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Abstract

Building trust is a common requirement in distributed eomments especially
since many transactions now occur on a person-to-persas [Easamples range
from e-commerce on the Internet to peer-to-peer and grilres sharing. Many
solutions to the problem of requiring trust among unknowtities rely on the use
of a reputation metric to assess the risk of a potential &etien. However, such
reputation systems require (often implicitly) that trusstriansitive which can be a
problematic assumption.

This dissertation proposes a novel mechanism which werasltt The trust*
model uses guarantees to extend local trust between unkewepoints. Trust*
can be used as a substitution for end-to-end trust. Prilscgravide guarantees
within existing (local) trust relationships to build a chaf localised agreements
between the unknown end-points. The guarantees are bagkbxtdd micro-
payments to provide deterrents and incentives. Trusttiocglahips can be com-
posed transitively, and the guarantees reduce the riskéotrtisting party when
doing so. This is because a guarantee is only ever providedlydy a directly
trusted principal. Thus, trust management can be reducebbtally solved prob-
lem.

This work aims to develop a new technique for assessing athutirgg the
risk involved in trusting others in a distributed enviromme The thesis of this
dissertation is that an electronic analogue of real-wotldrgntees, is a useful
and interesting way to provide these assurances. We deaglegtension of the
notion of trust, which we call trust*, which is built upon laicguarantees, and
which provides a novel conceptual framework for analysing geasoning about
a wide variety of trust-related problems in distributedteyss.

We present the concept of trust* and apply it to a number ofiegupn sce-



narios where it would be beneficial. We simulate the trusttdeion these envi-

ronments for analysis. Also, we describe the key featurdsoéimer issues related
to the trust* model which became evident during its invesimn and which are
of wider interest.
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Chapter 1
Introduction

This chapter outlines the problem that this work sets oultiess and the motiva-
tions behind it. This chapter also outlines the thesis ackdiy this dissertation
and provides a guide to the structure of this dissertation.

1.1 Motivation and Problem Statement

The Internet was once a very static place used primarilyrffmrmation sharing.
Since the revolution of Information Technology [19], sees provided over a
network have become more diverse and accessible. Manyasiteservices are
now dynamic and allow direct interaction between their sis&o, where an e-
commerce transaction would once be between a reputablervand a customer,
over the last decade, person-to-person transactions eognogy more common.
This trend is not restricted to services provided via the ltM@vide Web but in-

cludes other distributed environments such as peer-toipetevorks, grids and
clouds. Together with the emergence of Web 2.0 and web searithitecture
such as SOAP and XML, electronic services are now very comngervices

provided nowadays are more likely to be a conglomeratiortloéroservices from
third-party providers including members of the generalljgulAnyone can now
easily set up a shop or service from their home. All of thisledgo a problem of
trust. It is now extremely likely that when someone trans&gth another over a
network, they will be completely unknown to each other.
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Before the Internet boom when fewer people owned a personapater and
only the larger companies hosted websites, trust was buthe reputation of the
company in question. This is still how trust is gained by camips in the real-
world. To address the problem of assessing trustworthimesise Internet today,
the most ubiquitous method is to use a reputation systenb[®®86, 91]. These
are loosely based on the way that trust is built in the realdvioy referral from
another (trusted) person.

Each of a reputation system’s users has a reputation rataghvis normally
calculated from feedback from previous transactions wittes. These ratings
can be viewed by prospective users intending on dealing thghprincipal in
question. The outcome of each transaction will affect thmutation score ac-
cordingly. Such reputation systems are widely used on therret for various
purposes and generally work well. However, reputationesystassume (often
implicitly) that trust is transitive [61] which can be a falassumption [26, 49].
Assume a user wants to determine the risk involved if theyewertrust another
(e.g. to provide a described service) by looking at theiutation rating, which
contains comments and ratings left from previous transastilt is unlikely that
the user looking knows (or trusts) the other users who hatéhe comments.
But even if theydo know and trust the people who left the feedback, they will sti
be transitively trusting the service provider in question.

To give areal-world example, assume that Alice needs to hewear serviced.
She trusts Bob’s advice who in turn trusts Carol to servieechr. Alice is indi-
rectly trusting Carol to be a good mechanic as she trustssBadvice. Suppose
that Carol isn’t a mechanic herself however she trusts Datid is. The question
is to what purpose is Alice trusting Bob. In the first casec@lirusts Bob to rec-
ommend a mechanic whom he trusts directly. The second cad&estrusting
Bob to trust someone else’s (Carol’s) recommendation ofaal gwechanic. This
example assumes that Alice trusted Bob in the first placegkienin real-world
reputation systems, it is unlikely that the person readapgitation ratings or rec-
ommendations even knows the person leaving the commergs, jflst because
David might do a good job for Carol, it doesn’t necessarilyaméat David will
do a good job for Alice or Bob. It might be that David is reallg@avboy mechanic
(possibly not even to Carol’'s knowledge) but will always\de a good service
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to Carol because he is sweet on her. A more concrete examplghieBay’'s
reputation system where a particular user might have a veog geputation for
selling films. However, this won't necessarily hold when imgybooks or music
from them. This lack of “scope” also makes basing trust decsson reputation
systems risky.

As most existing trust relationships are being transiyividrived through in-
termediaries, a way to reduce the risk and lower the hassterapliance for all
parties involved is required.

1.2 Real-World Guarantees

In real-world protocols, the ability for unknown partiesact as if they trust one
another is often facilitated by using an intermediary gotraas a replacement
for transitivity of trust. Guarantees work by shifting thekrto another party and
thus lowering the risk for the trusting party. An examplelattis letting houses
to students, where landlords might require a guarante@stgaparticular tenant.
The guarantor might be a parent who trusts that their son ogldar will pay
the rent. The landlord trusts the guarantor so the landlasdshifted the risk of
not receiving the rent to the guarantor. The landlord bebahat he will always
get his rent whether it be from the tenant or the guarantoe. gimrantor being a
parent is likely to pay the rent as they have a reputationde,lohereas perhaps
the student might not.

This type of agreement is made on a regular basis in the redtiwFor exam-
ple, buying electrical goods such as a kettle. A customeraeertikely to buy a
kettle if they know that they’ll receive a refund or replacarhif it breaks within
a year. The risk involved for the customer has been removedlaifted towards
the guarantee provider (the manufacturer). It is now thentige of the manufac-
turer or shop to control the quality of their products in artteavoid paying for
replacements.

The electronic equivalents of real-world guarantees agd ursthe trust* model
to lower the perceived risk involved for a trusting prindipethe same way as the
examples given above. The only difference being that trwdt*®e used to guar-
antee electronic services rather than physical produdsreices.
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1.3 Trust*

Trust* builds on pre-existing trust relationships betwpéancipals who are known
to one another and is based on the electronic equivalent oéti-world guarantee
solution. Say that Alice needs to trust Carol about somgthimd doesn’t person-
ally know or trust Carol. However, Alice trusts Bob who inriurusts Carol to
do whatever it is Alice needs her to do. In order to changeefdiperception of
the risk involved, Bob could guarantee to Alice that Cardl agt as intended and
offer Alice compensation if Carol doesn’t. Assume for nowttBob gets paid a
commission by Carol as an incentive to act as a guarantor

The concept of “extending” trust in this way by using locatigguarantees is
what we call a trust* relationship. Figure 1.1 shows thisdgptrust* relation-
ship. The trust*er (Alice) can aesif she trusts the trust*ee (Carol) directly. In
order to shift the risk, forfeit payments are used as a datéfto the trust*ee) or
compensation (to the trust*er) but assume for now that thheyracro-payments.
All forfeits are paid locally; if Carol defaults then Bob niymy Alice the agreed
forfeit whether or not Carol pays Bob any forfeit she owes famd the two for-
feits may be of different amounts). Also, Carol might notéavade a guarantee
to Bob that she will reimburse the forfeit. Thus, failure toyide a service — or
to pay a forfeit — is likely to result in an update tdacal trust relationship.

Trust* can be composed to an arbitrary number of hops becauseist is
now local and so are the forfeits. It is worth noting that trigs’'t the same as
trust* even in a one hop scenario. If Bob trust*s Carol to jeva service, it
means that Bob trusts Carol to either provide the servicésergay the forfeft

The whole concept of extending trust to trust* makes userefaly existing
trust relationships rather than creating new ones. It usasagtees to bridge the
gap between unknown principals with a sequence of locabgeeements which
remove or reduce the perceived risk of the trust*ing priat{when transitively
trusting) and shift it towards the principal being trust*édthough trust* doesn’t
assume that referral trust is transitive (so there is noterehd trust), Alice can

lincentive and deterrent payments are discussed later tro8&c3.
2It may be that Bob would rather have the money, and beliewasGhrol cannot provide the
service, but will always pay the forfeit.
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Direct trust Direct trust

Figure 1.1: A two-hop trust* relationship.

behaveasif she trusts Carol.

Trust* is flexible in that it can be used in many different apgiions, how-
ever because it builds upon already existing trust, it woe#d to replace any
existing trust infrastructures. It will integrate with theto manage direct trust
relationships and can utilise existing commodities sualepstation or resources.
More refinements of the trust* model are introduced throwughbe rest of this
dissertation by applying it to various application sceosui

1.4 Structure of this Dissertation
This section provides an overview of the subsequent chapfeahis dissertation.

Chapter 2 gives an overview of the related work which provides a backgd
to this work. This primarily reviews research in the field nidt. More
specifically, perceptions of trust, types of trust and howait be modelled
and established. A review of how trust can be built on therhd@eand
for e-commerce is given followed by examples of certificatioechanisms.
Background work specific to a particular application is eswed at the start
of the relevant application chapter.

Chapter 3 gives an overview of the problem of trust in peer-to-peeP2et-
works and demonstrates how trust* could be applied to sucbraesio. The
example is based on an existing P2P client called Turtlegchvhie extend
by adding trust* capabilities. This chapter introducesitiga of payments
by resource.
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Chapter 4 describes in detail how the trust* model has been simuldtkd focus
in this chapter is on the design considerations of simuiétie application
scenario described in Chapter 3. This chapter also desdtileesimulation
testing process and summarises the results for the P2Pagiomul How-
ever, the simulation model has been designed with the fleyibd allow
changes to easily adapt the simulation to the other apitaexplored in
this dissertation and these simulations are reportedeén thiapters.

Chapter 5 gives an overview of trust in computational grids and expaiow
trust* could be used to extend trust between unknown usexslistributed
system where resources are normally shared. This chagtedacusses
how mechanisms originally designed for the Globe disteduniddleware
could be adapted to work with the trust* model. Implemeptabf trust*
routing is addressed by constructing various analoguestiwank routing
algorithms. This chapter also describes how resource hrakeould occur
when using trust* in a grid setting. Finally, the changes enedadapt the
simulation to a grid application scenario are described.

Chapter 6 describes how trust* can be used to minimise the hassle opltom
ance in a licensing agreement. We show how trust* could béegpto a
software End User License Agreement in order to ensure tienhacy of
the software before installation. Also, the applicationtrofst* to digital
music downloads is described. Finally, trust* is applieditaations where
a sponsorship or donation undertaking has been made (edjickiyg on
a link) to ensure that the intended recipient will get theayment. This
chapter extends the commission and forfeit models fromipusvchapters
and gives an overview of the types of micro-payment thatatbel used in
these applications. Also, the simulation implicationstfose applications
are presented.

Chapter 7 is the final application chapter in this dissertation. THgmter ap-
plies trust* to the sending of emails to guarantee that tleynat junk (or
“spam”) email. This application demonstrates a scenarierevtrust* paths
are built in the opposite direction (i.e. from the trust*ewl¥to that of pre-
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vious chapters. This chapter also discusses pricing gtest@nd how to
exploit analogues between network congestion control a@@dmmission
model of trust*. Finally, the implications of simulatingetspam-proof ap-
plication are presented.

Chapter 8 provides a full description of the trust* model and reviewsl ante-
grates the concepts that have been introduced so far. Véelutte a nota-
tion to formalise the main components of the model. Finak®yracapitulate
the key features and other issues of wider interest raisedeognodel with
further discussion and examples.

Chapter 9 concludes this dissertation and reviews the contributionknowl-
edge that this work has made. We discuss some possible nadidifis that
could be made to the trust* model and the correspondingédutuections of
research. Also, further applications are suggested tohwdgplying trust*
could be beneficial.




Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides a background to the work presenteudisrdissertation by
discussing some related work in the field of trust. More @@y how trust is
perceived in cyberspace and applications for which it isimegl. This chapter
gives an overview of these factors including a review of sahthe work that
addresses trust related issues. It also reviews some oluthent solutions for
building trust in cyberspace which this work aims to improaed highlights the
difficulties.

Throughout the rest of this dissertation, a number of dffiéapplications of
our approach are described. Background work which is speafa particular
application is reviewed at the start of the appropriate tdragn each of these
chapters, a short background is given to set the scene faptfic application
of trust*.

2.2 Perceptions of Trust

The theory of trust was first viewed as a computational caniogMarsh in his
thesis [73] and later by Harbison [49]. Trust is very compdexd dynamic [20]
and is typically a subjective measure of someone’s belif ahother will act as
intended which is also dependent on the task at hand. Trgehisrally used as a
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substitute for knowledge. Jgsang [59] shows how complest tsutand focuses on
understanding trust in the real-world. Also, a differetiia is made in his work
between trusting human agents and trusting systems andoes shat the need
to trust is only required if malicious behaviour exists ie first place.

Campet al [18] identify the variations in how trust is perceived frorteahno-
logical, philosophical and social theory perspective. atihors develop hypothe-
ses as to why these views conflict with each other; technsi®giften assume that
humans are attentive, discerning, and ever-learningppbidhers argue that hu-
mans are simplifiers and that they will often trust machiresit this; social
theorists argue that humans slowly lower barriers agaiast,trather than refine
them. A conclusion drawn by the authors from these hypothissthat design-
ing security mechanisms for trust should be based on theggphical and social
theories of trust. This is because it is not possible to egegigomputer security
system without making assumptions about human behaviour.

A study by Kindberget al [67] shows how trust perceptions react when using
different methods of paying for a meal in a restaurant. Tmesthods all require
payment from an electronic wallet (a device which can irdevéth another de-
vice to make a payment) but range from docked to wirelesseaxiions. Also,
whether a waiter plays a part (i.e. holds the device) or wdredhy bar-code scan-
ning has taken place is considered. The study shows thalgesgson about trust
judgements in many different ways. For example, where #gassues may play
arole, other issues such as convenience may be of more mmgertFor others, it
might be a social issue, however, many were aware of the patteacurity issues
when prompted. A trade-off between these issues needs tdebéfied when
designing a system that requires trust.

2.3 Analysis and Modelling

Much of the work related to the area of trust has been to dodatieloping ways
to analyse and model trust. One way of modelling trust refesips is to use
the Trust Network Analysis with Subjective Logic (TNA-SLptation proposed
by Jgsangt al [62, 65]. TNA-SL requires trugtelationshipsto be expressed as a
series of beliefs. An example belief opiniort = (b, d, u, a) expresses the relying
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party A’s belief in the truth of statement This statement might be “Party is
reliable regarding” whereo is the scope of the trust statement. The valués of
andu represent belief, disbelief and uncertainty respectivddgred, d, u € [0, 1]

andb + d + u = 1. The parametet € [0, 1] is the base rate and determines the
apriori trust that is existent in the principal in question. Variegerations allow

trust and risk to be reasoned with using these measures. JINAlso requires

that trustnetworks are expressed as directed graphs in order to represent trust
relationships. Jgsang doesn’t assume that trust is thanitit transitive trust
relationships can be expressed in this notation when oartaiditions are present.
Table 2.1 gives an overview of this notation.

Symbol | Meaning

A, B,C,... | Alice, Bob, Carol, etc.
: Connection of trust arcs.

Trust scope.
Functional trust variant.
Referral trust variant.
Direct trust.
Indirect trust.
Alternative trust path.

O S ALY S Q-

Table 2.1: Transitive trust notation.

An example of a transitive trust relationship between Ahoel David can be
expressed as:

([A, D,ifo]) = ([A, B,dro] : [B,C,dro]| : [C, D, dfc]) (2.1)

This notation gives us details of not only the trust path leetwvAlice and
David but also details such as the type of trust and its scbipe types of trust are
distinguished intdunctional andreferral trust variants. Functional trust is used
where a principal trusts that another principal is capalblpesforming the task
in question. Referral trust is used where a principal trtleggecommendation of
another principal (perhaps a recommendation of a pringwpaimthey have func-
tional trust in). Variations of these types of trust can beesated intadirect trust
where the trust relationship is local amdlirect trust where the trust relationship
is derived transitively. For example, Equation 2.1 shoves tiice hasindirect
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functional trust in David. This is due to Alice havingjrect referral trust in Bob,
who also hadglirect referral trust in Carol. Finally, Carol hadirect functional
trust in David.

According to Jgsang, a transitive trust relationship willyobe valid if the
combination of referral and functional trust reflects thatle example given
above. This is that a chain can consist of any number of diedetral trust links
followed by a single direct functional trust link. It is ortlyen that Alice will have
indirect functional trust in David.

The scope to which the trust relationship applies also paysnportant role
as it is likely to be different between each pair of princgial a chain. The scope
of the transitive trust relationshipA, D, i fo]) is the common subset of all scopes
in the chain (A, B, dro] : [B,C,dro] : [C, D,dfo]). Say for example that Alice
needs new tyres fitted on her car and trusts Bob to refer hérkBows that Carol
knows someone who can do this. Bob’sn Carol might just be “I trust Carol to
refer me to someone who can fit tyres”. However, Carlia David might be “I
trust that David can fianything to a car”. Even though Carol personally knows
that David is a good mechanic who can fit or fix anything regag@i vehicle, the
transitive trust scope between Alice and David should oelyHat he can fit tyres
as this is the largest common scope along the chain.

We do believe that trust could be transitive in this way bt ttusting prin-
cipals are still making fragile assumptions and takingdaigks. It is desirable
to find a way of allowing smaller and more viable assumptionsg made by the
trusting principal. Trust* would seem to be a natural exi@mswhere we provide
guarantees on top of referral trust (or guaranteed refrral

Other ways of structuring and defining trust relationshgraially include the
work by Zhaoet al [111, 112]. Their definitions allow a number of operations to
be performed on modelled trust relationships. For exantpde; two trust rela-
tionships can be combined to build new relationships. Tinatiation is interesting
as it also plays close attention to modelling the “scope” wiat relationship. An
example of a trust relationship in their notation can be egped as a four-tuple
T =< R,E,C, P >whereR is a set oftrusters, F is a set oftrustees, C'is a set

For example, Bob may not know that Carol doesn't fit the tyresélf, and so he may mis-
takenly assert direct trust in her instead of indirect.
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of conditions, andP is a set of properties. The properties include a set of agtion
that the trustees are trusted to perform and a set of agslibat the trustees are
trusted to have. Using this notation, the authors proposg/roperations that can
be performed on existing relationships to form new relaiops. For example,
Let 77 = (Ry, E1,Cy, Py) andTy, = (Rs, E2, Cy, P,). Then a new relationship
T3 = (R N Ry, By N Ey, Cy U Cy, P U Py) can be formed.

This section has not attempted to survey every notation tesiedmalise trust
but has summarised the two that are most fitting to the maodedf trust* rela-
tionships. Towards the end of this dissertation, chaptese® an extension of the
notation of Jgsangt al as a basis on which to formally describe the features of
the trust* model that are developed in subsequent chapters.

2.4 Transitive Trust and Reputation Systems

Trust can propagate in different ways with the most commow be&ng through
transitivity [54, 61, 64, 65, 72]. When a user needs to trasitlaer online, rep-
utation systems are a way to assess the possible risks ohglsat person. A
description of the most well known reputation systems (&edt inodels) is given
in [60] and [63]. They show the variety of implemented repiotasystems that
are currently used by websites and although reputatioessstvork much of the
time, they are prone to many problems including unfair ggjndiscrimination
and ballot stuffing. These problems occur mainly due to thetfet trust is tran-
sitively derived in others by using public knowledge (egputation systems) as
opposed to private knowledge (e.g. previous real-worldraxdtions). In a sense,
if we had universal access to private knowledge, we wouldeé&d trust at all.
Also, users might not have enough incentive to leave rafiogsthers especially
if the transaction has already completed.

Reputation systems allow users to rate other users reggititnoutcomes of
previous transactions or encounters. Others can later iese ratings in order
to help them decide whether to trust a principal in futuresections. Many sites
employ this method (eBay’s “feedback forum” is among the tasious) but
such methods are known to have problems such as those nmehéibove causing
them to give inaccurate and misleading information. Thid@@otentially lead a
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principal into a falsely heightened sense of trust with haobr to incur a penalty
by not undertaking a profitable transaction that was in factqutly safe. Other
work related to reputation systems and their contributehbuilding online trust
include [36, 91, 106].

The Pretty Good Privacy (PGP) toolkit has its own type of tapan system
called the “web of trust” to solve the problem of uniquelyntié/ing public key
certificates and who they actually belong to. This was amygitéo decentralise
PKI where users give each of the keys in their key-store agdir reputation
score) depending on their surety that the key actually lgsdm the person claim-
ing to own it. If a received key certificate is signed by sonmeetirey have already
rated (directly or through a chain), they will have an indiiwa of whether the key
is likely to belong to that person and whether they can thstarigin of the cer-
tificate. Again, a PGP user will be transitively trusting ety on the authenticity
of a key.

Much research has been conducted to address some of the veishieepu-
tation systems. Examples include TRAVOS [104] which usebability theory
and accounting for previous transactions in order to cateulrust in an agent-
based system. It also draws reputation data from thirdgsend therefore has
mechanisms to handle cases where information may be iretecoirwhere users
might be self-interested.

Dellarocas [34] proposes mechanisms to help reduce dis@iory behaviour
and unfair ratings in reputation systems. Discriminatafydviour could involve a
seller (in an e-commerce setting) providing a good send@yéryone except for a
select few people. As long as this proportion is small, thiesgreputation rating
won't be damaged too much. Examples of unfair ratings inelodllot stuffing
where principals collude to inflate each others reputatidhis might involve
staging fake transactions to do so. Conversely, principadgt collude in bad-
mouthing a competitor in order to damage their reputaticah effectively drive
them out of the market. The proposed solution to these typbslwaviour is to
use controlled anonymity to hide the identities of the bayard sellers from each
other. In addition to this, a clustering algorithm is useddentify and separate
fair ratings and unfair ratings of a principal. The prindipaverall reputation
will only be calculated from the set of what are considerad rfatings. Also,
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reputation systems are prone to threats such as Sybil atfa8kwhere the same
user can operate under multiple pseudonyms.

An important factor that needs considering when making st tdecision is
the amount of risk that is involved (and the losses that nmighhcurred). In [66],
Jasang and Lo Presti analyse the relationship betweenmnékast and demon-
strate a way of modelling a principal’s risk attitudes whesking trust decisions.
This shows that people tend to be willing to put different amis of money at
risk depending on the potential gain from a transaction aedptobability of its
success.

Cvrcek and Moody in their work [31] focus on how risk can bsessed by
analysing patterns in previous transactions. They argaeribk and trust are
orthogonal qualities and show that attacks such as Sylitlkgtcan be greatly
reduced. This works on the assumption that attacking itiesittan be profiled
from their behaviour. By profiling behaviour, threats carndentified and attacks
blocked on the basis of similar behaviour traits.

2.5 Local Trust Management

Ways in which trust can be negotiated and established batpragcipals is a well
researched area. The term “trust management” was firstdtn®lazeet al at
AT&T Labs [13, 15]. Trust management uses policies and crials to provide
a way of making access control decisions in situations wireis is required.
More specifically, implementations of trust managementesys aid applications
in deciding whether particular operations are allowed dr fidve decision will
need to take into account what the operation is, who reqdésterhat the local
policy allows, the requester’s credentials, and otheriagpbn specific factors.
Trust management systems provide applications with amfate to help them
with such decisions, and provide a standard language foingrhe policies and
credentials. Also, decisions are made in a decentralisethena For example,
rather than making trust related queries to a centralisetcge each principal has
their own “trusted” system localfyto them. It is difficult to find an organisation

2“local trust” in this dissertation doesn’t mean geographiclocal. It means that the trust is
direct and locally managed based on direct experiencevimgpthe principal.
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that is universally trusted across the world to provide ared¢ised service. De-
centralising trust management means a company or even sdunal can have
their own local (and therefore locally trusted) trust masragnt system. Research
into trust management techniques by Blazal led to the implementation of the
PolicyMaker and KeyNote trust management systems [14]wéie now used in
various applications [17]. For example, a module has bedtewifor the Apache
web server to provide access control mechanisms for weliress.

KeyNote has its own syntax to allow assertions to be writldrese assertions
take the form of policies or credentials. Each principal wplanning to have a
trust relationship with another will write a policy assertiwhich states who they
are willing to trust and under what conditions. This is ubuallist of trusted
public keys and a set of condition values that need to be nuraéng on the
situation and its requirements. An example could be for m@lkd file access
control decision, where more privileged users may be altbiwenrite to as well
as read certain files. Credential assertions are createdistntbuted to trusted
principals with the allowed conditions encoded within thérhese assertions can
be digitally signed by the creator to ensure their integaitg essentially serve as
permission (or certificates) to perform the specified tasks.

KeyNote also provides tools for the creation of keys andfieation of signa-
tures but its primary tool is the compliance checker. Whemist decision needs
to be made, the required credentials are passed to the cledokg with the rele-
vant policy. It will verify the signatures on the credemngiaind calculate whether
they comply with the conditions set out in the policy. KeyBlaiill return a value
such as true or false, however the result can be more fineagr#idesired.

Galiceet al [44] describe a protocol called Common History ExtractiGRE)
to build trust where there is no centralised infrastruct@idE bases its trust man-
agement decisions on previous transactions with othersnadiere each device
records a history of past transactions. Nodes can thenhs&arpreviously met
nodes and can mutually authenticate and cryptographipatiye that they have
really met before.

Other work includes applying trust management to web sesvj02], web
applications [27], and to maximising privacy [110]. Desaolf other trust manage-
ment systems and applications are given in [48, 93].
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2.6 Trustin E-commerce

Since the beginning of the World Wide Web, sites appeareadibald allow vis-
itors to search their catalogue, purchase goods and hanedbkvered to their
door-step. Initially, this was a risky transaction over ayveew and immature
medium. Also, the number of people who owned a Personal CanaC) with
an Internet connection was low and mainly consisted of pewmplhe IT or com-
puting industry or academia. Eventually, more of the gdrarblic owned a PC
and every well known brand or shop would have its own webestarhe web
consumer data analysed in 1999 [52] shows that the majdradgrisumers would
not shop online due to the fact that they did not have trustemsecurity of doing
so. For example, they feel it isn’t safe to input credit caetbds over the web, or
feel that privacy is at stake. As the Internet matured, mogehmnisms were im-
plemented in an attempt to secure transactions and heneaggcconsumer trust
when shopping in cyberspace [43, 99, 100]. For example rsecthe transfer
of payment details (such as SSL) and measures taken by adksetr or protect
against credit card fraud. Also, web-stores began to peothidir own guarantees
such as policies regarding the privacy of customer data.

So far, trust in a business-to-consumer setting has beemiloked. However,
trust in e-commerce is more of a problem nowadays since thethrin the num-
ber of online marketplaces and communities. Such websit@smake it possible
to interact on a person-to-person basis and participat@ansactions with com-
pletely unknown principals [32, 103]. Even before the adwa&nsites such as
eBay and Amazon, people were trading on a person-to-perasis bn Usenet
newsgroups. In [68], Kollock discusses the need for trusintine markets and
states that trusting online is similar to the structure @& Brisoner’s Dilemma.
For example, because a person-to-person transactiorely tik involve a bilat-
eral exchange, it is tempting for one to receive a serviceramideciprocate. If
both parties hold back on their part of the exchange, then Wwdt be worse off.
Kollock was one of the first to consider the use of reputatisiesms as a way to
gauge risk when no face-to-face contact will take placerdyai transaction.

In [10], the notion of using reputation to establish trusapplied to online
communities such as eBay. However, individual agents d@ave their own rep-
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utations but instead they fall under the reputation of thamainity to which they
belong to as a whole. When agents wish to transact with gtllegeputations
of their corresponding affiliations will be taken into acobuThe outcome will
effect the reputations (positively or negatively) of thilated communities. This
gives a community the incentive to punish or remove agentshndre damaging
the overall reputation of the community. The authors useegtraory to prove
the concepts of a community responsibility system and thaili be effective
in building trust in impersonal transactions. To act ineotly in a transaction
will not damage an individual’s reputation but will damage treputation of the
community to which they belong. This now becomes a local lerobwhich can
be solved internally to the community. It is likely that balie community own-
ers and their well behaved members will want to investigate @ossibly purge
anyone who might be a liability to their overall group regiga. An example
of community reputation is evident in computational grids (e’ll explore later
in this dissertation) whereby resources are shared betlaegs organisations or
universities. Suppose that principalof organisationA was to abuse a service
provided by organisatio®s. This might cause problems when another principal
of organisatio later wishes to us8’s service as: has lowered the reputation of
A (in B’s eyes). Itis now a local problem whereblycan identify and discipline
x or any other member who may be damaging their reputation.

2.7 Trust Certification

Traditional certification authorities (CA) issue certitiea to websites so that the
public key of a server can be verified by a browser for SSL psepo This al-
lows users to trust that their credit card numbers are beiwsgypted only for the
intended recipient. Now CAs exist that will certify othempasts of a site. For
example, that they have a privacy policy that conforms tdQAs regulations, or
that a site isn’t malicious or fraudulent.

McAfee’s SiteAdvisor [3] is a free browser toolbar. It clano keep you
safe from online fraud, spam, ad-ware and other maliciounsect on the web.
Each time someone visits a website, the name of the site issdmcAfee and
a reputation score is sent back to the users browser whichdiselays it. This
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could be seen as an invasion of privacy as McAfee will havesgto the full
history of sites visited but most people are happy to saerifieme privacy in
order to increase their online security or they won't evensider this factor at
all. McAfee regularly run tests on websites and assign gatgings to them.
Ordinary users can comment on whether they agree with thésgs which could
eventually alter the rating after further analysis by Mo&feA similar tool to
SiteAdvisor is called WOT [6].

Richard Clayton at the Cambridge Security Group has writbaut how
SiteAdvisor works well in most cases but can give inaccuaatd misleading ad-
vice [29]. He shows some example sites which have slippeditir the net and
have been given a “green” rating. The example given is ameswerce site which
doesn’t accept credit cards but only Western Union moneysteas for products
that are obviously under-priced compared to their real etarklue. Customers
of this site have complained of not receiving goods aftargfarring the money.
Of course, it is a complex task to rate every site on the letdvat this shows that
reputation systems can be hard to get right, especiallyisrstiale. Again, rather
than users trusting a site directly, they are transitivelgting McAfee to provide
accurate ratings which it cannot necessarily give.

Although these are not strictly reputation systems, thélyrsty on people
trusting certifications from organisations which do havedyceputations.
TRUSTe [5] and BBBOnLine [1] are among the most popular. Eh@ganisa-
tions certify websites after assessing that they have Bpealicies in place that
satisfy the privacy requirements of the organisation. Asstption fee also needs
to be paid for the right to carry the certification logo on thebsite thereafter.

Edelman identifies problems of adverse selection with sadifications in his
paper [39] where his results show that certified sites aresrti@n twice as likely
to be untrustworthy than uncertified sites. He also showsgiansored adverts on
search engines are also more likely to lead to malicious iesbthan the organic
search results. To the naive user, these adverts appearécdtimmended by the
search engine with the user being unaware that the advasgtisaying to have his
link displayed above organic search results for certaimkegls. This is another
example of the problem with a naive approach to transytigfttrust. Similar
problems occur with social networking as we shall see in the chapter.




Chapter 3

A Peer-to-peer Application

3.1 Introduction

Peer-to-peer (P2P) based networks are widely used on theéttto enable file
sharing, streamed media and other services. With a tradit@ient-server based
network, many clients connect to a fixed server. In contf@8E clients are all
considered equal and connect directly to each other. Becaiuthis topology,
tasks such as sharing files and other resources can be morengféis a client can
connect to many other clients and download content simedtasly.

Much of the content currently distributed via P2P netwosgksither illegal or
violates copyright laws in some way. However, there are aisny legitimate
reasons why content might be distributed in this way, andetigealso copyright
free content available such as open source software. P2&cpl® such as Bit-
Torrent enable sharing of very large files such as operagstess, and many
Linux based distributions are available in this way in orttelower the load on
an individual server.

P2P networks have many advantages such as scalability,uenb dhere be-
ing no centralised server, network loads can be easily bathrHowever, for the
same reasons, a problem with P2P networks is that all pezregarded as equal
and there is no real way to moderate content. Anyone can u2® lient and
share any files they wish. Bad users can easily insert ceuujges into a net-

19
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work! which are searchable by other clients and will thereforepagate further.
Even good users might be unaware that they are serving eutdiies from their
computer. To counter this, hosts might publish an MD5 cheaik-on their web-
site. However, this is unlikely and it is the user’s decisiamether and how they
actually verify this, and getting hold of the correct chagkseads us back to the
initial problem. Also, this approach assumes that the éeugs the original source
and not just a middle-man provider.

This chapter explains how trust* could be applied to P2P asts/to guaran-
tee the integrity of files being shared. This chapter use3tintte P2P client [88]
as a basis on which to discuss the approach, although trast®easily be ap-
plied to various other P2P clients in the same manner. Taribles files to be
shared among friends (people whom you know in the real-wamldhe hope to
improve safety and overall integrity of the shared contéfbwever, trust isn't
transitive in social networks. Applying trust* to Turtle Wadditionally allow
files to be safely shared with unknown principals without tieed for transitive
trust. Trust* achieves this by providing incentives to amtrectly and deterrents
for acting carelessly.

3.2 Trustin P2P Networks

Due to the nature of P2P networks and the likelihood thattereid interactions
will be between completely unknown and untrusted prinapaéers in a network
need a way to mitigate the risks they might incur if they terapity trust others.
The risks involved are likely to vary depending on what isiatly being shared.
For example, software should not be corrupted in any wayehe@nts should be
authentic and music should be licensed.

There are many security and trust issues related to P2P retj& 57, 78,
107] and the trustworthiness of others is normally gaugedgusome kind of
reputation system [58, 69, 98]. However, as mentioned pusly, reputation
systems have a vital flaw; they require that trust is alwagssitive [61] which
can be a dangerous assumption [26].

lindeed, this may be done by the music industry to discouragplp from using P2P.
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According to Jgsangt al [62], transitivity is possible with the correct com-
bination of the referral and functional variants of trustgsSection 2.3). Trust*
instead allows the risk involved when having indirect onsiéive trust in another
to be underwritten. For example, Bob is not only making a meoendation to
Alice, but also offering compensation if something goesmgroThe trust scope
is decided locally between Alice and Bob when the guararsteesiated. It is as-
sumed that the final guarantor in a trust* chain will have difanctional trust in
the end-point (or trust*ee).

Turtle [88] is a P2P client with the intention of providingiyacy and safety
by sharing only between direct “friends”. The client re@siryou to list your
friends whom you trust to share their files with you. The Taugtotocol works
by only sending search queries for files to these friends, pdss on the query
to their friends as their own query and so on. Such queriedtaidresults are
only ever swapped within these local trust relationshipgse $econd stage is for
the original requester to choose the file to be downloaded the list of returned
results. They request the file locally from the directly tassguarantor who in
turn requests the file locally from the next principal in thein. This continues
until the end-point is reached (in a similar fashion to how #search query is
made). The file itself is then repeatedly downloaded withese individual trust
relationships until the request originator is reached.

3.3 Incentive and Deterrent Payments

Two types of payments are used in the trust* model; theseaafeitfand com-
mission payments. A forfeit is used to either deter a prialcippm defaulting on
what they have guaranteed or to provide compensation tothes party if they
do. The commission payment was introduced in order to peoaidincentive for
a principal to act as a guarantor and can be seen as a spofgrzguarantee.
For example, a principal needing to trust* another would {héy commission to
a guarantor whom they trust directly. Or a principal needmdpe trust*ed by
another would pay the commission to a guarantor who trustath

Forfeit and commission payments serve different purposdsian’t need to
be of the same type (or paid by the same means). Also, thesegmdy and the
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actual service being provided need not be like-for-like.

Both the cost of a guarantee and the forfeit that should beipdiis broken
are variable and can be set by a guarantor to reflect theiepgoa of the risk
involved in providing a guarantee. For example, as a riskgrgutee is more
likely to be broken, a higher forfeit might be required by thearantor to cover
his losses (e.g. from the serving peer). A low risk guaraigeanlikely to be
broken and so the guarantor will get his incentive througtcthmmission because
a forfeit payment is less likely to occur. Another incentiggprovide a guarantee
Is to make a profit from a forfeit. Assume that Carol is trustbg Alice with Bob
providing the guarantee to Alice (refer back to Figure 1liifarol defaults, the
forfeit from Carol to Bob might be more than what Bob has to pdige. Note
that this gives Bob an incentive to hope that Carol defalitgernatively, Carol
may pay Bob a commission instead of a forfeit, in which case Bopes that
Carol doesn’t default. The second case is like buying imstea Commissiom
has the same expectation (but lower variance) for Bgl>gs ¢, wherep is Bob’s
estimate of the chance of Carol defaulting, and his assessment of the chance
of Carol paying the forfeit (we’ll come back to this in Chapter 8).

These considerations lead to some interesting effectsdiegathe commis-
sion and forfeit rates along a chain of guarantees. In tresago, if Carol were
to default the guarantee, only Carol will be out of pocket tes forfeit rate is
higher at her end of the chain (and decreases towards th&ngisnd). Every
guarantor will make a profit in this case but if we considerrggker chain where
risk perceptions fluctuate, guarantors might lose out. Risrreason, it is likely
that guarantors will only provide guarantees where theiebelthe rates involved
will make them better off with high probability in the longmu This flexibility
of perception is vital in ensuring that guarantors get thmientive and principals
who might default are sufficiently deterred. The fact thatpptions of risk differ
is after-all why we needed trust to begin with.




CHAPTER 3. A PEER-TO-PEER APPLICATION 23

3.4 Applying Trust* to Turtle

Turtle’s localised trust setting is perfect for also findiogtes of trust* guarantees,
as the query and result route could also be used to make uprecflyaiarantee’s
Extending the example to a longer chain, Alice wants to doaulfile X and
sends a query to Bob whom she trusts. Bob forwards this qoe®atol whom he
trusts. Carol continues to forward this to her friends. daeceives the query, he
has file X and sends back a positive response to Carol which is fordardek
to Bob and then Alice. Assuming now Alice chooses David’s Vile Bob from
the list of search results and requests that it comes withagagtee from Bob, a
guarantee chain could be negotiated at the same time asvietrithe file. The
scope of the trust* guarantee is also negotiated betwednpaacwhich states the
terms of the guarantee and what constitutes a breach. FompdaCarol might
guarantee only certain types of files from David. She mightdggpy to guarantee
against any of David’s music files but considers the softwhat he shares as
risky so Carol will not guarantee these files. Trust* can bepeterised so as
to enable these fine-grained decisions to be made. Even wdrenh i@ists David
directly, she can still be selective over what she’ll adiuglarantee (and define
different conditions to which a guarantee applies).

Suppose that the fil& is corrupt in some way. Alice may have inspected
the file herself either manually or by calculating a checksAiite can claim the
forfeit from Bob. Bob may also claim from Carol. Suppose Riagtoes not care
if his files are correct. So rather than Carol claiming fronvidashe is likely to
stop trusting him altogether, or not guarantee against gmmaor charge a higher
commission from Bob in future for providing the guaranteerider to reflect what
she perceives as the increased risk.

Eventually, say that David is habitually sharing corrupbtemt and refuses
to compensate for losses, all principals who once trustedane likely to never
guarantee his files again. In a commercial context, whereddsyaid to provide
a service, it is David’s incentive to reimburse Carol in gritemaintain her trust
in him. Moreover, in a fair P2P system where credit is gainedemding on

2Other possible ways in which trust paths can be found usirigy$&2rch algorithms are ex-
plored in [33].
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the quantity of uploaded content, and used to download fitew bthers, David
will also have trouble buying guarantees from others inreit{or they will be

very expensive for him). In this example, the commissionleamhought of as a
payment for insurance.

The Turtle client was originally developed with an emphasigprivacy and
safety of sharing files that might be of a controversial ovpoative nature. Due
to the localised trust in a trust* chain, such privacy can asilg maintaineél
However, privacy is not so much of an issue when sharing opateat, or in
other applications where the integrity of the content isenorportant.

3.4.1 Good Case

A — B: Can Alice have a guarantee of David, forfeitesommissionz
B — A: Negotiation, new forfeit nhew commissionz

B — (. Can Bob have a guarantee of David, forfé¢iteommissionz
C — B: Guarantee of David to Bob, id~etc.

B — A: Guarantee of David to Alice, id=etc.

A — B: Guarantee is OK

B — C: Guarantee is OK

NoOO~WNE

Table 3.1: P2P good case protocol example.

Table 3.1 shows a typical good case protocol run. Suppoding Aas searched
for a particular file and finds that David has a copy of it. Aldmesn’t trust David
and wants to be guaranteed that the file is the original verdob is on Alice’s
list of friends and so receives a request for a guarantep {9telncluded in the
request is a commission offer to Bob and a forfeit requiréme€arol is in Bob’s
list of friends and so also receives a request for a guarar@aeol trusts that
David can provide correct files. However, Bob might negetitie commission
and forfeit values depending on the perceived risk of Cagnfarantee (step 2 and
repeating step 1 again). The same might happen betweenaalr8lob (although
not shown in the table above) in which case the new valuesefidict Carol’s risk
perception of guaranteeing David. After negotiation, Cand generate a guar-
antee for Bob and Bob will generate a guarantee for Alice.aljinassuming

3We return to this issue in Section 8.4.2.
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that the file was as expected, Alice will notify Bob of this widl in-turn notify
Carol.

3.4.2 Bad Case

Table 3.2 shows an example of a bad case protocol run. Thisqmidollows the
first 5 steps from the good case protocol above. However,isnctise, the file
downloaded is incorrect in some way and Alice makes a claamfBob (step 6).
Bob will need to pay this forfeit if he wants continued trusirh Alice (step 7).
Bob will then claim the forfeit from Carol (step 8) who is odpdid to reimburse
the forfeit to Bob (step 9). There are a number of factors mhigiht affect Bob
and Carol’s actions thereafter. For example, whether shixavid’s first offence,
or whether he later reimburses Carol. However, if David doesome a liability
to Carol (or Carol to Bob), she will simply stop guaranteeimign. Commission
rates are likely to increase along the chain making the gaisyf buying a future
guarantee of David along this route unfeasible.

A — B: Make a claim on guarantee
B — A: Pay forfeitt
B — C: Make a claim on guarantee
C — B: Pay forfeitt/

©ooN®

Table 3.2: P2P bad case protocol example.

Other possible problems could occur if Alice or Bob lie andkenanwarranted
claims. Other possible scenarios such as these are didcrsdesimulated in the
following chapter.

3.4.3 Required Changes to Turtle

Turtle provides the functionality for sharing among logaitlisted friends. It deals
with the routing of search queries and file transfers withiese local trust rela-
tionships as explained above. This section describes thifications that would
need to be made to Turtle in order to apply the trust* mecmanis

Small changes would need to be made if a principal requirasagagtee for
a file that they plan to download. For example, a flag could bas@art of the
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retrieval process stating this requirement (which willlie a commission of-
fer and forfeit requirement). This will initiate the trusprotocol and guarantee
negotiation process. The requesting principal will reeghe file with an accom-
panying guarantee. Alternatively, if multiple routes available, a list of options
will be presented to the requester. Here, a trade-off can &denbetween the
cost and the level of compensation before selecting a roluetle would need
to be changed to allow such guarantee negotiation, geapraiid verification to
occur during this stage. A friend-list of a principal could@hold details of the
maximumec values that they are willing to pay and the minimum forfevalues
they are willing to receive for a guarantee from each friettds worth noting
that this all assumes that each principal is using the Tafigat to handle trust
management (and maybe even payments), however, lateo®8&atidiscusses the
possible heterogeneity of a trust* chain.

3.5 Service Contracts

Most services provided by servers over a distributed systemetwork have (like
those in the real-world) an underlying contract or agregmehis could simply
be that serviceX will be provided for a feeP and that the service will conform
to the terms and conditions of. In P2P networks, such guidelines cease to ex-
ist and clients connect to other clients to become an equalopdéhe network.
Peers are usually free to download anything they wish frameropeers and vice
versa. Alternatively, there may be situations where cdrtenld be charged for
or for which a particular service level agreement is in pladewever, it is more
likely that peers in a P2P network hold a “download at your avgk” policy
regarding the files that they are sharing. This is where ususg* could be help-
ful for providing assurance. Following from the example \ayoDavid doesn’t
care if someone wants to download fi)e and doesn’t care if they aren’t happy
with it. However, Carol has previously downloaded files fr@avid, and hence
trusts that his files are of a high standard. Bob trusts CardlAdice trusts Bob
in the same way so Bob’s guarantee reduces the risk for AlideGarol's guar-
antee reduces the risk for Bob respectively. If Carol wasngrashe will pay
the agreed forfeit to Bob who will compensate Alice with thagreed forfeit.
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However, David hasn’t necessarily done anything wrong and obliged to re-
imburse Carol. Carol however is likely to lower her high mgatton of the quality
of David’s files and perhaps never guarantee him again, er affower forfeit, or
require a higher commission.

Bob’s motivation to provide the guarantee could be a comiorispayment
from Alice*. Bob will set the level of this commission depending on hispption
of the probability of David defaulting (or in relation to thew much he trusts
Carol’s referral.

3.6 Payment by Resource

The forfeit and commission payments in the trust* model ‘arestricted to
purely monetary payments. In P2P networks, these paymeuntd be made by
using the resource itself as currency. Due to the heteratyesiethe local trust
relationships (discussed later in Section 5.4), the paymeadium could vary
along a trust* chain. Also, the type of payment that might/jte an incentive or
deterrent could vary from user to user.

Assume that a P2P system were to provide an incentive to Slesrby award-
ing download credit to peers. This credit could reflect theant that has been
downloaded from an individual peer or the amount of contkay tare currently
sharing. This credit could be used to reward the peer by asing download
bandwidth or to allow them to download more files. A simplesrabuld be that
for every file uploaded by a peer, a file can be downloaded frootheer by that
peer. This credit might be a global currency but could equakll be a token
provided by one peer to another only for use by that individua

Following the examples given in this chapter, assume thateAtlaimed a
forfeit from Bob. The forfeit might be in the form of tokensathallow Alice to
download files via Bob. After all, Alice already trusts Bobltéknatively, Bob
could issue tokens which act as a commission payment fordguarantees that

4In a commercial case, where David provides a service for paynDavid may pay Bob a
commission for acting as an intermediary (and maybe a fdesr if Alice claims).

SProvided Bob’s estimate of the probability of David defagtis lower than Alice’s estimate,
both Alice and Bob will be happy with the guarantee. See 8r@&i4.4.
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Alice might need from Bob. The point is that the payment cordityocould be
the resource itself whether it be the actual content (e.te)eoli a means of getting
it (e.g. a free guarantee from Bob).

3.7 Conclusion

This chapter has shown how trust* can be used as a mechanigudmnteeing
the integrity of content or services provided over a P2P agtwTrust* builds on
the idea of sharing with friends in the Turtle client but ajg@mrantees the integrity
of downloaded content from non-friends or unknown peerss ttemoving the
need for and the risk involved when friendship is assumecttowansitive.

Using trust* in this way reduces the risk involved for the ddeader as they
will be compensated in the worst case scenario. It does swutithe need for
requiring transitivity of trust, and privacy is still maaited. This is because the
guarantees and payments are confined within the same ket @lis-existing trust
relationships that are already used to communicate thalesarch queries and
their corresponding results. This approach thereforevallmcomplete localisation
of trust management.

We have argued that applying trust* to P2P file sharing wabdbe benefi-
cial in guaranteeing the integrity of free content such aancgpurce software or
copyright-free movies etc. Indeed, trust* will potentyalielp P2P sharing net-
works to become “respectable” (instead of the Wild West).




Chapter 4

Simulating Trust*

4.1 Introduction

In order to test the trust* model and its application to vasigituations, parts of
it were simulated using the Repast Simphony agent basedlimgdeolkit [80,

81, 82] available at [4]. This chapter demonstrates a sitiul@f the trust* peer-
to-peer application as described in the previous chaptemnsarised results of
simulations are also presented in this chapter, with motaildd results given
in Appendix A. Subsequent application chapters in thisedission describe the
variation in simulation details in relation to the other pgtions being explained.

4.2 The Repast Modelling Toolkit

The Repast Simphony toolkit provides tools for modellingjtess called agents.
These maintain a set of properties and behaviours whichxdabitlearning be-
haviour. The toolkit also provides an environment wheréhsagents can interact
with each other to form a simulation. In this work, the Registphony frame-
work is used to model the actors in a trust* protocol.

The simulation environment allows agents to be added andonkéd to each
other. It also provides tools for data logging for later gsed. Properties and other
simulation attributes can be manually altered during a Kitran if necessary.

Repast Simphony integrates with the Eclipse IDE and enagests to be

29
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modelled in a Java-like language called Groovy. The foligvsection outlines
the types of agent, their properties and their behaviowatate used in a typical
trust* simulation.

4.3 Modelling Trust*

4.3.1 Agents

To simulate trust*, three types of agent are used to distsigspecific functions
in the protocol. Note that in reality, a principal is likely have multiple “hats”
and perform the tasks of all three agents simultaneouslgspect of different
instances of the relationship. The three types of agentuttimed below.

Trust*er A principal who is the trusting end-point of a trust* relat&hip. In the
simulation, all trust*er agents are called Alice and they rsponsible for
initiating a trust* relationship

Guarantor A principal who is providing a guarantee to another aboutesmme
they trust directly (or indirectly). In the simulation, gllarantor agents are
called Bob (uniquely numbered). Chains of Bobs can alsorbalsied (see
Section 4.5).

Trust*ee A principal who is the trusted end-point of a trust* relasbip and is
being trust*ed by the trust*er. In the simulation, theserdgeare called
Carol.

4.3.2 Agent Properties

Each agent in a simulation has properties which they carraoand that other
agents can see. Below are the important properties thatsagewhen following
the trust* protocol. Other properties include claim cousiteredit transfer logs
and references to other agents in a protocol run.

1This is usually the case, however, later in this dissentatie’ll describe an application where
Alice is still the trust*er but doesn’t invoke the protocol.
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credit The credit property is a floating point decimal with the détfaalue of 0.0.
It represents the wealth of an agent. During a simulation amagent’s
changes in wealth can be easily identified and whether theg bacome
better or worse off after using trust*.

cOffer and fOffer The cOffer and fOffer properties represent the current com-
mission (offered to a guarantor) and forfeit (required frarguarantor) of-
fers respectively when making a request for a guarantee. fQfier can
been seen as more of a forfeit requirement than an offer ifP#ie appli-
cation scenario. A guarantor is likely to refuse a requetstaffOffer is too
high, however will want the cOffer to be as high as possible.

cMin and fMin The cMin and fMin properties are the lowest commission and
forfeit rates that will be offered or accepted. A guarantalt want the
cMin to be as high as possible but will not care about the fMiowever,
a claimant will set his fMin property to at least a satisfagtevel that will
be enough to compensate him.

cMax and fMax The cMax and fMax properties are the highest commission and
forfeit rates that will be offered or accepted. The valuesthe opposite
way around to those of cMin and fMin. For example, a guarawithwant
to set the maximum forfeit they are willing to pay. Conveysalguarantee
buyer will have a maximum threshold to how much commissiay thre
willing to pay for a guarantee.

active The active property is a boolean value stating whether oargdrticular
Bob agent is currently available to act as a guarantor fazéAl

4.3.3 Initial Values in a P2P Simulation

Table 4.1 shows the initial values of Alice and Bob. In the BRRulation, Carol’'s
property values aren’t applicable as she doesn’t explitatte part in the protocol
unless Bob attempts to claim from her. For the purpose ofdinmulation, Bob
will never ask Carol for a reimbursement of a forfeind will simply increase the

2Although this restriction is relaxed later in Section 4.5.
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cost for Alice (effectively making it unaffordable for her tontinue).

Alice | Bob

cOffer 1 n/a

fOffer | 10 n/a
cMin 0 1
cMax | 5-10| o0
fMin 6 0.1
fMax | oo | 25-30

Table 4.1: Initial values for Alice and Bob.

In the simulation, these values are initialised in the saraemar for each agent
in order to allow results to be easily comparable. Howewea,rieal scenario, these
levels would be set individually in relation to some realradrust or reputation
metric. For example, Alice will reflect her personal trustBob lowering her
initial fOffer and fMin values. These values are variabletie level of current
trust in another principal which is assumed to be reassdssdede each protocol
run.

Alice’s cOffer and fOffer values start relatively low. Bolever needs to for-
ward a request in this example so his cOffer and fOffer vaares't applicable.
However, where multiple guarantors are needed betweer Al Carol, Bob
would need appropriate cOffer and fOffer values in orderalwvard a request.
Also, in this case, Bob would need separate cOffer and fQfires depending
on whether he is providing a guarantee (to Alice) or forwagdihe request (to
another guarantor). Section 4.5 describes a more comgicatltiple guarantor
simulation.

Alice’s cMin and fMin values are the opposite way to Bob’s oMind fMin
values. For example, Alice will want the commission to be kvd the forfeit to
be high whereas Bob will want the commission to be high andatifeit to be low.
This is also evident with their cMax and fMax values. Notd thahe simulation,
Alice’s cMax is set to a randomly chosen value within a spedifiange. The
same applies to Bob’s fMax value. This is to add a small degfeealism to the
simulation.
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4.3.4 Model Attributes

A simulation can have multiple global attributes which azesssible by all agents.
These will normally stay constant unless manually changethd a simulation
run. Both attributes in the P2P simulation make use of a Rdjmaary method
where a threshold can be set to affect the probability of dsemnumber being
returned as r ue orf al se.

malwarechance Is the probability that Carol’s shared files will be incoit,alte-
gal or corrupt. The value can range from 0 to 1 where 0 definesalovare
and 1 defines 100% malware.

truthchance Is the probability that Alice will be truthful when claimingThis
enables the simulation of Alice making false claims wherefings Alice
to never be truthful and 1 is 100% truthful.

Another attribute could be used to define how often Bob mighise to pay
a forfeit to Alice. This attribute wasn't used in this simtiden as it is assumed
that guarantors will always behave corregtlyhis is so that analysis of the direct
effects to the end-points (Alice and Carol) is not compkcy interference from
bad guarantors. For example, if a particular guarantosexfiwo pay Alice, Alice
will simply stop trusting him to provide guarantees. Thidlwmit the routing
possibilities between Alice and Carol and hence affect thrilgtion run time
regardless of how well behaved Alice or Carol were. It is asstithat guarantors
want to maintain their trust from Alice and will honour anyfieit requests.

4.3.5 Agent Behaviours

These methods provide the main functionality for followthg trust* protocol in
a simulation.

initiate() This is the first method that is invoked in a simulation run anchalled
once every tick It makes Alice initiate the protocol by searching for a

3This is also re-considered later in Section 4.5.
4A tick is a single unit of time in a simulation which can be usedchedule events.
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guarantor (a Bob) between herself and the download sourael)C As-
suming that a guarantor is found, the starting values arargtAlice starts
the protocol by calling equest Guar ant ee() on the guarantor agent.
This sends details of the end-points and the current fOffdic®ffer values.
Otherwise, if no guarantor can be found, the simulationapséd.

requestGuarantee() Called by Alice to request a guarantee from Bob. Once
invoked, Bob will check if the commission is high enough. df fie will
make sure the forfeit isn't too high. If either checks faigj ect () will
be called on Alice with the reason why. Otherwise, Bob gdesra unique
id number and invokesendCGuar ant ee() .

reject() Called by Bob to reject a guarantee request. Depending othethiewas
rejected because the commission offer was too low or bedhestrfeit
requirement was too high, Alice will increase the commissio lower the
forfeit respectively. Alice will check that the new offerluas are still within
her minimum and maximum bounds and resend the request veitie thew
values. If not, the current guarantor will become inactine @lice will
search for another Bob.

sendGuarantee() Called by Bob to send a guarantee to Alice. For the sake of
the simulation, it is decided here whether the file is goingéoincor-
rect by generating a random number and checking it agaiesattiibute
mal war echance. Thedownl oad method is then invoked on the Alice
agent and Bob is paid his commission.

download() This method represents Alice downloading the file from Carfble
file is checked (even though the type of file has already beeied) by
Alice and makes a claim to Bob if it is incorrect. If the file isreect,
Alice will decide whether to make a false claim by generangandom
number and checking it against the ut hchance attribute. Whatever
the outcome, Alice invokesesponse() on Bob stating whether or not a
claimis being made. Also, the number of claims and falsendaire logged
at this point.
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response() Allows Alice to respond to Bob regarding a guarantee. It $ymp
checks whether or not a claim has been made. If so, the fasfeiaid
by Bob to Alice by invoking hepaynent () method.

payment() The payment method allows agents to make payments to oteetsag
This method handles the exchange of credit and logs allfeesief com-
mission and forfeit payment for each agent. If this methadvusked on an
agent, and a forfeit has been paid, they will increase tlegjuired forfeit
from the payee in future. This is where reassessment of tredges takes
place.

4.4 Simulation Test Scenarios

The primary reason for simulating a trust* protocol is tolgea the outcomes of
the participating principals in various situations to emesthat they get the right
incentives to act correctly and deterrents for defaultifgese situations can be
simulated by varying theal war echance andt r ut hchance attributes and
recording the resulting values of the agent properties. aBse the simulation
involves invoking a protocol run every tick, the protocohdze repeated continu-
ously and the long term effects for each principal will beecgwident. The effects
and outcomes that are observed are as follows:

e The simulation is programmed to stop when all possible tmaites have
been exhausted, so the total tick count at the end of a silouigives a good
indication of how long trust* could be used between Alice &aatol before
all guarantors become inactive. This will vary dependinglmnvalues of
the simulation attributes and the tolerance of an indiviidggent, but will
be comparable.

e The credit levels of each principal gives a good indicatibwbo made a
gain or a loss after a series of protocol runs. This can alslinked to
the tick count to show how long a guarantor might have helduatit they
became inactive. Or similarly, how long Alice could contnio make false
claims before losing all possible routes.
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e Once results have been generated for a particular simnlatig the steep-
ness of the increases in values such as fOffer and cMin beeasily visi-
ble. This should be representative of the number of clairasAlice might
make. Increases in cOffer and decreases in fOffer will als@dused by
request rejections.

e Results also show logs of the total expenditure and gainexficwhether
through commission or forfeit payments. Also, the numbeclaims and
false claims is logged.

Table 4.2 shows the simulations that were run andtthet hchance and
mal war echance values that were set for each. Full results are given in Ap-
pendix A, however a summary of results is analysed in thei@edt6.

The tests have been split into two sections to test differanations of princi-
pals being “good” and “bad”. In tests 1 to 6, Alice and Cardjibeby both being
bad (i.e. Alice never tells the truth and Carol always shaees files) and grad-
ually become good (i.e. Alice always tells the truth and Caever shares bad
files). These tests show how effective it is to use trustitistgmwith no principals
behaving ranging up until all principals are behaving willtests 7 to 12, Alice
starts by being bad and Carol starts by being good. This dugily reversed
and eventually, Alice will be good and Carol will be bad. Téessts show the
effectiveness of trust* when one principal is behaving wttenother might not
be and vice versa.

To keep tests simple, one Alice agent, one Carol agent an8dibeagents are
simulated. Trust paths have been defined so that five pos$sikit® routes can be
found between Alice and Carol. The simulation topology isveh in Figure 4.1
where the arrows indicate the direction of direct trust. Sheulation could be
of a larger scale with many more agents and possible truespalowever, the
topology in Figure 4.1 is adequate to see the effects of*tru€hanges in an
agent’s credit might be influenced by other trust* relattops they might belong
to. For example, say that Alice is being paid high forfeitsBob. In this sce-
nario, she would appear to be quite wealthy. However, supposgeality Alice
is also a guarantor in another trust* relationship, she mgive to pay forfeits
to other principals. Of course, she is likely to ensure thatlsmake a profit,
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Test| Truthchance Malwarechance
1 0 1
2 0.2 0.8
3 0.4 0.6
4 0.6 04
5 0.8 0.2
6 1 0
7 0 0
8 0.2 0.2
9 0.4 0.4
10 0.6 0.6
11 0.8 0.8
12 1 1

Table 4.2: Simulation test setup.

however she won'’t appear to be as wealthy as in the first caseil&ing trust*
by only allowing certain agents to perform one particulakteemoves these out-
side interruptions and allows the true effects to each typeincipal to be clearly
seen.

B3

®

Figure 4.1: Trust topology between Alice and Carol.

The model also allows longer chains to be simulated. Thishgeaed by forc-
ing the guarantors to record guarantee requests and debetbay they need to
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forward the request to another guarantor. A chain of fiveqopais is the short-
est for which at least one node is not directly related toegithf the end-points.
For this particular simulation however, the chains werentibnally kept short to
analyse the direct effects on each type of agent. The infgitsand effects of
simulating a five principal chain are explained in the follogysection.

There are many other circumstances that could have beerasadubut the
simulations were deliberately limited to reduce the numiifeexperiments re-
ported in this dissertation to a manageable level. The sitions are just meant
to be illustrations of how the trust* concept could work ints®practical appli-
cations. The real strength of this dissertation is in the Inemand depth of the
different scenarios where trust* could be used.

4.5 Multiple Guarantors

This section describes the design decisions made whenatimgithe P2P sce-
nario where a trust* chain consists of five principals. Fegdr2 shows the trust
topology between A and C for this simulation.

(0

Figure 4.2: Trust topology between Alice and Carol with nplé guarantors in a
single chain.

The simulation described previously in this chapter offe@rshoice of five
routes to Alice each through a different guarantor. It wasuased for simplicity
that each guarantor was directly trusted by Carol. It is ntikedy that a trust*
route will be longer where certain nodes might have no m@tato either of the
end-points. For this simulation, some major design changge made to enable
multiple guarantors. These are:

e Now there are three guarantors (we’ll call thek, B, and B3) which
means that changes have been made to how requests are dbaltinvi
the original simulation, a guarantor only needed to worrgwlhow likely
it is that Carol will default (and therefore how much his esjeel loss will
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be to Alice). In the multiple guarantor scenario, a guarawith not only be
providing a guarantee to another principal, but will alsoréeeiving one.
Therefore, a guarantor needs to decide on different valethécM n,
cMax, f M n andf Max properties depending on whether they are receiv-
ing or forwarding a guarantee request. For example, supipaseé3, has
received a request fro,, he will want a high commission value (as this is
what he’ll be paid byB;) and a low forfeit value (as this is what he’ll need
to payB;). If he was to forward the request 8y, he’ll want to pay the low-
est possible commission 18; but receive the highest possible forfeit from
him. The initial values for requesting a guarantee are shiowrable 4.3
and the initial values for providing a guarantee are showralnie 4.4.

| Property] A | B, | By | B3|

cOffer 15| 14 | 1.3 | n/a
fOffer 15 16 17 | 18
cMin 0 0 0 n/a
cMax 5-10| 5-10| 5-10| n/a
fMin 6 6 6 n/a
fMax 00 00 oo | nla

Table 4.3: Initial values for requesting a guarantee whepgirgcipal wants a
low ¢ but high f. Note that forB;, thecOf f er is decremented bg.1 and the

f O f er is incremented by by each guarantor. In the simulation, these values
are calculated from theOf f er andf O f er values received from the previous
principal depending on a guarantor’s greed (see below).

| Property| A | By | By | B; |
cOffer n/a| nl/a n/a n/a
fOffer n/a| nl/a n/a n/a
cMin n/a 1 1 1
cMax nfa| oo 00 00
fMin n/a| 0.1 0.1 0.1
fMax n/a| 25-30| 25-30| 25-30

Table 4.4: Initial values for providing a guarantee whereiaggpal wants a high

¢ but low f.
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¢ In this simulation, Alice only has one possible route to Car@omparison
to the five routes in the previous simulation. If any of thergunéors in the
chain become inactive (no longer willing to provide guaeas), this will
force the simulation to end. In reality, the route could beedied around the
inactive links such as in the previous simulation where &lxould search
for a different guarantor. Therefore, the run times for gsulation are on
average expected to be five times quicker.

e When a guarantee is claimed by Alice, a guarantor’s progeetill be af-
fected in both directions. For examplB; will decrease his commission
offer and increase his forfeit requirement when requestiggarantee. He
will also increase his commission requirement and lowerfdrifeit mini-
mum for actually providing a guarantee.

45.1 Test Scenarios

Several test scenarios were simulated with the five guarahton. These are:

e Test 1 — Following the same test set-ups as those in TableheZredit
changes for each principal is recorded. Note that this sssiraes that the
guarantors will always be truthful. Also, this simulatiorciudes a forfeit
reimbursement request fromy to Carol if a claim has been made. In this
test, she will always reimburdg@; with the forfeit.

e Test 2 — Again, following the same test set-ups as the prev&mnu-
lation, but this time with a new attributear ol paychance which de-
fines whether Carol reimburses the forfeit tliat might have to pay. The
car ol paychance is fixed to 0.5 andB; has a tolerance of three non-
payments before he becomes inactive.

e Test 3— In this test, Alice and Carol are always good (i.e.ne@he
t rut hchance=1 andnal war echance=0). However, a new attribute
guar t r ut hchance defines how often guarantors might make false claims.
Ten tests were completed where the valugwér t r ut hchance was in-
cremented by 0.1 ranging 0 to 0.9.
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There are many more combinations of tests and attributethad reflect dif-
ferent scenarios. For example, another could be to set @dflevel for each
guarantor to define how much they will altec@¥ f er andf O f er before for-
warding a request.

4.6 Summary of Results

From the results produced by the simulations, it is evideaitonly principals who
are well behaved will reap the benefits of using tréistFhis is that they can be
assured of the content they might download in a P2P netwankgdod principals,
this is enough incentive to continue acting correctly othse risk losing these
privileges. Moreover, it has proved that bad players in attrprotocol might
temporarily profit, however they will find it harder (or morgpensive) to build
future trust* relationships. Their trust* usage will be ghiived and they will be
isolated from the good principals.

So, the results show that it’s in an agents interest to naeshaorrect content
or make false claims as their future trust* usage will berretstd. For example, if
Carol serves bad files, Bob will no longer guarantee her. iéekeeps claiming
and Bob suspects the claims are false, Bob won't provideaguiees to her or they
will be expensive in order to cover forfeit costs making fiemsible for Alice to
make a trust* chain to Carol (via Bob at least).

A full description of the results generated during each $atnon is presented
as a series of graphs and analysis in Appendix A. There argraph types for
each test which present various results from a simulatiolme flrst shows the
changes in credit for Alice and all of the Bobs. The secondvshibe changes in
Alice’s commission and forfeit offers. The third shows timeaunt of commission
she has paid and the amount of forfeit she has received. Théhfehows the
commission received by each Bob. The fifth shows the amoufurédit each
guarantor has paid Alice. Finally, the sixth shows the festuy of Alice’s claims.

SAlthough from the results, it appears that Alice still betsafihen behaving badly. In reality,
this isn't likely to be the case as tolerance levels will giffrom those simulated (or that cycles
of trust* will be built, see later). Also, this will affect hechances and costs of future trust*
relationships.
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Figure 4.3: Credit values when all Figure 4.4: Credit values when all
principals behave badly. principals behave well.

The results of the simulations with a five principal chainas® presented and
analysed in Appendix A. Results from Test 1 are given in $achi.3.1, results
from Test 2 in Section A.3.2, and results from Test 3 in Secid.3.

4.7 Conclusion

This chapter has demonstrated how the trust* model can belatied to reflect
aspects of how it might be used in practice. In particulag, gimulation of the
P2P application presented in Chapter 3 has been describleid chapter.

The results for this application show that agents in a trosétionship gain
little advantage from acting incorrectly. Moreover, anyatage an agent might
gain is short-lived and will be penalised in the future ifythvesh to build a trust*
relationship again. If they find it difficult to find trust* rées, then their future
behaviour will have no effect on other parties using trust*.

Simulating trust* will have subtle differences dependingtbe application
that trust* is being applied to. Subsequent applicatiorptdra in this dissertation
describe the implications and necessary changes thatoéedtade to the simu-
lation model discussed here in order to apply it to the appbn in question, and
report on the results of further tests.




Chapter 5

A Grid Computing Application

5.1 Introduction

This chapter describes how trust* can be used within a gtider or similar dis-
tributed environment. Examples of such environments rdirgge computational
grids that might be owned and shared by a company or orgamstat volun-
teer computing projects where anyone can participate. sGxid generally used
to solve a computationally intensive problem distributedranultiple machines
and can include features such as redundancy, fault tolewmt scalability. Grids
also allow organisations to share resources in a cost m#agtly. For example, a
university might share access to their database in retuprézessing time on an-
other university’s cluster. Rather than each universiyeating time and effort in
buying, building, and maintaining their own database ostdy they can simply
share such resources.

Ways in which trust can be built in computational grids (wWhare likely to
span organisational and domain boundaries) is a well relsedproblem [8, 12,
28, 76, 83, 85, 108, 109]. Popescu [89] outlines some sgawguirements of
the Globe middleware such as needing to cope with a lack ohtxatesed trust
authority and servers which span multiple administratmmdins. However, these
problems are likely to be evident in any computational gndienment which is
required to scale in this manner.

43
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5.2 Globe Distributed Object Middleware

The examples used in this chapter are loosely based on the Glmldleware [11,
53]. Globe’s focus is to provide a middleware that is scaadiough to enable
worldwide distributed computing.

The Globe infrastructure is built around Globe Object Sexy&0Ses) which
host Distributed Shared Objects (DSOs) and replicas ofr @$©s. Trust man-
agement policies can be written by GOS administrators tfatelthe other GOSes
which are considered trusted and untrusted. This allowsatipes to be per-
formed on trusted and untrusted platforms depending om imgiortance. For
example, read only methods can be performed on untrusteersevhereas write
(state altering) methods might only be performed on trusexders. Such trusted
servers might be those locally hosted by the organisatiohusatrusted servers
might be those that span other administrative domains.

Trust* can be applied as a solution to building trust in grididheware and
other distributed environments. The trust* model could eduialongside Globe’s
existing trust management strategies, but could also Ugeficorporate some
of the ideas introduced by Popescu in his thesis [87]. Pafeswrk involved
developing the security considerations and functionalitlobe and introduces
mechanisms to enable Byzantine fault tolerance througérsevaccess control
and audit in order to maintain the integrity of the DSOs arglrtheplicas in a
Globe system, especially in sensitive applications. THewang sections explain
how these mechanisms relate to and could be used when appiyst* to such
an environment.

5.2.1 Byzantine Fault Tolerance

The need for fault tolerance is evident as Globe objectsllwed to be hosted
on third-party servers and it is important that Globe olgente behaving cor-
rectly. For example, in a critical application such as alstoarket system, all
data and operations need to be correct (and non-maliciodg@damage preven-
tion would be required. Even one incorrect result or operatould be disastrous
(and could replicate, see Section 5.2.4). However, trissttore likely to be used
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for lower value operations whereby new unknown users carulséed to perform
tasks (if the commission rates are high enough and hencésthparceptions are
low enough). If the task is incorrectly performed, the usendy won’t be able

to continue with that particular project. So a damage comtechanism will be

sufficient for maintaining the overall integrity of such esoct. For example,
Popescu uses two methods for damage control in Globe wheckxglained in

the subsequent sections. These are reverse access cadtenldit.

5.2.2 Reverse Access Control

Traditional forward access control mechanisms are usetédokcif an invoking
object is allowed tanvoke methods on another object. Reverse access control is
the converse where the invoking object checks whether anottject is allowed
to execute a particular method for it. An object owner can select a gdgjroup
of replicas and write a policy allowing this group to perfoparticular operations
such as those that alter the state of the DSO. These coreagman then re-
cruit other less trusted replicas to perform the read raquesolved. Less trusted
replicas serve read requests only and are unable to prephgatequest further to
other replicas. This relates to the type of policies thatused in trust* although
guarantees can be used to allow the less trusted replicasftom a wider range
of tasks. Trust* allows reverse access control to be extnig permitting a
trade-off to occur between the risk involved with a methoeboation (or cor-
rectness of its results) and the level of compensation reduf the results are
incorrect.

5.2.3 Audit with Cycles of Trust*

Trust* is intended to be deployed in environments whereetlh®no universally
trusted arbiter or referee. If a principal starts claimingpdeit regularly, the
guarantor might either stop providing the guarantees, or atmarge more for
providing them. Alternatively, the guarantor or trust*edngipal could form a
cycle of trust*. Such a cycle consists of a trust* guarantath in the opposite
direction (to an existing trust* relationship) in which tlg@arantor guarantees
compensation if a false claim is made. See Figure 5.1 below.
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In Globe, the results of a method invocation on a less trusplica can be
audited by a trusted replica. This is analogous to a cycleustt Rather than
the correctness of results being checked as in Globe atrjirélse correctness of
a claim will be checked. For example, in Figure 5.1, assurae@arol is trust*ed
by Alice via Bob to execute methad and if Alice considers the results to be
correct, she will reward Carol (maybe with a small payme@jherwise Carol
might have to pay Bob if it isn’t correct or simply will be rewed from the set of
replicas hosting a DSO. Suppose that Carol suspects Aliiadsgfly claiming that
the results were incorrect, Carol could make a trust* cy@eDavid to protect her
against this (he might also verify the result and compenSatel if it was in fact
falsely claimed). In a Globe context, Bob could be the auditegarding correct
execution) for Alice and David could be the auditor (regagdtorrect claims) for
Carol.

Trust* to execute correctly

Trust* to not falsly claim

Figure 5.1: A cycle of trust* between Alice and Carol

5.2.4 Damage Prevention

Popescu also suggests two methods for providing damagermniren. These are
through state signing and state machine replication. Tiberlaf these might be
useful in a more critical or anomaly sensitive applicatioattuses trust*. Replica-
tion works by invoking the same method on a number of repbeakchoosing the
result of the group majority. Although this will be effeatiin spotting malicious
replicas, it is expensive both in the amount of computaticesources needed to
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handle a request and the latency caused by waiting for niltgplicas to per-
form the method (although can proceed as soon as a majornggolts have been
received). Here, there is a trade-off between security dindlemcy; the more
critical an application is, the more replicas will be needdthough will be more
expensive. Less critical operations might only need onvor t

In the event that trust* is being used in a more sensitiveiegipbn, Globe’s
replication technique could be used. For example, by gldnultiple trust* re-
lationships simultaneously via different guarantors le&twend-points. Suppose
that Alice requires two guarantees from two individual guiors whom she trusts
before allowing Carol to execute method If Carol fails to execute the method
correctly, not only will Alice be entitled to two forfeit payents but Carol will risk
losing trust from two principals rather than one. This alsakes allowances for
the chances that one of the guarantors might be “faulty” argbay the forfeit.

5.3 Routing

In a P2P network, routing protocols are generally provid@tiwthe client soft-
ware (such as Turtle). Grid middleware (such as Globe) orother hand are
meant to be heterogeneous and don’t necessarily need oalgameeric routing
strategy. A routing algorithm of the user’s choice can baluseoute trust* pro-
tocol messages. This section provides an overview of sorteafetwork routing
strategies that would be analogous to trust* routing (orifigéan optimal route
between two principals).

There are many network routing strategies that could peothe underlying
trust path routing for the trust* protocol including thosenseyed in [74, 96].
Fixed routing is certainly out of the question as trust rel&thips are volatile and
to configure permanent routes wouldn’t work. Flooding, dyitaor even random
routing would suit the needs of trust* better.

Finding the best route between two nodes on a network is goatoto finding
an optimal route between two principals who wish to form attruelationship
with one another. The small world phenomenon [77] impliesuatt route can
almost always be found. But the “best” route could be the pbsi(according
to commission or computational expense) or the most trustedhis respect,
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different levels of trust, forfeit and commission corresgan routing terms to
different network Quality of Services.

Most routing decisions are based on some form of least-caist@ance vector
criterion and are usually variations of graph search allgors such as Dijkstra’s
algorithm [35] or the Bellman-Ford algorithm [42].

Dijkstra’s algorithm solves the shortest path problem ingheed graphs be-
tween a given source node and all other nodes. It orders phithsreasing length
stage by stage. A routing table is initialised by calculgtpath costs to neigh-
bouring nodes. These are effectively shared with neighdbsaipaths to all nodes
in the network can be made. If a shorter route to a node is ernerrd, the short-
est path is recorded and all nodes update their least cdst pegpectively. The
algorithm continues until paths have been calculated toalks in the network.

The Bellman-Ford algorithm solves the same problem howavevde only
needs knowledge of its neighbours and their surroundirigdosts whereas Di-
jkstra’s algorithm needs complete topological informataf the network. This
algorithm is more fitting to the requirements of trust* ragti

A popular deployment of a distance vector algorithm is theititg Infor-
mation Protocol (RIP). In a network implementing RIP, eachter maintains
a routing table of information about routes from itself teclealestination [102,
p86]. A router generally initialises itself by insertingutes to hosts to which it
is directly connected. Each entry includes the next-hopesig the cost and an
entry age. RIP differs from algorithms such as those aboveasy retains the
current minimum cost route rather than every possible rolitas entry is up-
dated if a cheaper route can be found, however, this allowsrBuiters to store
little information about its neighbouring hosts. In mosPRinplementations, the
cost (or distance) might be the number of routers that a pawkst pass or could
be relative to other computational expense. With trustfgimeours are directly
trusted principals, and the cost would be the commissionbads to be paid to
a guarantor in the trust* route.
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5.3.1 Routing in Trust*

To find a trust* route, such routing tables could be used aljhon a slightly
different way. For example, if Carol provides a commeroga/gce, then she could
maintain a list of her local trust relationships in a simikay to destinations in
her physical network.

Assume that Alice needs a guarantee of Carol. Bob is in Aioatiting table
and Carol is in Bob’s. Alice’s entry for Bob will include themmission that Bob
will charge for a guarantee. Bob’s entry is similar excegtates the charge from
Carol. There might be situations where multiple routes assible. Therefore,
the cheapest route might be chosen. Routing tables stéeeai€es and the trust*
tables could do the same. The difference is that guarantagsdd to or subtract
from the totals before passing the information on. Anothi#eince is that Alice
will pay Bob the commission between them only, whereas iwagkting, the cost
between Alice and Bob, and Bob and Carol will be combined ve gitotal cost
between Alice and Carol. A trust* routing table will not recithis as Alice will
only pay a commission to Bob and it is Bob’s obligation to pay@. Bob might
also have a choice of routes to continue to Carol some of whight be cheaper,
but he will surely only provide a guarantee if he probablytigoing to lose out
himself. Hence, as a general rule, the longer the chain, thre expensive it will
be for Alice.

Another difference with conventional networking is thdtalr links are one
way, because trust isn’t generally symmetric, whereas s@rsice contracts are
bi-directional. This isn't a problem, because two trustthsacan be found in both
directions via a different route of guarantbrs

After a trust* protocol run, principals may update their gurssion rates in
respect to the outcome of the previous run. In distance vedtrithms, rout-
ing tables are normally shared with neighbours so that-easit routes can be
re-calculated. In trust*, the corresponding step wouldptynbe to update the
principals who are trusted with their new rate (if appliagbllt might be that a
deceiving principal will be removed altogether (which esponds to a link out-
age) or charged an extortionate rate (which is analogougtiwank congestion

1Review Section 5.2.3 on page 45.
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control, see Section 7.9).

In summary, any established network routing protocol wiffise for finding
optimal chains of guarantors, although the choice of algorimay have subtle
consequencés

5.4 Heterogeneity

In order to implement the trust* relationship mechanismethier to initiate, pro-
vide, or receive a guarantee, a way of making decisions aych@ats is neces-
sary. One of the advantages of our approach is that bothusietranagement and
payment systems used along a trust* route can be heteragedee to the fact
that trust (and payments) are confined or localised betweently trusting and
trusted principals. If a guarantee has been made from oneipal to another,
any trust management and payment schemes could be useeheheen. At the
same time, other pairs of principals might use completefgdint schemes. As
long as an agreement has been made in advance on how thegbreiibbe fol-
lowed between a specific truster and trustee, then it doesatter what is being
used along other parts of the chain. This heterogeneityallgsers to follow the
protocol with more flexibility. For example, by paying eadher in a commodity
that’s of the most value to them.

5.5 Payment and Resource Brokering

As most grids are used to share computational resourcée(tian content as in
the P2P application chapter) across organisations, tlesseirces could be used
as the commodity for forfeit and commission payments. Ressumight include
CPU cycles, storage or bandwidth. These typically vary ircgged value be-
tween the provider and receiver, so resources could alsodkered in this way,
converting one resource into another.

Due to the heterogeneous nature of the localised trust eetimdividual pairs
of principals, the payments along a trust* chain may be dediht types and

2For example, a routing algorithm which aims to use minimabreces will take the shortest
route.
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could be something of a more immediately valuable commddityhem (which
may include micro-payments). If a guarantor is taking paytsief one type (from
a principal they trust) and making payments of another type (principal who
trusts them), the guarantor is effectively acting as a nesolbroker between these
principals. Users can barter within their local trust nelaships to agree on re-
sources that will be shared between them as payment comesodit

5.6 Simulation Implications

The grid simulation is almost identical to the P2P simulaiio that a service is
provided from one party to another. There are two differsribat need to be
taken into consideration when simulating the trust* protac a grid computing
scenario. These are:

e A trust* relationship in the P2P scenario is likely to be be#an two indi-
viduals who are totally unknown to each other who are deadim@ first
(and probably only) time basis. The purpose of grid comgusreally the
same as P2P computing except that resources are being satredthan
content. Also, in grid computing, this might be on an ingidnal or organi-
sational scale. For example, an agreement to pay for or sharputational
resources between two universities or companies. Thereifée from the
P2P simulation is that rather than being independent, ip@te are now
representative for the reputation of the institute theybeglto. For exam-
ple, habitual misbehaviour from an individual in a universvill affect the
reputation of the university as a whole (in the eyes of thsting institute)
and will affect how other members of the university mightidaiust in the
future. By applying this to the trust* simulation, the trtesd agents can be
assigned a domain to which they belong. Agents who act iactyrmight
cause an overall price increase for themselves and thefrémstiodomain.

e When grid services are used between organisations, iglyltkat a service
agreement or contract will have been written. In comparisdhe P2P sce-
nario where connections are fairly ad-hoc and short-livedi \@here there
is no incentive for the server to act correctly, computal@greements are
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likely to be between already reputable organisations aad pr a longer
period of time. The primary difference in this simulatiorth&it Carol now
needs to care about her actions and be held accountablesfor tor ex-
ample, Carol has agreed to share her cluster (perhaps fa& arfem ex-
change for other resources) and will need to pay the forfeitalaim has
been made. Whereas, in P2P networks, peers download filaeiabtvn
risk and the serving peer typically has no contractual ages¢ with the
downloader and isn’t obliged to pay any compensation. Toehthds, the
attributecar ol paychance (previously used in the P2P multiple guaran-
tor simulation) defines how likely Carol will pay the forfeihen requested.
However, the trust*ee and guarantors will be less tole@mnbin-payment.

The results for this simulation reflect the same featuret@setin the multi-
ple guarantor P2P simulation where Carol is offered the oham pay the forfeit
(refer to Section 4.5). Results for this simulation regagdthanges in credit are
given in Section A.4. They confirm the results of the previsusulations in that
bad behaviour won’t be tolerated for long when using tru8pecially when the
service provider refuses to reimburse the forfeit when a 8iight be in place. A
bad service provider will quickly lose all possible guastoutes to them if ha-
bitual claims are made and where reimbursement doesn’'t.othis is especially
important in a grid setting where services are subscribethtbusually paid for
in some way.

Test 1 - Credit Test 11 - Credit
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Figure 5.2: Credit values when Carol Figure 5.3: Credit values when Carol
defaults 100% of the time but always defaults 100% of the time but never
reimburses the forfeit to Bob. reimburses the forfeit.
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5.7 Conclusion

This chapter has described how trust* could be used to extestl in a grid
computing environment. This includes sharing any kind ohpating resource
across domains, organisations, and countries. In paaticwle have discussed
the trust mechanisms of a grid middleware (Globe), and hey thight integrate
with and extend the trust* model. We have also identified wafyproviding
mechanisms such as fault tolerance and routing.

This chapter has introduced two important features of tstmodel. Firstly,
due to all direct trust being local between pairs of printspaa chain, any mech-
anisms used to follow the trust* protocol are heterogenetarsg the chain. For
example, the way that trust decisions and payments are n&@etmndly, due to
this heterogeneous environment, payments can be madedayreces that might
be shared anyway. However, as particular resources migiftrhere value to dif-
ferent participants, this allows resource brokering tetplkace where a resource
of one type will be converted into another. Finally, we haisedssed the impli-
cations of simulating trust* in a grid setting.




Chapter 6

A Click-through Licensing
Application

6.1 Introduction

This chapter introduces the idea of applying trust* in ortdgprovide assurances
where licence agreements are in place. For example, a “tlirdugh” agreement
is commonly found in End-User Licence Agreements (EULAS)mtly software
installation. These types of electronic agreement areeagngly common as
more services are being provided digitally. Users can nowndilmad software
and music without the need to visit a traditional bricks anartar shop. This
chapter discusses the potential benefits of applying ttagitovide assurance that
software or music being downloaded has been legally oldai@¢her examples
of licensing situations where trust* could be beneficial discussed including
online donations and affiliate sponsorship.

6.2 Click-through EULAS

Before software and other digital media such as music waglwidistributed

over the Internet, vendors would include a licence agre¢mihin the packaged
product. The product would be shrink-wrapped before distron. The agree-
ment needed to be visible through the shrink-wrapping ame @m end-user had

54
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bought the product and removed the wrapping, they were deéoegave agreed
to the software licence agreement. This arrangement lechto/mpproblems con-
cerning the compliance with such an agreement. It could dpealin court that
the end-user didn’t explicitly agree to the licence. Sonféasoe vendors coun-
tered this by giving an end-user the option of returning adpob within a set
period if they didn’t assent to the licence agreement. Hanalue to the increase
of software being distributed via electronic mediums suglih@ Internet, there
needed to be a way of allowing end-users to agree to an EULé&rdeictually
being able to install and use the software. The problem waeddy showing
the EULA as part of the installation process which would crdyntinue with the
installation if the user clicked “agree”. An electronic EMlor “click-wrap” is
now common with most boxed software too. This type of agre#nsein place
to define how the software can be used and can be legally lgjrifdém end-user
breaks the agreement. However, say that an end-user paschaffware from a
third-party vendor (i.e. not the software producer), theghtwant assurance that
the software has been legally obtained and the licenceitinhege before accept-
ing it. Using trust* with a click-through licence agreemean ease the hassle of
compliance by guaranteeing that the software being dowleld&as been legally
obtained. Here the forfeit would involve the trusted guéwamaking the neces-
sary payment to the producer (and claiming the cost of tleméie back from the
third-party vendor later) and presenting evidence to tltkweger that an appropri-
ate licence had been obtained. This way, an end-user candabaf they know
that any of the software they might install is what it is expédal to be in its EULA
and that it is legitimate. Figure 6.1 shows such a trust* aden

Table 6.1 shows a typical protocol for using trust* with klitrough EULASs.
The first four steps are always performed and continue te&emd 6 in a good
case scenario (the licence is legitimate) or skips to thesradte steps 5 and 6 for
a bad case scenario. Again, as in Section 3.4.1, steps 1 and®b® repeated in
order to negotiate a guarantee. Assume that Alice is the baaar (or buyer) of
the software, Bob is a guarantor and Carol is the softwardaefwho sold Alice
the software). Also, David is the software developer or poat.

In a good case, the software that Alice has bought from Camolicensed copy
and she can safely install the software and accept the a@onmg EULA. In
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. Software Producel

" Aquire license

Y
Downloager

Guarantor Chain—— ~ Soft(ware Vendor

Trust* to provide legitimate software

Figure 6.1: An EULA trust* scenario.

1. A — B: Can Alice have a guarantee of Carol’s software,
commissionz

2. B — A: Guarantee, id=

3. A= (C: Buyanddownload software

4. A — D: Check the legitimacy of the software
Good 5. D — A: Software is legitimate

6. A: Install software and accept EULA
Bad 5. D — A: Software is not legitimate

6. A — B: Claimguarantee id=

7. B — D: Buy licence for Alice

8. B — A: Legitimate licence for Alice

9. A: Install software and accept EULA

10. B — C: Request compensation for licence

11. ¢ — B: Payment

Table 6.1: Click-through EULA protocol example.

the bad case, Alice claims on the guarantee from Bob who thgs & legitimate
licence directly from David. Alice receives this from Bobdacan proceed with
the installation. Bob is likely to request compensatiomfr@arol for his losses
and whether Bob ever guarantees her again depends on if gbe Bab would
have charged Alice for the guarantee at the costanid if he is sure that Carol's
software is legally obtained, it is likely that Bob will makesmall profit. If Carol
begins to supply illegal or unlicensed software, Bob isketlli to guarantee her
for much longer.

A possible problem could be that Alice makes false claimsweleer, this is
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unlikely as she has nothing to gain from doing so as she headirpaid for the
software and would only receive a second licence. It is mkeddthat Bob could
forge a licence rather than buying one from David and keefiisgcommission.
If Alice is suspicious of this happening, she could simplgeaat step 4 with the
provided licence. It is assumed that a software produceriavid will be happy
to perform these checks for those who want to ensure theindie is legitimate
before accepting.

6.3 Music Downloads

Trust* could similarly be used with a click-through liceragreement when down-
loading music to be sure not only that it has been legallyiobth but also that
the artist actually receives the royalties they are due. eéxample, it might be
in the interest of an artist's fan-base to ensure that thppéas. Trust* could
be used to ensure that a music vendor (iTunes for examplejetilally pass on
the 30 pence (or whatever was agreed) to the artist. If they peove that they
did, then the guarantor will pay the artist, prove to the esdr that they did,
and claim the payment back from the third-party vendor latars way the artist
will always receive their royalties. A possible privacyussis that by proving
the money was paid for a specific individual's purchase, itidividual’s identity
might be divulged to the recording company or artist. Vagsipayment protocols
address this, for example, anonymous payments which ie@dudient challenge.
Examples of this are discussed later in this chapter.

6.4 Donations and Sponsorship

Suppose that a website is hosting a link claiming that 1p kalldonated to a
charity for every click made. An individual clicking the krmight want some
assurance that the intended charity does actually redeiveldnation. Here the
forfeit would be for the guarantor to produce a receipt simgwthat the donation
has been made, possibly by the guarantor. This is an exan@eewsing trust*
can ensure that someone will always be held liable for makiege types of
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payment. Figure 6.2 shows this scenario.
P Charity

Receipt of payment
" Donation

Dona}tor

Guarantor Chaiﬁ—> We? Host

~o -

Trust* to make donation to charity

Figure 6.2: A charity donation trust* scenario.

There are other examples to which this scenario could beeapplhese in-
clude sponsored links such as those provided by servicds aucoogle Ad-
Words. These services allow businesses to bid for partid@gwords which
relate to the products or services that they would like toestise. If a user en-
ters any such keywords in their Google search, sponsorksl\ill be displayed
above the organic search results. Popular keywords andrseams are more
expensive for the advertiser and payment of this type wilhiaele to Google each
time an advertiser’'s sponsored link is clicked. Also, highels for keywords
will affect the frequency with which a link will be displayedlrust* could be
used to ensure that sponsored link hosts are paid correagyation to their cost-
per-click agreement and the actual click-through rate tinait site encountered.
Conversely, the advertiser might suspect that the clictigh rate was less than
the host is claiming. An example scenario could be two smalignesses that
sell similar products (not the same) and are likely to haeestime customer base.
It might be beneficial for both businesses to form an affdiatwith each other
and provide links to each other’s site. Without requiringwsted infrastructure
such as Google AdWords, a trust* relationship between tlodowginesses can be
used to ensure that they are honest about the traffic thks hiave received. Ser-
vices such as Google Analytics can provide detailed inféiomabout a website’s
traffic which could be used to provide evidence of click-tigh rates.
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6.5 Micro-payments

As described above, trust* can be utilised in situationsretan agreement has
been made whether it be an EULA, a donation, a sponsorshipather small
payment to ensure that all parties involved are compliatit thie agreement. Us-
ing micro-payments to enforce this lends itself to thesesyqf business model as
the payments themselves are going to be very small and kellibe of the same
currency. The commission and forfeits (licence fees, tw&ldonations, etc) can
also be transferred using micro-payments. This sectioasgas brief overview
of the types of micro-payment mechanisms that could be usadtlick-through
trust* setting.

A survey [105] of all types of electronic payments systemalyses various
criteria regarding eleven chosen micro-payment systeme. dd the first micro-
payment systems was Millicent [45] which allows small agyiecous payments
to be made. However, Millicent provides no anonymity to Ilterds. Many of to-
day’s electronic payment systems make use of mechanismpeged by Chaurat
al. For example, the electronic “cash” system in [24], whicls\Water improved
in [25] allows payments to be made off-line (with no conneatio the bank).
Other work by Chaum focuses on the anonymity and untradggabilelectronic
transactions [21, 22, 23]. For example, “blinded” payment21] make it hard
for a bank to link payments from the same client. This is agkdeoy multiplying
a serial number by a secret “blinding factor” known only te trayer before send-
ing it to the bank for signing. When a signed serial numbeetgmed, the payer
can divide the result by the blinding factor to reveal thenedyserial number.

Most of the time, trust* payments are confined within a looast relationship
and so issues such as anonymity might not be a problem. Howkegee are cases
where principals who are using trust* need to make paymergsncipals outside
of their local trust relationships. For example, in the aggilons described in this
chapter, where a payment needs to be made to the developataio a licence.
Also, to prove to the end-user that a legitimate licence fe@ntpurchased, the
guarantor would provide an electronic receipt along with lihence (the receipt
could be bound to a specific licence). The receipt of paymantoe checked by
the end-user (e.g. by verifying a digital signature) anditence can be checked
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by contacting the developer directly. The receipt is alsgigraphic evidence
needed to claim the licence fee back from the original ve(hertrust*ee).

There have also been proposals for micro-payment schemiel wée trust
management techniques to encode the necessary paymeentasd For ex-
ample, Blazeat al [16] use the KeyNote trust management system to enable an
electronic equivalent to bankers cheques. Their solutias successfully imple-
mented in the form of a drinks machine which accepted KeyNuatgo-cheques
(signed by a trusted bank) from an electronic device suchRi3fa

In [40] and [41], the KeyNote payment method is used to revedights in a
distributed computation platform called WebCom [79] focsesssfully completed
operations. Also, clients can pay servers in return foriserusage. An example
of KeyNote micro-payments developed in the course of ttesaech for use with
trust* is given towards the end of Appendix B.

6.6 Simulation Implications

This section discusses the comparison of simulating theAtlick-through ap-
plication using Repast Simphony to previous applicatiescdbed in this disser-
tation. The model is very similar to the one described in @Grap which forms
the basis of the click-through simulation. Applying trust* music downloads,
sponsorship or donations would be the same apart from ths eaich agent takes.
Below, changes such as these and the implications of simglatclick-through
scenario (in this case, EULAS) is described.

¢ In this simulation, the Alice agent acts as the software hugeb is still
a guarantor and Carol is the software vendor. This simulatitroduces a
new agent called David who is the software producer. Truistrstvels in
the same direction as it did in the P2P simulation (i.e. froheceAto Bob,
and from Bob to Carol) although, in this case, Bob doesn't aeed to pay
a forfeit to Alice. In the click-through licensing scenadescribed above,
it is the software producer (David) who receives the payrfremt Bob and
Alice only receives the obtained licence.

¢ Although the new agent (David) has been introduced to thelsition, he
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needn’t actually be part of any trust* relationships. Hoer\he is still
an actor in the protocol and might even be paid a commission ekam-
ple, he will answer queries (from Alice) with regards to tradidity of a
licence and will receive payments (from Bob) for a genuierice if re-
quired. It is worth noting that David could be greedy and tpkgments
for licences even if Alice’s current licence is valid. To silate this, David
has at r ut hchance attribute which is similar to the attribute of the same
name that Alice had in the P2P simulation. In David’s cass,dkfines the
probability that he will be truthful when replying to Alicegueries.

e Alice could also make false claims, however, she has nottarggin from
doing so as she has already purchased the software and wdh# beceiver
of any monetary payments. When Bob comes to claim compemsatm
Carol, she is likely to dispute this and prove that the lieewas in fact le-
gitimate. Bob could stop providing guarantees to Alice oarge enough
to cover any potential losses. Bob has this option in the ksitiwun to in-
crease his charge if he finds (through an investigation plysgiith Carol
and David’s input) that Alice has falsely claimed. Othemyithere is no
reason for Bob to increase prices for Alice but will more hkee-consider
the status of his trust in Carol.

Results for this simulation regarding changes in credigaren in Section A.5.
The results back-up the previous simulation findings in thegt* usage will be
short-lived for non-compliance. This is evident for theremt types of agent we
have already seen (the trust*er, the trust*ee, and the gtas). However, the
effects of the software producer’s behaviour can be seenexXample, if David
habitually lies about the validity of a licence, he is effeely causing the guaran-
tor chain to break (or become too expensive) leading to thelae If principals
wishing to use trust* to validate their software receiveéahegatives from David,
they will either stop buying software from Carol or won't eaabout the legit-
imacy of their software. Also, as it might be too expensivditd a guarantor
route to Carol (as she’ll effectively be receiving the blafmean illegitimate li-
cence), she’ll probably cease selling David’s softwardnafuture.
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Figure 6.3: Credit values when Carol Figure 6.4: Credit values when Carol
never defaults and David is always never defaults, however, David is
truthful. never truthful.

6.7 Conclusion

In situations where licensing issues exist such as thosgided in this chapter,
mechanisms based on trust* can be used to provide an eff@zdiy of minimising
the cost and hassle of compliance between the involvedegarfAlso, applying
trust* in this way can be viewed as a self-enforcing protacdhat no advantage
can be made by cheating the system. For example, it’s in theeist of all agents
in this scenario to act correctly, otherwise they will ong/liurdening themselves.
For example, following from the points made in this chaptdice has no reason
to claim a guarantee if she already has a legitimate liceRa@haps she could
sell the new licence to someone else, however, Bob’s premvilheventually
out-weigh any profit Alice might make especially if habitudims are made.
Carol has the incentive to provide genuine licences in tis¢ filace as she will
need to reimburse Bob if they aren’t (otherwise risk losirgtiust and hence her
connections). David also has the incentive to answer galedeectly otherwise
it may cause the effects described above (premium increagdite or removal
of local trust to Carol) due to the effects made to Alice’simldrequency. As
a software producer, David will be affected in the long rurCasol might stop
selling his software or Alice might stop caring if her licescare legitimate or
not.




Chapter 7

A Spam-proof Email Application

7.1 Introduction

This chapter shows how trust* can be used to deter principats sending un-
wanted or “spam” email. Spam email is responsible for a heglogntage of traffic
on the Internet and is an annoyance to end-users. Applyustrtin this way, it is
hoped, will lower this traffic by deterring mass spammers lakimg it an unfeasi-
ble business model for theimin order for a principal to send an email to another,
a trust* route needs to be found between the sender and temeem order to
guarantee that the email won’t be spam. A counter argumémaigmail could be
charged for in the first place in a similar way to the postaliserwhere “stamps”
would need to bought in order to send email. However, thetpitrust* is to
avoid the need for this type of universal up-front paymenborébver, trust* re-
duces the cost for a genuine email user. Although, up-fragtpents could be
used as a way of bootstrapping new users into the system wiibydd have any
trust routes.

This chapter begins with an overview of current spam pregartechniques
and a discussion of the types of email user and perceptioggash email. This
is followed by the application of trust* and descriptiongioé “spam-proof” pro-
tocol. Finally, the implications of simulating and implentig such a solution is
described.

10r, conversely, allowing the recipient to earn a comfoetdiving by reading spam email.

63
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7.2 Spam Prevention Techniques

Unsolicited email has been around since the use of the kttbatame widespread.
Therefore, much work has been done to find ways of filteringmedenting spam
email. This section gives an overview of the previous anderursolutions to the
problem of spam email.

The most common solution is to filter email either at the maii/er or at the
client. The problem with filtering mail at the server is thpam perceptions of
the host might be different to those of the end-user. Thesefeervers tend to
flag emails that they think might be spam and allow the useetidd whether to
delete it or not. These flags can be used to aid a filter buit am email client
such as Mozilla Thunderbird or Microsoft Outlook. Clientdils tend to be more
configurable, and some can learn about what the user cossabe spam from
previous emails and filter incoming mail accordingly.

Mail servers and clients can also maintain whitelists aaghists of domains
or other servers that might be considered senders of spaih émehitelist is a
list of trusted email senders whose email should never bsidered spam. The
opposite is a blacklist where known spam senders and retayegged for future
reference when filtering spam (and mail from such sendersvisya considered
spam). This is a good solution in most cases where a mail isBlveks emails
from a known spam relay. However, some institutions and @mgs have found
that their domain has been unduly blocked from certain neaiteys. This might
be due to an account hijack or spoofed email headers of cdomseould be an
employee sending copious amounts of unsolicited email treeir work account.
Hosts of blocked servers often need to prove that their prolilas been rectified
before being unblocked by the blocking server. Updating lisi can be a time
consuming and never ending task, so alternatively, maressmight hold a pol-
icy whereby any email from unknown senders will initially beunced and added
to a greylist [50]. Once the sender attempts to send the exgaih, the message
will be delivered. This works on the idea that it will be tocstly for mass spam-
mers to resend an email for every bounced attempt (untilghensers catch on
at least).

Similarly, a client could hold a queue of messages from unkneenders
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(perhaps that aren’t in a whitelist or address book) and na sechallenge back
to them before fully delivering the mail. The challenge viié something like a
Turing test which will ensure that their message is deligdégranswered correctly
in a reply. For each sender, this should usually only neecctddne once, and
afterwards they will be added to a whitelist.

Challenge/response protocols such as those above enatienthil is being
sent from a real person (and with their consent) and it iskehflithat spammers
will resend an email or have time to reply to a challenge. Hmxechallenge/re-
sponse filters are not widely used by email users. This is dussérs ignoring
such challenges or mis-identifying them as spam and theregusing mail to re-
main undelivered. A similar method proposed in [47] shoved timly moderately
intrusive techniques are enough to stop outgoing spam freendmail providers
such as Hotmail. According to [47], the cost of account cosafcompleting a
Turing test) can be amortised by sending 1000 spam emaiteatdst of 0.002
cents per message and average earnings of 0.01 cents pagmeest. Their so-
lution works by making users pay some cost such as a diffioufipitation after
every 100 messages sent. Legitimate users will only needrform this 10 times
to prove that they are legitimate users. This small cost waffiéct legitimate
users but will affect spammers as their cost-per-messagjbeciome more than
their earnings.

Reputation systems can also be used as a way of reportingli@nith@ spam
email [46, 113]. The reputation of a specific user will defimeweight that a spam
report carries from them. Also, trust perceptions and r@jputs could be shared
between mail servers to aid filtering [75]. However, the$swdfer from the same
problems regarding reputation systems discussed prdyiouthis dissertation.

Another method for reducing the amount of unnecessary asaligited email
is to charge for postage “stamps”. This works in the same v&ayraitional
mail but users need to buy digital tokens or tickets in ordesénd an email.
Abadi et al [7] propose a service which provides tickets that allow ssmpaf
email. The service also maintains the number of tickets agodarr user has in
stock. A receiver of an email can use the service to valideéaken which can be
refunded if the email wasn’t spam. Apart from deploymentésssuch as gaining
mass user acceptance, the trouble with this proposal isatbatversally trusted
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ticket service will be required for the concept to take-dffstandard mechanism
would need to be used by all major email service providera {iary competitive

market, e.g. between GMail, Hotmail and AOL etc), otherves®il users would

become distressed with acquiring the correct tickets fenvtirious providers.

Schlegel and Vaudenay designed a system called XToken [Bigjvallows
users to monitor how their email addresses are used. Itvesgbassing tokens
with every message which can be validated before readingreTare different
types of token, some which don’t expire until they are revb&ad some which
expire after a specified number of uses or date. A systemagittalXToken is
desirable because no changes need to be made to the enaatrinéture for it to
work. With XToken, the tokens are distributed to all frieradgl associates in ad-
vance and later included with a message when needed. Tloy pdbrmation for
each issued token is stored locally by the receiving usevdbdation purposes.
loannidis designed a system which is similar but encodegdhey for each token
within the email address itself [55]. This means that nornmfation needs to be
stored locally but requires changes to the email infrasiinec

A peer-to-peer payment system calletVAT [94] can be used to counter-
balance a loss from receiving a spam email. It works by chgrgn email sender
1IMU (Mail Unit) to send a message and works on the assumptiorathatlthy
email relationship between two users will evenly balaneaMlJs between them.
As most users are unlikely to reply to unsolicited mail, teader will never re-
coup their spenvUs.

A corresponding real-world example is a door-bell systeat Was designed
to stop unsolicited callers disturbing a household [97]e @bor bell is activated
by inserting a low value coin which upon answering is refuhdehe caller is
welcome, otherwise it is kept. This design has various flavikeé real-world, but
the idea might be better suited to deterring spammers inythereorld. Although
the coin value is low, to call at hundreds of houses would smwhup.

Most spam email is just an inconvenience to the receiver aratlded cost to
networks such as the Internet. However, email senders thatshave malicious
intent. The most obvious attack is to send malware via sparaitachments.
More commonly these days, scams such as email phishing g0tause prob-
lems including monetary loss and identity theft. A study bikabssoret al [56]
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shows that many of the subjects (ages ranging from 18—60@ixg) anyone with
a computer science background) were fairly informed wheante to identifying
indications of a phishing email or website. However, thelgtoad only 17 partic-
ipants which probably isn’t enough to reflect the overalcteas of the general
public receiving this type of email. When considering tle scammer needs to
send millions of emails to get a handful of responses, thdraways be a chance
of success as there will almost always be someone who isddnjiea phishing
email or website.

7.3 Perception of Spam Email

Email is a widely used medium on the Internet and most users aaleast one
email account whether it be from an ISP, place of work, or @ frecourt. People
use their email accounts for different reasons. For exarapl®rk address should
be used for professional reasons and maybe a free Hotmalilatcould be used
for personal and social reasons. Therefore, tolerancgsatm £mail might differ
on an account-to-account basis.

Email addresses are shared to other users, companies amisatgons which
are consequently stored in many places. For example, mabgit@e require
you to validate an account via email and later use your addcekog on to their
service. Also, most sites require you to “opt-out” from suriising to their mailing
list which might be used to advertise new products or sesvigghe future. To
the average user, this might not be obvious.

For these reasons (and those in the previous section),rigedan address has
been used, the higher the quantity of spam email it is likeleteive.

The problem with email is that every end-user might have femiht percep-
tion of what constitutes as being “spam”. This problem confs spam filtering
software in deciding what might be spam or not. Instead oktfewvare deleting
everything that it considers to be spam, it is likely to filerniaway for further
inspection by the user. Spam filters can aid the user as thar line number of
emails that need to be checked manually.

2Such as Gmail, Hotmail or Yahoo etc.
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Using spam filter software on the client side is a user’s agbigt many email
hosts now do a check on the server side before the emailstasdlgclownloaded.
The host will then flag the messages that might be spam to theiser. An end-
user's perception of whether the flagged messages are lgctpaim might be
different to the perception of the company or organisatiasting the mail server.

Some users might consider commercial email to be spam etieeyithaven't
opted out of receiving it (the same applies to receiving aofanternal memo-
randa). However, spam is generally considered to be uniealiadverts for illegal
software, counterfeit watches, and drugs etc. Also, otb@ms such as phishing
and email that might contain malware. Using trust* can malegob of deciding
whether email is spam easier as a spam filter now can checkesnahs for a
valid guarantee.

7.4 Reverse Routing for Trust*

In previous applications, trust* routes have been builtftbe source (the trust*er)
to the destination (the trust*ee). In the spam-proof appilin, the trust* route
must be built from the destination end. This is done by mang different rout-
ing tables depending on the direction that a trust* relainm needs to be built.
These are:

Forward where a routing table dfusted principals is maintained. This table is
created and edited by a principal in relation to whom thegttamnd by how
much. In this case, a trust* route goes in the same direcsatiract trust
does. The previous applications of trust* described in dissertation are
all examples of forward trust* relationships. This is usyiatvoked by a
client in a networked application.

Reverse where a routing table ofrusting principals is maintained. Principals
build this table by receiving information from their directisters. In this
case, a trust* route goes in the opposite direction to thdtrett trust. The
spam-proof application is an example of a reverse trus#tiaiship and is
usually invoked by a servér

3Reverse routing could also be used in other applications asiclick-through when commis-
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7.5 The Spam-proof Protocol

The protocol in Table 7.1 shows how trust* would work in thaspproof email

application. It involves three principals with one path elebation. Carol (the
trust*ee) wants to email Alice (the trust*er); Bob trustsr@aand Alice trusts

Bob. Note that for this example, for the first time, the consiaa payments and
the email itself, go in the opposite direction to the direatof trust.

©CoOoNoGOr~wWNE

C — B: Can Carol have a token for Alice, forfett=commissionz
B — A: Can Carol have a token for Alice, forfeff=commission#
A — B: Token for email from Carol to Alice, idzetc

B — (C: Token for email from Carol to Alice, id=etc

C = A: Email (tokenz in header)

A — B: Tokenzx is OK/spam

B — A: Ack/here is the forfeit

B — (C: Tokenzx is OK/spam

C — B: Ack/here is the forfeit

Table 7.1: Spam-proof protocol example.

. Carol sends a request to a principal who trusts her (Bobignctase) for a

token to send an email to Alice. A forfeit and commission ofiee also
sent.

. Assuming Bob is happy with thieandc values, he forwards this request to

a principal who trusts him. Alice will receive this requestiwBob’s forfeit
and commission offer.

Alice checks the’ and¢’ values from Bob and generates a token which is
sent back to Bob.

Bob forwards the token to Carol. Bob now knows that a chai lheen
made between Carol and Alice via himself and that his guaeaistactive.

Carol can now email Alice directly with the token embeddaathin the
email header.

sion is paid by the trust*ee.
4i.e. in the opposite direction to the previous applicatimrhis dissertation.
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6. Alice (or her email filter) checks that the token is validdye reading the
email. She decides whether the email is spam or not and serdpanse
to Bob either way.

7. Depending on the response, Bob will either send an aclaumneiment or
pay the forfeit to Alice. Bob now knows that this token hasrbased by
Carol.

8. Bob informs Carol of the decision.

9. Depending on the response, Carol acknowledges this arthayforfeit to
Bob. In a longer chain, this process may continue; as uslidrieit and
trust updates are local.

7.6 Pricing Strategies

There are likely to be some legitimate senders who can't fidust route to
the intended recipient. This might be because they havet'byilt any trust
relationships or simply that a chain of guarantors canndbbed.

A new user can bootstrap a trust relationship by paying a iieettly to the
receiver or to a guarantor. For example, we assume that teseage(”’ — A:
Please may Carol have a token for Alice, forfeit=0, comnoigsi10 will always
work®. Now the real spammers need to find a cheaper route basedson thi

Eventually, assuming Carol doesn’t send spam, Alice migQgtrbto trust her.
This will enable the possibility of Carol buying tokens froitice for routes to
recipients that are beyond Alice.

Most payments should be of a very low value, sufficient tordedbitual spam-
mers and not affect ordinary email users. Having to occadlyppay a 0.5 pence
forfeit is a very different proposition to paying million$ rfeits.

In the protocol, values far andt are proposed when requesting a token (steps
1 and 2 in this example). It might be that the receiver of susgaest isn’t happy
with the values offered. In this case, a negotiation of tlvasges might take place.

5As the receiver or guarantor is making 10 pence either wag.tlte sender’s incentive to not
send spam to earn trust and enjoy lower premiums in the future
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Bob could simply reject the request and leave it to Carol teulemit the request
with different values. Or Bob could explicitly state the wa$ he requires to pro-
vide the guarantee. However, this is most likely to happesr &ob estimates the
risk involved and his possible losses so we would expectttieatorfeit he might
need to pay Alice is always lower than the forfeit Carol wopdy him.

7.7 Security Requirements

The tokens that are used to allow a trust*ee to send an emadd be cryptograph-
ically protected. This might be to prevent forgery of a tokerfor verification of
its origin. Also, a digital signature can be appended to tiek @& a token. Lo-
cal verification of this signature could also take place kefthecking the actual
guarantee. However, this isn’t strictly necessary as eaehwill keep a record of
tokens they have generated and locally distributed whielsalt active. Because
the protocol requires a response message is to be sentwdkgsteps 6 and 8),
a user always knows whether a token is still active or not amdlienit their ex-
posure. Once a token has been received, the id number caondsereferenced
with the generators table to retrieve information such ags thle guarantor is and
the agreed forfeit etc. Hence, no details of the underlyingrgntee need to be
encoded within the tokérand thus forged or already spent tokens won'’t work.
This method also allows the possibility of issuing “bagstaiens to more highly
trusted users. These could be set to expire if they arent ige particular time
but will lower the overall computational expense of repegthe protocol for each
email that needs to be sent.

Also, some privacy is maintained as Carol can’t see the \@itlee forfeit that
Bob might need to pay Alice if she defaultd)sers could be identified by anony-
mous keys if they wish to maintain further privacy when udingt*. However,
up-front payments need to be protected from forgery (andlkospending etc)
and immediately claimable by the recipient. Also, this pdeg Alice with a way
for allowing anonymous email without risking spam.

6Although the tokens could carry the state cryptographjcall
’Carol doesn’'t need to know who the guarantor providing traramtee to Alice is, especially
in a longer chain.
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7.8 Bad Scenarios

After the email has been sent, Alice decides whether thelemapam or not.

Even though her perception of what is considered spam ilylikebe different to

Carol’'s and Bob’s perception, Bob is still obliged to honthe guarantee forfeit
payment. And the same for Carol if Bob claims the message pas sThere are
some issues that may arise because of this.

7.8.1 False Claims

A false claim might be made by the receiver (Alice) where shghinclaim a
forfeit even if she doesn’t regard the email to be spam. Adgaob would need
to honour this. Also, even if Alice doesn't claim, Bob coulddely claim the
forfeit payment from Carol. Note that Bob trusts Carol but conversely so if
Carol suspects that this might be happening regularly, shielmegotiate a cycle
of trust* (as described in Section 5.2.3) to Alice or Bob tsure her against this.
This attack could also be blocked by requiring Bob to prov€#mol (directly or
via the cycle) that a claim has been made by Alice and that &gaial Alice the
forfeit. This could be in the form of a cryptographic micrayment receipt. For
example, assume that Carol has found a cycle of trust* to BoD&vid whom she
trusts. David trusts Alice or Bob to not make false claimsCédirol is suspicious,
she can alert David who will investigate whether false ckalmave been made (by
requesting proof of payment from Alice or Bob) and will compate Carol if
necessary. David will also charge a small commission foviging this service
however it will prevent Carol suffering greater loss fronpeated false forfeit
claims.

7.8.2 Non-payments

Of course, Carol could refuse to pay the forfeit. Due to thgpents being low in
value, this won't affect Bob on a one-off basis. Howeveregular non-payments
occur, Bob is likely to stop trusting Carol altogether. HenBob will no longer
provide email tokens (or guarantees) for Carol or the prighirgo up (see the
following section).
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If Bob fails to pay Alice, she will simply stop trusting him drwill cease
accepting guarantees from him. The problem of non-paynfemfarfeit or com-
mission is a local problem which can be solved using locattmanagement
mechanisms.

7.9 Congestion Control

The effects of false claims and non-payments in the trustehare analogous
to some of the techniques used to control congestion of paakeata networks.
An example of such a technique is network back-pressure.

Paraphrased from Stallings [101, p384], back-pressumduoes an effect sim-
ilar to that in fluids flowing down a pipe. When the end of theepip restricted,
the pressure backs up to the point of origin where the flowappstd or slowed
down. This technique can be selectively applied to logicainections in a net-
work, so that the flow from one node to another can be redtristédhalted. This
restriction propagates back to the source of the connection

Analogously, if trust* is regularly broken between two mipals, the guar-
antor is likely to either break the local trust completelg\(ar provide guarantees
again) with the principal being guaranteed (which corresisdo a link outage) or
steadily increase their commission rates (which corredpado a price increase,
or a delay). If a particular link drops between two nodes, aeavhich pre-
viously utilised this link might become more expensive farreunding nodes.
This is likely to cause a bottleneck for other nodes follogvalternative routes
and further increasing their cost. These issues can becékphddressed using
standard network congestion control techniques such a# tr@sed congestion
control [70, 71, 90].

Credit based congestion control is a scheme based on pngvadi explicit
credit to a node. The credit indicates the number of packetisthe source node
may transmit. Nodes have to wait for additional credit ifythman out. This is
also analogous to the commission and forfeit rates usecitraist* model except
the credit is a node’s reputation (or risk) rating (whicheaffthe commission and
forfeit rates that will be charged).

If Carol repeatedly defaults the guarantee (by sending ypalice is likely
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to increase the forfeit she requires from the guarantor Bobis will then prop-
agate to Carol as Bob is likely to increase his rates accglgi®ther routes that
Carol might take to reach Alice could become congested agr@fitre might be-
come expensive too. Just as in the networking case, congdstids to spread
and will interact with adaptive routing decisions (and ttes be addressed with
standard counter-measures e.g. hold-down time [102, p92])

7.10 Simulation Implications

This section discusses the key enhancements required titesenthe spam-proof
application using Repast Simphony in comparison to preapplications in this
dissertation. The model described in Chapter 4 forms this bhthe spam-proof
simulation. Below, the major changes and their implicagiare described.

¢ In the spam-proof simulation, it is important to note that ttust* protocol
is invoked in the opposite direction to trust as mentionetiexan this chap-
ter (also see Section 5.3.1). In the P2P simulation, Aliastéd Bob who
trusted Carol not to serve incorrect files. In this case, Qartrusted by
Bob who is trusted by Alice not to send spam email. Due to thescom-
mission payments are also made in the opposite directiomsb. tFor the
email application, the destination plays the role of therdli(the trust*er),
and the sender plays the role of the server (the trust*ems)ntiw the server
who invokes the trust* protocol rather than the client inB2# application.

e The agent types are the same except that Carol is now the senaliér and
Alice is the email recipient. The multiple Bob agents stiit as guarantors.
Also, the properties that each agent holds are the sameykaowiee default
values for the forfeits will be the opposite compared to tefadlt values in
the P2P simulation. This is due to the fact that the servepusthe invoker
of the protocol. Commission payments go in the oppositectioe as trust
now (see Chapter 8 for more on this).

¢ In this simulation, there are five global attributes that edter a simula-
tion run rather than the two in the P2P simulatiom gt hchance and
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mal war echance). The first isspam evel which is an integer value
between 1 and 5 which defines the type of spam that Carol witl $¢ she
does). Level 1 can be seen as very low level spam email sualvesgtiaing
or chain mail. This ranges up to level 5 which might be a scaaudulent
or malicious email. Also, advertising of drugs, softwargeuvellery.

e The secondispanaccept which defines Alice’s tolerance of spam email.
This relates to thepamni evel that Carol sends. For example, if
spanaccept is set to 2, an email will only be considered as spam if its
spam evel is 3 or more. This feature reflects real life perceptions céitwh
is considered spam and is intended to add some realism tanéason.

e The third isspanthance which is similar to tharal war echance at-
tribute in the P2P simulation except it defines the probgttiiat Carol will
send an email at hexpam evel .

e The fourth and fifth are ect r ut hchance andguart r ut hchance
which define the probability that the receiver or a guaratespectively)
will be truthful when making a claim. For example ifthect r ut hchance
value is low, Alice is likely to claim even if Carol hasn't deam email that
she considers as spam. A Igyuartrut hchance value, will cause a
guarantor to claim from Carol (or another guarantor in amhaven if Al-
ice hasn’t made a claim.

e Finally, due to the trust* protocol being invoked in the oppe direction
(by the trust*ee), the spam-proof protocol requires an askadgement
message to be sent even if no claim has been made for a parteahil
(see steps 7 and 9 of the spam-proof protocol). This is tanmBoguarantor
of the outcome of a guarantee if a claim hasn’t been made (andeh a
forfeit doesn’t need paying). Theck() method provides this behaviour.
After a guarantor receives this message about a specifiaigieay; they can
mark its status as complete.

Results for this simulation regarding changes in credigaren in Section A.6.
Again, the results correlate with previous application detions. Habitually
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sending spam or being untruthful about claims will only dgméhe chances of
the perpetrator forming trust* relationships in the futeither by losing direct
trust locally or by routes becoming too expensive. This éswinole idea of using
trust* with email — to remove routes for habitual spammers #toobe paid a

decent amount to receive spam. In reality, peoples penreptf spam vary and
claims should be honoured by a guarantor. Investigationkldze made regarding
false claims if they are suspected but this is again a locddlpm. Cycles of trust*

can be built to mitigate the effect of false claims outsida tcal relationship.

Test 1 - Credit Test 6 - Credit
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Figure 7.1: Credit values when Carol Figure 7.2: Credit values when Carol
sends spam email 100% of the time never sends spam email where Bob
where Bob and Alice are always and Alice are always truthful.
truthful.

Appendix B is a walk-through example of a spam-proof protoaao imple-
mented using the KeyNote trust management toolkit. It fedlthe approach given
in this chapter, however, a way of making micro-payment$ \ieyNote is also
included. The spam-proof application including paymestsiplemented purely
using KeyNote in this example and with each pair of pringpating the same
mechanisms. In reality, this in unlikely to be the case awiddal pairs are likely
to be using heterogeneous mechanisms.

7.11 Conclusion

Applying trust* to the sending of email differs from applimns previously de-
scribed in this dissertation which are used to promise trsraice will be pro-
vided. With email, trust* is used to promise that an emaitispam. The intention
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of using trust* to send email is not to penalise users thahtrignd the occasional
unsolicited email but the spammers who aim to profit from ssmthis type of
email.

Due to the format of email addresses being sim@er @ost , it is easy to
generate a dictionary of usernames for a specific host. Maraileservers also
use aliases to hide the underlying username of an accourtbgrdvide a more
human readable and memorable prefix to the address. Howhkeeaunderlying
username is usually a combination of characters genergtédtethost which can
still be used as the prefix to an address. For this reasone#sg for a mass
spammer to generate lists of addresses. Another way torgadldeesses would
be to buy (or steal) databases of addresses from other sgjms.

Using trust* to provide guaranteed emails aims to deteretligses of spam-
mers. For example, the “mass spammers” that purposely matite generate
millions of addresses to send email to. Mass spammers redgonding millions
of emails a day to make any respectable profit as only a veryl pei@entage
of recipients will actually resporid It would be non-viable for them to do this if
even low-value guarantees were required.

Legitimate mailers might unknowingly forward a spam emailanother or
send an email that might be considered as spam. Trust* dedbraial spammers
and won't be costly for the average email user. Howeverttamild be extended
to unsolicited or unwanted email rather than just typicamnspgemail. Deploying
trust* internally for email services in specific compani@siversities or organisa-
tions could be effective before deploying it gains globalegatance.

For the trust* solution to work, email users participatimgtihe use of guar-
anteed emails are required to filter emails without guaemtélowever, existing
spam filter applications can be used for this. The more useosde this, the more
effective applying trust* will be in stopping routes for nsaspammers. Eventu-
ally, habitual spammers won't be able to find any free routesend emails and
email users will only need to read emails with valid guararntkens.

People who aren’t yet using trust* are likely to still sendagisito people who
are without realising that they need a guarantee to do so.eMenyvif they adopt
trust*, there is a higher chance of these emails being readhwvill act as an

8Also, addresses might be non-existent if they have beeroralytgenerated.
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incentive for uptake to spread. Conversely, people willehaw incentive to read
trust* certified email, as they will get paid if it's spam.




Chapter 8

Full Description of the Trust* Model

8.1 Introduction

This chapter recapitulates the concepts and features afusts model that have
been introduced and discussed so far. This dissertatiomtragduced new parts
of the model as required by specific application scenariogeler, this chapter
provides a full description of the trust* model and discsskether some of the
issues raised.

8.2 Trust* Notation

In order to formally describe the trust* model and exampfasust* relationships,
a variation of Jgsang’s notation in [62] is adopted. Thigiea@ives an overview
of the notation that is used in this chapter. The top divisibtable 8.1 is some
of the notation from [62] with the lower division being thediiibnal constructs
required by the trust* model.

79
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Symbol | Meaning
A,C | End-points of a trust* relationship.
B'm | Guarantors in a trust* chain.
: Connection of trust arcs.
Trust scope.
Functional variant of trust.
Referral variant of trust.
Direct trust.
Indirect trust.
Represents a trust* relationship.
The agreed forfeit.
The agreed commission.
Direct functional trust.
Direct referral trust.
Indirect functional trust.

L S A R I

|
|
Vv

Table 8.1: Trust* notation.

Take for example, a trust* relationship betweéandC ([A, C;ifo; *]). This
can be expressed diagrammatically as:

The same can be expressed symbolically as:

A% BSC=A4"C (8.1)
(t,c) (t,0)

Finally, the same trust* relationship can be expressederattapted version
of Jgsang’s notation:

([A, Csifo;+]) = ([A, Bydro; (t,c)] : [B, C;dfo; (t,0)]) (8.2)

The examples above all represent the case whdras indirect functionali ()
trust in C' because she has direct referrét)(trust in B and B in turn has direct
functional ¢f) trustinC'. The scoped) might be defined to mean “trust to provide
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legitimate licences with software”. The, c¢) represent the locally agreed forfeit
and commission rates regarding the guarantees that maké&wst’arelationship
wheret andc can be equal t6 where they aren’t applicable.

Similarly, extending a trust* chain to an arbitrary numb&hops can be ex-
pressed diagrammatically as:

Again, where the same can be expressed symbolically as:

A% B 0=2ATC (8.3)
(t,c) (t',¢") (t,c)

And in the adapted version of Jgsang’s notation:

([A, Csifo; (t, c); #]) = ([A, Bydro; (t,c)] - [B,Csifo; (',d); %) (8.4)

The last notation in Equation 8.4 would be suitable for a KetgNlike engine.

8.3 Components of the Trust* Model

8.3.1 Guarantees

The most common method of building trust between unknowniesin the real-

world is by using guarantees. Although trust* can be profhaansitively, the
risk is underwritten by a directly trusted principal. Guateses only work if the
trusting principal trusts the guarantor directly and tinested principal is trusted
directly by the the guarantor. With multiple guarantors iohain, a guarantor
would trust their neighbouring guarantor, therefore éngga chain of direct trust
relationships between the trusting and trusted princigads example, letd be a

trust*er,C' be a trust*ee, andd’ a guarantor:
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A% B3 B B B L O (8.5)
(te)  (te) (ko) (t,c) (t,c)

So long asA has direct referral trust il8!, and B™ has direct functional trust
in C, and every otheB® has direct referral trust i’™!, then a trust* chain can
be made betweedA andC'. There is no need for end-to-end trust. In real-world
scenarios, these local relationships might already baestisind any guarantee
agreements between them are likely to be underwritten iressay, for example,
by signing a legally binding contract. Trust* is designeavirk when there is no
umpire.

There is still a transitive combination of direct referraldadirect functional
trust to form an indirect (functional) trust* relationshyetweenA andC'. How-
ever, the scope of the trust between each pair of principgdsbleen agreed and
underwritten with the forfeit. Guarantors in a chain can be identified by looking
at the type of trust used. For example, any referrals will bargnteed by the
referring trustee making the guarantor in the examples in Section 8.2. A guar-
antor will receive: as a payment for their service and be required to pay theiforfe
t if the trusting principal requires. The trust*ed end-pdifi) won't receive ac
payment (as he isn't a guarantorse- 0) but in this example has agreed to pay a
forfeit ¢ if required byB.

It is important to note that forfeit payments aakwvays paid in the opposite
direction to that of the direction of trust regardless of whimvoked the trust*
relationship (refer back to Section 7.4). It is only the diren of the commission
payments that changes as illustrated in the following exasp

The direction of the commission payment in a forward trustationship (e.g.
in the P2P application, see Figure 8.1) is made in the saneetatin as trust it-
self where the trust* relationship is initiated by the trest(a principal needing
trust* to another). The relationship in Figure 8.1 has previousiynleegressed in
Equation 8.2.

However, the direction of the commission payment in a re/gisst* relation-
ship (e.g. in the spam-proof application, see Figure 8.&)asle in the opposite
direction to that of trust (i.e. the same direction as théeibpayments). In this
case, the trust* relationship is usually initiated by thestree (a principal needing
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Downstream trust* invocation

trust*er trust*ee

df trust

Figure 8.1: Example of a P2P forward trust* relationship verghetrust*er is
the initiator.

trust* from another).

Upstream trust* invocation

trust*er trust*ee

dr trust o df trust

Figure 8.2: Example of a spam-proof reverse trust* relatmm where the
trust*ee is the initiator.

The relationship in Figure 8.2 can be expressed as:

([A,Cifo;#]) = ([A, By dro; (t,0)] : [B, Csdfo, (t, —c)]) (8.6)

Arrows in these diagrams which carry a value of O are not shddowever,
arrows corresponding to negative values in the formula aré in the opposite
direction.
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8.3.2 Payments

The trust* model includes two types of payment which are dsedifferent pur-
poses. The firstis a commission (or incentive) payment wisiphid to a principal
to act as a guarantor. The second is a forfeit payment whisteséwo different
purposes. Firstly, a forfeit can be paid to a principal whe hreade a claim on
a guarantee as a way of compensating them. This is paid bydady trusted
guarantor to the claimant and later claimed from other guara until the end-
point of the trust* chain is reached. Secondly, the forfetsdo deter the server
from defaulting in the first place as they will eventually legjuired to pay it. It
will be in their interest to pay forfeits if required othese they risk losing trust
from the local guarantor. Note the difference between the &aplication de-
scribed in Chapter 3 where the client invokes the trust*grok compared with
the spam-proof application described in Chapter 7, whezesénver invokes the
trust* protocol. The forfeit payments still serve the sameppses in both appli-
cations but the trust* protocol is invoked in different trdgections (i.e. upstream
and downstream).

The two types of payment need not be like-for-like and may fdifterent
tender between other local trust relationships in a trus#i. A specific agree-
ment between two principals will involve a negotiation oétbommission and
forfeit rates that will be a sufficient to give the guarantggparty enough incen-
tive and the guaranteed party adequate compensation. Tatesewill reflect the
perceived trust between the two principals and the paymeititikely be in a
commodity that is of most use to them.

After a trust* protocol run, principals (particularly theg@rantors and the guar-
antee receiver) are likely to re-assessdlamdt values they are willing to accept
from or pay to another. This is necessary to reflect the cutemel of risk in-
volved with providing a guarantee or receiving a guarantea fanother and will
affect the subsequent routing costs of trust* relationship

8.3.3 Protocol

The trust* protocol typically requires three types of pipals. The two end-
points (the end-point requiring trust* and the trust*inglgroint) and at least one
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guarantor. There are cases such as in the P2P example whgreritipal being
trust*ed might not actually take part in a protocol run buthmost cases, their
consent would also be needed.

The first part of a trust* protocol run consists of a number vamgntee re-
guests being sent to local guarantors and their responsesthis stage where
agreements are made about what is being guaranteed andrtgatipe arrange-
ments. Once a guarantee chain has been created betweettiex tind a trust*ee,
the transaction can take place. The second part of the miateals with notifica-
tion of a guarantee and its claim status. This is shortlyfedd by compensation
if a claim has been made.

The main difference in the way that a protocol is followed &ided by the
purpose for which trust* is being used in the first place. Baaneple, in the
P2P application, Alice (the client) needed to find a way o$tfing Carol (the
server). Hence, this is why Alice invoked the protocol byuesting guarantees
from principals whonshetrusts. Conversely, in the spam-proof application, Carol
needed to find a way to gain the trust of (or be trust*ed by) &li€Carol now
invokes the protocol but makes guarantee requests to palsoivho trusher.

8.4 Issues and Features

8.4.1 Heterogeneity

Due to the fact that a trust* relationship consists of a sévcdlly trusting prin-
cipals in sequence between a trust*er and a trust*ee, théanens used to
implement the trust* protocol needn’t be uniform across ¢hain. For exam-
ple, Alice might deal with Bob in a different way than Bob dealith Carol.
Typically, some kind of trust management system or otheisd®t maker is rec-
ommended for building a trust* guarantee chain as risk assest calculations
can be enforced by a policy when following the protocol. Hegreso long as the
two principals in a pairing have agreed on how they will fallthe protocol, it
doesn’t matter what other mechanisms are being used in péney of the chain.
The same applies to the payment protocols that they wilb¥oknd the specific
commodities they will use for the commission and forfeit ipents.
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8.4.2 Anonymity

In the trust* protocol, each guarantee is verified by the gpial receiving it lo-
cally. Once a chain of guarantors has been found (say bet@wesrd A via B),
how doe<”' prove toA that she is in fact guaranteed to use their database? Some
kind of access control credential could be used to encodgutheantee chain de-
tails which can be verified byl. However, A doesn’t need to know wh@' is.

All' A needs to know is that she has received a guarantee from seméwmm
she trusts ) and from whom she can claim a forfeit £ mis-uses the service
provided. A doesn’t care about any other local agreements in the chanthe
one betweerB and herself. Conversely, { wants an assurance about the service
provided byA (by invoking a cycle of trust*) —A doesn’t need to know to whom
she isreally guaranteeing her service. Consequently, the trust* meéstmezan be
deployed in protocols where anonymity is required

8.4.3 Resource Brokering

Due to the heterogeneous nature of localised trust rekttips in the trust* proto-
col, the way that payments can be made is flexible and can aflsaurce broker-
ing to take place. For example, a principal could make paysiarcommodityx
and receive payments in commodifyand would be acting as a broker between
these two commodities. A more concrete example could fotloirom the previ-
ous chapter. Assume that for every spam email that Alicaveseinder guarantee
from Bob, Alice is entitled to 1 minute of CPU time on Bob’s penal computer
or cluster as a means of compensation. Bob happens to have &Rp cycles
available to him and it would not be satisfactory compesato him if he was
to claim the same from Carol. However, Bob is short of haskdipace and has
an agreement with Carol that he is entitled to 10MB of dateagt® on her FTP
server as a means of forfeit payment. Bob is effectively ermig CPU cycles and
storage space and can prosper from resources that are nigadleato him and
share resources which aren’t so valuable to him. It's tHfeiince in perceived
value which drives commerce.

lindeed, the guarantee chain can be used to provide anongsityTurtle.
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The example given above might be considered unrealist@useceveryone is
assumed to have a commodity that they are willing to shark asdCPU time.
However, when applying trust* to an application such as gachputing where
resources are already being shared, resource brokerimgsibte. For example,
it might be that Alice already subscribes to a set amountrnoé ton Bob’s CPU
cluster. A forfeit payment could simply be an extension-fiee) to this allocated
time.

8.4.4 Risk Assessment

To estimate the expected cost to a guarantor for providinggaamtee of another,
a binomial distribution can be used. Pagano [84] definesmialdistribution as:

“The binomial distribution is a probability distributiorat results
from a series ofV trials, where on each trial there are only two pos-
sible outcomes. The outcomes are mutually exclusive, aew tis
independence between the outcomes of each trial. When these
guirements are met, the binomial distribution tells us eaabsible
outcome of theV trials and the probability of getting each of these
outcomes.”

We usually assume that the probabilityof receiving an amount is worth
p - t, but often the variance is even more important than the éapen. However,
this depends on who you are (e.g. people buy both insurarttotary tickets).
Assuming that for the trust* model, a fixed amount is prefexab a variable
amount with the same expected value, we model the value asilge forfeit as:

p—(z-o) (8.7)

Wherey is the expected value of ¢, = is a co-efficient depending on the user,
ando is the standard deviation ¢f- ¢. A high volume user such as a guarantee
broker will tolerate a lower: value because they deal with a higher volume of
transaction$

2This is because the mean and standard deviatiofardependent transactions a¥e- p - t
andy/N-(1—p)-t.
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The forfeit payment is essentially binomial where the exgten isp -t where
p = P(alice_de faults) - P(alice_pays_up). So the worth ig[p — = - /p(1 — p)].
This expands as:

t[p—x\/]_)+gp\/}_7+ gpQ\/}_?...] (8.8)

This behaves like - ¢ providedz << ,/p and like—z,/p - t whenz >> | /p.
Bob can calculate his possible losses if he provides a gteear Carol. During
the request stages of the protocol, Bob can ensure thaiathét values that have
been agreed between Carol and himself will cover the valtieesfe losses before
providing any guarantees to Alice. Consequently, this afilect Alice’s route
costs via Bob.

We are not economists and are by no means suggesting thad this best
way to calculate expected loss, however, this could prosidanple algorithm
for updating costs in trust* routing tables and investigatihe features of such
algorithms is a possible direction of further work.

8.4.5 Cycles of Trust*

As a prevention mechanism against false guarantee clamsst tan be deployed
in two ways to ensure compliance from both end-points (onaméermediate
guarantors). This is something that can be done initiallyiflirectional agree-
ments are required. However, it might be more likely that eewf trust* will
be made if a principal suspects that habitual false clairasbaing made in an
already existing trust* relationship.

Itis important to note that even though the two trust* relaships in a cycle of
trust* travel in opposite directions between end-poinggheindividual relation-
ship is invoked in the same manner (i.e. forward or reveedey to Section 7.4).
Take for example the P2P relationship in Section 8.3.1 wisi@xpressed as:

([A,Csifo;]) = ([A, Bydro; (t,¢)] : [B,C;dfo; (t, ¢)]) (8.9)

Suppose that Carol has decided to always reimburse Bobéfssacy (it may
be that Bob’s trust is important to her). Hence, she is caedfaut the quality of
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her shared content. If Carol has good reason to suspect licati®\making false

claims, she could request a guarantee from David (whom slesjrwho in turn

trusts that Alice will not make false claims. Carol pays @h&icommission to
investigate a claim, and David will reimburse the forfeitGarol if he has found
Alice’s claim to be falsely made in the first place. It is in édis best interests
not to make false claims as she will risk losing David’s trdstorder to prevent
this she is likely to provide evidence to David proving that blaim was in-fact

legitimate. This trust* relationship can be expressed as:

([C, Ajifo;+]) = ([C, Dydro; (t,c)] : [D, A;dfo; (¢, ¢)]) (8.10)

These are both forward routed trust* relationships as Adiceé Carol invoke
the protocol in the same direction as direct trust. ConWgraecycle of trust* in
the spam-proof application will consist of two reverse truslationships.

8.4.6 Networking Analogues

Many of the problems encountered when deploying trust* hreatevorking ana-
logues and hence have a choice of possible solutions odtayepplying the
analogy in reverse to a networking protocol which addrefisesorresponding
problem. The best solution depends on the specific apmitati which trust* is
being deployed and the infrastructure or services it mitdtt provide. An exam-
ple of such an analogy is how an optimal trust* route can baddaetween two
principals. This is analogous to routing data packets inmaer networks, how-
ever the cheapest route would be calculated on the commissgt rather than
computational cost or number of hops. It is assumed that ithielgm of trust*
routing is solved using conventional network routing aithons or by a service
provided by the application scenario (for example, usimgakisting mechanisms
in a P2P client such as Turtle).

Another example of a networking analogue is congestionrobri/sing back-
pressure to slow the transmission rate of packets from aceadura network
Is analogous to many guarantee claims being made and goegdnérefore in-
creasing their commission requirements. If this happeas the destination of a
trust* relationship, the effects will propagate back to sleerce making it harder
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for them to continue. Eventually, the source won't be ableeguest any more
guarantees if they habitually default guarantees. Analelypin networking, the
source will no longer be able to transmit packets to the dastn until the con-
gestion has been cleared. This process will affect othdesoio the destination
and hence may become more expensive.

8.5 Conclusion

This chapter has provided a review of the components of tte#*tmodel. Each
point reviewed in this chapter has already been introducehis dissertation as
required by a specific application of trust*. This chaptes hiad these features
together and provided a more formal description and disonss the features
of the trust* model so to provide an abstraction of the modelapplication to
further scenarios requiring trust.




Chapter 9

Conclusions and Further Work

9.1 Introduction

This chapter reviews the contributions to knowledge madthis dissertation.
Due to the flexibility of the trust* model and the fact that gsotocol is very

generic, there are many more applications that it could Ipdiexpto. Accord-

ingly, we discuss some further developments of the trustiehand some other
applications to which it might be beneficial. Finally, we suarise our conclu-
sions.

9.2 Contributions to Knowledge

The main contribution to knowledge that this work makes éstthist* model. The
model is conveyed in this dissertation via a number of d#férapplications and
comprises the following significant contributions:

e The use of localised guarantees to reduce the risk of tramgjetrust to
other parties is the main construct of the trust* model. éiigh the guar-
antee business model is a real-world model and so is not a cesy our
novel use of trust management techniques to provide andpulate elec-
tronic guarantees over derived trust relationships is acmwept.

o We believe that transitively trusting unknown principalgheut further pro-

91
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tocol support is a dangerous idea and claim that the addifiguarantees
lowers the risk of doing so. This is achieved by requiring gnpent model
to be followed by principals to provide incentives to actrectly and de-
terrents for not. A trust* relationship is still transitiyederived between
end-points, however, local agreements between each pdiraaft trustees
underwrite the risk involved for each trusting party.

e A commission payment model is introduced to provide inc&gito guar-
antors. Principals can be paid a spot-price to act as a guarana local
trust relationship. This price is derived from an assessmokthe risk and
the likelihood that the principal being guaranteed willaléf. This offers
flexibility in the cost of a guarantee depending on percetvastworthiness
and also allows new principals to bootstrap trust relatigrs (by initially
paying a high premium).

o A forfeit payment model is introduced to provide both a deset for acting
incorrectly and a compensation payment to affected parTies forfeit rate
also needs to be reconsidered when assessing the risk opoihapals. A
forfeit will need to be paid by a guarantor if a guarantee &@mokd. This
will force the guarantor to reconsider providing guarastagain, however,
the claimant is compensated for their losses.

e We have applied trust* to a number of application scenamoserder to
demonstrate its significance. These include P2P (Turthg),@pmputing
middleware (Globe), click-through licensing, and spamegbapplications.

Trust* offers a way of extending trust to allow transactidogake place be-
tween initially unknown or untrusted principals by usindedmtion rather than
transitivity of trust. Trust is extended by identifying alkvig chain of guarantors
between the unknown principals. Each guarantor alreagysttbe next and is pro-
vided with an electronic guarantee by them. This guararsteglocal agreement
between two principals outlining what is being guaranteked,cost of the guar-
antee, and the forfeit that will be paid if a claim is made. sTiype of agreement
localises the risk involved for trust*ing principals. Egmifincipal trusts another to
do the right thing or be held accountable (pay the forfeitheW something goes
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wrong, the consequences are resolved locally between eacbfgprincipals. If
a guarantor refuses to conform with the agreement, it isfitkeat local trust will
be damaged limiting their chances of providing (or recegyifuture guarantees.

An advantage of requiring only localised trust is that thestoucts used to
build the guarantees and means of paying forfeits can bedysteeous. The in-
centives to act as guarantor are solved by payments of @s®or other tender
that is valuable to another principal in local trust relagbip. The combination of
a commission and forfeit payment allows configurabilityietn pairs of princi-
pals. An increasing tariff to aid flow control is analogous&iwork congestion
control. This work provides a mechanism to support multjpdécies allowing
commission and forfeit rates to increase or decrease demend the level of
trust that is already present.

The whole process of extending trust to trust* makes useeohlieady exist-
ing trust relationships rather than creating new ones.ds aelegation of guaran-
tees to bridge the gap between unknown principals with aesempiof localised
agreements which remove or reduce the perceived risk oftis&‘ing principal
and shift it towards the principal being trust*ed.

Due to this, it is possible to use trust* alongside an exgstinst infrastructure
such as a reputation system. Also, the flexibility in how payits can be made
in localised relationships could allow such payments to la&enin a currency
related to the trust infrastructure that is being completexdn For example, a
principal could model their commission and forfeit ratesamther’s reputation
rating.

There are some orthogonal issues which are either beyonsctpe of this
work or the trust* model. The main being that the trust* modieésn’t solve or
constrict the problem of local trust. It is assumed thatéh@®blems are solved
outside of the trust* model. Other issues could be addrdsg@dure work, which
are discussed in the following section.

9.3 Further Work

This section outlines some further possible applicaticgnados with trust re-
guirements to which applying trust* might be beneficial. &lsve discuss some




CHAPTER 9. CONCLUSIONS AND FURTHER WORK 94

possible refinements to the current trust* model and proposee paths for future
research.

9.3.1 \Volunteer Computing

Also known as CPU scavenging, Volunteer Computing is wheapfe collabo-
rate on a large computational project by donating theires@®U cycles to form
a virtual super-computer. For example, Folding@Home isagept that aims
to understand why proteins mis-fold. Another example is@kbme which is
a search for extra-terrestrial intelligence. A final exaeniglthe SHA-1 project
which searches for collisions in the SHA-1 hash functionefBhare many more
projects which range a variety of disciplines and platfoamd which are used for
different reasons.

Typically, a project is split into many units which can betdmsutively pro-
cessed with their results fed back to the project serverhlEaer who wishes to
participate with a project can register and connect thenmater using a client
such as BOINC [2]. Participants are normally awarded somd kif rating or
credit depending on their contributions and successfulrgations. Trust* could
use this credit as a currency for commission and forfeit payshto provision
guarantees among participants. This will help to ensurarttegrity of results
from an untrusted computing base and help to isolate probtachines. It will
therefore lower the overhead of checking and auditing afltes

9.3.2 Second Life

Trust* could be extended to real-world transactions suok-esmmerce, but it's
easier to keep a transaction purely electronic and use fpusely in a virtual-

world. In Second Life, trust* could be used to facilitate theying and selling of
virtual objects. Second Life has its own currency (Linderl&s) which could be
used for making the required commission or forfeit paymeftso, Linden Labs
have recently revised Second Life’s scripting languagecayyskographic libraries
which could make key and guarantee creation and verificatten more viable.
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9.3.3 P(GP) Web of Trust*

To help solve the problems with key distribution when usiegvies such as a
Public Key Infrastructure (PKI), the PGP suite provides &bvof trust” as a way
of storing public keys and calculating their trustwortréa@nd validity based on
who has signed them. A key’s status can increase if it is sigpyemultiple trusted
principals. The more signatories, the more valid the keyeisnded. However,
this process is similar to leaving ratings in a reputatiostem as a principal will
be transitively trusting other principals about a parégcey. Trust* could be
used to provide this assurance by reducing thetrigRather than just signing
a key, a guarantee could be included at a small price to enbatehe key is
correct. Otherwise, a forfeit will be payable. So princgalill need to think
twice before signing a key. Tools such as PGP could have-ipuilapabilities to
enable guarantee verification to take place. Keys that coittevalid guarantees
can be deemed more trustworthy (and less risky) than thaseltm’t.

9.3.4 Trust* Implementation

The scope of this investigation was to develop the trust* ehtal enable trust to
be extended over existing trust relationships. Also, testigate whether a guar-
antee and payment model would be feasible in order to achiese The trust*
model has thus far been simulated with regards to the apiplitsgpresented in this
dissertation. This was to test whether the trust* model mwgbrk theoretically
in various scenarios but to also identify and analyse thadayes and features of
such a model.

However, when modelling or simulating a trust environmémere is always
likely to be some degree of rigidity due to the volatile natoi trust relation-
ships (and how they are built) in the real-world. For examphe rate that a
principal might increase their forfeit requirement is harghredict and might vary
drastically between principals. This could only be simedbby using randomly
incremented values. Also, in the spam-proof applicatiopriacipal’s tolerance
to spam email is going to vary too and could only be randomi3éerefore, the

1A masters student at the University of Hertfordshire hasaaly started working on applying
trust* in this way [51].
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next logical step should be to actually implement a realiappbn of trust* such
as the P2P trust* client discussed in Chapter 3. This comalve implementing
a P2P client with built-in trust* capabilities. Perhapsdregeneity could be sac-
rificed in this instance to allow a uniform decision maker pagment system to
be used throughout a P2P network. Such an application ceuldgted by a real
user-base to identify any issues with the current trust* eh@d improvements
can be made.

By implementing and deploying a trust* solution, new resbajuestions and
paths are likely to appear from real results. For example, ineterogeneous can
a trust* route be? It would be interesting to see how diffesmmemes might be
used in a typical trust* route and what types of brokeringhmigke place. Also,
the networking analogues discussed in this dissertatigardeng issues such as
routing and congestion control could be verified (e.g. bylengenting specific
routing algorithms or control techniques and analysing tsiéects). Further re-
search in these areas will be far more fruitful when trusttiéployed in a real
application.

9.3.5 Reputation as a Currency

The trust* model has been designed in a way that allows it tadsel with any
application where trusting unknown principals is necgssat the same time, it
doesn't necessarily need to replace any existing infrestra, but could comple-
ment it. As shown in the spam-proof application, trust* ebbk used in com-
bination with a traditional spam filter to aid its decisiomgher than making it
redundant. A possible line of future development could bagply trust* to

an application where reputation systems are already inuél and provide the
mechanism to make risk assessments of others. Such semaemclude sites
that act as auction houses such as eBay or other e-commengaoies includ-
ing Amazon. More recently, the web has seen an increase soip¢o-person
services such as RentACoder and MyHammer. The first allodisiduals or

businesses to contact and employ independent softwardogeve to help with

projects. Coders have reputation ratings and can quoteca fm completing a
project. The higher a coder’s rating is, the more they’ll bé&edo charge. My-
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Hammer is a similar service but allows tradesmen such agotars, electricians
and plumbers to advertise themselves to people who needdook

Typically, a reputation rating is altered after a trangactnd will either in-
crease, decrease or stay the same. It is proposed that skfertrechanism could
overlay such a system but using this reputation ratingfiesea currency for pay-
ing forfeits. Habitually defaulting a guarantee will sesdgrdamage one’s repu-
tation rating. For performing a task or transaction well agarard payment could
be agreed in order to increase a user’s rating. This will Enakers to more ac-
curately gauge another’s trustworthiness on sight but algb lower the risk of
transacting with that person. They will have more to losenfreot complying.

Referring back to Chapter 2 where the idea of community egjort is re-
viewed, the trust* model could be used alongside a reputaystem that takes
into consideration the reputation of a group or organisata online communi-
ties such as those mentioned above). As mentioned preyiousle grid comput-
ing application (refer to Chapter 5), grids or other appimas that cross organisa-
tional boundaries could also utilise a community reputasigstem in conjunction
with trust* in this way.

9.3.6 More Anonymity

The fact that principals can be anonymous to other prinsifpather down a trust*
chain is a nice side-effect from building a chain of locaktrtelationships. For
example, the end-points don’t need to know each other or hamyrguarantors
are between them. Principals in a chain only ever need to kheivdirect neigh-
bours (i.e. principals whom they trust or who trust them atigg and thus some
privacy is maintained.

Although this level of anonymity comes for free, there mightcases where
a user wishes to be more anonymous. For example, onion goconld be used
when creating a trust* route where longer chains are bdttan short. An in-
teresting research project could involve applying Tor [83 other anonymis-
ing network) to the task of finding trust* routes between @oihts. Enforcing
anonymity in this way is likely to be more expensive for thaiating end-point
as the commission premium will increase in relation to timgth of the guarantor
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chain. The more anonymity that is required, the higher tist wdl be.

9.3.7 Auditability

The trust* mechanism could also be extended to situatiorsrevh guarantee
chain needs to be identified (and verified) during audit. angle, an auditor
might want to verify each guarantee which extends trust etwt andC' in order

to prove a forfeit is payable (analogous to a bail bond agebhbanty hunter etc).

9.3.8 An Economic Model

Detailed economic modelling was beyond the scope of thiskwbBurther work

could be done to extend and analyse the economics of thé¢ tnedel. For

example, exploring the effects of forfeit and commissiogrpants in different
scenarios and how risk assessments can be made to define@ndise effects of
differentz values (refer to Section 8.4.4) on brokering and volumeasfdactions
etc. Also, on a wider scale, do these constructs providedirect deterrents from
being bad and incentives for being good? A proper economigeinof trust*

and providing guarantees in a large online environment gB2P network) is
something that can be further explored from both an ecorntsraad security
economist’s perspective.

9.4 Conclusion

This chapter has reviewed the contributions to knowledge titis dissertation
has made. Also, possible extensions to the trust* moddf aeel the resulting
expected research questions have been suggested as pdtliarfowork. This
chapter has also suggested some other applications to eydying trust* might
improve the way that trust relationships are currently ngaxda Suggestions are
given of further research into features that move beyondtope of this work
such as using trust to complement current trust mechanismsréputation sys-
tems), and improvements to privacy and the economics ofoglaqg trust* in
real-world applications.
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We conclude that trust* is an interesting and fruitful cquicevith which to
build upon pre-existing trust relationships.
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Appendix A

Simulation Results

A.1l P2P Tests 1-6

Tick Count These simulations lasted for 42, 42, 45, 48, 99 anadicks re-
spectively before all possible guarantors became inaclilis would make sense
as when both Alice and Carol are bad, the guarantors wouldnbe@xhausted
quickly. This time gradually gets longer as Alice and Caretdame good. Even-
tually in test 6, Only one of the guarantors is ever used a® tiseno reason for
him to stop providing guarantees for Carol and he has no nemssuspect false
claims from Alice. Test 6 was stopped at around 500 ticks dvew it would have
carried on forever.

Credit Test1 and 2 are very similar. The combination of a tawut hchance
and a highmal war echance means that Alice will claim a forfeit most of the
time. This makes her better off credit-wise, however, eadrantor only allows
this to happen for a short time before becoming inactive. €8y 8, there is less
chance that a claim will be made, and two of the guarantotslgtmake a profit
for their service. Alice is still above zero but not by as meohsidering that she
is still paying a commission every tick. By tests 4 and 5, nafshe guarantors
end with more credit than Alice who'’s credit has gone belovozelest 6 only
uses one of the guarantors and shows a steady decrease éfs Aliedit and a
steady increase for Bob. This reflects the commission thaeMas paid Bob and

112
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the fact that no claims were ever made.
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Alice’s COffer and FOffer The offers that Alice makes in the first tests in-
crease very steeply. This is due to claims being regularlgerand hence Bob
requiring a higher commission and Alice requiring a higtaefdit to reflect this.
As less claims are made, these increases become more jaghledasteep as the
frequency of claims decreases. As Bob has a maximum foHaithe is willing
to pay and Alice has a minimum commission she is willing to,ghgse offers
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will govern how long a particular guarantor is likely to beedsand will effect the
simulation length (tick count). As the changes in offersdme less steep, the
longer a guarantor will be used for. For example, in test@&gtifers never change
and hence, the charts have flat-lined.
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Tick Tick

Alice’s CPaid and FReceived The overall amount of commission that Alice
has paid Bob is initially lower than the forfeit that she hasaived from Bob.
However, the simulation time is at its lowest. As the numbderi@ams decreases,
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the forfeit received decreases too. Because of this, thelation lasts longer and
by test 6, no forfeit is paid to Alice.

Credit

Test 1 - Alice CPaid and FReceived
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Bob’s CReceived Again, due to the the number of claims being high in test 1
and decreasing to none by test 6, the commissions receivall pyarantors are
fairly uniform between them. By test 5, where claims weres lgsquent, some
guarantors received more commission than others from Alefere becoming
inactive. Overall, the average commission received irsgeas the number of
claims decreases.




APPENDIX A. SIMULATION RESULTS 116

Test 1 - CReceived Test 2 - CReceived
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Bob’s FPaid These results reflect the commission received in that theagua
tor who received the most commission also paid the mostitorféowever, the
average forfeit paid decreased as the number of claims aksxle

Alice’s Claims and False Claims The observations made thus far are mainly
related to the number of claims that Alice makes. Test 1 caaprof legitimate
claims only. This is due to Carol serving 100% malware, se¢éhas no rea-
son to make any false claims. Tests 2, 3, 4 and 5 graduallgasess the number
of false claims made. The randomnesst ofut hchance will effect the fre-
quency of false claims and hence will effect guarantorsediffitly. By test 6, no
claims are made. Some interesting effects are caused he¢he lopmbination of

t rut hchance andmal war echance in the number of claims that are made.
Even though the total number of claims slowly decreases #sAlwe and Carol
become good, there is still a high proportion of false clabagg made in tests
3-5. For example, in test 5, Alice made 16 legitimate claint &7 false claims.
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A.2 P2P Tests 7-12

Tick Count These simulations lasted for 36, 48, 44, 44, 54 and 41 ticee
tively before all possible guarantors became inactivetsTésnd 12 appear to be
the quickest, however tests 9 and 10 also ended quickly. eltient that when
either Alice or Carol act incorrectly (making false claimsserving incorrect con-
tent), their choices when using trust* will be hindered. Dlest trade-off between

t r ut hchance andnmal war echance appears to be when they are both 0.2 and
0.8 (in tests 8 and 11 respectively). It is fairly concludiat when either of the
end-to-end principals behaves incorrectly, that the trpsitocol won't tolerate
them and their use of trust* will be short-lived.

Credit The changes in credit take a similar pattern to that of thie ¢munt
above. Test 7 and 12 are virtually identical except Alicestigis with slightly
less credit in test 12. Tests 8 and 11 are similar but appearted. For example,
test 8 shows Alice making a small profit and only one guaramtaking quite a
high profit. Whereas test 11 shows the opposite with Alice ingala loss and
multiple guarantors making a gain. It appears from this &late can still make
a profit from being untruthful (however short-lived it is)ests 9 and 10 are again
very alike with Alice making a small profit in both cases. Saguarantors made
a profit however the average loss by a guarantor seems to lnedat® before they
refuse to continue providing guarantees to Alice about IGHites.

Test 7 - Credit Test 8 - Credit

T -20 T T T 1
10 20 0 40 0 10 20 30 a0 50

Alice’s COffer and FOffer Alice’s commission and forfeit offer values in-
crease very steeply with the steepest being in tests 7 anch&geveither Alice
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Test 9 - Credit Test 10 - Credit
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or Carol are acting incorrectly 100% of the time. Some jaggsd is evident
throughout tests 8 to 11 and there is no flat-lining as there faratest 6. This
explains why the average simulation tick count was very lotests 7 to 12.

Test 7 - Alice COffer and FOffer Test 8 - Alice COffer and FOffer

18 20

16 1

e 15 -

12 4
& 104 e
5 3
g ‘ Coffer S coffer |
O 8 ‘ Foffer o FOffar

Ei /\/\/\/\/\

5

2

2

o T T T o T

10 20 30 4 10 20 30 40
Tick Tick

Alice’s CPaid and FReceived In most of these tests, Alice received more forfeit
payments than she had paid in commission. Even in the wasst(tast 11), the
difference is very small. It would appear that it might be ilic&’s best interests
to habitually make false claims as she is likely to make a préfowever, this
will not last long before a guarantor increasesdiié n beyond excess. Similarly
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when Carol is at her worst in test 12, a guarantor will onlgtate so many claims
whether they be legitimate or not.

Test 7 - Alice CPaid and FReceived Test 8 - Alice CPaid and FReceived
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Bob’s CReceived As these tests involved someone always acting badly, there
are always claims being made. This forces the guarantorsctease their com-
mission requirements. Again, due to the randomness of #ims] guarantors are
affected differently with some fairing better than others.

Bob’s FPaid The guarantors pay a fair amount of forfeit before they bexom
inactive due to the number of claims being made. Howevertadtieeir increas-
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Test 9 - Alice CPaid and FReceived Test 10 - Alice CPaid and FReceived
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Credit
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L} 10 20 30 a0 50 60 o 10 20 30 a0 50

ing commission requirement mentioned above, their lossimnmsed which is
reflected in their final credit rating.

Alice’s Claims and False Claims The results range from having 100% false
claims in test 7 which gradually decrease to no false claiyngebts 11 and 12.
Again, the combination dfr ut hchance andmal war echance restrict agents
from making certain decisions. For example, in test 10, 6@%avol’s files are
likely to be incorrect. Alice will make false claims 60% oktime, however, this
only gives Alice the chance to make a false claim on the ot@&t df Carol’s files.
Even though Alice and Carol are both abusing the trust* mod#lis scenario,
the more malware that Carol serves, the less chance that wlitfalsely claim
and vice versa. This is why the guarantors need to make névassessments
between each protocol run to prevent personal loss for them.
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Test 9 - Alice Claims and Falseclaims Test 10 - Alice Claims and Falseclaims
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A.3 P2P Multiple Guarantor Tests

A.3.1 Testl

The results show that in Test 1, the trust* chain is much malatie than a
shorter chain as it has more possible points of failure. ktaai longer chain also
amplifies the effects such as price increases. For exampiEeincrease towards
the end of the chain will cause all previous guarantors teceis®e their prices. As
each guarantor is likely to increase their price slightlyctver their losses, it
will lead to a much higher premium for Alice. Thus quickly niady the cost of
buying a guarantee unfeasible for Alice. The effects of #nesmore prominent
in this simulation as guarantors have different rates déipgnon whether they
are buying or providing a guarantee. For each guaranteéstbiimed, the price
charged by a guarantor will increase but he is also likelyeerease the price he
is willing to pay for a guarantee. This will lead to more linising broken in a
chain as prices gradually reach the limits of other prinisipa
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The graphs in this section reflect similar results to theesponding tests in
the short chain simulation above. However, in this scena&ice only has one
route to Carol rather than five. It only takes a single guanatat become inactive
for the chain to be open. Of course, in reality, a diversiamloataken around the
inactive link. This explains why the simulation tick couthisre are roughly one
fifth of that of the previous simulation.
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A.3.2 Test2

As mentioned in Chapter 4, these tests follow the same catibirs of the

t rut hchance and mal war echance attributes but assume that Carol will
only reimburseB; with the forfeit50% of the time. B3 counts the number of times
Carol refuses to pay the forfeit and becomes inactive dfteretnon-payments.

The results exhibit the same features as before, howewvsrpitly B3 who
suffers greatly. However, this is assuming that he always plae forfeit toB,
who always payd3; etc. In reality, there might be non-payments between any
local relationship in a chain. Principals will reconsidewhmany times they
will tolerate non-payment from another and how much theyetiarge for future
guarantees of them.

This test could have been applied between other locallygdysrincipals in a
chain. However, the same effects would have been seen onitlcgopal expecting
to be reimbursed. This test shows that non-payments ordggtdfcally trusting
principals and that it is a locally solved problem. For exémiba principal whom
you trust never reimburses a forfeit payment, you simplp stosting them.
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A.3.3 Test3

In these tests, both end-points (Alice and Carol) are fixedeing “good”. In
other words, Alice never has reason to claim a guarantee ewel makes false
claims. The guarantors however will falsely claim the agrémfeit from their
neighbour at the probability defined gyar t r ut hchance.

The results show that the guarantors (regardless of whieb orade the false
claim) always end up better off that Alice and Carol. Thisksaap the case that
Alice should choose whom she trusts carefully. Carol (oeotuarantors) could
also investigate a suspected false claim by initiating decg€ trust* towards
another B, for example).
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A.4  Grid Computing Simulation

This section presents the results from the grid computimgiition. This simula-
tion is similar to the P2P simulations except that Carol is nbliged to reimburse
the forfeit to a guarantor due to a SLA being in place. For tbason, principals
in this simulation are far less tolerant to non-paymentsiffearol than they were
in the P2P simulation. The purpose of this simulation wasi¢a\the effects of
non-payment from Carol.

Table A.1 outlines the combinations of the probabilityiatites that make up
the 22 tests in this simulation. The initial values of agewiperties are the same
as the P2P simulatiordef aul t chance is the chance that Carol will default,
t r ut hchance is the chance that Alice will tell the truth about a compwafi
andcar ol paychance is the chance that Carol will pay a forfeit when requested
to do so.

A.4.1 Tests 1-6

In these tests, Alice is always truthful and Carol alwaysspthe forfeit if re-
quired by a guarantor. However, Carol starts by defaultid@f4 of the time and
gradually defaults less often until she never defaults.

From the results, the length of a simulation can be seen tease as Carol
starts to default less often. When Carol is at her worstqt&sB), Alice always
makes a profit. As Carol defaults less, Alice receives ledsifgpayments, but is
still paying for guarantees so makes an overall loss. Theagiars always profit
from commission payments as any forfeits they might pay &vays reimbursed.
Carol always makes a loss except in test 6 when she neverlidefdast 6 was
manually stopped as it would continue indefinitely.

These tests have shown that it is in Carol's best interespgdeide a good
service as she will suffer the most.

Even though Alice is being paid forfeits for bad service frGarol, she might
be less tolerant depending on how critical her applicaomn reality, regardless
of whether she is compensated, she might stop using CaeoVgs if the default
frequency is too high.
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Test | Defaultchance Truthchanceg Carolpaychance
1 1 1 1
2 0.8 1 1
3 0.6 1 1
4 0.4 1 1
5 0.2 1 1
6 0 1 1
7 1 1 0.8
8 1 1 0.6
9 1 1 0.4
10 1 1 0.2
11 1 1 0
12 0 0.8 1
13 0 0.6 1
14 0 0.4 1
15 0 0.2 1
16 0 0 1
17 0 1 0
18 0 0.8 0
19 0 0.6 0
20 0 0.4 0
21 0 0.2 0
22 0 0 0

Table A.1: Grid simulation test setup.

Guarantors will always be happy to provide a guarantee ag &snCarol is
reimbursing their losses.
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A4.2 Tests7-11

In these tests, Carol now always defaults and Alice is dulags truthful (as she’ll
have no reason to make a false claim). However, the chant€#nal will pay
the forfeit to Bob starts at 80% and decrements by 20% in essthuntil Carol
never pays the forfeit.

As the guarantors only tolerate one non-payment from Caefurk they be-
come inactive, the length of these simulations is reflectedmingly. The guar-
antors nearly always make a small loss from this single reonvent as they still
pay the forfeit to Alice. Due to this, Alice always profits imese tests.
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Test 11 - Credit Test 12 - Credit
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A.4.3 Tests 12-16

In these tests, Carol never defaults and always pays theitfdrfequired. How-
ever, Alice starts by being 80% truthful which decrement2b%6 in each test
until she’s never truthful when claiming.

The results show that the more that Alice falsely claims,stherter the sim-
ulation will run for. This is because Carol is effectivelykitag the blame and
hence losing trust from guarantors. Although Carol is reirsimg the forfeit, the
guarantors still register a claim and alter their rates atingly. Eventually, they
won't provide a guarantee of Carol.

Carol always makes a loss but the guarantors profit. Alicgssta make a
profit when she becomes more untruthful, although it is sivet. In reality,
Carol (or the guarantors) would invoke a cycle of trust* inthagely after they
suspect that false claims are being made.
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A4.4 Tests17-22

In these tests, Carol never defaults and never pays thatfdrfequired by a
guarantor. Alice starts by being 100% truthful which desemato never being
truthful.

Test 17 was stopped manually as it would continue indefinited Carol never
defaults and Alice is always truthful, only one guarantoused. This guarantor
makes a steady profit from commission that Alice has paid asdiever needed
to pay a forfeit.

From test 18, a dramatic decrease in simulation run time easebn. By test
22, a simulation only runs for 6 ticks. Here, Alice alwaysfiisofrom the forfeits
honoured by guarantors. The guarantors make a small lasstfre non-payment
from Carol. Carol’s credit remains unchanged in these &sthe refuses to pay
any forfeits.

These results show that guarantors won't tolerate claimew@arol doesn’t
reimburse the forfeit. Carol is right to not reimburse thddi as she never pro-
vides a bad service. Alice is effectively destroying pokesitust* routes between
herself and Carol.
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Test 19 - Credit Test 20 - Credit
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A.5 Click-through Licensing Simulation

Table A.2 shows the test combinations for the click-throsghulation. The
def aul t chance andcar ol paychance attributes have the same meaning
as the previous simulation. However, now we usedaei dt r ut hchance at-
tribute to define how truthful David will be when answeringeges. We assume
that Alice is always truthful when claiming as this has aligheen tested in pre-
vious simulations. Also, she can make no immediate monefairy from doing
so. Again, the initial values of agents are the same as thesid@dRation.

A5.1 Tests1-6

In these tests, Carol never defaults but always pays. D&itsdy being 100%
truthful which gradually reduces to 0%.

Test 1 needed to be manually stopped but would have contasied claims
were made because David was always truthful.
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Test | Defaultchance Davidtruthchance Carolpaychance
1 0 1 1
2 0 0.8 1
3 0 0.6 1
4 0 0.4 1
5 0 0.2 1
6 0 0 1
7 1 1 1
8 1 1 0.8
9 1 1 0.6
10 1 1 0.4
11 1 1 0.2
12 1 1 0
13 0 1 0
14 0 0.8 0
15 0 0.6 0
16 0 0.4 0
17 0 0.2 0
18 0 0 0

Table A.2: Click-through simulation test setup.

As David’s truthfulness deteriorates, the guarantors imecmactive quicker
due to the increase in claims. However, the guarantorspstfit from the com-
mission from Alice as Carol always reimburses the cost ofjditeate licence.

By being untruthful, these tests have shown that David woll gain in the
long run as eventually all routes to Carol will be broken. ©e’8 stop selling his
software altogether.

Test 1 - Credit Test 2 - Credit

200 -

100 o

edit

zzzzz

100 -

200 4

300




Test 3 - Credit Test 4 - Credit
200 100
" el
100 1 /7# 50 / /71_
o - LB
& — nlice 1 Y Alice 1
£ —— Bob 1 3 —— Bob 1
g 100+ - Bob 2 @ 504 — Bob 2
o Bob 3 o Bab 3
— Bob 4 ——— Bob 4
——— 8BS ——— Bobs
400 Carol 1 1099 Carol 1
300 4 150
400 - 200 - -
10 20 30 40 50 &0 70 10 20 30 a0
Tick Tick
Test 5 - Credit Test 6 - Credit
100 100
50 504 Fi
LE 0
& —Alice 1 2 — lice 1
= — BoD 1 3 e BOb 1
@ 50 — Bob 2 @ -50 1 e BOb 2
(5] Bob 3 (5] Bab 3
Bob 4 — Bob 4
o Bob 5 = Bob 5
1081 Carol 1 2001 Carol 1
150 150 4
200 - - 200 - T r
10 20 30 a0 s 10 15 20 25
Tick Bl

In these tests, Carol always defaults and David is now alviaysful.

The

chances that Carol will reimburse a guarantor ranges fravaya to never.

The length of the simulation decreases from 26 to 6 in ratatiothe chance
of Carol reimbursing Bob decreasing.

Alice suffers losses in these test whereas the guarantoke swme profit.
However, even in test 7, the simulation doesn’t run for verygl. Again, regard-
less of whether Carol reimburses the forfeit, the volumefaeegluency of claims
if often more important causing routes to be broken betwdee/Aand Carol.
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Test 9 - Credit Test 10 - Credit
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Test 11 - Credit Test 12 - Credit
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A5.3 Tests 13-18

In these tests, Carol never defaults but also never paysoafgjts to the guaran-
tors. David starts by always being truthful in test 13 unélik never truthful by
test 18.

Test 13 needed to be manually stopped but the following tstseased in
run time as the routes became exhausted faster. In these ti@stguarantors
make very small profits and Alice makes small losses.

Again, the results show that the truthfulness of David affést* routes to
vendors of his software. This is not in his best interestseasiti lose sales of his
software in the long run.
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A.6 Spam-proof Simulation

This section presents the results from the spam-proof sitonl. Note that the
spani evel attribute is fixed to 1 and thepanmaccept attribute is fixed to 0.
These attributes are for modelling spam perceptions aedaiote and have been
fixed to reduce the number of required tests. Table A.3 cedlthe attribute com-
binations for the spam-proof tests. The attributes used paathance which
defines the chance that Carol will send spgmar t r ut hchance defines the
truthfulness of a guarantor, an@ct r ut hchance defines how truthful Alice is
when deciding whether email is spam or not. Initial valuesafpents are given in
Table A.4. The change in initial values (and their possibleges when randomly
generated) has increased the tolerance of bad behaviaall foincipals. This is
to allow the simulations to run for a longer period of time.

Test| Spamchance Guartruthchance Rectruthchance
1 1 1 1
2 0.8 1 1
3 0.6 1 1
4 0.4 1 1
5 0.2 1 1
6 0 1 1
7 0.8 0.8 1
8 0.6 0.6 1
9 0.4 0.4 1
10 0.2 0.2 1
11 0 0 1
12 0.8 1 0.8
13 0.6 1 0.6
14 0.4 1 0.4
15 0.2 1 0.2
16 0 1 0

Table A.3: Spam-proof simulation test setup.
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Carol Bob | Alice
cOffer 3 2.9 n/a
fOffer 50 49 n/a
cMin n/a 1-5 n/a
cMax| 5-10 00 n/a
fMin n/a 25-75| 25-75
fMax | 50-100| oo 00

Table A.4: Initial values for the spam-proof simulation.

A.6.1 Tests1-6

In these tests, the guarantors and the email receiver (Adice always truthful
about making claims. However, the probability that Cardl s&nd spam email
starts at 100% and gradually decreases until she never spans

The length of a simulation increases in relation to the desgan spam. By
test 6, no spam has been sent and as Alice and Bob are both 10falf the
simulation continues via a single guarantor until manustibpped.

When Carol is sending lots of spam, she makes quite conbiédosses while
the guarantors and Alice make profits. This shows that owes,tonly spammers

will be penalised.

Test 1 - Credit

nnnnn

Bob

30
Tick

nnnnn

Test 2 - Credit




APPENDIX A. SIMULATION RESULTS 145
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A.6.2 Tests 7-11

In these tests, the chance that Carol will send spam sta&8@®aiand decreases to
0% of the time. The receiver is always truthful, however, goarantors start by
being truthful 80% of the time which gradually decreases%od the time.

It is only Carol who suffers a loss in these tests even whemskier sends
spam. This is because a guarantor’s chance of being unitutidreases as
Carol's spam chance decreases.

The results show that the guarantors can make some profitrfraking false
claims before Carol refuses to reimburse the forfeit. This short-lived gain and
using trust* truthfully will be more beneficial in the longmu In reality, Carol
would've investigated such false claims by invoking cyadésrust*. Or simply
try other routes to Alice to see if claims are still being made
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A.6.3 Tests 12-16

In these tests, the chance of spam ranges from 80% to 0%. Howhis time
the guarantors are always truthful but now the truthfulreggbe receiver ranges
from 80% to 0%.

These results reflect a similar pattern to those in tests.7Hidy show that it
wouldn’t be sensible for Alice to make false claims as shéavily be damaging
future possible trust* routes to herself.
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Appendix B

Trust* KeyNote Implementation

B.1 Introduction

This appendix provides an example of how the trust* proteooild be followed
by using the KeyNote trust management toolkit as the coresidecmaker and to
also provide the micro-payment mechanism. The exampldalitw the protocol
of the spam-proof email application previously descrilve@hapter 7 and will use
monetary micro-payments for the commission and forfeits.

B.2 A Spam-proof KeyNote Implementation

This section shows how KeyNote might be used to negotiatest*trelationship
between Bob and Carol. Bob wishes to send an email to Carchasiguaranteed
that it isn’t spam by someone whom she trusts directly. Thavle is a good
case scenario where there is at least one possible routereMgl shows a route
between Bob and Carol via Gordon and Frank. Principals amtifted by RSA
public keys which have been replaced by names for the puspdghis example.

&)

Figure B.1: A trust* route between Bob and Carol.

148
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B.2.1 Multiple Guarantors

Some previous examples in this dissertation have assuraedrily one guarantor
is needed to extend trust between principals. This exang#e two guarantors
(Gordon and Frank) to extend trust between Bob and Carobl®aows that she
is receiving a guarantee from Frank and Bob knows he is beirsgagteed by
Gordon. However, Bob and Carol don't necessarily know wiiethese are the
same people or how many other guarantors are in the chainilaBynGordon
and Frank will transact with each other but are unaware df etteers neighbours
(whether they be Bob, Carol or another guarantor). This gamould be ex-
tended to an infinite number of guarantors of which only nee@énow whom
they are receiving a guarantee from or whom they are progidiguarantee to (or
both).

B.2.2 Policies

Every principal will have one or more policy files which denghom they trust
and the forfeit and commission rates they are willing to ptédeom them. A
principal might have more policies depending on whom theghhbe dealing
with. For example, a policy might allow discounts for a setlafse friends. In
this vanilla example, each principal only has one policyckhgoverns who they
are willing to receive email guarantees from. Differentipels might also be
used depending on whether a guarantee is being providedray texeived by a
principal.

Figure B.2 is an example of Carol’s policy (who will be the eaer of the
guarantee). It allows her to be the recipient of a spam-pyaafantee from Frank
with a minimum forfeit value. If these conditions are all mi&eyNote will re-
turn true about a particular guarantee. The forfeit rateci#tibus and might be
pence or credit but this depends on what Frank and Carol hensidetl to deal in.
Assume for this example the currency is pence.

A guarantor will be interested in a commission as well as tefovalue. Fig-
ure B.3 is an example of Gordon’s policy (who will be a guaoant
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Authorizer: "POLICY"

Licensees: kFrank

Conditions: type == "spamproof” &&
@forfeit >= 8 —> "true";

Figure B.2: Carol’s policy.

Authorizer: "POLICY"

Licensees: kBob

Conditions: type == "spamproof" &&
@commission >= 1 &&
@forfeit >= 8 —> "true";

Figure B.3: Gordon'’s policy.

B.2.3 Requests and Guarantee Credentials

Figure B.4 shows the direction of the requests and guararss®ng the four
participating principals and their respectivd numbers.

29436992 811164398 510997698

- - < -

Figure B.4: Request and guarantee paths and id numbers.

Figure B.5 is an example of Bob’s request to Gordon for himctcaa a guar-
antor between himself and Carol.

Bob also sends a guarantee (Figure B.6) to Gordon statingpthenission rate
that he is willing to pay Gordon to forward the request andftinieit he will pay
if the email is considered spam by Carol. Tihe field is simply to link requests
to their corresponding guarantees for future reference.

Gordon will forward the request to principals who trust hifrank receives
the request and the guarantee proposal from Gordon (Figue Bis likely the
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id ="129436992"
type = "spamproof"
from = "bob"

to = "carol"

forfeit = "8"
commission = "1"

Figure B.5: Bob’s request.

KeyNote—-Version: 2

Authorizer: kBob

Licensees: kGordon

Conditions: id == "129436992" &&
type == "spamproof" &&
commission == "1" &&
forfeit == "8" —> "true";

Signature: "sig-rsa—shal-hex:7fbcde43..."

Figure B.6: Bob’s guarantee.

commission and forfeit rates will differ from other guaraes if the chain. This
way, Gordon can cover his loses if Bob was to default. Howé&weathis example,
they’ll stay the same.

KeyNote—-Version: 2

Authorizer: kGordon

Licensees: kFrank

Conditions: id == "811164398" &&
type == "spamproof" &&
commission =="1" &&
forfeit == "8" —> "true";

Signature: "sig-rsa—shal—hex:08d5406c..."

Figure B.7: Gordon’s guarantee.

In the same manner, Carol will receive the request and gtesdrom Frank
minus the commission value and will decide whether to geaerdoken from the
forfeit value and who the request was from. Carol trusts kamd a minimum
forfeit of 8 pence is allowed. Frank’s guarantee is shownigufe B.8
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KeyNote-Version: 2
Authorizer: kFrank
Licensees: kCarol
Conditions: id == "510997698" &&
type == "spamproof" &&
forfeit == "8" —> "true";
Signature: "sig-rsa—shal—hex:0d7bc346..."

Figure B.8: Frank’s guarantee.

B.2.4 Compliance Checking

All recipients of a guarantee will be able to pass the guasantedential, the
request, the relevant public keys, and the policy to thelyNk#e compliance
checker which will return an indication of whether to prode® not. As Carol
is the intended recipient of the email from Bob, she will nosngrate an email
token for him and send it back to Frank. Frank will pass it becksordon and
so on until it reaches Bob. It is this process that notifieh@a@rantor that their
guarantee is now active.

It is the responsibility of each principal to verify any reaa guarantees be-
fore proceeding with the protocol. In a guarantor’s cas@rozeed would be to
forward the request and guarantee. For Carol, this would generate the token.
Once Bob has the token, he can send the email directly to @attolthe token
embedded in the header of the email. Figure B.9 shows thetidineof the token
and the email.

Figure B.9: Direction of the token and email.
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B.2.5 After Sending the Email

The next part of the protocol involves Carol responding tankrwith either a
notification that the email was not spam or a guarantee cl&rank will reply
with an acknowledgement or the forfeit payment respegtiveéigure B.10 shows
how this process continues until it reaches Bob.

token x is OK/spam token x is OK/spam token x is OK/spam
14 ¥ N
\ ’ \\
ack/forféiz payment ack/for?e—it payment ack/f;)r—feit payment

Figure B.10: Direction of responses and payments.

B.3 KeyNote Micro-payments

This section will give an example of how the payment mechramisght be imple-
mented using KeyNote. It is based on a micro-payment schgrBéalzeet al [16]
which allows off-line payments of very low values to takeqdaThe example will
show Bob’s commission payment to Gordon.

A principal needing to receive micro-payments will need &gyahat iden-
tifies the public keys of the Provisioning Agents (PAs) thia arusted to issue
payer credentials. A PA can be seen as a bank who issue cheqgke to their
account holders. People are generally happy to receiveguehfeom another if
a well known bank is at the top of the cheque. When a chequesepted to the
bank, they will be obliged to honour the payment and debitntio@ey from the
payer’s account. An example of Gordon’s policy is given igl¥e B.11.

This policy authorises any payments in the spam-proof egftin which are
signed by any one of the three PAkat Gordon trusts.

1| denotes OR.
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Authorizer: "POLICY"
Licensees: kPAL || kPA2 || kPA3
Conditions: type == "spamproof" —> "true";

Figure B.11: Gordon’s payment policy.

Principals needing to make payments are issued credepgaiadically by
their PA which specify the conditions under which their paymwill be autho-
rised. These credentials are signed by the issuing PA antheigal receiving
a payment will be able to verify this against their policy. Axample of Bob’s
payer credential is given in Figure B.12.

Authorizer: kPA1
Licensees: kBob
Conditions: type == "spamproof" &&
amount < "11" &&
date < "20091031" —> "true";
Signature: "sig-rsa—shal—hex:3eadb5el..."

Figure B.12: Bob’s payer credential.

This simplified credential will allow Bob to make paymentsated to the
spam-proof application of up to 10 pence (for example) ate tintil the expiry
date. The number of possible transactions could also bé&kihut assume these
credentials are issued daily and expire daily. This way the&h do a regular
risk assessment of Bob and alter the conditions accordingly

When Gordon wants to take payment (this might be before er afyuarantee
is forwarded depending on how much he trusts Bob) he will $wialan invoice
which is shown in Figure B.13.

merchant = "kGordon"
type = "spamproof”

date = "20091030"
amount = "1"

nonce = "e7bdf5dbee3b"

Figure B.13: Payment invoice.

Bob now generates a signed micro-payment credential amt$ sieslong with
his payer credential to Gordon. This credential is shownguie B.14.
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Authorizer: kBob
Licensees: kGordon
Conditions: type == "spamproof" &&
amount =="1" &&
date =="20091030" &&
nonce == "e7bdf5dbee3b" —> "true";
Signature: "sig-rsa—shal-hex:f7e5e22d..."

Figure B.14: Bob’s micro-cheque.

Gordon sends these credentials, Bob’s key, the invoice anpdticy to his
KeyNote compliance checker to determine whether he isylikelbe paid (and
whether to proceed). The compliance checker will verifydigmatures, and check
that the credentials link. It will also check that the coratis are met between the
credentials and Gordon’s policy. In the example given h&erdon will have
confirmation from KeyNote that he will be able to receive higehny from PA1L.

B.4 Conclusion

The point of using a trust management system like KeyNote k& negotiations
of trust* routes can be made fairly autonomously. Policysféeate the principals
you trust and the minimum rates you will accept from them. Thmpliance
checker could automatically be invoked when a guaranteedurest is received
(say by building trust* functionality into an email client)

This example has assumed that the trust and payment mecisaumsed within
the local trust relationships are homogeneous. KeyNotead between Bob and
Gordon, Gordon and Frank, and Frank and Carol as the mechami®llow the
protocol. In reality, as discussed in Chapter 5, the spegifgichanism used is
more likely to be heterogeneous between principals. Maydiedhd Gordon use
KeyNote but Frank and Carol might use another mechanismsadime applies to
the payments involved in a trust* protocol run.
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Publications

This appendix includes two refereed publications that gyeoduct of this work.
The first introduces the trust* model and formed the basis@§pam-proof appli-
cation described in Chapter 7 and was presented at the §elewtocols Work-
shop in Cambridge, UK. The second formed the basis of the PgRcation de-
scribed in Chapter 3 which was presented at ADBIS in RigayihatBelow are
their respective bibliography entries:

Stephen Clarke, Bruce Christianson, and Hannan Xiao. *rlsing Local
Guarantees to Extend the Reach of Trust. Phoceedings of the Seventeenth
International Workshop on Security Protocols, Cambridge, UK, April 2009.

Stephen Clarke, Bruce Christianson, and Hannan Xiao. Exigirust in Peer-
to-peer Networks. liProceedings of the Thirteenth East-European Conference on
Advances in Databases and Information Systems, Riga, Latvia, September 2009.
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Trust*: Using Local Guarantees to Extend the
Reach of Trust

Stephen Clarke Bruce Christianson Hannan Xiao

Abstract

We propose a new concept called trust* as a way of avoiding¢ices-
sity to transitively trust others in a range of distributatvieonments. The
trust* approach uses guarantees based upon already giséabtrust rela-
tionships. These localised guarantees are then used tudeixtest to a new
relationship (which we call trust*) which can hold betweempipals which
are unknown to and do not trust one another. Such chains chgess
enable the risk involved to be shifted to another party (imnalar way to
real world guarantees). If a guarantee is broken, some Kinfrdeit' is
imposed, either to compensate the client or to deter thes&om doing it
habitually. Due to trust (and hence also forfeits) beinglised, the specific
micro-payment and trust management mechanisms that adetusmple-
ment the protocol can be heterogeneous. This paper desthibeoncept
of trust* and some possible applications within a domainnetiee service
being provided is also electronic.

1 Building on Trust

Building trust on the Internet is a well researched area. YWsniutions assume
(often implicitly) that trust is transitive. Commonly usegamples are reputation
systems where each of its users has a reputation rating.eTaéags can be
viewed by other users and later increased or decreaseddirgem the outcome
of a transaction. Such reputation systems are commonly arséide Internet for
various purposes and generally work well. However, as roeat, reputation
systems have a vital flaw; they imply that trust is transife7]. Assume a user
wants to determine the risk involved if they were to trusttaro (eg. to provide
a described service) by looking at their reputation ratifighis might contain
comments and ratings left from previous transactions. dnigkely that the user
looking knows (or trusts) the other users who have left tharoents. But even
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if they do know and trust the people who left the comments, they will &
transitively trusting the service provider in question.

The motivation behind this work is to find a new way of buildiag trust
which avoids this need for transitivity. The ability to kaitrust in the real world
is also a common necessity. In real world protocols, thibtgls often facilitated
by using a guarantor as a replacement for transitivity afttrGuarantees work by
shifting the risk to another party thus lowering the risktloe trusting party.

Trust* is based on the electronic equivalent of the real dvgrarantee solu-
tion. Say that Carol needs to trust Alice about somethingdoesn’'t personally
know or trust Alice. However, Carol trusts Bob who in turngisi Alice to do
whatever it is Carol needs her to do. In order to change Gapelfception of the
risk involved, Bob could guarantee to Carol that Alice witt @as intended and
offer Carol compensation if Alice doesn't. So, what's Bolrisentive to act as
a broker between Alice and Carol? We’ll come back to thisr)dtat for now
assume that Alice pays Bob a commission.

This concept of ‘extending’ trust in this way by using losakl guarantees is
what we call a trust* relationship. The trust*er (Carol) ¢hen acisif they trust
the trust*ee (Alice) directly. In order to shift the risk,rfeit payments are used.
These will be discussed later, but assume for now that theynécro-payments.
All forfeits are paid locally; if Alice defaults then Bob miygay Carol the agreed
forfeit whether or not Alice pays Bob the forfeit she owes lfand the two forfeits
may be of different amounts). Failure to provide a service togay a forfeit -
may result in an update tolacal trust relationship.

Trust* can be composed to an arbitrary number of hops becalus®ist is
now local and so are the forfeits. It is worth noting that trige’t the same as
trust* even in a one hop scenario. If Bob trust*s Alice to pdava service, it
means that Bob trusts Alice to either provide the servicdsa pay the forfeit

Direct trust Direct trust

Figure 1. A trust* relationship.

L1t may be that Bob would rather have the money, and beliewvasAlice cannot provide the
service, but will always pay the forfeit.
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2 Applications

There are several promising application areas to whicltftright be beneficially
applied.

Spam-proof Email Trust* could be used to implement an email system where
messages can be forwarded with an accompanying guaramiedng that the
email is not ‘spant. Spammers rely on sending millions of emails a day to make
any respectable profit so it would be unviable for them if eleenvalue guaran-
tees were required. I'll happily read any email for 10p capHront. Now the
spammers need to find a cheaper route based on this. Thisaggunail users to
filter out emails without guarantees, but existing spamrféggplications can be
used for this.

Grid Computing How trust can be built in computational grids (which are
likely to span organisational and domain boundaries) is hnesearched prob-
lem [4, 9, 11]. Trust* could easily be applied as a solutiod as most grids are
used to share resource’s across organisations, thesagesaould be used as
the currency for forfeit and commission payments. Resauntight include CPU
cycles, storage or bandwidth. These typically vary in pgezkvalue between the
provider and receiver, so resources could also be brokeréuisi way, converting
one resource into another.

Peer-to-peer Computing When sharing files, most users feel more comfortable
knowing that what they might download is licensed, or attieasampered with.
Research into building trust in P2p environments has sugdegays of providing
this comfort [10, 14]. For example, the Turtle [12] P2p ctiabhows a user to share
data with ‘friends’ or those you already trust directly. heir paper, they suggest
that Turtle can be enhanced with an economic model to engew@operation and
sharing. Applying trust* would not only provide a mechanissrenable this but
also allow new principals to join the sharing of files undeaigunteed conditions.
This application is similar to grid computing except the t& itself is now the
resource.

°The idea was inspired by a 1930’s door bell system that waigies to stop unsolicited
callers disturbing a household [13]. The door bell is atideby inserting a low value coin which
upon answering is refunded if the caller is welcome, othesitiis kept. This analogy has various
flaws but the idea might be better suited to deterring spaminehe cyberworld. Although the
coin value is low, to call at hundreds/thousands of housegdwoon add up.
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Volunteer Computing Many volunteer computing projects require spare CPU
cycles to be donated (during screensavers etc) by millibusers worldwide in
order to solve a computationally difficult problem. Exangileclude SETI@Home,
a SHA-1 collision search and many others. Multiple projeets be registered and
administered using a client called BOINC [1]. There are msaqgurity issues [2]
related to volunteer computing which could benefit from spyg trust*. Volun-
teer computing differs from grid computing in that anyone galunteer, whereas
grids usually cross organisations which already have aagpu.

Second Life Trust* could be extended to real world transactions such-as e
commerce, but it's easier to keep a transaction purely releict and use trust*

in a virtual world. In Second Life, trust* could be used toifdate the buying
and selling of virtual objects. Second Life has its own coeye(Linden Dollars)
which could be used for making the required commission diefopayments.
Also, Linden Labs have recently revamped their scriptinggleage and crypto-
graphic libraries within the virtual world which could makearantee creation
and verification possible.

Music Downloads Many people now buy music online rather than buying a
physical copy. Services such as iTunes offer single traok#ets than a pound.
However, it is unknown to the downloader how much of this nyoiseactually
going to the artist or group who produced the music.

Trust* could be used to ensure that a music vendor (iTunes¥ample) will
actually pass on the 30 pence (or whatever was agreed) totiste H they don't
prove that they did, then the guarantor will pay the artisgvp that they did,
and claim it back from the vendor later. This way the artist alivays receive
their royalties. A possible privacy issue is that proving thoney was paid for a
specific individual’s purchase might divulge their ideytid the recording com-
pany or artist. Various payment protocols address thisexample, anonymous
payments which include a client challenge.

Charity Donations  Similarly, a website might include a sponsored link with a
promise that 1p will go to charity for every click made. Theindual clicking
the link might want assurance that the intended charity aatlally receive this
donation. Here the forfeit would be to produce a receipt shgwhat the donation
has been made, possibly by the guarantor.




APPENDIX C. PUBLICATIONS 161

3 Discussion

3.1 Networking Analogies

By now you will have noticed that many of the problems with ldgmg trust* are
analogous to well known networking problems. Fortunatelg, corresponding
network protocol solutions also have trust* analogues. éxample, finding the
best route between two nodes on a network is analogous to@radi optimal
route between two principals who wish to form a trust* relaship with one
another. The six degrees of separation argument implies# toute can always
be found but the best route could be the cheapest (accordingmmission or
computational expense) or the most trudteld is assumed that any established
network routing protocol will suffice for finding optimal cims of guarantors,
although the choice of algorithm will have subtle consegesn

Another example is network back pressure. Analogouslyustt is repeat-
edly broken between two principals, the guarantor is likelyeither break the
local trust completely (never provide guarantees agaitt) Wie principal being
guaranteed (which corresponds to a link outage) or draaibticcrease their
commission or forfeit rates (which corresponds to a pricedase, or a delay). If
a particular link drops between two nodes, a route whichiptesly utilised this
link might become more expensive for surrounding nodess iBikely to cause a
bottleneck for other nodes following alternative routed anther increasing their
cost. These issues can be addressed using network comgastiool techniques,
and so on.

One difference with conventional networking is that all baoks are one way,
because trust isn't generally symmetric, whereas mosicgepontracts are bi-
directional. This isn’t a problem, because two trust* patas be found in oppo-
site directions via a different route of guaranfors

3.2 Commission and Forfeits

The most obvious use of a forfeit is either to deter a prindiyeen defaulting on

what they have guaranteed or to provide a way of compenstingther party if

they do. The commission payment was introduced in orderdeighe an incentive
for a principal to act as a guarantor and can be seen as a spofqra guarantee.
A principal needing to be trust*ed could pay this commisgma guarantor who
trusts them directly.

3Different levels of trust, forfeit and commission etc capend to different network Quality
of Services.

4The analogy is thus with a network of links which are uni-diienal for data flow, although
bi-directional for control flow.
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Forfeit and commission payments serve different purposdsdan’t need to
be of the same type (or paid by the same means). Also, thesegpay and the
actual service being provided need not be like-for-like.

The price of a guarantee or the forfeit that should be paidig broken are
variable and could be set by a guarantor to reflect their péme of the risk
involved in providing a guarantee. For example; as a riskgrguotee is more
likely to be broken, a higher forfeit might be required by twarantor. A low risk
guarantee is unlikely to be broken so the guarantor will getricentive through
the commission as a forfeit payment is less likely to happ®mother incentive
to provide a guarantee is to make a profit from a forfeit. Assuhat Alice is
trust*ed by Carol with Bob providing the guarantee to CarblAlice defaults,
the forfeit from Alice to Bob might be more than Bob has to paydP.

These considerations lead to some interesting effectsdiegathe commis-
sion and forfeit rates along a chain of guarantees. In tresato, if Alice was
to default the guarantee, only Alice will be out of pocket ks forfeit rate is
higher at her end of the chain (and decreases towards th&ngisnd). Every
guarantor will make a profit in this case but if we considerragker chain where
risk perceptions fluctuate, guarantors might lose out. Risrreason, it is likely
that guarantors will only provide guarantees where theiebelthe rates involved
will make them better off in most cases. This flexibility ofrpeption is vital in
ensuring that guarantors get their incentive and prinsipddo might default are
sufficiently deterred.

3.3 Heterogeneity

In order to implement the trust* relationship mechanismethier to initiate, pro-

vide, or receive a guarantee, a way of making decisions ayrd@ats is necessary.
In our initial implementation, we used the Keynote trust aggment system [5]
to act as the core decision maker and also to provide thesama semantics
of the guarantee credentials and policies. To make paymantscro-payment
system [6] (also implemented in Keynote) provided a way fangpals to pay

commission and forfeits to each other. However, one of thamidges of our
approach is that both the trust management and paymentsy/stn be hetero-
geneous due to the fact that trust (and payments) are corndinkxtalised. If

a guarantee has been made from one principal to anotherrustyrianagement
and micro-payment schemes could be used between them. ganmetime, other

SNote that this gives Bob an incentive to hope that Alice diggauAlternatively, Alice may
pay Bob a commission instead of a forfeit, in which case Babelsdhat she doesn’t default. The
second case is like buying insurance. Commission ¢ has the sgpectation (but lower variance)
for Bob aspq f, wherep is Bob'’s estimate of the chance of Alice defaulting, anslhis assessment
of the chance of Alice paying the forfeft
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pairs of principals might use completely different schenfslong as an agree-
ment has been made in advance on how the protocol will bewelicbetween a
specific truster and trustee, then it doesn’t matter whagisgoused in other parts
of the chain.

3.4 Anonymity

Do guarantees ever need to be verified outside of the loddtigst relationship?
In our protocols, each guarantee is verified by the prindipegiving it locally.
Once a chain of guarantors has been found (say between AldteCarol via
Bob), how does Alice prove to Carol that she is in fact guaadtto use Carol’'s
database? Some kind of access control credential coulddsetasencode the
guarantee chain details which can be verified by Carol. Hewevarol doesn't
need to know who Alice is. All Carol needs to know is that she rexeived a
guarantee from someone whom she trusts (Bob) and from wheroashclaim a
forfeit if Alice misuses the service provided. Carol do¢s@ire about any other
local agreement in the chain, just the one between Bob arselie€onsequently,
the trust* mechanism can be deployed in protocols whereyanityis required.

Trust* is intended to be deployed in environments wheregtli®mno univer-
sally trusted arbiter or referee. If Carol starts claimihgttevery email she re-
ceives is spam, Bob will either stop providing the guaragiteewill charge more
for providing them. Alternatively, Alice may form a cycle tiust; Alice might
trust Dave (who trusts Carol) to refund her forfeit if it isfaimly claimed.

3.5 Payment by Resource

Micro-payments are generally considered to be small elermonetary trans-
fers. Due to the heterogeneous nature of the localised etsteen individual
pairs of principals, the payment could be something of a nrareediately valu-
able commodity to them (in comparison to using purely maygtayments). As
mentioned, payment could be by a resource such as CPU tinadad® access or
bandwidth.

If a guarantor is taking payments of one type (from a prindipey trust) and
making payments of another type (to a principal who truststf the guarantor is
effectively acting as a resource broker between theseipalsc Also, trust* could
be used alongside an existing trust infrastructure and ageents of an existing

SIndeed, the guarantee chain can be used to provide anony®@fityourse, the trust* mech-
anism could also be extended to situations where a guarahs#e needs to be identified (and
verified) during audit. For example, an auditor might wantedfy each guarantee which extends
trust between Alice and Carol in order to prove a forfeit iggdale (analogous to a bail bond agent
or bounty hunter etc).
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commodity such as reputation ratings or credit (maybe whHenfait hasn’t been
paid). Indeed, existing trust or reputation could also beduss a commodity of
payment. The point is that this flexibility should make it pitde to use trust* to
complement existing infrastructures rather than replaeat

4 Conclusion

The whole concept of extending trust to trust* makes userebaly existing trust
relationships rather than creating new ones. It uses gtessmo bridge the gap
between unknown principals with a sequence of localisedeagents which re-
move or reduce the perceived risk of the trust*ing princigad shift it towards
the principal being trust*ed.

The next stage of this work will involve applying the idea nigt* to some
of the various applications outlined in this paper. The emcspplications will be
modelled using a discrete event simulator such as Repasp[8j which trust*
will be applied. This will be a means to defining the boundaoéthe existing
model. For example, problems might become evident whenyaqptrust* to
grid computing that weren’t in the spam-proof application.

Trust* is flexible in that it can be used in many different apaiions, how-
ever because it builds upon already existing trust, it woe&d to replace any
existing trust infrastructures. It will integrate with theand can utilise existing
commodities such as reputation.

A The Anti-spam Protocol

This protocol shows how trust* might work in the spam-proofadl application.
It involves three principals with one path of delegationjrakig 1. Alice wants
to email Carol; Carol trusts Bob and Bob trusts Alice. Notatttmne forfeit and
commission payments, as well as the email itself, go in thposipe direction to
the arrows of trust.
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A — B:
B — -
C — B:
B — A:
A= C:
C — B:
B — C-
B — A:
A — B:

Please may Alice have a token for Carol, forfeit=f, comroissc
Please may Alice have a token for Carol, forfeit=f’, comsms=c’
Token for email from Alice to Carol, id=x etc

Token for email from Alice to Carol, id=x etc

Email (token x in header)

Token x is OK/spam

Cheers/here is the forfeit

Token x is OK/spam

Cheers/here is the forfeit

The tokens need to be crypto-protected but Alice, Bob andl@an be iden-
tified by anonymous keys. We assume that the messége;» C': Please may
Alice have a token for Carol, forfeit=0, commission=.10hailvays work.
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Extending Trust in Peer-to-Peer Networks

Stephen Clarke Bruce Christianson Hannan Xiao

Abstract

This paper presents a way of reducing the risk involved witwrdoad-
ing corrupt content from unknown (and hence untrusted)cjpals in a P2P
network. This paper gives a brief overview of the need fosttin P2P net-
works, introduces a new notion called trust*, and shows Huw may be
used in place of the conventional notion of trust. Finallg apply trust* to
the Turtle P2P client and show how the integrity of downl@hdentent can
be guaranteed without assuming that trust is transitive.

1 Introduction

Peer-to-peer (P2P) based networks are widely used on theéttto enable file
sharing, streamed media and other services. With a traditdient-server based
network, many clients connect to a fixed server. Whereas k@m<are all con-
sidered equal and connect directly to each other. Becauggsabpology, tasks
such as sharing files and other resources can be more effageatclient can
connect to many other clients and download content simedtasly.

Much of the content currently distributed via P2P netwosksither illegal or
violates copyright laws in some way. However, there are alsoy legitimate
reasons why content might be distributed using P2P, ane isesopyright-free
content also available such as open source software. PRitpl®such as BitTor-
rent enable sharing of very large files such as operatingsystand many Linux
based distributions are downloadable in this way in ordéower the load on an
individual server.

P2P networks have many advantages such as scalabilityuarid there being
no centralised server, network loads can be easily balamt®adever, for the same
reasons, a problem with P2P networks is that all peers aseded as equal and
there is no real way to moderate content. Anyone can use alR2®and share
any files they wish. Malicious users can easily insert iredrfiles into a network
which are searchable by other clients and will thereforeagate further. Even
non-malicious users might be unaware that they are sermicayriect files from
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their computer. To counter this, hosts might publish an MB&ak-sum on their

website. However, this is unlikely and it is the user’s decisvhether and how

they actually verify this, and getting hold of the corrececksum leads us back
to the initial problem. Also, this approach assumes thatriligtee is the original

source and not just a middleman provider.

This paper describes how a new concept called trust* [3] @applied to
P2P networks to guarantee the integrity of files being sharkis paper uses the
Turtle P2P client [11] as a basis on which to discuss the qune#hough trust*
can be applied to various other P2P clients. Turtle enaldsstéi be shared among
friends (people whom you know in the real world) in the hopéprove safety
and overall integrity of the shared content. However, filigrip isn’t transitive.
Trust* aims to reduce the perceived risk involved when sitgfiles over multiple
hops with unknown principals. Trust* achieves this by pdivg incentives to act
correctly and deterrents for acting maliciously or incotepdy.

2 Extending Trust

This section briefly describes the concept of trust* [3]. Tirean purpose of trust*
is to allow unknown principals to interact whilst at the saimee lowering the per-
ceived risk incurred by transitively trusting or relying oeputation (particularly
when the intention is to use a clieorice and never again).

In the real world, this is often achieved by using an interimgdas a guar-
antor. An example of this is letting houses to students, wiandlords require
a guarantee against a particular tenant. The guarantds tihus tenant and the
landlord trusts the guarantor so the landlord has shiftedi#k of not receiving
the rent to the guarantor. The landlord believes that headilays get his rent
whether it be from the tenant or the guarantor.

Trust* is based on the electronic equivalent of the real dvgtarantee solu-
tion. Say that Alice needs to trust Carol about somethingdaesn’t personally
know or trust Carol. However, Alice trusts Bob who in turnsisi Carol to do
whatever it is Alice needs her to do. In order to change Adigerception of the
risks involved, Bob could guarantee to Alice that Carol \aitt as intended and
offer Alice compensation if Carol doesn’t. The concept aft&nding” trust in
this way by using localised guarantees is what we call a*trestionship.

The trust*er (Alice) can then act as if they trust the trust{€arol) directly.
In order to shift the risk, forfeit payments are used. Allféis are paid lo-
cally; if Carol defaults then Bob must pay Alice the agreedédi whether or
not Carol pays Bob the forfeit she owes him (and the two ftsfeiay be of dif-
ferent amounts). Failure to provide a service — or to pay feifor may result in
an update to docal trust relationship; for example, between Bob and Alice, or
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between Carol and Bob. Figure 1 illustrates a typical trusktionship.

Direct trust Direct trust

Figure 1: A trust* relationship.

Trust* can be composed to an arbitrary number of hops becaluseist is
now local and so are the forfeits. It is worth noting that trigse’t the same as
trust* even in a one hop scenario; in this case, if Bob tru§t4sol to provide a
service, it means that Bob trusts Carol to either provides#reice or else pay the
forfeit?.

3 Trustin P2P Networks

Due to the nature of P2P networks and the likelihood thatracteons are be-
tween completely unknown and untrusted principals, peees metwork need a
way to mitigate the risks they would incur if they temponatitust others. The
risks involved are likely to vary depending on what is adiubking shared. For
example, software should be the correct version and shaitlther corrupted in
any way, documents should be authentic and music shoulddreskd.

There are many security and trust issues related to P2P riet\ig 5, 9, 13]
and the trustworthiness of others is normally gauged usingekind of reputation
system [8, 12]. However, reputation systems have a vital tlagy imply that trust
is always transitive [6] which can be a bad assumption [25ukse a user wants to
determine the risk involved if they were to trust another ¢egprovide a described
service) by looking at their reputation rating. This migbthtain comments and
ratings left from previous transactions. It is unlikely thiae user looking knows
(or trusts) the other users who have left the comments. Adgnytation systems
are prone to threats such as Sybil attacks [4] where the saerecan operate
under many pseudonyms. But even if a user does know and leigieiople who
left the comments, they will still be transitively trustinige service provider in
question.

According to Jgsang al [7], transitivity is possible with the correct combina-
tion of the referral and functional variants of trust. Howe\rust* allows the risk

1Bob may believe that Carol cannot provide the service, blitalviays pay the forfeit.
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involved to be underwritten, even when these delicate ¢mmdi for transitivity
are not satisfied. With trust*, Bob is not only making a recoematation to Alice,
but also offering compensation if something goes wrong. {filist scope is de-
cided locally between Alice and Bob when the guarantee &steck It is assumed
that the final guarantor in a trust* chain will have functibtrast in the end-point
(or trust*ee).

Most services provided over a distributed system or netvmarke (as in the
real world) an underlying contract or agreement. In mostsathis could simply
be that serviceX will be provided for a fee” and that the service will conform to
the terms and conditions df. In P2P networks, such guidelines do not at present
generally exist and clients connect to other clients to bexan equal part of the
network. Peers are usually free to download anything thepfrom other peers
and vice versa. There may be situations where content cautthlrged for or
where a particular service level agreement is in place, lewd is more likely
that peers in a P2P network hold a “download at your own rigiicy regarding
the files that they are sharing.

Trust* can be deployed to provide the missing assurance widdectly trust-
ing others. For example, Carol doesn’t care if someone viardswnload fileX
and doesn't care if they are unhappy with it. However, Bobgrasiously down-
loaded files from Carol, and hence trusts that her files ardmffastandard. Alice
trusts Bob so Bob’s guarantee reduces the risk for Alice.dlb Bras wrong, he
will compensate Alice with the agreed forfeit. However, lnstexample, Carol
hasn’'t necessarily done anything wrong and isn’t obligeceimburse Bob. Bob
however is likely to lower his high perception of the qualitfyCarol’s files and
perhaps never guarantee her again. Bob’s motivation tagediie guarantee is
a commission payment from Aliée Bob will set the level of this commission
depending on his perception of the probability of Carol défag?®.

4 Applying Trust* to Turtle

The Turtle client requires you to list your friends whom yeust to share files
with. The Turtle protocol works by only sending queries fégdito these friends,
who pass on the query to their friends as their own query amts@uch queries

2In a commercial case, where Carol provides a service for pagnCarol may pay Bob a
commission for acting as an intermediary.

3Provided Bob’s estimate of the probability of Carol defagtis lower than Alice’sa priori
estimate, then both Alice and Bob will be happy with the gotre.

4If you have read the spam-proof application in [3], pleastebat the direction of trust in
that case goes in the opposite direction to that describedfoeTurtle. Trust* works perfectly in
either direction.
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and their results are only ever swapped within these loaat telationships. The
second stage is for the original requester to choose thefile tiownloaded from
the list of results. The file is then downloaded locally bytepeer in the chain in
the same manner as the search query.

This localised trust setting is perfect for also finding esubf trust* guaran-
tees, as the query and result route used could also make @reaflguarantees.
Extending the example to a longer chain, Alice wants to doautlfile X and
sends a query to Bob whom she trusts. Bob forwards this qoe2atol whom he
trusts. Carol continues to forward this to her friends. Daaeeives the query, he
has file X and sends back a positive response to Carol which is forwardek
to Bob and then Alice. Assuming now Alice chooses Dave’s fileBob from
the list of search results and requests that it comes withagagtee from Bob, a
guarantee chain could be negotiated at the same time aaviegyithe file. The
scope of the trust* guarantee is also negotiated betwednpaacwhich states the
terms of the guarantee and what constitutes a breach.

Suppose Alice discovers that the fil¢ is corrupt in some way. Alice can
claim the forfeit from Bob. Bob may also claim from Carol. $oge Dave does
not care if his files are correct. So rather than Carol clagtiftom Dave, she is
likely to stop trusting him altogether, or not guarantedmsjdhim again, or charge
a higher commission from Bob in future for providing the cargtee.

Eventually, say that Dave is habitually sharing corruptteaty all principals
who once trusted him are likely to never guarantee his filesnagn a fair P2P
system where credit or reputation is gained depending oguhatity of uploaded
content, and is used to download files from others, Dave gt dave trouble
buying guarantees from others (or they will be very expengor him). In this
example, the commission can be thought of as an insuranceqrdy

Alternatively, someone might guarantee only certain typieles from an-
other peer. For example, Carol might be happy to guaranteefddave’s music
files but considers the software that he shares as risky sal @dr not guaran-
tee these files. Trust* can enable these fine-grained dasistobe made. Even
when Carol trusts Dave directly, she can still be selectiser avhat she’ll actually
guarantee.

4.1 Simulation of Trust*

In order to analyse the effectiveness of applying trust* tB2® scenario, the
model was simulated with the Repast Simphony modellingkibfil0]. A sce-

nario where Alice wishes to download a file from Carol was dated. There are
five possible trust* routes (via the guarantors numbereds) &md each principal
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holds many properties including a credit rafingwo global attributeg andm
define the probability of Alice being truthful and Carol singrincorrect files re-
spectively. The trust* protocol is invoked once every “tici the simulation and
stops when all available routes have been exhausted. Tphegjrafigures 2 and 3
show the resulting credit ratings for each principal and kmvg each simulation
ran for.

In graphs (a) and (b), where Carol has a high chance of sheoimgpt files,
the simulations stop after 42 ticks. By graphs (c) and (d,gtobability of files
being corrupt decreases, and hence, the simulation runeriger. By graph
(d) where the corruption chance is 0%, only one guarantoves esed and the
simulation would run forever. Many other graphs show fluttares in forfeit
rates and claims etc, however results presented here atedifar space reasons.
The results show that long term trust* usage implies goochwelr from all
involved principals. The guarantors will only tolerate be&aviour for so long
before refusing to provide further guarantees of the offegpg@rincipal.

(a) t=0, m=1 {b) t=0.2, m=0.8
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Figure 2: Principals exhibiting bad behaviour.

5 Discussion

5.1 Heterogeneity and Anonymity

In order to implement the trust* relationship mechanismethier to initiate, pro-

vide, or receive a guarantee, a way of making decisions ayrd@ats is necessary.
This functionality could easily be incorporated within Parent software. One of
the advantages of our approach is that the trust managemegpegment systems
can both be heterogeneous, due to the fact that trust (amdgudsg) are confined
or localised. If a guarantee has been made from one printci@adother, any trust

SThis is purely to gauge the total gains and losses of a prhcip
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{c) t=0.8, m=0.2 (d) t=1, m=0
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Figure 3: Principals exhibiting good behaviour.

management and payment schemes could be used between thdimre same
time, other pairs of principals might use completely déigrschemes.

Because of this localisation of trust, end-point anonyrmép also be main-
tained as principals only speak to their direct neighboNisknowledge need be
gained about other principals or the schemes they might ing.uslso, partici-
pants need not know whom they are downloading from.

5.2 Payment by Resource

The most obvious use of a forfeit is either to deter a priridigen defaulting on

what they have guaranteed or to provide a way of compenstiangther party
if they d&®. The commission payment was introduced in order to providma

centive for a principal to act as a guarantor and can be searspst price for a
guarantee. A principal needing to trust* could pay this cassmn to a guarantor
whom they trust directly. Forfeit and commission paymeeiye different pur-

poses and don’t need to be of the same type (or paid by the saaresiy although
in the case of P2P networks, they could easily be.

Due to the heterogeneous nature of the localised trust letimeividual pairs
of principals, the payments could take the form of a more icliately valuable
commodity to them than a conventional micro-payment. In fl2Bharing appli-
cations, this could be the content itself. For example,ittecddownload further
files or to buy licenses or guarantees.

5Note that these are slightly different requirements; a lofeefeit will often suffice for the
first.
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6 Conclusion

This paper has presented the concept of trust* as a mechémiggnaranteeing
the integrity of content or services provided over a P2P asgtw Trust* builds
on the idea of sharing with friends in the Turtle P2P clieritdlso guarantees the
integrity of downloaded content from unknown peers dertbedugh transitivity.

Using trust* in this way also reduces the risk involved foe ttownloader as
they will be compensated in the worst case scenario. It therdowers the risk
of transitively trusting others, and privacy is still manted. This is because the
guarantees and payments are confined within the same ledtahisst relation-
ships as the ones that are used to communicate the actuet sparies and their
corresponding results. This approach therefore allowspbet@ localisation of
trust management, and the risk of trusting by referral isamwdtten by the guar-
antees. We regard local trust management as a significagigreproblem than
global reputation management, particularly in a P2P sysihare the majority of
participants wish to be anonymous (except to their friends)mentioned earlier,
the use of trust* does not constrain the way in which locattisi managed.

Simulation of the trust* protocol shows that misbehavinop@pals quickly
become isolated before major damage can be made. This niednsreats such
as a Sybil attack can be identified and the perpetrator wdhayally be removed
from local trust relationships. This will make it harder thiem to share files in
a P2P community that employs the trust* model as eventudllipates will be
removed (or become too expensive).

The Turtle client was developed with an emphasis on privax safety of
sharing files that might be of a controversial or provocatie¢ure. Due to the
localised direct trust in a trust* chain, such privacy carehsily maintainetd We
have argued that applying trust* to P2P file sharing will d&ledeneficial in guar-
anteeing the integrity of free content such as open sourt@ae or copyright-
free movies.

"However, privacy is not so much of an issue when sharing opeteat, and in other applica-
tions where the integrity of the content is more important.
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