subset A, is called Basic Probability Assignment (BPA). This function satisfies the following 

conditions [132]: 
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 ( ) 0,m ∅ =                                                                   (4.3) 

and   

 ( ) 1.
A

m A
⊆Ω

=∑                                                              (4.4) 

The value of a mass (roughly equivalent to probability) is the belief that supports hypothesis 

A, but does not support any subsets of A. 

Associated with m  are a belief or credibility function bel and a plausibility function pl and 

are defined to characterise the uncertainty and the support of certain hypotheses. These two 

measures, derived from the mass values, are respectively defined as a map from a set of 

hypotheses to an interval [0, 1] for all A⊆ Ω  as follows [146]: 

 
|

( ) ( )
B B A

bel A m B
⊆

= ∑                                                          (4.5) 

and the plausibility functions as: 

                                
|

( ) 1 ( ) ( )
B B A

pl A bel A m B
≠∅

= − = ∑


,                                         (4.6) 

bel(A) can be understood to be a global measure of the believe that hypothesis A is true, while 

pl(A) can be summarised as the amount of belief that could potentially be placed in A, if 

further information becomes available [133]. The pignistic transformation maps a belief 

function m to the pignistic probability function. The pignistic transformation of a belief 

function m on 1 2{ , ,... }nA A AΩ =  is given by [130]: 
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( )( ) ,    

1 ( )B

A B m BBetP A A
B m⊆Ω

∩
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− ∅∑                                      (4.7) 

where A  is the cardinality of set A . In a particular case where ( ) 0m ∅ =  and A∈Ω , i.e., A  

is a singleton of Ω , 

                                1
( )( ) , ,..., ,    n

A B

m BBetP A A A A B
B∈

= = ⊆ Ω∑                         (4.8) 

4.3.2 DS Theory Combination Rule 

The mass function from different information sources, jm  where ( 1,..., )j d=  are combined 

with DS rule of combination, also called an orthogonal sum. The result is a new mass 

function [132]: 

                               1 2( ) ( ... )( )k d km A m m m A= ⊕ ⊕ ⊕                                           (4.9) 

 which incorporates the joint information provided by the sources, is given by [132]: 

                          
1 2 ... 1

1( ) ( ( ))
1

d k

k j j
A A A A j d

m A m A
K = ≤ ≤

 
=  −  

∑ ∏


                                 (4.10)     

where                     

 
1 2 ... 1

( ( ))
d

j j
A A A j d

K m A
∩ =∅ ≤ ≤

 
=  

 
∑ ∏                                               (4.11)                                                  
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K represents a measure of conflict between the different sources or contracting mass 

assignments, and it is introduced as a normalisation factor. In a practical system of evidence 

combination, the different evidence to be combined are not always concordant, there may be 

conflicts among them. This stems from the fact that in DS theory rule of combination, the 

conflicting mass assignments are discarded which may lead to counterintuitive behaviours 

among SUs conflicting mass assignments [132]. 

4.4 Cooperative Spectrum Sensing based Evidence theory 

The DS combination rule is commutative and associative, and can be extended to combining 

multiple evidences in CSS sequentially [132]. After receiving all the sensing decisions with 

corresponding credibility iCrd  from the i-th SUs, according to DS theory of evidence 

combination, the FC makes a final decision on the observed band. This process can be 

categorised into steps, illustrated by the evidence-based decision fusion scheme for CSS 

block diagram in Figure 4.2. 

 
 Figure 4.2. Evidence-based Decision Fusion Scheme for CSS. 
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4.4.1 Energy Detection 

An energy detector is used to carry out the local spectrum sensing. To measure the signal 

power in a particular frequency region in time domain, a band-pass filter is applied to the 

received signal and the power of signal samples is then measured at i-th SU. The decision 

statistic is an estimation of the received signal power which, is given at each SU by the 

sensing matrix [41]: 

                                            
2

1

N

E i
i

y y
=

=∑                                                                   (4.12) 

where iy  is the i-th sample of received signal from the PU and N = 2TW, where T and W are 

correspondent to the detection time and the signal bandwidth in Hz, respectively. In the 

absence of coherent detection, when the number of required samples N is large enough 

( )300 ,N >  using the CLT, Ey  can be modeled as a Gaussian random variable under both 

hypotheses H0 and H1, with mean 0µ , 1µ  and variance 2
0σ , 2

1σ , respectively [49], such that 

 
0

1

2,             20
2( 1),    2 (2 1)1

N N

N N

µ σ

µ γ σ γ

= =

= + = +





                                              (4.13) 

where γ  is the average SNR of the PU signal at the i-th SU.  

4.4.2 Basic Probability Assignment (BPA) Estimation in CSS 

In order to apply the DS theory of evidence to make a final decision, the frame of 

discernment denoted by Ω  is defined as 1 0{ , , }H H Ω , where Ω  denotes either hypotheses is 

true. After each sensing period, each SU will estimate its self-assessed decision credibility, 

which is equivalent to the BPA assignment for the two hypotheses H0 and H1, respectively. 
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The DS combination rule is commutative and associative hence, an appropriate BPA function 

is a cumulative distribution function (CDF) instead of a PDF given by [132, 134]: 

                   ( ) ( )2

0
0 0 22

00

1: | exp
2

i

i

Ei

E i
i E

iy i

y
H m y H dy

µ

σπσ

+∞  − = −
 
 

∫                       (4.14) 
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σπσ−∞

 − = −
 
 

∫                         (4.15)

where (.)m  is equivalent to (.)Crd , which is described in section 4.2.1, ( )0ii Em y H  and 

( )1ii Em y H  are the BPAs of hypothesis H0 and H1 of the i-th SU, respectively. Using these 

functions, the BPA of hypotheses H0 and H1 are unique for each test statistics value 
iEy and 

vary in such a way that the larger 
iEy  is the larger ( )1ii Em y H  and the smaller ( )0ii Em y H

are and vice versa [134]. The credibility from individual SUs and uncertainty are subject to 

the following constraint [121]: 

 1 0( ) ( ) ( ) 1i i im H m H m+ + Ω =                                                (4.16) 

4.5 Basic Probability Assignment (BPA) Credibility Degree 

Instead of combining all the SUs self-assessed BPA which assumes they are all equal, the 

BPA of each SU should be assigned a credibility to highlight the reliability of the different 

SUs sensing data, for improving sensing accuracy. Subsequently, an additional stage at the 

FC to calculate the credibility of each BPA is proposed. 
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Generally, if all the self-assessed BPA evidence is assigned credibility, that piece of evidence 

should be more important and has more effect on the final fusion decision. On the contrary, if 

the self-assessed BPA evidence is highly conflicting with other bodies of evidence, this BPA 

should be less important and has little effect on the final fusion decision. To establish the 

credibility value of each self-assessed BPA, the correlation coefficients between the self-

assessed BPAs are used. Using a distance of evidence rule as defined in [147], the distance of 

evidence between each BPA is given by: 

0 1 0 1 0 1
1( ( ), ( ) ( ( ) ( )) ( ( ) ( ))
2

T
BPA i i i i i id m H m H m H m H m H m H= − −D                 (4.17) 

where 0( )im H  and 1( )im H  are the BPAs of the i-th SU and the Jaccard matrix D  is a 

2 2Ω Ω×  matrix to measure the conflict of the focal elements in 0( )im H  and 1( )im H , whose 

elements are [147]: 

         ( , ) , ,
A B

A B A B
A B
∩

= ⊆Ω
∪

D .                                            (4.18) 

The introduction of the matrix has the advantage of taking the similarity between the BPAs 

into consideration. To describe the similarity between the BPAs, the correlation coefficient is 

defined as [148]: 

              0 1
0 1

0 1

( ), ( )
[ ( ), ( )]

( ) ( )
i i

i i
i i

m H m H
c m H m H

m H m H
=

⋅
 ,                              (4.19)

where 0( )im H  and 1( )im H  have the same definition as in (4.17). Considering the similarity 

among the subsets of Ω , matrix D  is used to modify the BPA from the i-th SU:  
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           0 0
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 ′ =

D
D

.                                                  (4.20) 

Therefore, using equation (4.19) and equation (4.20) the correlation coefficient can be 

redefined as: 

                       0 1
0 1

0 1

( ), ( )
[ ( ), ( )]

( ) ( )
i i

i i
i i

m H m H
c m H m H

m H m H
′ ′

=
′ ′⋅

.                          (4.21) 

0 1[ ( ), ( )]i ic m H m H  satisfies the following requirement [148]: 

• 0 10 [ ( ), ( )] 1i ic m H m H≤ ≤  

•  

• 0 1 0 1[ ( ), ( )] 1 ( ) ( )i i i ic m H m H m H m H= ⇔ =   

• 0 1[ ( ), ( )] 0 ( ) ( ) ,i i i jc m H m H A B= ⇔ ∪ ∩ ∪ =∅  

where  and i jA B are focal elements of 0( )im H  and 1( )im H , respectively. 

Let the number of BPAs be n. Subsequently, after all the degrees of similarity between the 

BPAs have been obtained, a correlation matrix (CM), which gives an insight into the 

agreement between the BPAs evidence is given by:  

1 0 1 1 1 0 2 1 1 0 1

2 0 1 1 2 0 2 1 2 0 1

0 1 1 0 2 1 0 1

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]
[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]
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n n n n

c m H m H c m H m H c m H m H
c m H m H c m H m H c m H m H

c m H m H c m H m H c m H m H

 
 
 =
 
 
 
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



   



,

                                                                           (4.22) 

0 1 1 0[ ( ), ( )] [ ( ), ( )]i i i ic m H m H c m H m H=
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where the diagonal element 0 1[ ( ), ( )] 1i ic m H m H = . The credibility degree of the BPA of 

0( )im H  and 1( )im H  is given by: 

                0 1
1

1 [ ( ), ( )]
1

n

i i i
i

Crd c m H m H
n =

=
− ∑ .                                   (4.23) 

The credibility vector consisting of the credibility of all the BPAs from the SUs is defined by: 

           1, 2, ,[ ..., ]nCrd Crd Crd Τ=CRD ,                                          (4.24) 

therefore, the following formulation can be obtained: 

          1
1 ( )

1 n n nn × ×= −
−

CRD CM E I                                            (4.25) 

where n n×E and 1n×I are n-dimensional identity matrix and n-dimensional unit column vector, 

respectively. 

4.6 Basic Probability Assignment (BPA) Dissociability Degree  

The sensing decisions evidence dissociability denoted by DE is a function from a BPA m to

[0,1] , it expresses the degree of the BPA focusing to the singletons of the focal elements. 

When the classification results are described in terms of BPAs, the BPAs dissociability can 

be constructed by the determined principle in multiclass classification. Generally, when the 

BPA from each SU to each class is nearly equal, the classification ability is poor. The greater 

the differences that exist among the BPA, the more reasonable decisions that can be made. 

Therefore, the dissociability cannot reach 1 unless the BPA is a categorical BPA, satisfying: 
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1      ,

( )
0    otherwise.

if A A
m A

∗ =
= 


                                               (4.26) 

where A∗  is one of the singletons in discriminate frame, thus A∗ ∈Ω ,Ω  is the discriminate 

frame. If the belief function focuses on all the singletons on A  equally, the dissociability is 0. 

Therefore, the dissociability degree DE can be defined as [149]:  

                   
1( ) 1 ( )ln( ( ))

ln( ) m m
A A

DE m BetP A BetP A
M ∈

= + ∑                        (4.27) 

where ( )( )
1 ( )m

B A

A A m BBetP A
B m⊆

∩
=

− ∅∑  is the pignistic probability [149], and M  is the 

cardinality of Ω .  

4.7 Modified Combination Rule 

It has been shown that credibility of evidence represents the relation among different sensing 

decisions evidence and the dissociability measure indicates the quality of the sensing 

decisions evidence. If both of the two factors are taken into consideration together, a better 

performance can be expected. Hence, a novel combination approach based on a modified 

weighted average BPA evidence is proposed.  

The weighted factor is generated by the credibility and dissociability of the BPAs evidence. 

Both can be derived based on the BPAs, thus no extra priori knowledge is needed. The 

weighted factor w is determined by both credibility Crd and dissociability DE as follows: 

             : ( , ) [0,1]w Crd DE                                                  (4.28) 
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If the SUs BPA has a relatively high credibility degree, defined based on the correlation 

coefficient between BPAs and one of them has a higher dissociability than the others, it 

should be more credible. That is because such credible BPA evidence is relatively less 

uncertainty at the same time. Such BPAs should have a larger weight. On the contrary, 

suppose that the SUs BPA are relatively incredible and if one of them has lower dissociability 

than the others, it should be more incredible and should be assigned to a less value of weight. 

However, for a BPA with a higher dissociability but lower credibility, lower weighted factor 

should be assigned to it. This indicates that the conflict between this BPA and others may be 

high. On the other hand, zero dissociability reflects the probability assigned to each singleton 

is equal, thus its weighted factor is mainly determined by credibility. The requirements for w 

can be summarised as: 

i. 0, 0
( ) ( )

w w
Crd DE
δ δ

> >
∂ ∂

  

ii. 0 1w≤ ≤   

iii. (1,1) 1w =   

iv. (0, ) 0w DE =  

v. ( ,0) ,0 1w Crd Crdλ λ= ⋅ < <  

Hence, the modified weights can be defined as follows: 

                  
1 ( ).
2

Crdw Crd crd DE−= + ⋅                                         (4.29) 

The factor 1 2  is needed in equation to normalise w  and to guarantee that 0 1w≤ ≤ . The 

weighted factor iw  for each BPA can be normalised by: 
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w w w
=

= ∑                                                            (4.30) 

If all the BPAs evidence is available at the same time, the masses can be averaged and the 

combined masses calculated by combining the average values multiple times [150]. Thus, the 

BPA for the weighted averaged evidence m can be given by: 

            
1

( ) ( ),    
n

i
i

m A w m A A
=

= ⋅ ∈Ω∑                                           (4.31) 

If there are n pieces of evidence, the averaged BPA must be combined ( 1)n − . 

4.8 Final Decision  

According to DS theory of evidence, the combination of the averaged BPA can be obtained 

by [145]: 
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where  
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In conclusion, the final decision computed at the FC is given as: 

 1 1 0: ( ) ( )H m H m H>                                                           (4.35) 

 0 0 1: ( ) ( )H m H m H> ,                                                        (4.36) 

which can be expressed in a compact form as: 

 
1

0
1 0( ) ( )

H

H
m H m H>< .                                                          (4.37) 

4.9 Summary of Algorithm  

The proposed evidence-based decision fusion scheme for CSS can be summarised as follows: 

Summary of the proposed evidence-based decision fusion scheme for CSS in CR Networks 

1.          Step 1: compute local spectrum sensing statistic (energy detector) 

2.          
iEy using (4.12) 

3.          Step 2: compute the cumulative evidence probability  

4.          ( )1ii Em y H , ( )0ii Em y H  and ( )im Ω  using (4.14), (4.15) and (4.16). 

5.          Step 3: compute the distance of evidence between each BPA 

6.          0 1( ( ), ( )BPA i id m H m H  using (4.17) 

7.          Step 4: compute modification of BPA 

8.         0( )im H′  and 1( )im H′  using (4.20) 

9.          Step 5: compute the redefinition of correlation matrix  
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10.         0 1[ ( ), ( )]i ic m H m H using (4.21) 

11.          Step 6: compute the credibility vector 

12.         CRD  using (4.22) and (4.23) 

13.          Step 7: compute dissociability of each BPA 

14.         ( )DE m  using (4.27) 

15.          Step 8: compute weighted factor and normalised the weighted factor 

16.         w and w  using (4.29) and (4.30) 

17.         Step 9: compute the average BPAs 

18.         ( )m A  using (4.31) 

19.         Step 10: compute the combination of the weighted averaged evidence  

20.        0( )m H and 1( )m H using (4.32) and (4.33) 

21.         Step 11:  compute final decision 

22.         If 1 0( ) ( )m H m H>  then test supports  

23.        1H  

24.         else 0 1( ) ( )m H m H> test supports  

25.        0H  
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4.10 Simulation Results  

This section is used to evaluate the performance of the proposed evidence based CSS scheme, 

where simulation results are shown to compare the proposed approach with other related 

approaches based on the receiver operating characteristic (ROC) and probability of detection 

curves in relation to SNR curves. The effects of different parameters on the proposed 

algorithm were examined, such as the SUs with independent channels, channel availability 

and different values of the SNR. For the simulation in this chapter, the PU network is 

assumed to be a DVB-T2 signal [78], the bandwidth of the PU signal is 8 MHz and 

modulation type is QPSK. The average occupancy rate for the PU is set to 50%, i.e. the 

probability of presence and absence of the PU signal is fixed to an equal probability (0.5), 

respectively. The simulation is based on the Monte Carlo method in MATLAB with 100,000 

iterations. AWGN and Rayleigh channels are considered, there are six SUs spread in the 

network to perform local spectrum sensing. A summary of the simulation parameters for 

analysing the developed CSS algorithm’s performance evaluation are shown in Table 4.1. 

Table 4.1 Simulation parameters for the developed evidence based CSS 

Parameter Value 

PU bandwidth 8 MHz 

Local sensing 25 µs 

Frame length 60 

FEC blocks per frame 50 

Channel condition AWGN, Rayleigh 

SNR range -20dB to -8dB 

Iterations 100,000 

Number of SUs  6 

PU average occupancy rate 0.5 (50%) 
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Figure 4.3. ROC curves of the proposed scheme and the local sensing results (energy detection) 
at each SU over AGWN channel. 

 

Figure 4.4. ROC curves of the proposed scheme and the local sensing results (energy detection) 
at each SU over Rayleigh fading. 
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(2) SU with SNR = -10dB (AWGN)
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(6) SU with SNR = -18dB (AWGN)
(7) SU with SNR = -20dB (AWGN)
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(1) Proposed Evidence based scheme (Rayleigh)

(2) SU with SNR = -10dB (Rayleigh)

(2) SU with SNR = -12dB (Rayleigh)

(4) SU with SNR = -14dB (Rayleigh)

(5) SU with SNR = -16dB (Rayleigh)

(6) SU with SNR = -18dB (Rayleigh)

(7) SU with SNR = -20dB (Rayleigh)
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Figure 4.3 and Figure 4.4 show the ROC curves, highlighting the performance of the 

proposed evidence based scheme and energy detection result at each SU under AWGN and 

Rayleigh fading channels, respectively. A sensing time of 25 µs was considered. Energy 

detection is adopted as the local detection at the SUs. There are six SUs considered in the 

system. A practical scenario has been considered, where the six distributed SUs endure 

different channel conditions. The received signal condition at the six SUs are respectively -10 

dB, -12 dB, -14 dB, -16 dB, -18 dB and -20 dB. It is shown in both Figure 4.3 and Figure 4.4 

that the proposed CSS schemes which considers all the six SUs, outperforms any of the single 

standalone SUs. For example, when the probability of false alarm under a Rayleigh channel is 

0.1, the probability of detection improves by approximately 18% considering a single SU 

with channel conditions of -10 dB.  

 

Figure 4.5. ROC comparison between the proposed scheme, AND rule, OR rule, CV rule, DS 
theory fusion and Enhanced DS theory fusion over AGWN channel.  
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Figure 4.6. ROC comparison between the proposed scheme, AND rule, OR rule, CV rule, DS 
theory fusion and enhanced DS theory fusion over Rayleigh channel. 
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4.5 and Figure 4.6. For example, under AWGN conditions, when the probability of false 

alarm is 0.1 the probability of detection for AND rule, the OR rule, and the CV rule are 

approximately 0.3, 0.5 and 0.6, respectively. 

The second group of CSS algorithms, DS theory fusion and enhanced DS theory fusion 

scheme can be considered as soft decision scheme, they utilise the BPA of the sensing data to 

be sent to the FC, and hence have a higher detection performance than the first group for a 

chosen false alarm probability value. The proposed algorithm falls under the second group, it 

utilises the BPA of the local sensing observation and fusion decisions are made at the FC. 

The results of this second group correspond with the maximum ROC curves. The proposed 

scheme has a better performance than both the DS theory fusion and enhanced DS theory 

fusion scheme. For example, under AWGN conditions, when the probability of false alarm is 

0.1 the probability of detection for the DS theory fusion, enhanced DS theory fusion and the 

proposed scheme are approximately 0.62, 0.72 and 0.82, respectively. The improvement is 

approximately 10%, while a similar improvement of approximately 9% under Rayleigh 

conditions can be observed.  

In general, it can be observed that spectrum sensing detection slightly decreases under 

Rayleigh channel conditions when compared to AWGN conditions. For example, in Figure 

4.5 and Figure 4.6, taking the proposed scheme into consideration, when the probability of 

false alarm is 0.2 the probability of detection under Rayleigh channels when compared to 

AWGN decrease by approximately 10%. 
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Figure 4.7. Probability of missed detection comparison between AND rule, OR rule, CV rule, 
DS theory fusion, Enhanced DS theory fusion and the proposed evidence based CSS scheme.  

In Figure 4.7, the probability of missed detection of the AND rule, OR rule, CV rule, DS 

theory fusion, Enhanced DS theory fusion and the proposed scheme are highlighted. Six 

distributed SUs with diffrent distance measures to the PU are considered under AWGN 

conditions. In order to evaulate the proposed scheme in a practial situaton, it is assumed that 

the first SU channel conditions is changed from -20 dB to -8dB, which is representable of a 

CSS problem, where an SU experiences fading. The next five SUs have the same AWGN 

channel with SNR = - 16dB. It is shown in Figure 4.7, that under the above conditions, the 
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dissociability and weight combination algorithm among the SUs. For example, at SNR = -18 

dB, the missed detection of the proposed scheme reduced by approximately 7% when 

compared to the enhanced DS theory fusion.  

4.11 Conclusion 

In this chapter, a novel evidence based decision fusion scheme CSS for CR networks that 

uses both a credibility of SUs sensing data evidence and dissociability degree measure has 

been proposed. Furthermore, a weighted averaging factor determined by the credibility and 

dissociability of the SU sensing data evidence has also been proposed. The proposed 

approach has been used to overcome and minimise the effect of conflicting SUs sensing data 

evidence when using a classical DS theory combination rule. 

A CR network with one PU and multiple SUs, which are operated in a time-slotted mode, 

have been considered. Instead of treating all sensing terminals indiscriminatingly, the 

proposed scheme treats each SU in the CR network in a practical independent manner by 

assigning a credibility value and a dissociability measure to the SUs BPA evidence. Local 

spectrum sensing was carried out at each SU using an energy detector to estimate the 

received signal power. An appropriate BPA function as a form of cumulative density function 

(CDF) was used. Instead of combining all the SUs (self-assessed BPA which means treating 

all BPA’s equally), the BPAs of each SU are modified by a credibility evidence to improved 

sensing accuracy. Subsequently, an enhanced stage to the FC was proposed. 

To establish the credibility value which represents the relation among different sensing 

decisions evidence of each SU sensing decision, the distance of evidence between each BPA 

was derived using a distance of evidence rule. Afterwards, to describe the similarity between 
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the SUs, a correlation coefficient was defined. A matrix was used to modify the BPA from 

each SU. Subsequently, after all the degrees of similarity between the BPAs had been 

obtained, a correlation matrix and credibility vectors consisting of the BPAs were expressed. 

To ascertain the quality of the BPA evidence a dissociability measure DE was formulated 

using a pignistic probability. Finally, weighted factor has been generated based on the 

credibility and dissociability of the BPAs with no extra priori knowledge needed. The 

combination of the averaged BPAs evidence was also obtained using the DS evidence theory 

combination rule. 

Simulations were performed under AWGN and Rayleigh fading, respectively. The results 

have demonstrated that under practical condition the proposed scheme significantly improved 

performance for CSS when compared to the AND rule, OR rule, which do not take into 

account the difference in local sensing reliability between SUs. Also when comparing against 

the CV rule, DS theory fusion and enhanced DS theory fusion there is an improved 

performance in CSS. The missed detection probability of the proposed scheme decreased by 

approximately 7% when compared to the enhanced DS theory fusion. 

In this chapter, two important design criteria for CSS were focused on, which are the sensing 

reliability, and SU agility. The simulation results showed that the proposed scheme yields a 

significant improvement in the detection probability as well as a considerable reduction in the 

missed detection probability without any prior knowledge of the primary system by utilising 

DS theory. However, the main drawback of the proposed scheme as well as other soft data 

fusions (including the CSS scheme used in chapter 3) are the bandwidth required for 

transmitting the sensing data. Hence, in the next chapter the problem of quantisation in CSS 

is investigated.



5 Enhanced Quantization for Cooperative 

Spectrum Sensing in Cognitive Radio  

The transmission overhead in a CR network should be as minimal as possible, meaning 

that utilizing a wideband reporting channel to transmit raw sensing statistic is not 

efficient. A wideband reporting channel increases spectrum sensing times, which in turn 

reduces data transmission duration, thereby reducing the throughput of the SUs. A 

large overhead also increases cost and reduce spectrum efficiency. The CSS scheme in 

chapter 4 provided a considerable enhancement in the probability of detection and a 

significant reduction in the probability of false alarm without any prior knowledge of 

the PU signal by utilizing evidence theory. However, the main drawback of the 

proposed evidence based CSS scheme as well as a host of other soft data fusion 

schemes, is the bandwidth requirement for transmitting the sensing measurements to the 

FC. Hence, in this chapter, different quantization schemes for CSS are proposed to 

reduce the transmission overhead, increase throughput and improve the overall 

spectrum efficiency in a CR network which can be significant in high data rate 

applications. First, a Maximum Likelihood Estimation (MLE) for CSS for both a 

uniform and output entropy quantization schemes are proposed. Then evidence based 

CSS with quantization are considered. Simulation results presented, show that under 

practical conditions these schemes can achieve good detection performance, 

comparable to conventional soft decision schemes, with reduced communication 

overhead. 
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5.1 Introduction  

To overcome the hidden terminal problem and increase the spectrum sensing reliability, CSS 

schemes have been studied in [13, 100, 109, 114, 121-124, 126]. To reduce detection time 

and increase SU gain, CSS was considered in [2, 13, 109, 152]. In CSS, the SUs transmit 

their sensing statistics to the data FC. A data fusion rule is subsequently carried out to fuse 

the recovered data and make a global decision [129]. Owing to the receiver diversity gain, the 

global decision is considered much more reliable than the local decisions. In most literatures 

of CSS [43, 100, 122, 143], local SUs are assumed to perform their individual decisions to 

decide on the presence or absence of the PU signal, which can be equivalent to a 1-bit 

quantization. At the FC, the quantized decisions are combined using counting rules, under 

such a circumstances; the optimal fusion scheme is the “k out of n” rule [14]. Nevertheless, 

the scheme is suboptimal [88] when the numbers of CR’s n are not infinite. Even though the 

overhead communication requirements in this method are reduced, the detection performance 

considerably reduces. Hence leading to the motivation for using quantized soft data statistics 

in CSS that do not considerably reduce detection performance [2, 102, 140, 153-155].  

There are a number of traditional quantization schemes in that quantize soft data statistics 

[104, 156, 157]. Mostly, all of these quantization schemes need some sort of prior 

information of the PU’s signal which is not always available in a practical CR network. A 

two-bit hard combination which achieves a good sensing detection was proposed in [47]. 

However, the quantization thresholds are based on an intuitive criterion of the received signal 

energy at individual SUs and cannot be proven to be optimal. A multi-bit quantization 

scheme was proposed in [153] to apply the deflection criterion [156] however an optimal 

quantization was not implemented. In [12, 158], a Lloyd based LLR quantizer was proposed, 

but it required full knowledge of prior probability of PU’s signal and it was assumed the 
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reporting channels are perfect, this is not always practical. In [42], a soft decision based CSS 

algorithm for an OFDM based PU signal was designed using a quantized LLR. It was 

assumed that the distribution of the received signal at the individual SUs under the alternative 

hypothesis is known.  

In this chapter, quantization methods are considered for output entropy quantization for a 

MLE based CSS scheme and an evidence based CSS scheme. For the MLE based CSS 

scheme, an output entropy quantization MLE based CSS using an estimator algorithm for the 

composite hypothesis testing is developed. Here, the MLE of the energy measurements are 

quantized to use instead of the quantized versions of LLRs used in [12] for detecting a PU 

signal. Contrary to [2, 12, 42], it is assumed that the PU signal is unknown. A novel uniform 

threshold quantization scheme and an output entropy quantization are proposed to provide 

less complex overhead as a potential benefit of sensing data volume that may help speed up 

the PU signal detection process.   

For the evidence based CSS scheme, a scheme that quantizes the BPA data at each SU before 

sending it to the FC is developed. The proposed scheme takes into consideration the 

characteristics of the hypothesis distribution under diverse SNR of the PU signal. It is 

assumed that there is no prior knowledge of the PU signal. A novel combination scheme 

similar to that in chapter 4 is developed at the FC. A combination gain corresponding to that 

in chapter 4 is achieved, while only a minimal amount of bandwidth for the reporting channel 

is needed. 
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The main contributions of this chapter can be described as follows: 

• Designing a novel optimal entropy quantization for (MLE) for CSS for CR networks 

using a uniform threshold quantizer (UTQ) and an output entropy quantization 

scheme.  

o Deriving Maximum Likelihood estimator for a CSS scheme and optimize it by 

adjusting the parameter associate with the threshold distribution.  

o Evaluate and deriving expressions for a proposed (UTQ) and an output 

entropy quantizer and evaluating their performance for a low SNR range. 

 

• Designing a novel evidence-based decision fusion CSS quantization scheme for CR 

network. 

o Evaluating and deriving expressions for a proposed (UTQ) and an output 

entropy quantizer using LLR. 

o Developing an algorithm for the quantization of the credibility value and 

dissociability degree measure of the SU sensing data evidence. 

o Simulation and discussion of the effect of different key parameters such as the 

probability of error, channel type, probability of false alarm, probability of 

missed detection and the average SNR on the performance of the proposed 

scheme. 

The rest of this chapter is organised as follows: A Lloyd-Max algorithm is described in 

section 5.2. In section 5.3, an optimal entropy quantization for a MLE based CSS scheme is 

presented. An evidence based quantization scheme is presented in section 5.4. Finally, in 

section 5.5 the conclusions are presented. 
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5.2 Lloyd-Max algorithm 

Generally, all the quantization methods are primarily based on the optimal Lloyd-Max 

quantization scheme and will be referred to further on in this chapter. As a result, the details 

of these quantization methods are provided in this section. An algorithm for designing an 

optimal quantizer using MMSE distortion measure was presented in [159]. Assuming a D-

level bit quantizer Q(y) of an input value y is given by a set of quantization levels 

, 1, 2,..., .il i D=  and quantization boundary , 1, 2,...,it i D= . The principle of quantization 

requires 0 1 1... D Dt t t t−−∞ = ≤ ≤ ≤ ≤ = ∞  and takes ( ) iQ y l=  if 1( , ),    i 1, 2,...,i iY t t D−∈ = , 

where 1( , )i i il t t−∈ . The optimal quantization in the sense of MMSE can be achieved from the 

following Lloyd-Max quantization criterions [12, 159]: 
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( )Yf y  is the PDF of input Y . The quantization levels which ought to be centroid of the PDF 

in the quantization interval 1( , )i it t−  is represented by equation (5.2), the quantization 

boundaries which are the middle point between two neighbouring quantization levels are 

represented by equation (5.1). The distortion is defined by the MSQE as follows [159]:  
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The Lloyd-Max algorithm carries out of the following operation [159]: 

• Iteration 1: Guess the initial set of quantization levels il  1, 2,...,i D=  

• Iteration 2: Calculate the quantization boundaries it  using equation (5.1). 

• Iteration 3: Re-calculate the quantization levels il  using equation (5.2). 

• Iteration 4: Estimate the distortion R by (5.3) and the value of relative distortion                                              

error Rδ  :  

                                            1

1

R R
R

R

R R
R

δ −

−

−
=                                                                (5.4) 

• Iteration 4: Repeat iteration 2 and iteration 3 until no further distortion reduction. 

5.3 Optimal Entropy Quantization for Maximum Likelihood Estimation 

for Cooperative Spectrum Sensing. 

A type of global decision known as hard decision in CSS facilitates easy implementation and 

reduces the bandwidth requirement on the reporting channel between the SUs and the FC, but 

these advantages come at the expense of data loss and reduction in performance [88]. The 

alternative soft decision fusion CSS schemes in previous research works [5, 109, 125, 143] 

provide a considerable enhancement in the probability of detection at the expense of 

increased bandwidth required for transmitting the sensing measurements to the (FC). Owing 

to the constraint of control of the reporting channel bandwidth, the local sensing statistic 

ought to be quantized before subsequently transmitting to FC. Using quantized local decision 

values of a local statistic or Log-Likelihood Ratio (LLR) can help reduce the required 

reporting channel bandwidth and improve CSS performance [42, 160].  
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A LLR quantizer that utilizes the distribution parameters of sensing data was proposed in [12] 

and [2]. However, it requires a full knowledge of prior probability of the PU’s signal which is 

not always available. Also, it was assumed that the reporting channels are perfect, which can 

lead to performance losses under practical conditions. In [42], a soft decision based CSS 

scheme for an OFDM PU network using the quantized versions of LLR’s was proposed. 

However, it was assumed under the alternative hypothesis that the distribution of the received 

signal is known, even though under practical conditions this may not be the case. Contrary to 

the simple hypothesis LLR test in which the PDFs under both hypotheses are completely 

known, a practical scheme in which a composite hypothesis test must accommodate unknown 

parameters is proposed. The MLE statistics are quantized and sent to the FC as an alternative 

of the quantized decision statistics of LLRs. Uniform and optimal entropy quantization’s 

schemes are proposed to reduce the reporting channel overhead. The proposed scheme gives 

a simple and practical implementation of CSS with negligible loss as compared to the optimal 

case of using quantized LLRs, which can be significant in high data rate applications.   

5.3.1 System Model 

In this section, a system model as shown in Figure 5.1  which is similar to the general system 

model in section 2.9 is considered. N SUs are considered for the CSS scheme. The local SUs 

utilise the autocorrelation coefficients of the PU signal during each sensing period. The 

following assumptions are made: 

• It is assumed that the sensing time is large enough, such that the PU signal can be 

modeled as a Gaussian distribution for a complex random variable  

• Channels corresponding to individual SUs are assumed to be independent and all SUs 

and the PU share the same spectrum allocation.  
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• Both the sensing channels and reporting channels are assumed to be independent and 

identically distributed (i.i.d). 

 

Figure 5.1 A maximum likelihood D-level quantizer based cooperative spectrum sensing scheme. 

The PU detection problem is formulated as a composite hypothesis testing problem, where 

0H  denotes the presence of the PU and 1H  denotes the absence of the PU [41].                                                 

The SUs transmit quantized values of the MLE observations to a FC to make a final decision. 

The essential performance criteria for CSS at the FC are the probability of detection, the 

probability of missed detection, and the probability of false alarm which are denoted by , ,d mlP  

,m mlP  and , ,f mlP  respectively. Note by definition, , ,1 .m ml d mlP P= −  Let the constraints on the 

probability of false alarm and the probability of missed detection be denoted by mlα  and mlβ , 

respectively, thus, ,f ml mlP α≤ and , .m ml mlP β≤   

5.3.2 Maximum Likelihood Estimation (MLE) 

The local decisions are assumed to be the quantized values of the MLE outputs of the PU 

signal. As opposed to the simple hypothesis test (LLR) in which the PDFs under both 

hypotheses are completely known. It is assumed that the PDFs under H0 or under H1 or both 
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hypotheses may not be completely known. The PU signal is assumed to be a DVB-T2 (see 

section 2.12.1) with an OFDM signal that consists of sum of narrowband subcarriers that are 

typically modulated by using phase shift keying (PSK) or quadrature amplitude keying 

(QAM). The presence of a cyclic prefix (CP) gives OFDM signals the following well-known, 

convenient property [161]:  

• The autocorrelation coefficients are nonzero at delays dTτ = ± , where dT  is the 

number of samples corresponding to useful symbol length in an OFDM block.  

Without loss of generality, a sampling factor of 1 is assumed. Therefore dT  also represents 

the number of subcarriers for the DVB-T2 system. The OFDM signal is constructed by 

feeding dT  symbols to an Inverse Fast Fourier Transform (IFFT) through serial to parallel 

conversion [161].  

The hypothesis testing problem for detecting the PU signal is giving by [41]:  

   0

1

:    ( ) ( )
:    ( ) ( ) ( )

H y t w t
H y t s t w t

=
 = +

                                                    (5.5) 

where ( )y t  is the received complex OFDM signal, ( )s t is the PU’s transmitted signal and 

( )w t  is the complex circular additive white Gaussian noise. Under the assumption of a large 

IFFT size and using the CLT [53]: 
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where (.)  denotes the Gaussian distribution for a complex random variable, 2
sσ   and 2

wσ   

are the variance of the ( )s t  and ( )w t , respectively. Therefore, 
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Considering ( ) ( ) ( )r iy t y t jy t= +  to be circularly symmetric Gaussian random variables, the 

real and imaginary parts of y  is given by [161]:  
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where (.)τ  denotes the Gaussian distribution for a complex random variable, 2
yσ   is the 

variance of the ( )y t . For a cyclic prefix-OFDM (CP-OFDM) signal, the values of the 

autocorrelation coefficient ( ) [ ( ) ( )] / [ ( ) ( )]E y t y t E y t y tρ τ τ∗ ∗= +  for lags dTτ = ±  under the 

two hypotheses are given by [161]: 
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cT  is the number of samples corresponding to CP in an OFDM block. If the MLE of the 

autocorrelation coefficient at the i-th SU is denoted by ir , the MLE of ρ  can then be 

evaluated in terms of the received observation [ (0),..., ( 1)]dy y M T+ −  by [161]: 
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where {.}ℜ  is the real part of a complex number, M  is the number of observation, dT  

denotes the number of symbols in an OFDM data block, and .dM T  The distribution of ir  

can be approximated for a low SNR in the absence of the knowledge of the true 

autocorrelation coefficient by [161]: 
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where 0θ >  and 2 1
2M

σ = . 

Subsequently, the MLE ir  needs to be quantized. Let d be the number of bits used for 

quantizing ir  to achieve the required local soft decision su
ir  and D  be the corresponding 

number of the quantization levels, where 2dD = . The i-th SU transmits a d-bit sequence su
iS

over a non-ideal reporting channel. Hence, due to channel errors, the received d-bit sequence 

at the FC fc
iS  might be different from the transmitted sequence su

iS . The testing rule used to 
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decide on the presence (H1) or absence (H0), of the PU signal, at the FC is based on the global 

test statistic [39]:  

                                          
1

01

N H
fc

n fc
Hi

T r η
=

>= <∑                                                               (5.13) 

where the local soft decision corresponding to fc
iS  is the denoted by fc

nr  and the threshold fcη  

is used for the global decision. The probability of detection ,d mlP  can be calculated by [50]: 

         , 1 1( ) ( )d mlP T H T Hη γ η= Ρ > + Ρ =                                       (5.14) 

where η  is local detectors threshold and γ  is randomization parameter. The probability of 

error is given as follows [134]:  

                         , 0 , 1 ,min[ ( ) (1 ( ))],E ml f ml fc d ml fcP P P P Pη η= + −                             (5.15) 

where 0P  and 1P  are the global probability of the PU signal absence and presence, 

respectively, and ,f mlP  is the global probabilities of false alarm. 

5.3.3 The Optimal Entropy MLE Quantizer for CSS 

The primary aim is to design an optimal quantizer that will preserve the MLE value with 

minimum quantization bits. Hence, the obvious choice is a quantizer that minimizes an output 

entropy distortion [56, 162]. The quantizers at each of the local sensors are assumed to be 

independent and identical. For each local SU, the thresholds for the quantization region are

, 1, 2,...,it i D=  and the quantization levels for each of the SU are denoted by , 1, 2,..., .il i D=  
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5.3.4 Uniform Threshold Quantization  

In general, MLE can be quantized by a uniform threshold quantization (UTQ) algorithm, 

which is the simplest and most commonly used quantization algorithm. It is straightforward 

to design and practical to implement [104].  

Let a quantization region at each of the individual SUs of ( , )δ δ−  be considered. The 

quantization interval 2
D
δ

∆ = , which is the middle point between two neighbouring 

quantization levels. The value of δ  is chosen to ensure that the decision for hypothesis H1 is 

made if  and decision for hypothesis H0 if . When 3δ σ= , the selected 

quantization region ensures that majority of the distribution region of ri gets covered for 

hypothesis H0. The quantization levels for the quantizer at the SUs are given by [104]: 

                             ( 0.5) ,    1,2,..., .il i i Dδ= − + − ∆ =                                           (5.16) 

If 0 ,..., Dt t  are the quantization region thresholds, then: 

                                       0 ,     Dt tδ δ= − = ,                                                             (5.17) 

           1 ,    1,2,..., -1
2

i i
i

l lt i D++
= =                                            (5.18) 

5.3.5 Proposed Uniform Threshold Quantization  

If a UTQ is considered as shown in Figure 5.2, where 2,D =  the quantization level l1 and l2 

each includes half of the distribution of ri under 0H , respectively. Hence, for low values of D 

even at high SNR, the scheme may result in detection loss. The SUs ought to be able to keep 

ir δ> ir δ< −
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the desired probability of false alarm even in the worst conditions. Therefore it is proposed 

that the quantization region is divided in such a way that the local threshold η  for each local 

detector is the center of the quantization region. Hence, the proposed quantization region is 

( , )δ η−  when taking each individual SU into consideration.  
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    Figure 5.2 Uniform Threshold Quantization with quantization levels D = 2.  

 

The quantization regions ( , )δ η−  are uniformly divided into 2
D  regions, therefore, the 

quantization interval is given by: 

 
2( )

D
η δ+

∆ =                                                               (5.19) 

If 0 ,..., Dt t  are the quantization region thresholds with η  as the centre, then: 

 0 1,     2 ,Dt tδ η δ+= − = +                                                     (5.20) 
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     1,2,..., ,it i i Dδ= − + ∆ =                                                  (5.21) 

 1      1,2,...,
2

i i
i

t tl i D++
= =                                                   (5.22)

For the proposed UTQ with 2D =  and 0.01mlα =  (the assumed best constraint false alarm 

rate), the quantization level il  covers approximately 99% of the distribution of H0 and 2l  

covers the remaining approximately 1% of the distribution under H0, as shown in Figure 5.3. 

When the proposed UTQ is compared to the original UTQ scheme there is an increase in the 

region of the distribution under 1H . This results in an improvement of the detection 

performance. The improvement depends on the choice of η .  
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Figure 5.3 Proposed Uniform Threshold Quantization with quantization levels, 2D =  

5.3.6 Threshold 

The improvement in the probability detection lies on the selected threshold. For the proposed 

UTQ, the quantization regions are divided in such a way that the local threshold η for each 
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individual SU are the centre of the quantization region. The improvement in the detection 

performance depends on the choice of η, The value of η can be optimized by properly 

formulating the optimization problem. The thresholds are chosen to preserve the required 

probability of false alarm αml and are given by:  

 
2 (2 )mlerfc
ση σ=                                                            (5.23) 

where erfc is the error function. 

5.3.7 Optimal Entropy Quantizer  

When considering a fixed quantization level, output entropy is a good theoretic criterion of 

quantizer trustworthiness [162]. In [162] a quantizer which maximizes the output entropy was 

proposed, it was shown to be approximately the same when compared to a minimum average 

entropy (MAE) quantization for certain types of signal distributions including a Gaussian 

distribution which is suitable in this section. The output entropy quantization scheme is less 

complex and more practical to implement than an optimal MAE quantization scheme [162]. 

For implementing an output entropy quantization, let the range of ir  under 1H  be split into 

D  levels hence, the quantization levels have a value of 1
D . Therefore, the probability mass 

function (PMF) for the quantized local soft decision su
ir  is given by [162]: 

 
1

 ( ) ( ) 1 / ,     1,2,...,i

i
i

tsu
i i rt

r l f y dy D iP D
−

= = = =∫                                (5.24) 
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where (.)
ir

f  denotes the PDF under 0H . Assuming 0t = −∞  and ,it = ∞  the rest of the 

thresholds it  can be calculated for  1,  2,...,  1i D= −  from equation (5.24). The quantization 

level is the centroid region between the thresholds 1it −  and it   is given by [162]:   

 1

1

( )
     1,...,

( )

i

i
i

i

i
i

t

rt
i t

rt

x f y dy
i D

f y
l

dy
−

−

=
⋅

=
∫
∫

                                             (5.25) 

5.3.8 Proposed Optimal Output Entropy Quantization 

The optimal output entropy, similar to the UTQ also has a poor performance for small values 

of .D  Thus, a similar approach to the case of the UTQ is proposed. The quantization region 

( , )δ η−  is split into 2
D  levels. Each level has the same PMF value of 2 ( )F

D
η , where ( ).F  is 

the cumulative distribution function (CDF) of ir  under 0.H   Therefore, the PMF value for the 

quantized su
ir  is given as follows: 

       
1

 ( ) ( ) 2 ( ) / ,     1,..., / 2i

n
i

tsu
i i rt

r l f y dy F D i DP η
−

= = = =∫                       (5.26) 

where (.)
nr

f  denotes the PDF under H0 . Assuming 0t = −∞  and /2Dt η= , the threshold 

, 1, 2,..., 1
2i
Dt i = − , can be calculated from equation (5.26). The other 2

D  levels are the 

mirror images of these levels with η as the center as follows: 
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2 ,    1,2,..., -1

2
.

i D i

D

Dt t i D

t

η −= − = +

= ∞
                                           (5.27)

The quantization level il  is the centroid of the region between the thresholds 1it −  and it , 

which are calculated from (5.25) for  1, 2,...,i D=  

5.3.9 Simulation Results 

This section is used to evaluate the performance of the proposed UTQ and optimal entropy 

quantization for MLE based CSS, where simulation results are shown to compare the 

proposed approach with other related approaches based on probability of detection in relation 

to SNR curves, and probability of error curves. The effects of different parameters on the 

proposed algorithms were examined, such as the quantization methods, number of 

quantization levels, channel availability and SNR values. 

For the simulation in this chapter, the PU network is assumed to be a DVB-T2 signal [78], 

the bandwidth of the PU signal is 8 MHz and modulation type is QPSK. The number of 

samples corresponding to useful symbol length in an OFDM block 32dT =  and CP length

8cT = . The simulation is based on the Monte Carlo method in MATLAB with 100,000 

iterations. AWGN and Rayleigh fading environments are considered. There are six SUs 

spread in the network to perform local spectrum sensing. Gray mapping is used between the 

D quantization levels and the d-bit sequences while the constraints on the probability of false 

alarm and the probability of missed detection for the CSS are 0.01mlα =  and 0.01mlβ = . A 

summary of the simulation parameters for analysing the proposed CSS algorithm’s 

performance are outlined in Table 5.1.  
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Table 5.1 Simulation parameters for the MLE based CSS scheme. 

Simulation Parameter Value 

PU bandwidth 8 MHz 

Local sensing 25 µs 

dT  32 

cT  8 

Channel condition AWGN, Rayleigh 
SNR range -25dB to 0dB 
Iterations 100,000 

Number of SUs (N) 6 

mlα  0.01  

mlβ  0.01  

Mapping Gray Mapping 
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Figure 5.4 Probability of detection with different quanitization level values when SNR values at 
the SUs are changed from -25dB to 0 dB for a UTQ quantisation scheme. 

Figure 5.4 presents probability of detection curves for a MLE based CSS as a function of 

SNR. The performance of a UTQ and the proposed UTQ quantisation scheme when the 
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quantization levels D = 2 and D = 8 in are presented under AWGN and Rayleigh fading 

environments. The average SNR values at the six SUs are changed from -25dB to 0 dB. It can 

be observed that the detection performance for both the UTQ and the proposed UTQ 

quantisation schemes are similar when D = 8. However, at a lower value, when D = 2, there 

is a significant gain in the detection performance of the proposed scheme. For example, when 

the average SNR in the AWGN environments is -8dB and D = 8, the probability of detection 

of the UTQ scheme and the proposed scheme are approximately 0.89 and 0.95, respectively. 

However, when D = 2 under the same conditions the probability of detection of the UTQ 

scheme and the proposed scheme are approximately 0.18 and 0.52, respectively leading to an 

improvement of approximately 34%. A similar improvement of approximately 15% under 

Rayleigh fading conditions can be observed. Even for high SNRs, a probability of detection 

of 0.99 under the UTQ scheme cannot be achieved under the simulated conditions. 
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Figure 5.5 Probability of detection with different quantisation bits levels when SNR values at 

the SUs are changed from -25dB to 0 dB for an output entropy quantisation scheme. 
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In Figure 5.5, probability of detection curves for a MLE based CSS as a function of SNR are 

presented highlighting the performance of an output entropy quantisation and the proposed 

output entropy quantisation scheme, when the quantization levels D = 2 and D = 8 in both 

AWGN and Rayleigh fading environments. It can be observed that the detection performance 

for both the quantisation schemes are similar when D = 8. However, at a lower value, when D 

= 2, there is a significant gain in the detection performance of the proposed scheme. The 

observations are similar to that made regarding the quantisation schemes in Figure 5.4. When 

when D = 2 and the average SNR is -8dB, there is an improvement of approximately 20% 

and 14% under AWGN and Rayleigh fading conditions, respectively. 

 

Figure 5.6 Probability of error for different quantisation based CSS schemes when values of 
SNR are changed from = -20 dB to-10 dB. 
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Figure 5.6 presents the probability of error curves for different quantisation based CSS 

schemes as function of SNR.  The quantisation schemes considered are the proposed MLE 

based CSS using UTQ, the proposed MLE CSS using output entropy and a CSS LLR output 

entropy. The non-quantised MLE data are presented for comparison. Six different SUs are 

considered and the SNR values are changed from -20 dB to -10 dB. It is observed that the 

choice of quantization scheme affects the probability of error of the different CSS schemes. 

The proposed UTQ had the least performance. When compared to the LLR output entropy 

scheme the proposed output entropy performed slightly less. However, the proposed scheme 

gives a simple and practical implementation of CSS with negligible loss as compared to the 

optimal case of using quantized LLRs, which is vital in a practical scenario where the PU 

signal statistics are unavailable. 

5.4 Evidence Theory based Cooperative Spectrum Sensing with 

Quantization in Cognitive Radio Networks. 

An evidence based CSS quantisation scheme was proposed in chapter 4, however, the main 

drawback of the proposed scheme as well as other evidence based schemes such as [121] and 

[123] are the bandwidth required for transmitting the sensing data to the FC. The schemes 

transmit not just the sensing results but also the credibility and other related information to 

the FC. Thus, the bandwidth requirement will be extremely large when the number of SU 

increase leading to longer sensing times. It is advantageous to have shorter sensing and 

longer data times [29], if the sensing time is too long, the data transmission duration reduces 

thereby reducing the throughput of the SUs and underutilising the frequency spectrum. 

Evidence based CSS quantisation scheme increase sensing reliability and SU agility hence, in 

this section a quantization method to reduce the transmission data using evidence theory is 
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proposed to reduce the transmission data from the SUs to the FC using a LLR output entropy 

quantisation scheme similar to the MLE output entropy scheme in section 5.3. 

5.4.1 System Model 

A CSS scheme which is similar to that in section 2.18 is considered, where the average SNR 

of the PU signals received at the SUs are assumed to be identical. The Evidence-based CSS 

scheme shown in Figure 5.7 which is similar to that in Figure 4.2 is considered. The CSS 

process can be categorised into two stages: Local sensing at the SUs and final decision at the 

FC. 

 

Figure 5.7. Evidence-based Decision Fusion Scheme for CSS with quantisation. 

In the local sensing phase, each SU listens for the PU signal and measures the SNR of the 

channel using an energy detector as described in section (2.18.2). The received PU signal and 

the measured average SNR are used to estimate the BPA values as described in chapter 4. 

The BPA functions are defined as a form of a CDF equations (similar to equation (4.14), 

(4.15) and (4.16) : 
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    1 0( ) ( ) ( ) 1i i im H m H m+ + Ω =                                               (5.30)                                     

where H0 and H1 are correspond to hypotheses of absence and presence of the PU signal, Ey  

can be modeled as a Gaussian random variable under both hypotheses H0 and H1, with mean 

0µ , 1µ  and variance 2
0σ , 2

1σ , respectively and ( )0ii Em y H  and ( )1ii Em y H  are the BPAs of 

hypothesis H0 and H1 of the i-th SU, respectively. Ω  denotes either hypotheses is true. 

The estimated BPAs are then transmitted to the FC where the credibility of SUs BPAs 

evidence (equation 4.24) and dissociability degree measure (equation 4.27) of the SUs are 

calculated, in the form of a weighted averaging factor (equation 4.31) which is then taken 

into account when making the final decision at the FC. According to the modified 

combination rule as described in section (4.7), the combination of the BPAs can be obtained 

by [145]: 
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where iA is one element of the set 1 0{ , , }H H Ω . The final decision equation (4.35) can be 

formulated by:  

 
1

0

H

fc
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η λ><                                                                    (5.34) 

where 
 
is the global combination ratio and is a threshold that enables control 

of the false alarm and detection probability according to the requirements of the FC. 

5.4.2 Local Soft Decision Log Likelihood Ratio 

In the evidence based CSS scheme described in chapter 4, the SUs send their BPA values of 

their hypotheses to the FC instead of making a local hard decision. At least two elements 

have to be transmitted to the FC. After combining all of the BPAs from the SUs by the 

combination rule, the FC makes a decision based on the ratio between  and . 

Therefore, the ratio plays a very important role in the global decision. Therefore, the ratio 
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is assumed to be the local soft decision of the i-th SU. For computational convenience and the 

overall bandwidth reduction it is proposed to use a log likelihood ratio hypothesis testing at 

the SU as presented in section 5.4. The likelihood ratio is given by: 

                                              log 1

0

( )log
( )

i
i

i

m H
m H

η =                                                (5.36) 

is the local soft decision or the decision credibility of the i–th SU. 

5.4.3 Local decision Quantization 

The major drawback of an evidence based CSS data fusion is the bandwidth required for the 

reporting channel when the number of SUs are large, the bandwidth for reporting their 

sensing results to the FC will be huge and with an increase in bandwidth of the reporting 

reduces the utilizing of the spectrum because the sensing time increases. Hence, in order to 

reduce the overhead of the network, a local decision quantization methods are proposed here 

that enable the SU to only send a minimal amount of bits to the local sensing decision to the 

FC. The quantizers at each of the local sensors are assumed to be independent and identical. 

For each local SU, the thresholds for the quantization region are , 1, 2,...,it i D=  and the 

quantization levels for each of the SU are denoted by , 1, 2,..., .il i D=  

5.4.4 Uniform threshold Quantization for LLR 

The LLR can be quantized by a UTQ algorithm, which is the simplest and most commonly 

used quantization algorithm. It is straightforward to design and practical to implement [104]. 

Similarly to section (5.2), where a UTQ scheme was proposed to quantizer a general MLE 

statics, a similar scheme is employed. Instead of the MLE statics, the LLR of the local 

credibility in a logarithmic value log log( )i iη η=  is quantized to a multi-bit level. Let d be the 
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number of bits used for quantizing log
iη  and D  be the corresponding number of the 

quantization levels, where 2dD = . For simplicity, let log
i iη ∈ℜ  and iℜ  denotes the 

quantization region. 

Instead of using a normal UTQ which suffers from detection loss at low values of D even at 

high SNR, the proposed UTQ (section 5.3.5) is considered, that is, the quantization region is 

divided in such a way that the local threshold LTη  for each local detector is the center of the 

quantization region.  

Hence, the proposed quantization region is ( , )LTδ η−  when taking each individual SU into 

consideration. The quantization regions ( , )LTδ η−  are uniformly divided into 2
D  regions, 

therefore, the quantization interval is given by: 

 
2( )LT

D
η δ+

∆ =                                                             (5.37) 

If 0 ,..., Dt t  are the quantization region thresholds with LTη  as the centre, then: 

                                        0 1,     2 ,D LTt t ηδ δ+= − = +                                              (5.38) 

                                            1,2,..., ,it i i Dδ= − + ∆ =                                            (5.39) 

                        1      1,2,...,
2

i i
i

t tl i D++
= =                                               (5.40) 
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The value of δ  is chosen to ensures that the decision for hypothesis H1 is made if i δℜ >  and 

decision for hypothesis H0  if iR δ< − . When 3δ σ= , the selected quantization region 

ensures that majority of the distribution region of iR  gets covered for hypothesis H0. 

5.4.5 Output Entropy quantization for LLR 

Designing an optimal quantizer that will preserve the MLE value with minimum quantization 

bits is imperative to minimize overhead bandwidth while getting detection performance high. 

Hence, the obvious choice is a quantizer that minimizes an output entropy distortion [56, 

162]. The output entropy quantization scheme is less complex and more practical to 

implement than an optimal MAE quantization scheme [162]. Hence, similar to section (5.4.2) 

an output entropy scheme is used to quantize the LLR.  

The optimal output entropy, similar to the UTQ also has a poor performance for small values 

of .D  Thus, a similar approach to the case of the UTQ is proposed. That is, the quantization 

region is divided in such a way that the local threshold LTη  for each local detector is the 

center of the quantization region. The quantization region ( , )LTδ η−  is split into 2
D  levels. 

Each level has the same PMF value of 2 ( )LTF
D
η , where ( ).F  is the cumulative distribution 

function (CDF) of iℜ  under 0.H   Therefore, the PMF value for the quantized iℜ  is given 

follows: 
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where (.)
i

fℜ  denotes the PDF under H0 . Assuming 0t = −∞  and /2 LD Tt η= , the threshold 

, 1, 2,..., 1
2i
Dt i = − , can be calculated from equation (5.26). The other 2

D  levels are the 

mirror images of these levels with LTη as the center as follows: 
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 The quantization level il  is the centroid of the region between the thresholds 1it −  and it , 

which are calculated by: 
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A summary of the steps required to quantizer the LLR of the evidence based CSS is shown in  

Table 5.2 Summary of steps for quantization the LLR statistic. 

Summary of the steps for quantization the LLR statistic  

1.          Step 1:       Choose between a UTQ or an output entropy quantizer based on the CR  
2.                            network requirements. 
3.          Step 2:       Compute local spectrum sensing statistic using energy detector. 
4.          Step 3:       SUs compute the BPAs of 0H  , 1H  and the decisions credibility log

iη . 
5.          Step 4:       The decisions credibility log

iη  is quantized based on the quantizer chosen                       
6.                            in Step 1. 
7.          Step 5:       The output which is a the multi-bit local decision will be transmitted to  
8.                            the FC. 
9.          Step 6:       The value of the decisions credibility log

iη  is retrieved. 
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5.4.6 Data Fusion centre 

The entire system of the proposed CSS utilizing quantization data is shown in Figure 5.7, the 

proposed scheme included two phases, the local sensing phase and the fusion phase. The 

main difference is that the SUs will report to the FC a quantized decision credibility ratio 

instead of transmitting raw BPAs as in the chapter 4. This evidently reduces the reporting 

channel transmission overhead. In the fusion phase at FC, it is assumed that the decision 

credibility values of each SU will be retrieved by a de-quantization process. Similar to 

sections (4.3) and (4.4), the next step is to calculate the credibility degree of the de-quantized 

data using equations (5.44) - (5.45). The BPAs dissociability degree can then be calculate 

using equation (4.27). The weight factor using equation (4.29) is determined. Finally, 

combination using DS theory rule of combination decision is made equations (5.31) – (5.33)

and a final decision is made by equation (5.34). 

5.4.7 Simulation Results  

This section is used to evaluate the performance of the proposed evidence based CSS 

quantization scheme, where simulation results are shown to compare the proposed approach 

with other related approaches based on the receiver operating characteristic (ROC) and 

probability of error curves in relation to SNR curves. The effects of different parameters on 

the proposed algorithm were examined, such as the SUs with independent channels, channel 

availability and different values of the SNR. For the simulation in this chapter, the PU 

network is assumed to be a DVB-T2 signal [78], the bandwidth of the PU signal is 8 MHz 

and modulation type is QPSK. The average occupancy rate for the PU is set to 50%, i.e. the 

probability of presence and absence of the PU signal is fixed to an equal probability (0.5), 

respectively. The simulation is based on the Monte Carlo method in MATLAB with 100,000 

iterations. Rayleigh fading channels are considered, there are six SUs spread in the network 
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to perform local spectrum sensing. A summary of the simulation parameters for analysing the 

developed CSS algorithm’s performance evaluation are shown in Table 4.1 

Table 5.3 Simulation parameters for the evidence based CSS quantization 

Parameter Value 

PU bandwidth 8 MHz 

Local sensing 25 µs 

Frame length 60 

FEC blocks per frame 50 

Channel condition Rayleigh 

SNR range -10dB to -20dB 

Iterations 100,000 

Number of SUs  6 

PU average occupancy rate 0.5 (50%) 

 

 

Figure 5.8 ROC of different CSS Schemes under with various channel conditions with different 
average SNR over Rayleigh fading. 
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Figure 5.9 show the ROC curves, highlighting the performance of the proposed evidence 

based CSS UTQ output entropy and UTQ schemes under Rayleigh fading channels. A 

sensing time of 25 µs was considered. There are six SUs considered in the system. A 

practical scenario has been considered, where the six distributed SUs endure different 

channel conditions. The average received signal condition at the six SUs are respectively -10 

dB, -12 dB, -14 dB, -16 dB, -18 dB and -20 dB. Figure 5.9 show the ROC curves of the AND 

rule, OR rule, CV rule [101] which are considered for reference purposes as conventional 

traditional as hard decision CSS scheme. The sensing performance of these convention group 

is obviously the lowest one, because they have the lowest communication overhead 

requirement, i.e., only 1-bit hard decision for CSS. The ROC curves of the AND rule, OR 

rule are lower than the CV rule [101], which is the optimal 1-bit hard decision fusion rule. 

The proposed evidence based CSS (in chapter 4), DS theory fusion [121] and enhanced DS 

theory fusion [123], require raw sensing data to be sent to the FC and hence, have higher 

values of the detection probability for a specific value of the false alarm probability. The 

ROC curves for the UTQ and the output entropy quantization CSS scheme show a minimal 

quantization degradation in respect to the evidence based CSS, but they outperform the other 

schemes. The observations indicate the effectiveness of the proposed evidence based method 

in chapter 4.   
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Figure 5.9 Probability of Error performances for evidence based CSS UTQ for different D 
values 

 

Figure 5.10 Probability of Error performances for evidence based CSS output entropy 
quantization for different D values 
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Figure 5.9 and Figure 5.10 presents the probability of sensing errors for bot the UTQ and the 

output entropy quantization scheme for CSS different number of quantization levels D. Six 

SUs are considered in the system, with a sensing time of 25 µs. To observe the effect of the 

SNR on the sensing performance of the proposed scheme, the six SUs in the CR network are 

assumed to have an identical value of PU’s signal SNR which is changed from -20 dB to -13 

dB. The probability of error is computed by [134]                        

0 1min[ ( ) (1 ( ))]E f fc d fcP P P P Pη η= + −                                   (5.46) 

Where fcη  is the global threshold, 0P  and 1P  are the probability of the PU signal absence and 

presence, respectively, and ,f mlP  is the global probabilities of false alarm. Figure 5.9 and 

Figure 5.10 show that the as expected that the error probabilities of the proposed quantization 

based CSS schemes decrease along with the increase of quantization levels. It is observed 

that the sensing error probabilities decrease as the signal SNR values increase. When 

comparing Figure 5.9 to Figure 5.10, it can be observed that at a low quantisation level D, the 

probability of error of the UTQ is slightly less than the output entropy. 

5.5 Conclusion  

In this chapter, quantization enhancement schemes for CSS for CR networks have been 

proposed. The first scheme proposed was a MLE based CSS scheme using a UTQ and an 

output entropy quantisation scheme.  
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For the MLE based CSS, the local decisions are assumed to be the quantized values of the 

MLE outputs of the PU signal, as opposed to the simple hypothesis test (LLR) in which the 

PDFs under both hypotheses are completely known. Hence the designed scheme could be 

used in a practical environment where there is knowledge of the PU signal. The primary aim 

was to design an optimal quantizer that will preserve the MLE value with minimum 

quantization bits. Hence, the obvious choice was a quantizer that minimizes an output 

entropy distortion. For low values of quantization levels even at high SNR, the scheme may 

results in detection loss. The SUs ought to be able to keep the desired probability of false 

alarm even in the worst conditions. Therefore it was proposed that the quantization region is 

divided in such a way that the local threshold η  for each local detector is the center of the 

quantization region. A quantizer which maximizes the output entropy was proposed, the 

output entropy quantization scheme is less complex and more practical to implement than an 

optimal MAE quantization scheme. The optimal output entropy, similar to the UTQ also had 

a poor performance for small quantization levels values. Thus, a similar approach to the case 

of the UTQ was proposed. Simulation results showed that the proposed scheme had 

significant improvement on detection performance at low quantization levels, and there were 

improvements of approximately 15% under Rayleigh fading conditions could be observed. 

When compared to the LLR output entropy scheme the proposed output entropy performed 

slightly less. However, the proposed scheme gives a simple and practical implementation of 

CSS with negligible loss as compared to the optimal case of using quantized LLRs 

The next quantization scheme proposed was an evidence based CSS quantization scheme. It 

incorporated the proposed UTQ and output entropy quantization algorithm. The proposed 

scheme included two phases, the local sensing phase and the fusion phase. The main 

difference with chapter 4 was that the SUs will report to the FC a quantized decision 
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credibility ratio instead of transmitting raw BPAs. This evidently reduced the reporting 

channel transmission overhead. In the fusion phase at FC, it was assumed that the decision 

credibility values of each SU were retrieved by a de-quantization process. A credibility and 

dissociability degree of the BPAs were calculated and the weight factor determined. Finally, 

DS theory rule of combination was used to combine the final decisions. The simulation 

results illustrated that the scheme can obtain high detection rate combination as well as a 

reduced reporting channel bandwidth. The ROC curves for the UTQ and the output entropy 

quantization CSS scheme showed minimal quantization degradation in respect to the 

evidence based CSS, but they outperform the other schemes such as the AND rule, OR rule, 

CV rule, DS theory fusion and enhanced DS theory. In this chapter, quantisation soft decision 

in CSS was focused on to reduce the demand on the reporting channel. The simulation results 

showed that the proposed scheme yields a significant improvement in the detection 

probability as well with minimal loss of information. 
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6 Conclusion and Future work 
This chapter summarizes the main contributions of this thesis and discusses interesting 

and important future research directions. 

6.1 Conclusion  

The rapid increasing interest in wireless communication has led to the continuous 

development of wireless devices and technologies. The modern convergence and 

interoperability of wireless technologies has further increased the amount of services that can 

be provided leading to the substantial demand for access to the radio frequency spectrum in 

an efficient manner. With this growth, the accessibility of high quality wireless frequency 

spectrum has become severely limited. This has led to a widespread belief that the spectrum 

frequency is a scarce resource and it is difficult to allocate spectrum frequency for new 

applications. However, real-time spectrum measurements have shown that the frequency 

spectrum is inefficiently utilised consequently, the real challenge is not the frequency 

spectrum scarcity but the inefficient spectrum utilization. CR a new concept of reusing 

licensed spectrum in an unlicensed manner promises to overcome over the evident spectrum 

underutilised caused by the inflexible spectrum allocation. However, a single sensing node in 

facing propagation environments may lead to the hidden terminal problem. When such a 

situation occurs a SU has to differentiate between a spectrum hole, where there is no primary 

signal, and a deep fade, where it is difficult to detect the PU signal. In order to minimise the 

hidden terminal problem, research efforts have concentrated on CSS where different SU work 

in partnership to detect the presence of a PU and provides diversity gains to tackle the fading 

and shadowing effects. 
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This thesis is devoted to the optimization of CSS schemes in CR.  Overviews were presented 

on different formulate problems related to the DSA in CR. A review of the fundamentals of 

spectrum sensing and state of the art spectrum sensing algorithms such as matched filter, 

energy detection and feature detection were analysed systematically and their performance 

criteria discussed.  An energy detection sensing algorithm due to its low complexity was used 

in most parts of this thesis. CSS i.e. collaboration between multiple SU was discussed and has 

been shown as a way to improve the underutilization of the frequency spectrum when the 

hidden terminal problem occurs. This approach led to the problem formulation of the thesis 

and the general system model and fundamentals used in the thesis were presented.  

An AF based cooperative sensing scheme with double energy thresholds was proposed in 

order to improve local sensing performance as well as global sensing performance. It was 

identified that most works do not consider a direct link between the PU and FC. Thus they 

ignore the benefits that can be extracted when the PU is involved in cooperation. It was 

shown that combining an AF protocol and double threshold detector, the performance of the 

probability of detection was increased both in a single relay and multiple relay scenario 

compared to that of conventional energy detection. The results indicated that the proposed AF 

double threshold CSS scheme has a significant improvement in terms of required average 

SNR for detection which increased as the number of relays increased. It was observed that the 

detection probability of the proposed AF double threshold CSS scheme increased when the 

direct link was incorporated and also as the number of cognitive relays increased, the 

detection probability increased. The scheme significantly reduced the error of missed 

detection and increased the probability of detection. The simulation results demonstrated the 

proposed AF CSS “soft 1-bit” double threshold had a much better detection performance of 

up to approximately 40% than the other methods. Also, simulation results demonstrated that 
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at a lower SNR the probability of detection for a “soft 1-bit” double threshold, compared to 

that of the conventional ED and double threshold ED performance improved under the same 

conditions (approximately 11% detection increase), but this improvement slightly decreases 

(approximately 4% detection increase) as the SNR increases but is still significantly higher 

than the other two schemes. 

However, the main drawback of the proposed scheme as well as other CSS in literature is that 

under practical conditions, the differences in local sensing reliability between the SUs are not 

considered. The next part of the thesis aimed to sensing reliability and increase detection 

performance. Therefore, an evidence based CSS scheme was presented. Under practical 

conditions, the combination of conflicting evidences with the classical Dempster Shafer 

theory (DS theory) rule may produce counter-intuitive results when combining the SUs 

sensing data evidence leading to poor CSS performance. In order to overcome and minimise 

the effect of conflicting data, and to enhance performance of the CSS system, a novel 

evidence-based decision fusion scheme CSS is proposed in this chapter. The approach is 

based on the credibility of evidence from the SUs sensing decision, which represents the 

similarity or the relation among the different SUs sensing data evidence, and a dissociability 

degree measure which indicates the quality or clarity of the SUs sensing data evidence. 

Furthermore, a weighted averaging factor determined by the credibility and dissociability of 

the SU sensing data evidence is proposed. Results have shown that the proposed scheme 

utilises the advantages of evidence which does not requires cohrent detection of the PU 

signal. It also showed that the proposed scheme can achive an improved gain of combination 

for CSS than other rules such as the “Or”rule, And” rule, and the “CV” rule during specific 

practical cases. Simulation results showed that the missed detection probability of the 

proposed scheme decreased by approximately 7% when compared to the enhanced DS theory 
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fusion. Two important design criteria for CSS were focused on, which are the sensing 

reliability, and SU agility. The simulation results showed that the proposed scheme yields a 

significant improvement in the detection probability as well as a considerable reduction in the 

missed detection probability without any prior knowledge of the primary system by utilising 

DS theory. However, the main drawback of the proposed scheme as well as other soft data 

fusions (including the CSS scheme used in chapter 3) are the bandwidth required for 

transmitting the sensing data. Hence, in the next part of the thesis of quantisation in CSS is 

investigated. 

The final part of this thesis focused on the quantization to reduce the reporting bandwidth 

channel of a CSS scheme. For the MLE based CSS, the local SU decisions are quantized and 

used as the soft decision statistic for CSS. It is a simple non-complex scheme with minimal 

loss as compared to the optimal Lloyd-Max based LLR. This is vital in a practical scenario 

when the PU signal information is unknown. Simulation results showed that the proposed 

scheme had significant improvement on detection performance at low quantization levels, 

and there were improvements of approximately 15% under Rayleigh fading conditions could 

be observed. When compared to the LLR output entropy scheme the proposed output entropy 

performed slightly less. However, the proposed scheme gives a simple and practical 

implementation of CSS with negligible loss as compared to the optimal case of using 

quantized LLRs. The evidence based scheme used the output entropy quantization algorithm 

to quantize the local sensing decision and send the decision to the FC to be combined using 

the proposed evidence based CSS scheme from chapter 4. The simulation results showed that 

the proposed scheme yields a significant improvement in the detection probability as well 

with minimal loss of information.  
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6.2 Future work 

CR offers the promise of being a disruptive technology innovation that will enable the future 

wireless world. The rapid increase of wireless technologies is expected to increase the 

demand for radio spectrum by a large scale over the next decade. This quandary must be 

addressed through technology and regulatory innovations for significant improvements in 

spectrum efficiency and increased robustness of wireless devices. CR network represent a 

hypothesis shift in both radio and networking technologies, with the possibility to provide 

major gains in performance and spectrum efficiency. On the other hand, even as cognitive 

radio platforms have started to emerge, significant innovative research work is required to 

address the many technical challenges of CR networking. These include spectrum sensing, 

cooperative communications, incentive mechanisms, CR architecture and protocol design, 

CR security, CR system adaptation algorithms and emergent system behaviour. 

In this thesis, the focus was on four CSS problems which were diversity performance, 

detection accuracy performance, low computational complexity, and channel bandwidth. 

There are other research problems in CSS which are covered in the chapter 2 such as security, 

delay, optimal SU number, energy saving and detection range. The research was investigated 

for a relay assisted cooperation and a centralised cooperative model. Also, other models 

mentioned in chapter 2 can also be researched on the formulated problems in this thesis. The 

spectrum sensing technique focused on was energy detection due to its low computational 

complexity. However, all the schemes developed can be implemented with other sensing 

techniques such as match filter, autocorrelation etc. Research in wireless communications is 

huge and has endless possibilities. Focusing on the major problem issues covered in this 

thesis. There are other research problems which can be achieved in various interesting ways. 
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6.2.1 Space-Time Coding for Cooperative Spectrum Sensing  

In this thesis, a low complex cooperative transmission protocol was used in a relay based 

CSS scheme to transfer the sensing information to the FC to obtain diversity gain and 

improve sensing detection. To further improve the diversity gain of a relay-based CSS 

different diversity schemes such as space-time coding can be used to achieve spatial 

diversity. Assuming the local spectrum has been completed at the two relays described in 

chapter 3 and the local sensing decision are denoted by X1 and X2. Instead of transmitting D1 

and D2 to the destination, the two SU coordinated to form a transmit cluster in which space-

time block coding can be applied to form a transmit cluster. To carry out this research, it has 

to be assumed that the two SU send their information to each other. Other space-time block 

codes such as distributed spaced time block codes can also be researched to increase 

diversity. Another research area to be considered in this area is censor and relay scheme. 

6.2.2 Evidence based Weighted Local Sensing 

In this thesis, the work focused on optimising a DS-theory based CSS. In order to overcome 

and minimise the effect of conflicting data, and to enhance performance of the CSS system, a 

novel evidence-based decision fusion scheme CSS was proposed. The approach is based on 

the credibility of evidence from the SUs sensing decision, which represents the similarity or 

the relation among the different SUs sensing data evidence, and a dissociability degree 

measure which indicates the quality or clarity of the SUs sensing data evidence. An evidence 

fusion scheme was used to find the conflicting data at the FC redistribute and combine the 

conflicting mass based on weights. One combination rule cannot be said to be the best one. 

All alternative combination rules are rational and depend on the specific application and 

environment. The work can be further extended by using the evidence based scheme to 
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generate the weight factors in the discounting of sources of evidence at the local SUs to 

derive more reasonable combined evidences.  

6.2.3 Adaptive and Prior Quantisation for Cooperative Spectrum Sensing 

In this thesis, the three quantisation methods designed where applied for MLE and the BPA 

ratio. Further research can be considered to quantize the actual sensing data measurement 

level. In this thesis, only the SU data being forwarded to the FC was quantised. The 

information sent form the FC to SU can also be quantized to reduce the time it takes to report 

to the SU hence increasing sensing time. Adaptive quantization method can be designed so 

that the SU can send prior information about the channel state to each SU before 

transmission. In the evidence based quantisation scheme, a LLR was used which assumed all 

the information about the PU was known. A MLE used in section 5.2 can be implemented in 

the evidence based scheme using a composite hypothesis. 

6.2.4 Security: Primary User Emulation Attack 

Sensing a frequency band requires energy, time and financial cost. Hence, SU have a 

motivation to sense for a shorter duration. The resource allocation of the vacant frequency 

bands is based on SU sensing quality. Therefore, there is an incentive for malicious users to 

fake the detection results. The presence of un-trusted SU has been shown to degrade 

cooperative sensing performance. PU emulation attack, i.e., the attacker emulates the primary 

user for resisting the secondary access of SU is an area that needs to be researched. This kind 

of attack will reduce the exploitation of the vacant spectrum band. However, it can be 

detected by the combination of a spectrum sensing scheme and localization algorithm. 

Consequently, this can be a future research direction. A secure CSS sensing scheme based on 

chapter 4 taking advantage of the reliability statistic assigned to each SU can be researched.



 

180 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

 

REFERENCES 

[1] ITU World Telecommunication/ICT Indicators database, "ICT Facts and Figures 

(2015)," International Telecommunication Union, April 2015. 

[2] G. Yang et al., “Cooperative Spectrum Sensing in Heterogeneous Cognitive Radio 

Networks Based on Normalized Energy Detection,” IEEE Transactions on Vehicular 

Technology, Vol. 65, No. 3, pp. 1452-1463, March 2016. 

[3] Roke Manor Research Limited. "United Kingdom Frequency Allocation Chart," 

January 2015. [Online]. http://www.extremetech.com/wpcontent/uploads/2013/01/uk-

spectrum-allocation-chart1.jpg. [Accessed: 7 July, 2016]. 

[4] Federal Communications Commission Spectrum Policy Task Force, "Report of the 

Spectrum Efficiency Working Group," Technical Report, Rep. ET Docket 02-135, 

November 2002. 

[5] D. Cabric et al., “Implementation Issues in Spectrum Sensing for Cognitive Radios,” 

in Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems 

and Computers, pp. 772-776, November 2004. 

[6] V. Valenta et al., “Survey on Spectrum Utilization in Europe: Measurements, 

Analyses and Observations,” in Cognitive Radio Oriented Wireless Networks & 

Communications (CROWNCOM), 2010 Proceedings of the Fifth International 

Conference on, pp. 1-5, June 2010. 



  REFERENCES 
 

181 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[7] J. Mitola III, and G. Q. Maguire, Jr., “Cognitive Radio: Making Software Radios 

More Personal,” IEEE Personal Communications, Vol. 6, No. 4, pp. 13-18, August 

1999. 

[8] J. Mitola III, “Cognitive Radio: An Integrated Agent Architecture for Software 

Defined Radio,” Royal Institute of Technology (KTH), Stockholm, Sweden, 2000. 

[9] L. Korowajczuk, “LTE, WiMAX and WLAN Network Design, Optimization and 

Performance Analysis,” pp. 782 Chicester, UK: Wiley, 2011. 

[10] M. Mouly, and M. Pautet, “The GSM System for Mobile Communications,” pp. 704 

Telecom Publishing, 1992. 

[11] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE 

Journal on Selected Areas in Communications, Vol. 23, No. 2, pp. 201-220, February 

2005. 

[12] N.-T. Nhan, and K. Insoo, “Log-Likelihood Ratio Optimal Quantizer for Cooperative 

Spectrum Sensing in Cognitive Radio,” IEEE Communications Letters, Vol. 15, No. 

3, pp. 317-319, January 2011. 

[13] G. Ganesan, and L. Ye, “Agility Improvement through Cooperative Diversity in 

Cognitive Radio,” in Proceedings of IEEE Global Telecommunications Conference, 

GLOBECOM '05, St. Louis, Missouri, pp. 2505- 2509, December 2005. 

[14] L. Ying-Chang et al., “Sensing-Throughput Tradeoff for Cognitive Radio Networks,” 

IEEE Transactions on Wireless Communications, Vol. 7, No. 4, pp. 1326-1337, April 

2008. 



  REFERENCES 
 

182 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[15] I. F. Akyildiz et al., “Next Generation Dynamic Spectrum Access Cognitive Radio 

Wireless Networks: A Survey,” Computer Networks Journal (Elsevier), Vol. 50, No. 

13, pp. 2127-2159, September 2006. 

[16] I. F. Akyildiz et al., “Crahns: Cognitive Radio Ad Hoc Networks,” Ad Hoc Networks, 

Special Issue on Social-Based Routing in Mobile and Delay-Tolerant Networks, Vol. 

10, No. 8, pp. 1517-1646, July 2009. 

[17] M. A. McHenry, “NSF Spectrum Occupancy Measurements Project Summary,” 

Shared Spectrum Company, August 2005. 

[18] A. Shukla et al., "Cognitive Radio Technology: A Study for Ofcom – Summary 

Report," QinetiQ Proprietary, December 2006. 

[19] J. Mitola, III, “Software Radios-Survey, Critical Evaluation and Future Directions,” in 

National Telesystems Conference, pp. 13/15-13/23, May 1992. 

[20] E. Larsson, and M. Skoglund, “Cognitive Radio in a Frequency-Planned 

Environment: Some Basic Limits,” IEEE Transactions on Wireless Communications, 

Vol. 7, No. 12, pp. 4800-4806, December 2008. 

[21] A.Sahai et al., “Some Fundamental Limits on Cognitive Radio,” in Proceedings of 

Allerton Conference on Communication, Control and Computing, pp. 1662-1671, 

October 2004. 

[22] G. Ganesan, and L. Ye, “Cooperative Spectrum Sensing in Cognitive Radio, Part I: 

Two User Networks,” IEEE Transactions on Wireless Communications, Vol. 6, No. 

6, pp. 2204-2213, June 2007. 



  REFERENCES 
 

183 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[23] G. Ganesan, and L. Ye, “Cooperative Spectrum Sensing in Cognitive Radio, Part II: 

Multiuser Networks,” IEEE Transactions on Wireless Communications, Vol. 6, No. 6, 

pp. 2214-2222, June 2007. 

[24] D. Gesbert, “From Theory to Practice: An Overview of MIMO Space–Time Coded 

Wireless Systems,” IEEE Journal on Selected Areas in Communications, Vol. 3, No. 

3, pp. 85-97, April 2003. 

[25] Z. Tian, “Compressed Wideband Sensing in Cooperative Cognitive Radio Networks,” 

IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, pp. 1-

5, Nov. 30 2008-Dec. 4 2008, November 2008. 

[26] A. B. Flores et al., “IEEE 802.11af: A Standard for TV White Space Spectrum 

Sharing,” IEEE Communications Magazine, Vol. 51, No. 10, pp. 92-100, October 

2013. 

[27] M. Sherman et al., “IEEE Standards Supporting Cognitive Radio and Networks, 

Dynamic Spectrum Access, and Coexistence,” IEEE Communications Magazine, Vol. 

46, No. 7, pp. 72-79, July 2008. 

[28] B. Fette, “Cognitive Radio Technology,” pp. 882: Elsevier, 2009. 

[29] S. Chaudhari, “Spectrum Sensing for Cognitive Radios: Algorithms, Performance, 

and Limitations,” Ph.D dissertation, School of Electrical Engineering, Aalto 

University, Finland, November 2012. 

[30] T. X. Brown, “An Analysis of Unlicensed Device Operation in Licensed Broadcast 

Service Bands,” in Proceedings of the First IEEE International Symposium on New 

Frontiers in Dynamic Spectrum Access Networks (DySPAN'05), pp. 11-29, November 

2005. 



  REFERENCES 
 

184 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[31] C. Stevenson et al., “IEEE 802.22: The First Cognitive Radio Wireless Regional Area 

Network Standard,” IEEE Communications Magazine, Vol. 47, No. 1, pp. 130-138, 

January 2009. 

[32] “IEEE Standard for Information Technology--Telecommunications and Information 

Exchange between Systems Wireless Regional Area Networks (Wran)--Specific 

Requirements - Part 22: Cognitive Wireless Ran Medium Access Control (Mac) and 

Physical Layer (Phy) Specifications: Policies and Procedures Foroperation in the Tv 

Bands Amendment 1: Management and Control Plane Interfaces and Procedures and 

Enhancement to the Management Information Base (Mib),” IEEE Std 802.22a-2014 

(Amendment to IEEE Std 802.22-2011), pp. 1-519, May 2014. 

[33] "Dyspan Standards Committee," [Online]. http://grouper.ieee.org/groups/. [Accessed: 

1 june, 2016]. 

[34] A. Wald, “Sequential Tests of Statistical Hypothesis,” The Annals of Mathematical 

Statististics, Vol. 16, No. 2, pp. 117-186, April 1945. 

[35] "IEEE 802.19 Wireless Coexistence Working Group (WG)," [Online]. 

http://ieee802.org/19/. [Accessed: 1 june, 2016]. 

[36] I. F. Akyildiz et al., “Cooperative Spectrum Sensing in Cognitive Radio Networks: A 

Survey,” Physical Communication, Vol. 4, No. 1, pp. 40-62, December 2011. 

[37] D. Guoru et al., “Robust Spectrum Sensing with Crowd Sensors,” IEEE Transactions 

on Communications, Vol. 62, No. 9, pp. 3129-3143, August 2014. 

[38] M. Subhedar, and G. Birajdar, “Spectrum Sensing Techniques in Cognitive Radio 

Networks: A Survey,” International Journal of Next-Generation Networks (IJNGN) 

Vol. Vol.3, No. 2, pp. 37-51, June, 2011. 



  REFERENCES 
 

185 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[39] P. K. Varshney, “Distributed Detection and Data Fusion,” Springer-Verlag New 

York, 1996. 

[40] M. I. Skolnik, “Introduction to Radar Systems,” Singapore: McGraw-Hill, 1980. 

[41] H. Urkowitz, “Energy Detection of Unknown Deterministic Signals,” in Proceedings 

of the IEEE, pp. 523-531, April 1967. 

[42] S. Chaudhari et al., “Cooperative Sensing with Imperfect Reporting Channels: Hard 

Decisions or Soft Decisions?,” IEEE Transactions on Signal Processing, Vol. 60, No. 

1, pp. 18-28, October 2012. 

[43] S. Junyang et al., “Maximum Channel Throughput Via Cooperative Spectrum 

Sensing in Cognitive Radio Networks,” IEEE Transactions on Wireless 

Communications, Vol. 8, No. 10, pp. 5166-5175, October 2009. 

[44] S. K. Jayaweera, “Signal Processing for Cognitive Radios,” John Wiley & Sons, Inc., 

2014. 

[45] Z. Zhenghao et al., “Belief Propagation Based Cooperative Compressed Spectrum 

Sensing in Wideband Cognitive Radio Networks,” IEEE Transactions on Wireless 

Communications, Vol. 10, No. 9, pp. 3020-3031, September 2011. 

[46] R. S. Blum et al., “Distributed Detection with Multiple Sensors I. Advanced Topics,” 

Proceedings of the IEEE, Vol. 85, No. 1, pp. 64-79, January 1997. 

[47] M. Jun et al., “Soft Combination and Detection for Cooperative Spectrum Sensing in 

Cognitive Radio Networks,” IEEE Transactions on Wireless Communications, Vol. 7, 

No. 11, pp. 4502-4507, Novemeber 2008. 



  REFERENCES 
 

186 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[48] S. Chaudhari et al., “Autocorrelation-Based Decentralized Sequential Detection of 

OFDM Signals in Cognitive Radios,” IEEE Transactions on Signal Processing, Vol. 

57, No. 7, pp. 2690-2700, March 2009. 

[49] F. F. Digham et al., “On the Energy Detection of Unknown Signals over Fading 

Channels,” IEEE Transactions on Communications, Vol. 55, No. 1, pp. 21-24, 

January 2007. 

[50] D. Cabric et al., “Spectrum Sensing Measurements of Pilot, Energy, and 

Collaborative Detection,” in IEEE Military Communications Conference, pp. 1-7, 

October 2006. 

[51] H. Tang, “Some Physical Layer Issues of Wide-Band Cognitive Radio Systems,” 

First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access 

Networks, pp. 151-159, 8-11 Nov. 2005, 2005. 

 [52] V. I. Kostylev, “Energy Detection of a Signal with Random Amplitude,” in IEEE 

International Conference on Communications (ICC), pp. 1606-1610 vol.1603, May 

2002. 

[53] J. S. Rosenthal, “A First Look at Rigorous Probability Theory,” Singapore: World 

Scientific, 2000. 

[54] N. S. Shankar et al., “Spectrum Agile Radios: Utilization and Sensing Architectures,” 

in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access 

Networks, pp. 160-169, November 2005. 

[55] A. Sahai et al., “Cognitive Radios for Spectrum Sharing [Applications Corner],” 

IEEE Signal Processing Magazine, Vol. 26, No. 1, pp. 140-145, January 2009. 



  REFERENCES 
 

187 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[56] C. Xiaofei, and S. Nagaraj, “Entropy Based Spectrum Sensing in Cognitive Radio,” in 

Wireless Telecommunications Symposium, pp. 57-61, April 2008. 

[57] M. Jun et al., “Signal Processing in Cognitive Radio,” Proceedings of the IEEE, Vol. 

97, No. 5, pp. 805-823, April 2009. 

[58] W. A. Gardner, “Exploitation of Spectral Redundancy in Cyclostationary Signals,” 

IEEE Signal Processing Magazine, Vol. 8, No. 2, pp. 14-36, April 1991. 

[59] S. Kapoor, and G. Singh, “Non-Cooperative Spectrum Sensing: A Hybrid Model 

Approach,” Devices and Communications (ICDeCom), 2011 International 

Conference on, pp. 1-5, 24-25 Feb. 2011, February 2011. 

 [60] S. Kozłowski, "Implementation and Verification of Cyclostationary Feature Detector 

for DVB-T signals," IET Signal Processing, vol. 10, no. 2, pp. 162-167, 4 2016. 

[61] W. Lu et al., “Combating Hidden and Exposed Terminal Problems in Wireless 

Networks,” IEEE Transactions on Wireless Communications, Vol. 11, No. 11, pp. 

4204-4213, October 2012. 

[62] P. Jallon, “An Algorithm for Detection of DVB-T Signals Based on Their Second-

Order Statistics,” EURASIP Journal on Wireless Communications and Networking, 

Vol. 2008, pp. 38-39, December 2007. 

[63] J. Lunden et al., “Collaborative Cyclostationary Spectrum Sensing for Cognitive 

Radio Systems,” IEEE Transactions on Signal Processing, Vol. 57, No. 11, pp. 4182-

4195, June 2009. 

[64] C. K. Tan, and W. K. Lim, “Reliable and Low-Complexity Wavelet-Based Spectrum 

Sensing for Cognitive Radio Systems at Low Snr Regimes,” IEEE Electronics 

Letters, Vol. 48, No. 24, pp. 1565-1567, November 2012. 



  REFERENCES 
 

188 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[65] G. W. Wornell, “Emerging Applications of Multirate Signal Processing and Wavelets 

in Digital Communications,” Proceedings of the IEEE, Vol. 84, No. 4, pp. 586-603, 

April 1996. 

[66] L. Khaled, and Z. Wei, “Cooperative Communications for Cognitive Radio 

Networks,” Proceedings of the IEEE, Vol. 97, No. 5, pp. 878-893, April 2009. 

[67] E. J. Candes et al., “Robust Uncertainty Principles: Exact Signal Reconstruction from 

Highly Incomplete Frequency Information,” IEEE Transactions on Information 

Theory, Vol. 52, No. 2, pp. 489-509, Febuary 2006. 

[68] D. L. Donoho, “Compressed Sensing,” IEEE Transactions on Information Theory, 

Vol. 52, No. 4, pp. 1289-1306, April 2006. 

[69] T. Zhi, and G. B. Giannakis, “Compressed Sensing for Wideband Cognitive Radios,” 

in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International 

Conference on, pp. IV-1357-IV-1360, 2007. 

 [70] R. S. Blum et al., “Distributed Detection with Multiple Sensors I. Advanced Topics,” 

Proceedings of the IEEE, Vol. 85, No. 1, pp. 64-79, 1997. 

[71] H. Poor and O. Hadjiliadis, “Quickest Detection,” pp. 229 New York: Cambridge 

University Press, 2009. 

[72] E. Lehmann, “Testing Statistical Hypotheses,” New York: Wiley, 1959,. 

[73] A. Taherpour et al., “Multiple Antenna Spectrum Sensing in Cognitive Radios,” IEEE 

Transactions on Wireless Communications, Vol. 9, No. 2, pp. 814-823, February 

2010. 



  REFERENCES 
 

189 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[74] Z. Rui et al., “Multi-Antenna Based Spectrum Sensing for Cognitive Radios: A 

GLRT Approach,” IEEE Transactions on Communications, Vol. 58, No. 1, pp. 84-88, 

January 2010. 

[75] I. Eizmendi et al., “DVB-T2: The Second Generation of Terrestrial Digital Video 

Broadcasting System,” IEEE Transactions on Broadcasting, Vol. 60, No. 2, pp. 258-

271, April 2014. 

[76] D. Danev, “On Signal Detection Techniques for the DVB-T Standard,” in 4th 

International Symposium on Communications, Control and Signal Processing 

(ISCCSP), pp. 1-5, March 2010. 

[77] H. Urkowitz, “Energy Detection of a Random Process in Colored Gaussian Noise,” 

IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-5, No. 2, pp. 

156-162, March 1969. 

[78] European Telecommunications Standards Institute, "Digital Video Broadcasting 

(DVB); Frame Structure Channel Coding and Modulation for a Second Generation 

Digital Terrestrial Television Broadcasting System (DVB-T2)," September 2009. 

[79] A. Ghasemi, and E. S. Sousa, “Collaborative Spectrum Sensing for Opportunistic 

Access in Fading Environments,” in Proceedings of the First IEEE International 

Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN'05), 

pp. 131-136, November 2005. 

[80] Y. Abdulkadir et al., “A Differential Space-Time Coding Scheme for Cooperative 

Spectrum Sensing in Cognitive Radio Networks,” 2015 IEEE 26th Annual 

International Symposium on Personal, Indoor, and Mobile Radio Communications 

(PIMRC), pp. 1386-1391, Aug. 30 2015-Sept. 2 2015, September 2015. 



  REFERENCES 
 

190 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[81] O. Simpson et al., “Optimal Entropy Quantization for Maximum Likelihood 

Estimation Based Cooperative Spectrum Sensing,” 2016 Wireless 

Telecommunications Symposium (WTS), pp. 1-5, 18-20 April 2016, April 2016. 

[82] O. Simpson et al., “Relay-Based Cooperative Spectrum Sensing with Improved 

Energy Detection in Cognitive Radio,” 10th International Conference on Broadband 

and Wireless Computing, Communication and Applications (BWCCA), pp. 227-231, 

4-6 Nov. 2015, November 2015. 

[83] J. Unnikrishnan, and V. V. Veeravalli, “Cooperative Sensing for Primary Detection in 

Cognitive Radio,” IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 

1, pp. 18-27, February 2008. 

[84] Z. Qing, and B. M. Sadler, “A Survey of Dynamic Spectrum Access,” IEEE Signal 

Processing Magazine, Vol. 24, No. 3, pp. 79-89, May 2007. 

[85] T. Yucek, and H. Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive 

Radio Applications,” IEEE Communications Surveys & Tutorials, Vol. 11, No. 1, pp. 

116-130, March 2009. 

[86] Q. Zhi et al., “Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio 

Networks,” IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 1, pp. 

28-40, February 2008. 

[87] E. Hossain, and B. Bhargava, “Cognitive Wireless Communication Networks,” pp. 

440: New York: Springer, 2007. 

[88] R. Viswanathan, and V. Aalo, “On Counting Rules in Distributed Detection,” IEEE 

Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 5, pp. 772-

775, May 1989. 



  REFERENCES 
 

191 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[89] S. M. Mishra et al., “Cooperative Sensing among Cognitive Radios,” in Procedings of 

in IEEE International Conference on Communications. (ICC '06), pp. 1658-1663, 

June 2006. 

[90] S. Chunhua et al., “Cooperative Spectrum Sensing for Cognitive Radios under 

Bandwidth Constraints,” in IEEE Wireless Communications and Networking 

Conference (WCNC '07), pp. 1-5, March 2007. 

[91] Z. Yonghong, and L. Ying-Chang, “Eigenvalue-Based Spectrum Sensing Algorithms 

for Cognitive Radio,” IEEE Transactions on Communications, Vol. 57, No. 6, pp. 

1784-1793, June 2009. 

[92] Y. Zeng, and Y. C. Liang, “Spectrum-Sensing Algorithms for Cognitive Radio Based 

on Statistical Covariances,” IEEE Transactions on Vehicular Technology, Vol. 58, 

No. 4, pp. 1804-1815, April 2009. 

[93] S. Althunibat et al., “On the Trade-Off between Security and Energy Efficiency in 

Cooperative Spectrum Sensing for Cognitive Radio,” IEEE Communications Letters, 

Vol. 17, No. 8, pp. 1564-1567, July 2013. 

[94] C. Chao et al., “Cooperative Spectrum Sensing in Cognitive Radio Networks in the 

Presence of the Primary User Emulation Attack,” IEEE Transactions on Wireless 

Communications,, Vol. 10, No. 7, pp. 2135-2141, April 2011. 

[95] S. Thomopoulos, and L. Zhang, “Distributed Decision Fusion in the Presence of 

Networking Delays and Channel Errors,” Information Sciences, Vol. 66, No. 1-2, pp. 

91–118, December 1992. 



  REFERENCES 
 

192 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[96] Z. Jiang et al., “Double Threshold Energy Detection of Cooperative Spectrum 

Sensing in Cognitive Radio,” in International Conference on Cognitive Radio 

Oriented Wireless Networks and Communications, pp. 1-5, May 2008. 

[97] S. Atapattu et al., “Energy Detection Based Cooperative Spectrum Sensing in 

Cognitive Radio Networks,” IEEE Transactions on Wireless Communications, Vol. 

10, No. 4, pp. 1232-1241, April 2011. 

[98] L. Jun et al., “On the Throughput-Reliability Tradeoff for Amplify-and-Forward 

Cooperative Systems,” IEEE Transactions on communications, Vol. 61, No. 4, pp. 

1290-1303, February 2013. 

[99] C. Yunfei, “Optimum Number of Secondary Users in Collaborative Spectrum Sensing 

Considering Resources Usage Efficiency,” IEEE Communications Letters, Vol. 12, 

No. 12, pp. 877-879, December 2008. 

[100] C. Lei et al., “An Adaptive Cooperative Spectrum Sensing Scheme Based on the 

Optimal Data Fusion Rule,” in 4th International Symposium on Wireless 

Communication Systems, pp. 582-586, October 2007. 

[101] Z. Chair, and P. K. Varshney, “Optimal Data Fusion in Multiple Sensor Detection 

Systems,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-22, 

No. 1, pp. 98-101, January 1986. 

[102] S. Chaudhari, and V. Koivunen, “Effect of Quantization and Channel Errors on 

Collaborative Spectrum Sensing,” in Conference Record of the Forty-Third Asilomar 

Conference on Signals, Systems and Computers, pp. 528-533, Novermber 2009. 



  REFERENCES 
 

193 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[103] P. Kaligineedi, and V. K. Bhargava, “Distributed Detection of Primary Signals in 

Fading Channels for Cognitive Radio Networks,” in Proceedings of IEEE Global 

Communications Conference, pp. 1-5, November 2008. 

[104] S. A. Kassam, “Optimum Quantization for Signal Detection,” IEEE Transactions on 

Communications, Vol. 25, No. 5, pp. 479-484, May 1977. 

[105] F. F. Digham et al., “On the Energy Detection of Unknown Signals over Fading 

Channels,” in IEEE International Conference on Communications (ICC '03), pp. 

3575-3579 vol.3575, May 2003. 

[106] F. E. Visser et al., “Multinode Spectrum Sensing Based on Energy Detection for 

Dynamic Spectrum Access,” in IEEE Vehicular Technology Conference, pp. 1394-

1398, May 2008. 

[107] J. G. Proakis, “Digital Communications,”  3rd ed.: McGraw-Hill, 1995. 

[108] H. Xiaolei et al., “Hedonic Coalition Formation Game for Cooperative Spectrum 

Sensing and Channel Access in Cognitive Radio Networks,” IEEE Transactions on 

Wireless Communications, Vol. 11, No. 11, pp. 3968-3979, October 2012. 

[109] D. Hamza et al., “Equal Gain Combining for Cooperative Spectrum Sensing in 

Cognitive Radio Networks,” IEEE Transactions on Wireless Communications, Vol. 

13, No. 8, pp. 4334-4345, August 2014. 

[110] H. Hu et al., “Location-Information-Assisted Joint Spectrum Sensing and Power 

Allocation for Cognitive Radio Networks with Primary-User Outage Constraint,” 

IEEE Transactions on Vehicular Technology, Vol. 65, No. 2, pp. 658-672, February 

2016. 



  REFERENCES 
 

194 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[111] W. Han et al., “Efficient Soft Decision Fusion Rule in Cooperative Spectrum 

Sensing,” IEEE Transactions on Signal Processing, Vol. 61, No. 8, pp. 1931-1943, 

February 2013. 

[112] Y. J. Choi et al., “Throughput Analysis of Cooperative Spectrum Sensing in 

Rayleigh-Faded Cognitive Radio Systems,” IET Communications, Vol. 6, No. 9, pp. 

1104-1110, June 2012. 

[113] G. Ding et al., “Spectrum Sensing in Opportunity-Heterogeneous Cognitive Sensor 

Networks: How to Cooperate?,” IEEE Sensors Journal, Vol. 13, No. 11, pp. 4247-

4255, November 2013. 

[114] Z. Hongting et al., “Analysis and Algorithm for Robust Adaptive Cooperative 

Spectrum-Sensing,” IEEE Transactions on Wireless Communications,, Vol. 13, No. 

2, pp. 618-629, January 2014. 

[115] A. Bhowmick et al., “Double Threshold-Based Cooperative Spectrum Sensing for a 

Cognitive Radio Network with Improved Energy Detectors,” IET Communications, 

Vol. 9, No. 18, pp. 2216-2226, December 2015. 

[116] A. Bagwari et al., “Cooperative Spectrum Sensing Based on Two-Stage Detectors 

with Multiple Energy Detectors and Adaptive Double Threshold in Cognitive Radio 

Networks,” Canadian Journal of Electrical and Computer Engineering, Vol. 36, No. 

4, pp. 172-180, March 2013. 

[117] Q. T. Vien et al., “Double-Threshold Based Cooperative Spectrum Sensing over 

Imperfect Channels,” in 2015 IEEE Wireless Communications and Networking 

Conference (WCNC), pp. 293-298, March 2015. 



  REFERENCES 
 

195 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[118] S. K. Srivastava, and A. Banerjee, “'N-Ratio' Logic Based Cooperative Spectrum 

Sensing Using Double Threshold Energy Detection,” in 4th International Conference 

on Cognitive Radio Oriented Wireless Networks and Communications, pp. 1-6, June 

2009. 

[119] K. Ben Letaief, and Z. Wei, “Cooperative Communications for Cognitive Radio 

Networks,” Proceedings of the IEEE, Vol. 97, No. 5, pp. 878-893, May 2009. 

[120] A. Nuttall, “Some Integrals Involving the Qm,” IEEE Transactions on Information 

Theory, Vol. 21, No. 1, pp. 95-96, November 1975. 

[121] Q. Peng et al., “A Distributed Spectrum Sensing Scheme Based on Credibility and 

Evidence Theory in Cognitive Radio Context,” in IEEE 17th International 

Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1-5, 

Septmber 2006. 

[122] Z. Wei et al., “Cooperative Spectrum Sensing Optimization in Cognitive Radio 

Networks,” in IEEE International Conference on Communications (ICC '08), pp. 

3411-3415, May 2008. 

[123] N.-T. Nhan, and K. Insoo, “An Enhanced Cooperative Spectrum Sensing Scheme 

Based on Evidence Theory and Reliability Source Evaluation in Cognitive Radio 

Context,” IEEE Communications Letters, Vol. 13, No. 7, pp. 492-494, July 2009. 

[124] P. Salvo Rossi et al., “Orthogonality and Cooperation in Collaborative Spectrum 

Sensing through MIMO Decision Fusion,” IEEE Transactions on Wireless 

Communications, Vol. 12, No. 11, pp. 5826-5836, September 2013. 

[125] Y. Zhou et al., “Sensing Nodes Selection and Data Fusion in Cooperative Spectrum 

Sensing,” IET Communications, Vol. 8, No. 13, pp. 2308-2314, September 2014. 



  REFERENCES 
 

196 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[126] S. Srinu, and S. L. Sabat, “Optimal Multinode Sensing in a Malicious Cognitive 

Radio Network,” IEEE Systems Journal, Vol. 9, No. 3, pp. 855-864, June 2015. 

[127] Z. Wei et al., “Optimization of Cooperative Spectrum Sensing with Energy Detection 

in Cognitive Radio Networks,” IEEE Transactions on Wireless Communications, Vol. 

8, No. 12, pp. 5761-5766, December 2009. 

[128] H. Weijia et al., “Efficient Cooperative Spectrum Sensing with Minimum Overhead 

in Cognitive Radio,” IEEE Transactions on Wireless Communications, Vol. 9, No. 

10, pp. 3006-3011, August 2010. 

[129] Q. Zhi et al., “Optimal Linear Fusion for Distributed Detection Via Semidefinite 

Programming,” IEEE Transactions on Signal Processing, Vol. 58, No. 4, pp. 2431-

2436, December 2010. 

[130] H. Deqiang et al., “A Modified Evidence Combination Approach Based on 

Ambiguity Measure,” in 11th International Conference on Information Fusion, pp. 1-

6, June 2008. 

[131] Y. Sun et al., “Full Diversity Reception Based on Dempster-Shafer Theory for 

Network Coding with Multiple-Antennas Relay,” China Communications, Vol. 12, 

No. 10, pp. 76-90, November 2015. 

[132] K. Nguyen et al., “Score-Level Multibiometric Fusion Based on Dempster-Shafer 

Theory Incorporating Uncertainty Factors,” IEEE Transactions on Human-Machine 

Systems, Vol. 45, No. 1, pp. 132-140, October 2015. 

[133] Z. Tian et al., “A Digital Evidence Fusion Method in Network Forensics Systems 

with Dempster-Shafer Theory,” China Communications, Vol. 11, No. 5, pp. 91-97, 

May 2014. 



  REFERENCES 
 

197 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[134] N. T. Nhan, and K. Insoo, “Evidence-Theory-Based Cooperative Spectrum Sensing 

with Efficient Quantization Method in Cognitive Radio,” IEEE Transactions on 

Vehicular Technology, Vol. 60, No. 1, pp. 185-195, October 2011. 

[135] D. M. Weeraddana et al., “Dempster-Shafer Information Filtering Framework: 

Temporal and Spatio-Temporal Evidence Filtering,” IEEE Sensors Journal, Vol. 15, 

No. 10, pp. 5576-5583, October 2015. 

[136] E. C. Y. Peh et al., “Cooperative Spectrum Sensing in Cognitive Radio Networks with 

Weighted Decision Fusion Schemes,” IEEE Transactions on Wireless 

Communications, Vol. 9, No. 12, pp. 3838-3847, December 2010. 

[137] D. C. Oh et al., “Linear Hard Decision Combining for Cooperative Spectrum Sensing 

in Cognitive Radio Systems,” Vehicular Technology Conference Fall (VTC 2010-

Fall), 2010 IEEE 72nd, pp. 1-5, September 2010. 

[138] W. Zhang et al., “Distributed Consensus-Based Weight Design for Cooperative 

Spectrum Sensing,” IEEE Transactions on Parallel and Distributed Systems, Vol. 26, 

No. 1, pp. 54-64, December 2015. 

[139] X. Xu et al., “Energy-Efficiency-Based Optimal Relay Selection Scheme with a BER 

Constraint in Cooperative Cognitive Radio Networks,” IEEE Transactions on 

Vehicular Technology, Vol. 65, No. 1, pp. 191-203, January 2016. 

[140] B. A. Bastami, and E. Saberinia, “A Practical Multibit Data Combining Strategy for 

Cooperative Spectrum Sensing,” IEEE Transactions on Vehicular Technology, Vol. 

62, No. 1, pp. 384-389, September 2013. 

[141] S. Maleki et al., “Energy-Efficient Distributed Spectrum Sensing for Cognitive 

Sensor Networks,” IEEE Sensors Journal, Vol. 11, No. 3, pp. 565-573, June 2011. 



  REFERENCES 
 

198 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[142] Z. Zhenghao et al., “Belief Propagation Based Cooperative Compressed Spectrum 

Sensing in Wideband Cognitive Radio Networks,” IEEE Transactions on Wireless 

Communications, Vol. 10, No. 9, pp. 3020-3031, July 2011. 

[143] N. Nguyen-Thanh et al., “How Many Bits Should Be Reported in Quantized 

Cooperative Spectrum Sensing?,” IEEE Wireless Communications Letters, Vol. 4, 

No. 5, pp. 465-468, October 2015. 

[144] T. Denoeux, “A Neural Network Classifier Based on Dempster-Shafer Theory,” IEEE 

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 

30, No. 2, pp. 131-150, March 2000. 

[145] G. Shafer, “A Mathematical Theory of Evidence,” Princeton, NJ: Princeton Univ. 

Press, 1976. 

[146] D. M. Weeraddana et al., “Dempster-Shafer Information Filtering Framework: 

Temporal and Spatio-Temporal Evidence Filtering,” Sensors Journal, IEEE, Vol. 15, 

No. 10, pp. 5576-5583, October 2015. 

[147] A. L. Jousselme et al., “A New Distancebetween Two Bodies of Evidence,” 

Information Fusion, Vol. 2, pp. 91-101, June 2001. 

[148] Y. F. Song et al., “Measurement of Evidence Conflict Based on Correlation 

Coefficient,” Journal on Communications, Vol. 35, No. 5, pp. 95-100, April 2014. 

[149] P. Smets, “The Combination of Evidence in the Transferable Belief Model,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 5, pp. 447-

458, May 1990. 

[150] C. K. Murphy, “Combining Belief Functions When Evidence Conflicts,” Decision 

Support Systems, Vol. 29, No. 1, pp. 1-9, December 2000. 



  REFERENCES 
 

199 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[151] K. Umebayashi et al., “Efficient Decision Fusion for Cooperative Spectrum Sensing 

Based on or-Rule,” IEEE Transactions on Wireless Communications, Vol. 11, No. 7, 

pp. 2585-2595, June 2012. 

[152] S. Jana et al., “Trusted Collaborative Spectrum Sensing for Mobile Cognitive Radio 

Networks,” IEEE Transactions on Information Forensics and Security, Vol. 8, No. 9, 

pp. 1497-1507, August 2013. 

[153] C. Lei et al., “Cooperative Spectrum Sensing with Multi-Bits Local Sensing 

Decisions in Cognitive Radio Context,” in IEEE Wireless Communications and 

Networking Conference, pp. 570-575, March 2008. 

[154] Z. Qian, and P. K. Varshney, “Diversity Signal Reception Via Soft Decision 

Combining,” in Proceedings on IEEE International Conference on Acoustics, Speech, 

and Signal Processing, pp. 2937-2940 vol.2935, May 2001. 

[155] W. Han et al., “Efficient Soft Decision Fusion Rule in Cooperative Spectrum 

Sensing,” IEEE Transactions on Signal Processing, Vol. 61, No. 8, pp. 1931-1943, 

March 2013. 

[156] B. Picinbono, and P. Duvaut, “Optimum Quantization for Detection,” IEEE 

Transactions on Communications, Vol. 36, No. 11, pp. 1254-1258, November 1988. 

[157] R. S. Blum, and M. C. Deans, “Distributed Random Signal Detection with Multibit 

Sensor Decisions,” IEEE Transactions on Information Theory, Vol. 44, No. 2, pp. 

516-524, March 1998. 

[158] S. A. Alvi et al., “A near-Optimal LLR Based Cooperative Spectrum Sensing Scheme 

for Crahns,” IEEE Transactions on Wireless Communications, Vol. 14, No. 7, pp. 

3877-3887, 2015. 



  REFERENCES 
 

200 
PhD Thesis by Oluyomi Simpson 

University of Hertfordshire, Hatfield, Herts. AL10 9AB, United Kingdom 

[159] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on Information 

Theory, Vol. 28, No. 2, pp. 129-137, March 1982. 

[160] C. C. Lee, and J. J. Chao, “Optimum Local Decision Space Partitioning for 

Distributed Detection,” IEEE Transactions on Aerospace and Electronic Systems, 

Vol. 25, No. 4, pp. 536-544, July 1989. 

[161] S. Chaudhari et al., “Autocorrelation-Based Decentralized Sequential Detection of 

OFDM Signals in Cognitive Radios,” IEEE Transactions on Signal Processing, Vol. 

57, No. 7, pp. 2690-2700, March 2009. 

[162] D. Messerschmitt, “Quantizing for Maximum Output Entropy (Corresp.),” IEEE 

Transactions on Information Theory, Vol. 17, No. 5, pp. 612-612, Septmeber 1971. 

 

 

 


	Abstract
	Acknowledgments
	Table of contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Publications
	1 Introduction
	1.1 Motivation
	1.2 Scope and Objectives of the Thesis
	1.3 Thesis Contribution
	1.4 Structure of Thesis

	2 Spectrum Sensing for Cognitive Radio: An Overview and Problem Formulation
	2.1 Introduction
	2.2 Cognitive Radio
	2.2.1 Definitions
	2.2.2 Applications and Technologies

	2.3 Dynamic Spectrum Access
	2.4 Standardization
	2.5 State of the Art Spectrum Sensing Techniques
	2.5.1 Interference Management and Spectrum Sensing
	2.5.2 Receiver Centric Interference Management
	2.5.3 Transmitter Centric Interference Management

	2.6 The General Spectrum Sensing Problem
	2.6.1 Fundamentals of Spectrum Sensing Techniques
	2.6.2 Performance Criteria

	2.7 Test Statistics
	2.8 Detection Criteria
	2.8.1 Optimality Criteria: Bayesian versus Non-Bayesian
	2.8.2 The Bayesian approach
	2.8.3 A Non-Bayesian Approach: Neyman–Pearson Optimality Criterion
	2.8.4 Bayesian Optimal Detection

	2.9 Non-Cooperative Sensing Techniques
	2.9.1 Energy Detector
	2.9.2 Characterisation of Energy Detector in AWGN Channels
	2.9.3 Characterization of Energy Detector in Fading Channels
	2.9.4 Matched Filter Detector
	2.9.5 Characterisation of the Matched Filter
	2.9.6 Cyclostationary Feature Detection

	2.10  Other Spectrum Sensing Techniques
	2.10.1 Autocorrelation Detection
	2.10.2 Wavelet Detection
	2.10.3 Compressed Sensing
	2.10.4 Sequential Detection
	2.10.5 MIMO Detector

	2.11  Comparative Analysis of State of the Art Spectrum Sensing Techniques
	2.11.1 Primary Signal - DVB-T2 Signal
	2.11.2 Simulation Results

	2.12  Cooperative Spectrum Sensing
	2.12.1 Advantages of Cooperative Spectrum Sensing
	2.12.2 Centralised Cooperative Spectrum Sensing
	2.12.3 Distributed Cooperative Spectrum Sensing
	2.12.4 Relay-assisted Cooperative Spectrum Sensing

	2.13  Data fusion Schemes
	2.13.1 Lossless fusion
	2.13.2 Lossy fusion
	Soft Fusion
	Hard Fusion


	2.14  Cooperative Spectrum sensing techniques
	2.14.1 Voting Based Sensing
	2.14.2  Eigenvalue Based Sensing

	2.15 Performance Criteria for CSS
	2.16 Literature Reviews and Problem Formation
	2.17 General System Model
	2.17.1 Local Spectrum Sensing Algorithm
	2.17.2 Energy Measure
	2.17.3 Physical phenomena for fading channels

	2.18  Conclusion

	3 Relay-Based Cooperative Spectrum Sensing with Improved Energy Detection in Cognitive Radio Networks
	3.1 Introduction
	3.2 Double Threshold Energy Detector
	3.3 Double Threshold Energy Detector Based Cooperative Spectrum Sensing
	3.4 System Model: Amplify and Forward Cooperation
	3.4.1 Single Cognitive Relay
	3.4.2 Multiple Cognitive Relays
	3.4.3 Direct Link

	3.5 Performance Analysis
	3.5.1 Probability of Detection
	3.5.2 Probability of False Alarm
	3.5.3 Performance over fading channel

	3.6 Simulation Results
	3.7 Conclusion

	4 Evidence-based Decision Fusion Scheme for CSS in Cognitive Radio Networks
	4.1 Introduction
	4.2 System Model
	4.2.1 Local Spectrum Sensing Algorithm
	4.2.2 Final Decision at the Fusion Centre

	4.3 A Review of Dempster-Shafer Evidence Theory
	4.3.1 Basic Probability Assignment (BPA)
	4.3.2 DS Theory Combination Rule

	4.4 Cooperative Spectrum Sensing based Evidence theory
	4.4.1 Energy Detection
	4.4.2 Basic Probability Assignment (BPA) Estimation in CSS

	4.5 Basic Probability Assignment (BPA) Credibility Degree
	4.6 Basic Probability Assignment (BPA) Dissociability Degree
	4.7 Modified Combination Rule
	4.8 Final Decision
	4.9 Summary of Algorithm
	4.10 Simulation Results
	4.11 Conclusion

	5 Enhanced Quantization for Cooperative Spectrum Sensing in Cognitive Radio
	5.1 Introduction
	5.2 Lloyd-Max algorithm
	5.3 Optimal Entropy Quantization for Maximum Likelihood Estimation for Cooperative Spectrum Sensing.
	5.3.1 System Model
	5.3.2 Maximum Likelihood Estimation (MLE)
	5.3.3 The Optimal Entropy MLE Quantizer for CSS
	5.3.4 Uniform Threshold Quantization
	5.3.5 Proposed Uniform Threshold Quantization
	5.3.6 Threshold
	5.3.7 Optimal Entropy Quantizer
	5.3.8 Proposed Optimal Output Entropy Quantization
	5.3.9 Simulation Results

	5.4 Evidence Theory based Cooperative Spectrum Sensing with Quantization in Cognitive Radio Networks.
	5.4.1 System Model
	5.4.2 Local Soft Decision Log Likelihood Ratio
	5.4.3 Local decision Quantization
	5.4.4 Uniform threshold Quantization for LLR
	5.4.5 Output Entropy quantization for LLR
	5.4.6 Data Fusion centre
	5.4.7 Simulation Results

	5.5 Conclusion

	6 Conclusion and Future work
	6.1 Conclusion
	6.2 Future work
	6.2.1 Space-Time Coding for Cooperative Spectrum Sensing
	6.2.2 Evidence based Weighted Local Sensing
	6.2.3 Adaptive and Prior Quantisation for Cooperative Spectrum Sensing
	6.2.4 Security: Primary User Emulation Attack


	REFERENCES


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /CMYK

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<



    /BGR <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

    /ETI <>

    /FRA <>

    /GRE <>



    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

    /ITA <>

    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>

    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

    /SKY <>

    /SLV <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

    /SVE <>

    /TUR <>

    /UKR <>

    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /ConvertToCMYK

      /DestinationProfileName ()

      /DestinationProfileSelector /DocumentCMYK

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles false

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /DocumentCMYK

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice



