
Trust*: Extending the Reach of Trust
in Distributed Systems

Stephen William Clarke

School of Computer Science

A thesis submitted to the
University of Hertfordshire

in partial fulfilment of the requirements
of the degree of

Doctor of Philosophy

November 2009

Abstract

Building trust is a common requirement in distributed environments especially

since many transactions now occur on a person-to-person basis. Examples range

from e-commerce on the Internet to peer-to-peer and grid resource sharing. Many

solutions to the problem of requiring trust among unknown entities rely on the use

of a reputation metric to assess the risk of a potential transaction. However, such

reputation systems require (often implicitly) that trust is transitive which can be a

problematic assumption.

This dissertation proposes a novel mechanism which we call trust*. The trust*

model uses guarantees to extend local trust between unknownend-points. Trust*

can be used as a substitution for end-to-end trust. Principals provide guarantees

within existing (local) trust relationships to build a chain of localised agreements

between the unknown end-points. The guarantees are backed by local micro-

payments to provide deterrents and incentives. Trust* relationships can be com-

posed transitively, and the guarantees reduce the risk for the trusting party when

doing so. This is because a guarantee is only ever provided locally by a directly

trusted principal. Thus, trust management can be reduced toa locally solved prob-

lem.

This work aims to develop a new technique for assessing and reducing the

risk involved in trusting others in a distributed environment. The thesis of this

dissertation is that an electronic analogue of real-world guarantees, is a useful

and interesting way to provide these assurances. We developan extension of the

notion of trust, which we call trust*, which is built upon local guarantees, and

which provides a novel conceptual framework for analysing and reasoning about

a wide variety of trust-related problems in distributed systems.

We present the concept of trust* and apply it to a number of application sce-

i

ii

narios where it would be beneficial. We simulate the trust* model in these envi-

ronments for analysis. Also, we describe the key features and other issues related

to the trust* model which became evident during its investigation and which are

of wider interest.

Acknowledgements

I would like to show my deepest gratitude and appreciation tomy extraordinary

supervisory team who were willing to support me throughout my PhD studies.

The encouragement and inspiration given to me by my principal supervisor Prof

Bruce Christianson is second-to-none. He was able to identify my weaknesses

early on and gently encourage and support these areas of my personal develop-

ment. He has always shown a deep interest in my work and was always willing

to talk about it. I will always appreciate what he has done forme. My second

supervisor Dr Hannan Xiao has also provided me with exceptional support. She

has the ability to make me view ideas from a different perspective which helped

the overall development of this work. Last, but by no means least, I would like

to thank my third supervisor Mr Bob Dickerson. I could throw anything at him

and he would instantly have ideas to discuss. Although not a supervisor of mine,

I would also like to thank Mr James Malcolm who also took the time to support

me and discuss my work on regular occasions.

I would also like to thank my friends and colleagues in the research institute

and school of computer science.

Finally, I would like to show my appreciation to my family andmy wife Lisa

for their never-ending love and support throughout my studies.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

1 Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Real-World Guarantees . 3

1.3 Trust* . 4

1.4 Structure of this Dissertation . 5

2 Background and Related Work 8

2.1 Introduction . 8

2.2 Perceptions of Trust . 8

2.3 Analysis and Modelling . 9

2.4 Transitive Trust and Reputation Systems 12

2.5 Local Trust Management . 14

2.6 Trust in E-commerce . 16

2.7 Trust Certification . 17

3 A Peer-to-peer Application 19

3.1 Introduction . 19

3.2 Trust in P2P Networks . 20

3.3 Incentive and Deterrent Payments 21

3.4 Applying Trust* to Turtle . 23

iv

CONTENTS v

3.4.1 Good Case . 24

3.4.2 Bad Case . 25

3.4.3 Required Changes to Turtle 25

3.5 Service Contracts . 26

3.6 Payment by Resource . 27

3.7 Conclusion . 28

4 Simulating Trust* 29

4.1 Introduction . 29

4.2 The Repast Modelling Toolkit 29

4.3 Modelling Trust* . 30

4.3.1 Agents . 30

4.3.2 Agent Properties . 30

4.3.3 Initial Values in a P2P Simulation 31

4.3.4 Model Attributes . 33

4.3.5 Agent Behaviours . 33

4.4 Simulation Test Scenarios . 35

4.5 Multiple Guarantors . 38

4.5.1 Test Scenarios . 40

4.6 Summary of Results . 41

4.7 Conclusion . 42

5 A Grid Computing Application 43

5.1 Introduction . 43

5.2 Globe Distributed Object Middleware 44

5.2.1 Byzantine Fault Tolerance 44

5.2.2 Reverse Access Control 45

5.2.3 Audit with Cycles of Trust* 45

5.2.4 Damage Prevention . 46

5.3 Routing . 47

5.3.1 Routing in Trust* . 49

5.4 Heterogeneity . 50

5.5 Payment and Resource Brokering 50

CONTENTS vi

5.6 Simulation Implications . 51

5.7 Conclusion . 53

6 A Click-through Licensing Application 54

6.1 Introduction . 54

6.2 Click-through EULAs . 54

6.3 Music Downloads . 57

6.4 Donations and Sponsorship . 57

6.5 Micro-payments . 59

6.6 Simulation Implications . 60

6.7 Conclusion . 62

7 A Spam-proof Email Application 63

7.1 Introduction . 63

7.2 Spam Prevention Techniques . 64

7.3 Perception of Spam Email . 67

7.4 Reverse Routing for Trust* . 68

7.5 The Spam-proof Protocol . 69

7.6 Pricing Strategies . 70

7.7 Security Requirements . 71

7.8 Bad Scenarios . 72

7.8.1 False Claims . 72

7.8.2 Non-payments . 72

7.9 Congestion Control . 73

7.10 Simulation Implications . 74

7.11 Conclusion . 76

8 Full Description of the Trust* Model 79

8.1 Introduction . 79

8.2 Trust* Notation . 79

8.3 Components of the Trust* Model 81

8.3.1 Guarantees . 81

8.3.2 Payments . 84

8.3.3 Protocol . 84

CONTENTS vii

8.4 Issues and Features . 85

8.4.1 Heterogeneity . 85

8.4.2 Anonymity . 86

8.4.3 Resource Brokering . 86

8.4.4 Risk Assessment . 87

8.4.5 Cycles of Trust* . 88

8.4.6 Networking Analogues 89

8.5 Conclusion . 90

9 Conclusions and Further Work 91

9.1 Introduction . 91

9.2 Contributions to Knowledge . 91

9.3 Further Work . 93

9.3.1 Volunteer Computing . 94

9.3.2 Second Life . 94

9.3.3 P(GP) Web of Trust* . 95

9.3.4 Trust* Implementation 95

9.3.5 Reputation as a Currency 96

9.3.6 More Anonymity . 97

9.3.7 Auditability . 98

9.3.8 An Economic Model . 98

9.4 Conclusion . 98

Bibliography 100

A Simulation Results 112

B Trust* KeyNote Implementation 148

C Publications 156

TRUST* REFERENCE viii

Notation

Symbol Meaning
df Direct functional trust.
dr Direct referral trust.
t Forfeit payment.
c Commission payment.

Forward Trust*

B CA df trustdr trust

t t

c

Trust*

Downstream trust* invocation

trust*eetrust*er

Reverse Trust*

B CA df trustdr trust

t t

Trust*

c
Upstream trust* invocation

trust*er trust*ee

This page can be photocopied for easy reference.

Chapter 1

Introduction

This chapter outlines the problem that this work sets out to address and the motiva-

tions behind it. This chapter also outlines the thesis advanced by this dissertation

and provides a guide to the structure of this dissertation.

1.1 Motivation and Problem Statement

The Internet was once a very static place used primarily for information sharing.

Since the revolution of Information Technology [19], services provided over a

network have become more diverse and accessible. Many sitesand services are

now dynamic and allow direct interaction between their users. So, where an e-

commerce transaction would once be between a reputable vendor and a customer,

over the last decade, person-to-person transactions are becoming more common.

This trend is not restricted to services provided via the World Wide Web but in-

cludes other distributed environments such as peer-to-peer networks, grids and

clouds. Together with the emergence of Web 2.0 and web service architecture

such as SOAP and XML, electronic services are now very common. Services

provided nowadays are more likely to be a conglomeration of other services from

third-party providers including members of the general public. Anyone can now

easily set up a shop or service from their home. All of this hasled to a problem of

trust. It is now extremely likely that when someone transacts with another over a

network, they will be completely unknown to each other.

1

CHAPTER 1. INTRODUCTION 2

Before the Internet boom when fewer people owned a personal computer and

only the larger companies hosted websites, trust was built on the reputation of the

company in question. This is still how trust is gained by companies in the real-

world. To address the problem of assessing trustworthinesson the Internet today,

the most ubiquitous method is to use a reputation system [60,63, 86, 91]. These

are loosely based on the way that trust is built in the real-world by referral from

another (trusted) person.

Each of a reputation system’s users has a reputation rating which is normally

calculated from feedback from previous transactions with others. These ratings

can be viewed by prospective users intending on dealing withthe principal in

question. The outcome of each transaction will affect the reputation score ac-

cordingly. Such reputation systems are widely used on the Internet for various

purposes and generally work well. However, reputation systems assume (often

implicitly) that trust is transitive [61] which can be a false assumption [26, 49].

Assume a user wants to determine the risk involved if they were to trust another

(e.g. to provide a described service) by looking at their reputation rating, which

contains comments and ratings left from previous transactions. It is unlikely that

the user looking knows (or trusts) the other users who have left the comments.

But even if theydo know and trust the people who left the feedback, they will still

be transitively trusting the service provider in question.

To give a real-world example, assume that Alice needs to haveher car serviced.

She trusts Bob’s advice who in turn trusts Carol to service his car. Alice is indi-

rectly trusting Carol to be a good mechanic as she trusts Bob’s advice. Suppose

that Carol isn’t a mechanic herself however she trusts Davidwho is. The question

is to what purpose is Alice trusting Bob. In the first case, Alice trusts Bob to rec-

ommend a mechanic whom he trusts directly. The second case isAlice trusting

Bob to trust someone else’s (Carol’s) recommendation of a good mechanic. This

example assumes that Alice trusted Bob in the first place, however in real-world

reputation systems, it is unlikely that the person reading reputation ratings or rec-

ommendations even knows the person leaving the comments. Also, just because

David might do a good job for Carol, it doesn’t necessarily mean that David will

do a good job for Alice or Bob. It might be that David is really acowboy mechanic

(possibly not even to Carol’s knowledge) but will always provide a good service

CHAPTER 1. INTRODUCTION 3

to Carol because he is sweet on her. A more concrete example iswith eBay’s

reputation system where a particular user might have a very good reputation for

selling films. However, this won’t necessarily hold when buying books or music

from them. This lack of “scope” also makes basing trust decisions on reputation

systems risky.

As most existing trust relationships are being transitively derived through in-

termediaries, a way to reduce the risk and lower the hassle ofcompliance for all

parties involved is required.

1.2 Real-World Guarantees

In real-world protocols, the ability for unknown parties toact as if they trust one

another is often facilitated by using an intermediary guarantor as a replacement

for transitivity of trust. Guarantees work by shifting the risk to another party and

thus lowering the risk for the trusting party. An example of this is letting houses

to students, where landlords might require a guarantee against a particular tenant.

The guarantor might be a parent who trusts that their son or daughter will pay

the rent. The landlord trusts the guarantor so the landlord has shifted the risk of

not receiving the rent to the guarantor. The landlord believes that he will always

get his rent whether it be from the tenant or the guarantor. The guarantor being a

parent is likely to pay the rent as they have a reputation to lose, whereas perhaps

the student might not.

This type of agreement is made on a regular basis in the real-world. For exam-

ple, buying electrical goods such as a kettle. A customer is more likely to buy a

kettle if they know that they’ll receive a refund or replacement if it breaks within

a year. The risk involved for the customer has been removed and shifted towards

the guarantee provider (the manufacturer). It is now the incentive of the manufac-

turer or shop to control the quality of their products in order to avoid paying for

replacements.

The electronic equivalents of real-world guarantees are used in the trust* model

to lower the perceived risk involved for a trusting principal in the same way as the

examples given above. The only difference being that trust*will be used to guar-

antee electronic services rather than physical products orservices.

CHAPTER 1. INTRODUCTION 4

1.3 Trust*

Trust* builds on pre-existing trust relationships betweenprincipals who are known

to one another and is based on the electronic equivalent of the real-world guarantee

solution. Say that Alice needs to trust Carol about something and doesn’t person-

ally know or trust Carol. However, Alice trusts Bob who in turn trusts Carol to

do whatever it is Alice needs her to do. In order to change Alice’s perception of

the risk involved, Bob could guarantee to Alice that Carol will act as intended and

offer Alice compensation if Carol doesn’t. Assume for now that Bob gets paid a

commission by Carol as an incentive to act as a guarantor1.

The concept of “extending” trust in this way by using localised guarantees is

what we call a trust* relationship. Figure 1.1 shows this typical trust* relation-

ship. The trust*er (Alice) can actas if she trusts the trust*ee (Carol) directly. In

order to shift the risk, forfeit payments are used as a deterrent (to the trust*ee) or

compensation (to the trust*er) but assume for now that they are micro-payments.

All forfeits are paid locally; if Carol defaults then Bob must pay Alice the agreed

forfeit whether or not Carol pays Bob any forfeit she owes him(and the two for-

feits may be of different amounts). Also, Carol might not have made a guarantee

to Bob that she will reimburse the forfeit. Thus, failure to provide a service — or

to pay a forfeit — is likely to result in an update to alocal trust relationship.

Trust* can be composed to an arbitrary number of hops becauseall trust is

now local and so are the forfeits. It is worth noting that trust isn’t the same as

trust* even in a one hop scenario. If Bob trust*s Carol to provide a service, it

means that Bob trusts Carol to either provide the service or else pay the forfeit2.

The whole concept of extending trust to trust* makes use of already existing

trust relationships rather than creating new ones. It uses guarantees to bridge the

gap between unknown principals with a sequence of localisedagreements which

remove or reduce the perceived risk of the trust*ing principal (when transitively

trusting) and shift it towards the principal being trust*ed. Although trust* doesn’t

assume that referral trust is transitive (so there is no end-to-end trust), Alice can

1Incentive and deterrent payments are discussed later in Section 3.3.
2It may be that Bob would rather have the money, and believes that Carol cannot provide the

service, but will always pay the forfeit.

CHAPTER 1. INTRODUCTION 5

B CA

Trust*

Direct trust Direct trust

Figure 1.1: A two-hop trust* relationship.

behaveas if she trusts Carol.

Trust* is flexible in that it can be used in many different applications, how-

ever because it builds upon already existing trust, it won’tneed to replace any

existing trust infrastructures. It will integrate with them to manage direct trust

relationships and can utilise existing commodities such asreputation or resources.

More refinements of the trust* model are introduced throughout the rest of this

dissertation by applying it to various application scenarios.

1.4 Structure of this Dissertation

This section provides an overview of the subsequent chapters of this dissertation.

Chapter 2 gives an overview of the related work which provides a background

to this work. This primarily reviews research in the field of trust. More

specifically, perceptions of trust, types of trust and how itcan be modelled

and established. A review of how trust can be built on the Internet and

for e-commerce is given followed by examples of certification mechanisms.

Background work specific to a particular application is reviewed at the start

of the relevant application chapter.

Chapter 3 gives an overview of the problem of trust in peer-to-peer (P2P) net-

works and demonstrates how trust* could be applied to such a scenario. The

example is based on an existing P2P client called Turtle, which we extend

by adding trust* capabilities. This chapter introduces theidea of payments

by resource.

CHAPTER 1. INTRODUCTION 6

Chapter 4 describes in detail how the trust* model has been simulated.The focus

in this chapter is on the design considerations of simulating the application

scenario described in Chapter 3. This chapter also describes the simulation

testing process and summarises the results for the P2P simulation. How-

ever, the simulation model has been designed with the flexibility to allow

changes to easily adapt the simulation to the other applications explored in

this dissertation and these simulations are reported in later chapters.

Chapter 5 gives an overview of trust in computational grids and explains how

trust* could be used to extend trust between unknown users ina distributed

system where resources are normally shared. This chapter also discusses

how mechanisms originally designed for the Globe distributed middleware

could be adapted to work with the trust* model. Implementation of trust*

routing is addressed by constructing various analogues to network routing

algorithms. This chapter also describes how resource brokering could occur

when using trust* in a grid setting. Finally, the changes made to adapt the

simulation to a grid application scenario are described.

Chapter 6 describes how trust* can be used to minimise the hassle of compli-

ance in a licensing agreement. We show how trust* could be applied to a

software End User License Agreement in order to ensure the legitimacy of

the software before installation. Also, the application oftrust* to digital

music downloads is described. Finally, trust* is applied tosituations where

a sponsorship or donation undertaking has been made (e.g. byclicking on

a link) to ensure that the intended recipient will get their payment. This

chapter extends the commission and forfeit models from previous chapters

and gives an overview of the types of micro-payment that could be used in

these applications. Also, the simulation implications forthese applications

are presented.

Chapter 7 is the final application chapter in this dissertation. This chapter ap-

plies trust* to the sending of emails to guarantee that they are not junk (or

“spam”) email. This application demonstrates a scenario where trust* paths

are built in the opposite direction (i.e. from the trust*ee end) to that of pre-

CHAPTER 1. INTRODUCTION 7

vious chapters. This chapter also discusses pricing strategies and how to

exploit analogues between network congestion control and the commission

model of trust*. Finally, the implications of simulating the spam-proof ap-

plication are presented.

Chapter 8 provides a full description of the trust* model and reviews and inte-

grates the concepts that have been introduced so far. We introduce a nota-

tion to formalise the main components of the model. Finally we recapitulate

the key features and other issues of wider interest raised bythe model with

further discussion and examples.

Chapter 9 concludes this dissertation and reviews the contributionsto knowl-

edge that this work has made. We discuss some possible modifications that

could be made to the trust* model and the corresponding future directions of

research. Also, further applications are suggested to which applying trust*

could be beneficial.

Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides a background to the work presented in this dissertation by

discussing some related work in the field of trust. More precisely, how trust is

perceived in cyberspace and applications for which it is required. This chapter

gives an overview of these factors including a review of someof the work that

addresses trust related issues. It also reviews some of the current solutions for

building trust in cyberspace which this work aims to improve, and highlights the

difficulties.

Throughout the rest of this dissertation, a number of different applications of

our approach are described. Background work which is specific to a particular

application is reviewed at the start of the appropriate chapter. In each of these

chapters, a short background is given to set the scene for thespecific application

of trust*.

2.2 Perceptions of Trust

The theory of trust was first viewed as a computational concept by Marsh in his

thesis [73] and later by Harbison [49]. Trust is very complexand dynamic [20]

and is typically a subjective measure of someone’s belief that another will act as

intended which is also dependent on the task at hand. Trust isgenerally used as a

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

substitute for knowledge. Jøsang [59] shows how complex trust is and focuses on

understanding trust in the real-world. Also, a differentiation is made in his work

between trusting human agents and trusting systems and he shows that the need

to trust is only required if malicious behaviour exists in the first place.

Campet al [18] identify the variations in how trust is perceived from atechno-

logical, philosophical and social theory perspective. Theauthors develop hypothe-

ses as to why these views conflict with each other; technologists often assume that

humans are attentive, discerning, and ever-learning; philosophers argue that hu-

mans are simplifiers and that they will often trust machines to aid this; social

theorists argue that humans slowly lower barriers against trust, rather than refine

them. A conclusion drawn by the authors from these hypotheses is that design-

ing security mechanisms for trust should be based on the philosophical and social

theories of trust. This is because it is not possible to design a computer security

system without making assumptions about human behaviour.

A study by Kindberget al [67] shows how trust perceptions react when using

different methods of paying for a meal in a restaurant. Thesemethods all require

payment from an electronic wallet (a device which can interact with another de-

vice to make a payment) but range from docked to wireless connections. Also,

whether a waiter plays a part (i.e. holds the device) or whether any bar-code scan-

ning has taken place is considered. The study shows that people reason about trust

judgements in many different ways. For example, where security issues may play

a role, other issues such as convenience may be of more importance. For others, it

might be a social issue, however, many were aware of the potential security issues

when prompted. A trade-off between these issues needs to be identified when

designing a system that requires trust.

2.3 Analysis and Modelling

Much of the work related to the area of trust has been to do withdeveloping ways

to analyse and model trust. One way of modelling trust relationships is to use

the Trust Network Analysis with Subjective Logic (TNA-SL) notation proposed

by Jøsanget al [62, 65]. TNA-SL requires trustrelationships to be expressed as a

series of beliefs. An example belief opinionωA
x = (b, d, u, a) expresses the relying

CHAPTER 2. BACKGROUND AND RELATED WORK 10

partyA’s belief in the truth of statementx. This statement might be “PartyX is

reliable regardingσ” whereσ is the scope of the trust statement. The values ofb, d

andu represent belief, disbelief and uncertainty respectivelywhereb, d, u ∈ [0, 1]

andb + d + u = 1. The parametera ∈ [0, 1] is the base rate and determines the

a priori trust that is existent in the principal in question. Variousoperations allow

trust and risk to be reasoned with using these measures. TNA-SL also requires

that trustnetworks are expressed as directed graphs in order to represent trust

relationships. Jøsang doesn’t assume that trust is transitive but transitive trust

relationships can be expressed in this notation when certain conditions are present.

Table 2.1 gives an overview of this notation.

Symbol Meaning
A, B, C, . . . Alice, Bob, Carol, etc.

: Connection of trust arcs.
σ Trust scope.
f Functional trust variant.
r Referral trust variant.
d Direct trust.
i Indirect trust.
⋄ Alternative trust path.

Table 2.1: Transitive trust notation.

An example of a transitive trust relationship between Aliceand David can be

expressed as:

([A, D, ifσ]) = ([A, B, drσ] : [B, C, drσ] : [C, D, dfσ]) (2.1)

This notation gives us details of not only the trust path between Alice and

David but also details such as the type of trust and its scope.The types of trust are

distinguished intofunctional andreferral trust variants. Functional trust is used

where a principal trusts that another principal is capable of performing the task

in question. Referral trust is used where a principal truststhe recommendation of

another principal (perhaps a recommendation of a principalwhomthey have func-

tional trust in). Variations of these types of trust can be separated intodirect trust

where the trust relationship is local andindirect trust where the trust relationship

is derived transitively. For example, Equation 2.1 shows that Alice hasindirect

CHAPTER 2. BACKGROUND AND RELATED WORK 11

functional trust in David. This is due to Alice havingdirect referral trust in Bob,

who also hasdirect referral trust in Carol. Finally, Carol hasdirect functional

trust in David.

According to Jøsang, a transitive trust relationship will only be valid if the

combination of referral and functional trust reflects that of the example given

above. This is that a chain can consist of any number of directreferral trust links

followed by a single direct functional trust link. It is onlythen that Alice will have

indirect functional trust in David.

The scope to which the trust relationship applies also playsan important role

as it is likely to be different between each pair of principals in a chain. The scope

of the transitive trust relationship ([A, D, ifσ]) is the common subset of all scopes

in the chain ([A, B, drσ] : [B, C, drσ] : [C, D, dfσ]). Say for example that Alice

needs new tyres fitted on her car and trusts Bob to refer her. Bob knows that Carol

knows someone who can do this. Bob’sσ in Carol might just be “I trust Carol to

refer me to someone who can fit tyres”. However, Carol’sσ in David might be “I

trust that David can fitanything to a car”. Even though Carol personally knows

that David is a good mechanic who can fit or fix anything regarding a vehicle, the

transitive trust scope between Alice and David should only be that he can fit tyres

as this is the largest common scope along the chain.

We do believe that trust could be transitive in this way but the trusting prin-

cipals are still making fragile assumptions and taking large risks1. It is desirable

to find a way of allowing smaller and more viable assumptions to be made by the

trusting principal. Trust* would seem to be a natural extension, where we provide

guarantees on top of referral trust (or guaranteed referrals).

Other ways of structuring and defining trust relationships formally include the

work by Zhaoet al [111, 112]. Their definitions allow a number of operations to

be performed on modelled trust relationships. For example,how two trust rela-

tionships can be combined to build new relationships. Theirnotation is interesting

as it also plays close attention to modelling the “scope” of atrust relationship. An

example of a trust relationship in their notation can be expressed as a four-tuple

T =< R, E, C, P > whereR is a set oftrusters, E is a set oftrustees, C is a set

1For example, Bob may not know that Carol doesn’t fit the tyres herself, and so he may mis-
takenly assert direct trust in her instead of indirect.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

of conditions, andP is a set of properties. The properties include a set of actions

that the trustees are trusted to perform and a set of attributes that the trustees are

trusted to have. Using this notation, the authors propose many operations that can

be performed on existing relationships to form new relationships. For example,

Let T1 = (R1, E1, C1, P1) andT2 = (R2, E2, C2, P2). Then a new relationship

T3 = (R1 ∩ R2, E1 ∩ E2, C1 ∪ C2, P1 ∪ P2) can be formed.

This section has not attempted to survey every notation usedto formalise trust

but has summarised the two that are most fitting to the modelling of trust* rela-

tionships. Towards the end of this dissertation, chapter 8 uses an extension of the

notation of Jøsanget al as a basis on which to formally describe the features of

the trust* model that are developed in subsequent chapters.

2.4 Transitive Trust and Reputation Systems

Trust can propagate in different ways with the most common way being through

transitivity [54, 61, 64, 65, 72]. When a user needs to trust another online, rep-

utation systems are a way to assess the possible risks of trusting that person. A

description of the most well known reputation systems (and their models) is given

in [60] and [63]. They show the variety of implemented reputation systems that

are currently used by websites and although reputation systems work much of the

time, they are prone to many problems including unfair ratings, discrimination

and ballot stuffing. These problems occur mainly due to the fact that trust is tran-

sitively derived in others by using public knowledge (e.g. reputation systems) as

opposed to private knowledge (e.g. previous real-world interactions). In a sense,

if we had universal access to private knowledge, we wouldn’tneed trust at all.

Also, users might not have enough incentive to leave ratingsfor others especially

if the transaction has already completed.

Reputation systems allow users to rate other users regarding the outcomes of

previous transactions or encounters. Others can later viewthese ratings in order

to help them decide whether to trust a principal in future transactions. Many sites

employ this method (eBay’s “feedback forum” is among the most famous) but

such methods are known to have problems such as those mentioned above causing

them to give inaccurate and misleading information. This could potentially lead a

CHAPTER 2. BACKGROUND AND RELATED WORK 13

principal into a falsely heightened sense of trust with another or to incur a penalty

by not undertaking a profitable transaction that was in fact perfectly safe. Other

work related to reputation systems and their contribution to building online trust

include [36, 91, 106].

The Pretty Good Privacy (PGP) toolkit has its own type of reputation system

called the “web of trust” to solve the problem of uniquely identifying public key

certificates and who they actually belong to. This was an attempt to decentralise

PKI where users give each of the keys in their key-store a rating (or reputation

score) depending on their surety that the key actually belongs to the person claim-

ing to own it. If a received key certificate is signed by someone they have already

rated (directly or through a chain), they will have an indication of whether the key

is likely to belong to that person and whether they can trust the origin of the cer-

tificate. Again, a PGP user will be transitively trusting others on the authenticity

of a key.

Much research has been conducted to address some of the issues with repu-

tation systems. Examples include TRAVOS [104] which uses probability theory

and accounting for previous transactions in order to calculate trust in an agent-

based system. It also draws reputation data from third parties and therefore has

mechanisms to handle cases where information may be inaccurate or where users

might be self-interested.

Dellarocas [34] proposes mechanisms to help reduce discriminatory behaviour

and unfair ratings in reputation systems. Discriminatory behaviour could involve a

seller (in an e-commerce setting) providing a good service to everyone except for a

select few people. As long as this proportion is small, the seller’s reputation rating

won’t be damaged too much. Examples of unfair ratings include ballot stuffing

where principals collude to inflate each others reputation.This might involve

staging fake transactions to do so. Conversely, principalsmight collude in bad-

mouthing a competitor in order to damage their reputation and effectively drive

them out of the market. The proposed solution to these types of behaviour is to

use controlled anonymity to hide the identities of the buyers and sellers from each

other. In addition to this, a clustering algorithm is used toidentify and separate

fair ratings and unfair ratings of a principal. The principal’s overall reputation

will only be calculated from the set of what are considered fair ratings. Also,

CHAPTER 2. BACKGROUND AND RELATED WORK 14

reputation systems are prone to threats such as Sybil attacks [38] where the same

user can operate under multiple pseudonyms.

An important factor that needs considering when making a trust decision is

the amount of risk that is involved (and the losses that mightbe incurred). In [66],

Jøsang and Lo Presti analyse the relationship between risk and trust and demon-

strate a way of modelling a principal’s risk attitudes when making trust decisions.

This shows that people tend to be willing to put different amounts of money at

risk depending on the potential gain from a transaction and the probability of its

success.

Cvrc̆ek and Moody in their work [31] focus on how risk can be assessed by

analysing patterns in previous transactions. They argue that risk and trust are

orthogonal qualities and show that attacks such as Sybil attacks can be greatly

reduced. This works on the assumption that attacking identities can be profiled

from their behaviour. By profiling behaviour, threats can beidentified and attacks

blocked on the basis of similar behaviour traits.

2.5 Local Trust Management

Ways in which trust can be negotiated and established between principals is a well

researched area. The term “trust management” was first coined by Blazeet al at

AT&T Labs [13, 15]. Trust management uses policies and credentials to provide

a way of making access control decisions in situations wheretrust is required.

More specifically, implementations of trust management systems aid applications

in deciding whether particular operations are allowed or not. The decision will

need to take into account what the operation is, who requested it, what the local

policy allows, the requester’s credentials, and other application specific factors.

Trust management systems provide applications with an interface to help them

with such decisions, and provide a standard language for writing the policies and

credentials. Also, decisions are made in a decentralised manner. For example,

rather than making trust related queries to a centralised service, each principal has

their own “trusted” system locally2 to them. It is difficult to find an organisation

2“local trust” in this dissertation doesn’t mean geographically local. It means that the trust is
direct and locally managed based on direct experience involving the principal.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

that is universally trusted across the world to provide a centralised service. De-

centralising trust management means a company or even an individual can have

their own local (and therefore locally trusted) trust management system. Research

into trust management techniques by Blazeet al led to the implementation of the

PolicyMaker and KeyNote trust management systems [14] which are now used in

various applications [17]. For example, a module has been written for the Apache

web server to provide access control mechanisms for web resources.

KeyNote has its own syntax to allow assertions to be written.These assertions

take the form of policies or credentials. Each principal whois planning to have a

trust relationship with another will write a policy assertion which states who they

are willing to trust and under what conditions. This is usually a list of trusted

public keys and a set of condition values that need to be met depending on the

situation and its requirements. An example could be for making a file access

control decision, where more privileged users may be allowed to write to as well

as read certain files. Credential assertions are created anddistributed to trusted

principals with the allowed conditions encoded within them. These assertions can

be digitally signed by the creator to ensure their integrityand essentially serve as

permission (or certificates) to perform the specified tasks.

KeyNote also provides tools for the creation of keys and verification of signa-

tures but its primary tool is the compliance checker. When a trust decision needs

to be made, the required credentials are passed to the checker along with the rele-

vant policy. It will verify the signatures on the credentials and calculate whether

they comply with the conditions set out in the policy. KeyNote will return a value

such as true or false, however the result can be more fine grained if desired.

Galiceet al [44] describe a protocol called Common History Extraction (CHE)

to build trust where there is no centralised infrastructure. CHE bases its trust man-

agement decisions on previous transactions with other nodes where each device

records a history of past transactions. Nodes can then search for previously met

nodes and can mutually authenticate and cryptographicallyprove that they have

really met before.

Other work includes applying trust management to web services [92], web

applications [27], and to maximising privacy [110]. Details of other trust manage-

ment systems and applications are given in [48, 93].

CHAPTER 2. BACKGROUND AND RELATED WORK 16

2.6 Trust in E-commerce

Since the beginning of the World Wide Web, sites appeared that would allow vis-

itors to search their catalogue, purchase goods and have them delivered to their

door-step. Initially, this was a risky transaction over a very new and immature

medium. Also, the number of people who owned a Personal Computer (PC) with

an Internet connection was low and mainly consisted of people in the IT or com-

puting industry or academia. Eventually, more of the general public owned a PC

and every well known brand or shop would have its own web-store. The web

consumer data analysed in 1999 [52] shows that the majority of consumers would

not shop online due to the fact that they did not have trust in the security of doing

so. For example, they feel it isn’t safe to input credit card details over the web, or

feel that privacy is at stake. As the Internet matured, more mechanisms were im-

plemented in an attempt to secure transactions and hence increase consumer trust

when shopping in cyberspace [43, 99, 100]. For example, securing the transfer

of payment details (such as SSL) and measures taken by banks to deter or protect

against credit card fraud. Also, web-stores began to provide their own guarantees

such as policies regarding the privacy of customer data.

So far, trust in a business-to-consumer setting has been described. However,

trust in e-commerce is more of a problem nowadays since the growth in the num-

ber of online marketplaces and communities. Such websites now make it possible

to interact on a person-to-person basis and participate in transactions with com-

pletely unknown principals [32, 103]. Even before the advent of sites such as

eBay and Amazon, people were trading on a person-to-person basis on Usenet

newsgroups. In [68], Kollock discusses the need for trust inonline markets and

states that trusting online is similar to the structure of the Prisoner’s Dilemma.

For example, because a person-to-person transaction is likely to involve a bilat-

eral exchange, it is tempting for one to receive a service andnot reciprocate. If

both parties hold back on their part of the exchange, then both will be worse off.

Kollock was one of the first to consider the use of reputation systems as a way to

gauge risk when no face-to-face contact will take place during a transaction.

In [10], the notion of using reputation to establish trust isapplied to online

communities such as eBay. However, individual agents don’thave their own rep-

CHAPTER 2. BACKGROUND AND RELATED WORK 17

utations but instead they fall under the reputation of the community to which they

belong to as a whole. When agents wish to transact with others, the reputations

of their corresponding affiliations will be taken into account. The outcome will

effect the reputations (positively or negatively) of the affiliated communities. This

gives a community the incentive to punish or remove agents which are damaging

the overall reputation of the community. The authors use game theory to prove

the concepts of a community responsibility system and that it will be effective

in building trust in impersonal transactions. To act incorrectly in a transaction

will not damage an individual’s reputation but will damage the reputation of the

community to which they belong. This now becomes a local problem which can

be solved internally to the community. It is likely that boththe community own-

ers and their well behaved members will want to investigate and possibly purge

anyone who might be a liability to their overall group reputation. An example

of community reputation is evident in computational grids (as we’ll explore later

in this dissertation) whereby resources are shared betweenlarge organisations or

universities. Suppose that principalx of organisationA was to abuse a service

provided by organisationB. This might cause problems when another principal

of organisationA later wishes to useB’s service asx has lowered the reputation of

A (in B’s eyes). It is now a local problem wherebyA can identify and discipline

x or any other member who may be damaging their reputation.

2.7 Trust Certification

Traditional certification authorities (CA) issue certificates to websites so that the

public key of a server can be verified by a browser for SSL purposes. This al-

lows users to trust that their credit card numbers are being encrypted only for the

intended recipient. Now CAs exist that will certify other aspects of a site. For

example, that they have a privacy policy that conforms to theCA’s regulations, or

that a site isn’t malicious or fraudulent.

McAfee’s SiteAdvisor [3] is a free browser toolbar. It claims to keep you

safe from online fraud, spam, ad-ware and other malicious content on the web.

Each time someone visits a website, the name of the site is sent to McAfee and

a reputation score is sent back to the users browser which then displays it. This

CHAPTER 2. BACKGROUND AND RELATED WORK 18

could be seen as an invasion of privacy as McAfee will have access to the full

history of sites visited but most people are happy to sacrifice some privacy in

order to increase their online security or they won’t even consider this factor at

all. McAfee regularly run tests on websites and assign safety ratings to them.

Ordinary users can comment on whether they agree with these ratings which could

eventually alter the rating after further analysis by McAfee. A similar tool to

SiteAdvisor is called WOT [6].

Richard Clayton at the Cambridge Security Group has writtenabout how

SiteAdvisor works well in most cases but can give inaccurateand misleading ad-

vice [29]. He shows some example sites which have slipped through the net and

have been given a “green” rating. The example given is an e-commerce site which

doesn’t accept credit cards but only Western Union money transfers for products

that are obviously under-priced compared to their real market value. Customers

of this site have complained of not receiving goods after transferring the money.

Of course, it is a complex task to rate every site on the Internet but this shows that

reputation systems can be hard to get right, especially on this scale. Again, rather

than users trusting a site directly, they are transitively trusting McAfee to provide

accurate ratings which it cannot necessarily give.

Although these are not strictly reputation systems, they still rely on people

trusting certifications from organisations which do have good reputations.

TRUSTe [5] and BBBOnLine [1] are among the most popular. These organisa-

tions certify websites after assessing that they have specific policies in place that

satisfy the privacy requirements of the organisation. A subscription fee also needs

to be paid for the right to carry the certification logo on the website thereafter.

Edelman identifies problems of adverse selection with such certifications in his

paper [39] where his results show that certified sites are more than twice as likely

to be untrustworthy than uncertified sites. He also shows that sponsored adverts on

search engines are also more likely to lead to malicious websites than the organic

search results. To the naı̈ve user, these adverts appear to be recommended by the

search engine with the user being unaware that the advertiser is paying to have his

link displayed above organic search results for certain keywords. This is another

example of the problem with a naı̈ve approach to transitivity of trust. Similar

problems occur with social networking as we shall see in the next chapter.

Chapter 3

A Peer-to-peer Application

3.1 Introduction

Peer-to-peer (P2P) based networks are widely used on the Internet to enable file

sharing, streamed media and other services. With a traditional client-server based

network, many clients connect to a fixed server. In contrast,P2P clients are all

considered equal and connect directly to each other. Because of this topology,

tasks such as sharing files and other resources can be more efficient as a client can

connect to many other clients and download content simultaneously.

Much of the content currently distributed via P2P networks is either illegal or

violates copyright laws in some way. However, there are alsomany legitimate

reasons why content might be distributed in this way, and there is also copyright

free content available such as open source software. P2P protocols such as Bit-

Torrent enable sharing of very large files such as operating systems, and many

Linux based distributions are available in this way in orderto lower the load on

an individual server.

P2P networks have many advantages such as scalability, and due to there be-

ing no centralised server, network loads can be easily balanced. However, for the

same reasons, a problem with P2P networks is that all peers are regarded as equal

and there is no real way to moderate content. Anyone can use a P2P client and

share any files they wish. Bad users can easily insert corrupted files into a net-

19

CHAPTER 3. A PEER-TO-PEER APPLICATION 20

work1 which are searchable by other clients and will therefore propagate further.

Even good users might be unaware that they are serving incorrect files from their

computer. To counter this, hosts might publish an MD5 check-sum on their web-

site. However, this is unlikely and it is the user’s decisionwhether and how they

actually verify this, and getting hold of the correct checksum leads us back to the

initial problem. Also, this approach assumes that the trustee is the original source

and not just a middle-man provider.

This chapter explains how trust* could be applied to P2P networks to guaran-

tee the integrity of files being shared. This chapter uses theTurtle P2P client [88]

as a basis on which to discuss the approach, although trust* can easily be ap-

plied to various other P2P clients in the same manner. Turtleenables files to be

shared among friends (people whom you know in the real-world) in the hope to

improve safety and overall integrity of the shared content.However, trust isn’t

transitive in social networks. Applying trust* to Turtle will additionally allow

files to be safely shared with unknown principals without theneed for transitive

trust. Trust* achieves this by providing incentives to act correctly and deterrents

for acting carelessly.

3.2 Trust in P2P Networks

Due to the nature of P2P networks and the likelihood that end-to-end interactions

will be between completely unknown and untrusted principals, peers in a network

need a way to mitigate the risks they might incur if they temporarily trust others.

The risks involved are likely to vary depending on what is actually being shared.

For example, software should not be corrupted in any way, documents should be

authentic and music should be licensed.

There are many security and trust issues related to P2P networks [9, 57, 78,

107] and the trustworthiness of others is normally gauged using some kind of

reputation system [58, 69, 98]. However, as mentioned previously, reputation

systems have a vital flaw; they require that trust is always transitive [61] which

can be a dangerous assumption [26].

1Indeed, this may be done by the music industry to discourage people from using P2P.

CHAPTER 3. A PEER-TO-PEER APPLICATION 21

According to Jøsanget al [62], transitivity is possible with the correct com-

bination of the referral and functional variants of trust (see Section 2.3). Trust*

instead allows the risk involved when having indirect or transitive trust in another

to be underwritten. For example, Bob is not only making a recommendation to

Alice, but also offering compensation if something goes wrong. The trust scope

is decided locally between Alice and Bob when the guarantee is created. It is as-

sumed that the final guarantor in a trust* chain will have direct functional trust in

the end-point (or trust*ee).

Turtle [88] is a P2P client with the intention of providing privacy and safety

by sharing only between direct “friends”. The client requires you to list your

friends whom you trust to share their files with you. The Turtle protocol works

by only sending search queries for files to these friends, whopass on the query

to their friends as their own query and so on. Such queries andtheir results are

only ever swapped within these local trust relationships. The second stage is for

the original requester to choose the file to be downloaded from the list of returned

results. They request the file locally from the directly trusted guarantor who in

turn requests the file locally from the next principal in the chain. This continues

until the end-point is reached (in a similar fashion to how the search query is

made). The file itself is then repeatedly downloaded within these individual trust

relationships until the request originator is reached.

3.3 Incentive and Deterrent Payments

Two types of payments are used in the trust* model; these are forfeit and com-

mission payments. A forfeit is used to either deter a principal from defaulting on

what they have guaranteed or to provide compensation to the other party if they

do. The commission payment was introduced in order to provide an incentive for

a principal to act as a guarantor and can be seen as a spot pricefor a guarantee.

For example, a principal needing to trust* another would paythis commission to

a guarantor whom they trust directly. Or a principal needingto be trust*ed by

another would pay the commission to a guarantor who trusts them.

Forfeit and commission payments serve different purposes and don’t need to

be of the same type (or paid by the same means). Also, these payments and the

CHAPTER 3. A PEER-TO-PEER APPLICATION 22

actual service being provided need not be like-for-like.

Both the cost of a guarantee and the forfeit that should be paid if it is broken

are variable and can be set by a guarantor to reflect their perception of the risk

involved in providing a guarantee. For example, as a risky guarantee is more

likely to be broken, a higher forfeit might be required by theguarantor to cover

his losses (e.g. from the serving peer). A low risk guaranteeis unlikely to be

broken and so the guarantor will get his incentive through the commission because

a forfeit payment is less likely to occur. Another incentiveto provide a guarantee

is to make a profit from a forfeit. Assume that Carol is trust*ed by Alice with Bob

providing the guarantee to Alice (refer back to Figure 1.1).If Carol defaults, the

forfeit from Carol to Bob might be more than what Bob has to payAlice. Note

that this gives Bob an incentive to hope that Carol defaults.Alternatively, Carol

may pay Bob a commission instead of a forfeit, in which case Bob hopes that

Carol doesn’t default. The second case is like buying insurance. Commissionc

has the same expectation (but lower variance) for Bob asp · q · t, wherep is Bob’s

estimate of the chance of Carol defaulting, andq is his assessment of the chance

of Carol paying the forfeitt (we’ll come back to this in Chapter 8).

These considerations lead to some interesting effects regarding the commis-

sion and forfeit rates along a chain of guarantees. In this scenario, if Carol were

to default the guarantee, only Carol will be out of pocket as the forfeit rate is

higher at her end of the chain (and decreases towards the trust*ing end). Every

guarantor will make a profit in this case but if we consider a longer chain where

risk perceptions fluctuate, guarantors might lose out. For this reason, it is likely

that guarantors will only provide guarantees where they believe the rates involved

will make them better off with high probability in the long run. This flexibility

of perception is vital in ensuring that guarantors get theirincentive and principals

who might default are sufficiently deterred. The fact that perceptions of risk differ

is after-all why we needed trust to begin with.

CHAPTER 3. A PEER-TO-PEER APPLICATION 23

3.4 Applying Trust* to Turtle

Turtle’s localised trust setting is perfect for also findingroutes of trust* guarantees,

as the query and result route could also be used to make up a chain of guarantees2.

Extending the example to a longer chain, Alice wants to download fileX and

sends a query to Bob whom she trusts. Bob forwards this query to Carol whom he

trusts. Carol continues to forward this to her friends. David receives the query, he

has fileX and sends back a positive response to Carol which is forwarded back

to Bob and then Alice. Assuming now Alice chooses David’s filevia Bob from

the list of search results and requests that it comes with a guarantee from Bob, a

guarantee chain could be negotiated at the same time as retrieving the file. The

scope of the trust* guarantee is also negotiated between each pair which states the

terms of the guarantee and what constitutes a breach. For example, Carol might

guarantee only certain types of files from David. She might behappy to guarantee

against any of David’s music files but considers the softwarethat he shares as

risky so Carol will not guarantee these files. Trust* can be parameterised so as

to enable these fine-grained decisions to be made. Even when Carol trusts David

directly, she can still be selective over what she’ll actually guarantee (and define

different conditions to which a guarantee applies).

Suppose that the fileX is corrupt in some way. Alice may have inspected

the file herself either manually or by calculating a checksum. Alice can claim the

forfeit from Bob. Bob may also claim from Carol. Suppose David does not care

if his files are correct. So rather than Carol claiming from David, she is likely to

stop trusting him altogether, or not guarantee against him again, or charge a higher

commission from Bob in future for providing the guarantee inorder to reflect what

she perceives as the increased risk.

Eventually, say that David is habitually sharing corrupt content and refuses

to compensate for losses, all principals who once trusted him are likely to never

guarantee his files again. In a commercial context, where David is paid to provide

a service, it is David’s incentive to reimburse Carol in order to maintain her trust

in him. Moreover, in a fair P2P system where credit is gained depending on

2Other possible ways in which trust paths can be found using P2P search algorithms are ex-
plored in [33].

CHAPTER 3. A PEER-TO-PEER APPLICATION 24

the quantity of uploaded content, and used to download files from others, David

will also have trouble buying guarantees from others in future (or they will be

very expensive for him). In this example, the commission canbe thought of as a

payment for insurance.

The Turtle client was originally developed with an emphasison privacy and

safety of sharing files that might be of a controversial or provocative nature. Due

to the localised trust in a trust* chain, such privacy can be easily maintained3.

However, privacy is not so much of an issue when sharing open content, or in

other applications where the integrity of the content is more important.

3.4.1 Good Case

1. A −→ B: Can Alice have a guarantee of David, forfeit=t, commission=c
2. B −→ A: Negotiation, new forfeit=t, new commission=c
3. B −→ C: Can Bob have a guarantee of David, forfeit=t′, commission=c′

4. C −→ B: Guarantee of David to Bob, id=x etc.
5. B −→ A: Guarantee of David to Alice, id=x etc.
6. A −→ B: Guaranteex is OK
7. B −→ C: Guaranteex is OK

Table 3.1: P2P good case protocol example.

Table 3.1 shows a typical good case protocol run. Supposing Alice has searched

for a particular file and finds that David has a copy of it. Alicedoesn’t trust David

and wants to be guaranteed that the file is the original version. Bob is on Alice’s

list of friends and so receives a request for a guarantee (step 1). Included in the

request is a commission offer to Bob and a forfeit requirement. Carol is in Bob’s

list of friends and so also receives a request for a guarantee. Carol trusts that

David can provide correct files. However, Bob might negotiate the commission

and forfeit values depending on the perceived risk of Carol’s guarantee (step 2 and

repeating step 1 again). The same might happen between Caroland Bob (although

not shown in the table above) in which case the new values willreflect Carol’s risk

perception of guaranteeing David. After negotiation, Carol will generate a guar-

antee for Bob and Bob will generate a guarantee for Alice. Finally, assuming

3We return to this issue in Section 8.4.2.

CHAPTER 3. A PEER-TO-PEER APPLICATION 25

that the file was as expected, Alice will notify Bob of this whowill in-turn notify

Carol.

3.4.2 Bad Case

Table 3.2 shows an example of a bad case protocol run. This protocol follows the

first 5 steps from the good case protocol above. However, in this case, the file

downloaded is incorrect in some way and Alice makes a claim from Bob (step 6).

Bob will need to pay this forfeit if he wants continued trust from Alice (step 7).

Bob will then claim the forfeit from Carol (step 8) who is obliged to reimburse

the forfeit to Bob (step 9). There are a number of factors thatmight affect Bob

and Carol’s actions thereafter. For example, whether this is David’s first offence,

or whether he later reimburses Carol. However, if David doesbecome a liability

to Carol (or Carol to Bob), she will simply stop guaranteeinghim. Commission

rates are likely to increase along the chain making the prospect of buying a future

guarantee of David along this route unfeasible.

6. A −→ B: Make a claim on guaranteex
7. B −→ A: Pay forfeitt
8. B −→ C: Make a claim on guaranteex
9. C −→ B: Pay forfeitt′

Table 3.2: P2P bad case protocol example.

Other possible problems could occur if Alice or Bob lie and make unwarranted

claims. Other possible scenarios such as these are discussed and simulated in the

following chapter.

3.4.3 Required Changes to Turtle

Turtle provides the functionality for sharing among locally trusted friends. It deals

with the routing of search queries and file transfers within these local trust rela-

tionships as explained above. This section describes the modifications that would

need to be made to Turtle in order to apply the trust* mechanism.

Small changes would need to be made if a principal requires a guarantee for

a file that they plan to download. For example, a flag could be set as part of the

CHAPTER 3. A PEER-TO-PEER APPLICATION 26

retrieval process stating this requirement (which will include a commission of-

fer and forfeit requirement). This will initiate the trust*protocol and guarantee

negotiation process. The requesting principal will receive the file with an accom-

panying guarantee. Alternatively, if multiple routes are available, a list of options

will be presented to the requester. Here, a trade-off can be made between the

cost and the level of compensation before selecting a route.Turtle would need

to be changed to allow such guarantee negotiation, generation and verification to

occur during this stage. A friend-list of a principal could also hold details of the

maximumc values that they are willing to pay and the minimum forfeitt values

they are willing to receive for a guarantee from each friend.It is worth noting

that this all assumes that each principal is using the Turtleclient to handle trust

management (and maybe even payments), however, later Section 5.4 discusses the

possible heterogeneity of a trust* chain.

3.5 Service Contracts

Most services provided by servers over a distributed systemor network have (like

those in the real-world) an underlying contract or agreement. This could simply

be that serviceX will be provided for a feeP and that the service will conform

to the terms and conditions ofX. In P2P networks, such guidelines cease to ex-

ist and clients connect to other clients to become an equal part of the network.

Peers are usually free to download anything they wish from other peers and vice

versa. Alternatively, there may be situations where content could be charged for

or for which a particular service level agreement is in place. However, it is more

likely that peers in a P2P network hold a “download at your ownrisk” policy

regarding the files that they are sharing. This is where usingtrust* could be help-

ful for providing assurance. Following from the example above, David doesn’t

care if someone wants to download fileX and doesn’t care if they aren’t happy

with it. However, Carol has previously downloaded files fromDavid, and hence

trusts that his files are of a high standard. Bob trusts Carol and Alice trusts Bob

in the same way so Bob’s guarantee reduces the risk for Alice and Carol’s guar-

antee reduces the risk for Bob respectively. If Carol was wrong, she will pay

the agreed forfeit to Bob who will compensate Alice with their agreed forfeit.

CHAPTER 3. A PEER-TO-PEER APPLICATION 27

However, David hasn’t necessarily done anything wrong and isn’t obliged to re-

imburse Carol. Carol however is likely to lower her high perception of the quality

of David’s files and perhaps never guarantee him again, or offer a lower forfeit, or

require a higher commission.

Bob’s motivation to provide the guarantee could be a commission payment

from Alice4. Bob will set the level of this commission depending on his perception

of the probability of David defaulting (or in relation to thehow much he trusts

Carol’s referral)5.

3.6 Payment by Resource

The forfeit and commission payments in the trust* model aren’t restricted to

purely monetary payments. In P2P networks, these payments could be made by

using the resource itself as currency. Due to the heterogeneity of the local trust

relationships (discussed later in Section 5.4), the payment medium could vary

along a trust* chain. Also, the type of payment that might provide an incentive or

deterrent could vary from user to user.

Assume that a P2P system were to provide an incentive to sharefiles by award-

ing download credit to peers. This credit could reflect the amount that has been

downloaded from an individual peer or the amount of content they are currently

sharing. This credit could be used to reward the peer by increasing download

bandwidth or to allow them to download more files. A simple rule could be that

for every file uploaded by a peer, a file can be downloaded from another by that

peer. This credit might be a global currency but could equally well be a token

provided by one peer to another only for use by that individual.

Following the examples given in this chapter, assume that Alice claimed a

forfeit from Bob. The forfeit might be in the form of tokens that allow Alice to

download files via Bob. After all, Alice already trusts Bob. Alternatively, Bob

could issue tokens which act as a commission payment for future guarantees that

4In a commercial case, where David provides a service for payment, David may pay Bob a
commission for acting as an intermediary (and maybe a forfeit later if Alice claims).

5Provided Bob’s estimate of the probability of David defaulting is lower than Alice’s estimate,
both Alice and Bob will be happy with the guarantee. See Section 8.4.4.

CHAPTER 3. A PEER-TO-PEER APPLICATION 28

Alice might need from Bob. The point is that the payment commodity could be

the resource itself whether it be the actual content (e.g. a file) or a means of getting

it (e.g. a free guarantee from Bob).

3.7 Conclusion

This chapter has shown how trust* can be used as a mechanism for guaranteeing

the integrity of content or services provided over a P2P network. Trust* builds on

the idea of sharing with friends in the Turtle client but alsoguarantees the integrity

of downloaded content from non-friends or unknown peers, thus removing the

need for and the risk involved when friendship is assumed to be transitive.

Using trust* in this way reduces the risk involved for the downloader as they

will be compensated in the worst case scenario. It does so without the need for

requiring transitivity of trust, and privacy is still maintained. This is because the

guarantees and payments are confined within the same localised pre-existing trust

relationships that are already used to communicate the actual search queries and

their corresponding results. This approach therefore allows complete localisation

of trust management.

We have argued that applying trust* to P2P file sharing will also be benefi-

cial in guaranteeing the integrity of free content such as open source software or

copyright-free movies etc. Indeed, trust* will potentially help P2P sharing net-

works to become “respectable” (instead of the Wild West).

Chapter 4

Simulating Trust*

4.1 Introduction

In order to test the trust* model and its application to various situations, parts of

it were simulated using the Repast Simphony agent based modelling toolkit [80,

81, 82] available at [4]. This chapter demonstrates a simulation of the trust* peer-

to-peer application as described in the previous chapter. Summarised results of

simulations are also presented in this chapter, with more detailed results given

in Appendix A. Subsequent application chapters in this dissertation describe the

variation in simulation details in relation to the other applications being explained.

4.2 The Repast Modelling Toolkit

The Repast Simphony toolkit provides tools for modelling entities called agents.

These maintain a set of properties and behaviours which can exhibit learning be-

haviour. The toolkit also provides an environment where such agents can interact

with each other to form a simulation. In this work, the RepastSimphony frame-

work is used to model the actors in a trust* protocol.

The simulation environment allows agents to be added and networked to each

other. It also provides tools for data logging for later analysis. Properties and other

simulation attributes can be manually altered during a simulation if necessary.

Repast Simphony integrates with the Eclipse IDE and enablesagents to be

29

CHAPTER 4. SIMULATING TRUST* 30

modelled in a Java-like language called Groovy. The following section outlines

the types of agent, their properties and their behaviours that are used in a typical

trust* simulation.

4.3 Modelling Trust*

4.3.1 Agents

To simulate trust*, three types of agent are used to distinguish specific functions

in the protocol. Note that in reality, a principal is likely to have multiple “hats”

and perform the tasks of all three agents simultaneously in respect of different

instances of the relationship. The three types of agent are outlined below.

Trust*er A principal who is the trusting end-point of a trust* relationship. In the

simulation, all trust*er agents are called Alice and they are responsible for

initiating a trust* relationship1.

Guarantor A principal who is providing a guarantee to another about someone

they trust directly (or indirectly). In the simulation, allguarantor agents are

called Bob (uniquely numbered). Chains of Bobs can also be simulated (see

Section 4.5).

Trust*ee A principal who is the trusted end-point of a trust* relationship and is

being trust*ed by the trust*er. In the simulation, these agents are called

Carol.

4.3.2 Agent Properties

Each agent in a simulation has properties which they can control and that other

agents can see. Below are the important properties that are used when following

the trust* protocol. Other properties include claim counters, credit transfer logs

and references to other agents in a protocol run.

1This is usually the case, however, later in this dissertation we’ll describe an application where
Alice is still the trust*er but doesn’t invoke the protocol.

CHAPTER 4. SIMULATING TRUST* 31

credit The credit property is a floating point decimal with the default value of 0.0.

It represents the wealth of an agent. During a simulation run, an agent’s

changes in wealth can be easily identified and whether they have become

better or worse off after using trust*.

cOffer and fOffer The cOffer and fOffer properties represent the current com-

mission (offered to a guarantor) and forfeit (required froma guarantor) of-

fers respectively when making a request for a guarantee. ThefOffer can

been seen as more of a forfeit requirement than an offer in theP2P appli-

cation scenario. A guarantor is likely to refuse a request ifthe fOffer is too

high, however will want the cOffer to be as high as possible.

cMin and fMin The cMin and fMin properties are the lowest commission and

forfeit rates that will be offered or accepted. A guarantor will want the

cMin to be as high as possible but will not care about the fMin.However,

a claimant will set his fMin property to at least a satisfactory level that will

be enough to compensate him.

cMax and fMax The cMax and fMax properties are the highest commission and

forfeit rates that will be offered or accepted. The values are the opposite

way around to those of cMin and fMin. For example, a guarantorwill want

to set the maximum forfeit they are willing to pay. Conversely, a guarantee

buyer will have a maximum threshold to how much commission they are

willing to pay for a guarantee.

active The active property is a boolean value stating whether or nota particular

Bob agent is currently available to act as a guarantor for Alice.

4.3.3 Initial Values in a P2P Simulation

Table 4.1 shows the initial values of Alice and Bob. In the P2Psimulation, Carol’s

property values aren’t applicable as she doesn’t explicitly take part in the protocol

unless Bob attempts to claim from her. For the purpose of thissimulation, Bob

will never ask Carol for a reimbursement of a forfeit2 and will simply increase the

2Although this restriction is relaxed later in Section 4.5.

CHAPTER 4. SIMULATING TRUST* 32

cost for Alice (effectively making it unaffordable for her to continue).

Alice Bob
cOffer 1 n/a
fOffer 10 n/a
cMin 0 1
cMax 5–10 ∞
fMin 6 0.1
fMax ∞ 25–30

Table 4.1: Initial values for Alice and Bob.

In the simulation, these values are initialised in the same manner for each agent

in order to allow results to be easily comparable. However, in a real scenario, these

levels would be set individually in relation to some real-world trust or reputation

metric. For example, Alice will reflect her personal trust inBob lowering her

initial fOffer and fMin values. These values are variable tothe level of current

trust in another principal which is assumed to be reassessedbefore each protocol

run.

Alice’s cOffer and fOffer values start relatively low. Bob never needs to for-

ward a request in this example so his cOffer and fOffer valuesaren’t applicable.

However, where multiple guarantors are needed between Alice and Carol, Bob

would need appropriate cOffer and fOffer values in order to forward a request.

Also, in this case, Bob would need separate cOffer and fOffervalues depending

on whether he is providing a guarantee (to Alice) or forwarding the request (to

another guarantor). Section 4.5 describes a more complicated multiple guarantor

simulation.

Alice’s cMin and fMin values are the opposite way to Bob’s cMin and fMin

values. For example, Alice will want the commission to be lowand the forfeit to

be high whereas Bob will want the commission to be high and theforfeit to be low.

This is also evident with their cMax and fMax values. Note that in the simulation,

Alice’s cMax is set to a randomly chosen value within a specified range. The

same applies to Bob’s fMax value. This is to add a small degreeof realism to the

simulation.

CHAPTER 4. SIMULATING TRUST* 33

4.3.4 Model Attributes

A simulation can have multiple global attributes which are accessible by all agents.

These will normally stay constant unless manually changed during a simulation

run. Both attributes in the P2P simulation make use of a Repast library method

where a threshold can be set to affect the probability of a random number being

returned astrue or false.

malwarechance Is the probability that Carol’s shared files will be incorrect, ille-

gal or corrupt. The value can range from 0 to 1 where 0 defines nomalware

and 1 defines 100% malware.

truthchance Is the probability that Alice will be truthful when claiming. This

enables the simulation of Alice making false claims where 0 defines Alice

to never be truthful and 1 is 100% truthful.

Another attribute could be used to define how often Bob might refuse to pay

a forfeit to Alice. This attribute wasn’t used in this simulation as it is assumed

that guarantors will always behave correctly3. This is so that analysis of the direct

effects to the end-points (Alice and Carol) is not complicated by interference from

bad guarantors. For example, if a particular guarantor refuses to pay Alice, Alice

will simply stop trusting him to provide guarantees. This will limit the routing

possibilities between Alice and Carol and hence affect the simulation run time

regardless of how well behaved Alice or Carol were. It is assumed that guarantors

want to maintain their trust from Alice and will honour any forfeit requests.

4.3.5 Agent Behaviours

These methods provide the main functionality for followingthe trust* protocol in

a simulation.

initiate() This is the first method that is invoked in a simulation run andis called

once every tick4. It makes Alice initiate the protocol by searching for a

3This is also re-considered later in Section 4.5.
4A tick is a single unit of time in a simulation which can be usedto schedule events.

CHAPTER 4. SIMULATING TRUST* 34

guarantor (a Bob) between herself and the download source (Carol). As-

suming that a guarantor is found, the starting values are setand Alice starts

the protocol by callingrequestGuarantee() on the guarantor agent.

This sends details of the end-points and the current fOffer and cOffer values.

Otherwise, if no guarantor can be found, the simulation is stopped.

requestGuarantee() Called by Alice to request a guarantee from Bob. Once

invoked, Bob will check if the commission is high enough. If so, he will

make sure the forfeit isn’t too high. If either checks fail,reject() will

be called on Alice with the reason why. Otherwise, Bob generates a unique

id number and invokessendGuarantee().

reject() Called by Bob to reject a guarantee request. Depending on whether it was

rejected because the commission offer was too low or becausethe forfeit

requirement was too high, Alice will increase the commission or lower the

forfeit respectively. Alice will check that the new offer values are still within

her minimum and maximum bounds and resend the request with these new

values. If not, the current guarantor will become inactive and Alice will

search for another Bob.

sendGuarantee()Called by Bob to send a guarantee to Alice. For the sake of

the simulation, it is decided here whether the file is going tobe incor-

rect by generating a random number and checking it against the attribute

malwarechance. Thedownload method is then invoked on the Alice

agent and Bob is paid his commission.

download() This method represents Alice downloading the file from Carol. The

file is checked (even though the type of file has already been decided) by

Alice and makes a claim to Bob if it is incorrect. If the file is correct,

Alice will decide whether to make a false claim by generatinga random

number and checking it against thetruthchance attribute. Whatever

the outcome, Alice invokesresponse() on Bob stating whether or not a

claim is being made. Also, the number of claims and false claims are logged

at this point.

CHAPTER 4. SIMULATING TRUST* 35

response()Allows Alice to respond to Bob regarding a guarantee. It simply

checks whether or not a claim has been made. If so, the forfeitis paid

by Bob to Alice by invoking herpayment() method.

payment() The payment method allows agents to make payments to other agents.

This method handles the exchange of credit and logs all transfers of com-

mission and forfeit payment for each agent. If this method isinvoked on an

agent, and a forfeit has been paid, they will increase their required forfeit

from the payee in future. This is where reassessment of thesevalues takes

place.

4.4 Simulation Test Scenarios

The primary reason for simulating a trust* protocol is to analyse the outcomes of

the participating principals in various situations to ensure that they get the right

incentives to act correctly and deterrents for defaulting.These situations can be

simulated by varying themalwarechance andtruthchance attributes and

recording the resulting values of the agent properties. Because the simulation

involves invoking a protocol run every tick, the protocol can be repeated continu-

ously and the long term effects for each principal will become evident. The effects

and outcomes that are observed are as follows:

• The simulation is programmed to stop when all possible trust* routes have

been exhausted, so the total tick count at the end of a simulation gives a good

indication of how long trust* could be used between Alice andCarol before

all guarantors become inactive. This will vary depending onthe values of

the simulation attributes and the tolerance of an individual agent, but will

be comparable.

• The credit levels of each principal gives a good indication of who made a

gain or a loss after a series of protocol runs. This can also belinked to

the tick count to show how long a guarantor might have held outuntil they

became inactive. Or similarly, how long Alice could continue to make false

claims before losing all possible routes.

CHAPTER 4. SIMULATING TRUST* 36

• Once results have been generated for a particular simulation run, the steep-

ness of the increases in values such as fOffer and cMin becomeeasily visi-

ble. This should be representative of the number of claims that Alice might

make. Increases in cOffer and decreases in fOffer will also be caused by

request rejections.

• Results also show logs of the total expenditure and gain of credit whether

through commission or forfeit payments. Also, the number ofclaims and

false claims is logged.

Table 4.2 shows the simulations that were run and thetruthchance and

malwarechance values that were set for each. Full results are given in Ap-

pendix A, however a summary of results is analysed in the Section 4.6.

The tests have been split into two sections to test differentvariations of princi-

pals being “good” and “bad”. In tests 1 to 6, Alice and Carol begin by both being

bad (i.e. Alice never tells the truth and Carol always sharesbad files) and grad-

ually become good (i.e. Alice always tells the truth and Carol never shares bad

files). These tests show how effective it is to use trust* starting with no principals

behaving ranging up until all principals are behaving well.In tests 7 to 12, Alice

starts by being bad and Carol starts by being good. This is gradually reversed

and eventually, Alice will be good and Carol will be bad. These tests show the

effectiveness of trust* when one principal is behaving whenthe other might not

be and vice versa.

To keep tests simple, one Alice agent, one Carol agent and fiveBob agents are

simulated. Trust paths have been defined so that five possibletrust* routes can be

found between Alice and Carol. The simulation topology is shown in Figure 4.1

where the arrows indicate the direction of direct trust. Thesimulation could be

of a larger scale with many more agents and possible trust paths. However, the

topology in Figure 4.1 is adequate to see the effects of trust*. Changes in an

agent’s credit might be influenced by other trust* relationships they might belong

to. For example, say that Alice is being paid high forfeits byBob. In this sce-

nario, she would appear to be quite wealthy. However, suppose in reality Alice

is also a guarantor in another trust* relationship, she might have to pay forfeits

to other principals. Of course, she is likely to ensure that she’ll make a profit,

CHAPTER 4. SIMULATING TRUST* 37

Test Truthchance Malwarechance
1 0 1
2 0.2 0.8
3 0.4 0.6
4 0.6 0.4
5 0.8 0.2
6 1 0
7 0 0
8 0.2 0.2
9 0.4 0.4
10 0.6 0.6
11 0.8 0.8
12 1 1

Table 4.2: Simulation test setup.

however she won’t appear to be as wealthy as in the first case. Simulating trust*

by only allowing certain agents to perform one particular task removes these out-

side interruptions and allows the true effects to each type of principal to be clearly

seen.

A CB3

B4

B2

B1

B5

Figure 4.1: Trust topology between Alice and Carol.

The model also allows longer chains to be simulated. This is achieved by forc-

ing the guarantors to record guarantee requests and decide whether they need to

CHAPTER 4. SIMULATING TRUST* 38

forward the request to another guarantor. A chain of five principals is the short-

est for which at least one node is not directly related to either of the end-points.

For this particular simulation however, the chains were intentionally kept short to

analyse the direct effects on each type of agent. The implications and effects of

simulating a five principal chain are explained in the following section.

There are many other circumstances that could have been simulated, but the

simulations were deliberately limited to reduce the numberof experiments re-

ported in this dissertation to a manageable level. The simulations are just meant

to be illustrations of how the trust* concept could work in some practical appli-

cations. The real strength of this dissertation is in the number and depth of the

different scenarios where trust* could be used.

4.5 Multiple Guarantors

This section describes the design decisions made when simulating the P2P sce-

nario where a trust* chain consists of five principals. Figure 4.2 shows the trust

topology between A and C for this simulation.

A B2 B3B1 C

Figure 4.2: Trust topology between Alice and Carol with multiple guarantors in a
single chain.

The simulation described previously in this chapter offersa choice of five

routes to Alice each through a different guarantor. It was assumed for simplicity

that each guarantor was directly trusted by Carol. It is morelikely that a trust*

route will be longer where certain nodes might have no relation to either of the

end-points. For this simulation, some major design changeswere made to enable

multiple guarantors. These are:

• Now there are three guarantors (we’ll call themB1, B2 and B3) which

means that changes have been made to how requests are dealt with. In

the original simulation, a guarantor only needed to worry about how likely

it is that Carol will default (and therefore how much his expected loss will

CHAPTER 4. SIMULATING TRUST* 39

be to Alice). In the multiple guarantor scenario, a guarantor will not only be

providing a guarantee to another principal, but will also bereceiving one.

Therefore, a guarantor needs to decide on different values for thecMin,

cMax, fMin andfMax properties depending on whether they are receiv-

ing or forwarding a guarantee request. For example, supposethat B2 has

received a request fromB1, he will want a high commission value (as this is

what he’ll be paid byB1) and a low forfeit value (as this is what he’ll need

to payB1). If he was to forward the request toB3, he’ll want to pay the low-

est possible commission toB3 but receive the highest possible forfeit from

him. The initial values for requesting a guarantee are shownin Table 4.3

and the initial values for providing a guarantee are shown inTable 4.4.

Property A B1 B2 B3

cOffer 1.5 1.4 1.3 n/a
fOffer 15 16 17 18
cMin 0 0 0 n/a
cMax 5–10 5–10 5–10 n/a
fMin 6 6 6 n/a
fMax ∞ ∞ ∞ n/a

Table 4.3: Initial values for requesting a guarantee where aprincipal wants a
low c but highf . Note that forBi, thecOffer is decremented by0.1 and the
fOffer is incremented by1 by each guarantor. In the simulation, these values
are calculated from thecOffer andfOffer values received from the previous
principal depending on a guarantor’s greed (see below).

Property A B1 B2 B3

cOffer n/a n/a n/a n/a
fOffer n/a n/a n/a n/a
cMin n/a 1 1 1
cMax n/a ∞ ∞ ∞
fMin n/a 0.1 0.1 0.1
fMax n/a 25–30 25–30 25–30

Table 4.4: Initial values for providing a guarantee where a principal wants a high
c but lowf .

CHAPTER 4. SIMULATING TRUST* 40

• In this simulation, Alice only has one possible route to Carol in comparison

to the five routes in the previous simulation. If any of the guarantors in the

chain become inactive (no longer willing to provide guarantees), this will

force the simulation to end. In reality, the route could be diverted around the

inactive links such as in the previous simulation where Alice would search

for a different guarantor. Therefore, the run times for thissimulation are on

average expected to be five times quicker.

• When a guarantee is claimed by Alice, a guarantor’s properties will be af-

fected in both directions. For example,B1 will decrease his commission

offer and increase his forfeit requirement when requestinga guarantee. He

will also increase his commission requirement and lower hisforfeit mini-

mum for actually providing a guarantee.

4.5.1 Test Scenarios

Several test scenarios were simulated with the five guarantor chain. These are:

• Test 1 — Following the same test set-ups as those in Table 4.2,the credit

changes for each principal is recorded. Note that this test assumes that the

guarantors will always be truthful. Also, this simulation includes a forfeit

reimbursement request fromB3 to Carol if a claim has been made. In this

test, she will always reimburseB3 with the forfeit.

• Test 2 — Again, following the same test set-ups as the previous simu-

lation, but this time with a new attributecarolpaychance which de-

fines whether Carol reimburses the forfeit thatB3 might have to pay. The

carolpaychance is fixed to 0.5 andB3 has a tolerance of three non-

payments before he becomes inactive.

• Test 3 — In this test, Alice and Carol are always good (i.e. where

truthchance=1 andmalwarechance=0). However, a new attribute

guartruthchancedefines how often guarantors might make false claims.

Ten tests were completed where the value ofguartruthchancewas in-

cremented by 0.1 ranging 0 to 0.9.

CHAPTER 4. SIMULATING TRUST* 41

There are many more combinations of tests and attribute thatcould reflect dif-

ferent scenarios. For example, another could be to set a “greed” level for each

guarantor to define how much they will alter acOffer andfOffer before for-

warding a request.

4.6 Summary of Results

From the results produced by the simulations, it is evident that only principals who

are well behaved will reap the benefits of using trust*5. This is that they can be

assured of the content they might download in a P2P network. For good principals,

this is enough incentive to continue acting correctly otherwise risk losing these

privileges. Moreover, it has proved that bad players in a trust* protocol might

temporarily profit, however they will find it harder (or more expensive) to build

future trust* relationships. Their trust* usage will be short-lived and they will be

isolated from the good principals.

So, the results show that it’s in an agents interest to not share incorrect content

or make false claims as their future trust* usage will be restricted. For example, if

Carol serves bad files, Bob will no longer guarantee her. If Alice keeps claiming

and Bob suspects the claims are false, Bob won’t provide guarantees to her or they

will be expensive in order to cover forfeit costs making it infeasible for Alice to

make a trust* chain to Carol (via Bob at least).

A full description of the results generated during each simulation is presented

as a series of graphs and analysis in Appendix A. There are sixgraph types for

each test which present various results from a simulation. The first shows the

changes in credit for Alice and all of the Bobs. The second shows the changes in

Alice’s commission and forfeit offers. The third shows the amount of commission

she has paid and the amount of forfeit she has received. The fourth shows the

commission received by each Bob. The fifth shows the amount offorfeit each

guarantor has paid Alice. Finally, the sixth shows the frequency of Alice’s claims.

5Although from the results, it appears that Alice still benefits when behaving badly. In reality,
this isn’t likely to be the case as tolerance levels will differ from those simulated (or that cycles
of trust* will be built, see later). Also, this will affect her chances and costs of future trust*
relationships.

CHAPTER 4. SIMULATING TRUST* 42

Figure 4.3: Credit values when all
principals behave badly.

Figure 4.4: Credit values when all
principals behave well.

The results of the simulations with a five principal chain arealso presented and

analysed in Appendix A. Results from Test 1 are given in Section A.3.1, results

from Test 2 in Section A.3.2, and results from Test 3 in Section A.3.3.

4.7 Conclusion

This chapter has demonstrated how the trust* model can be simulated to reflect

aspects of how it might be used in practice. In particular, the simulation of the

P2P application presented in Chapter 3 has been described inthis chapter.

The results for this application show that agents in a trust*relationship gain

little advantage from acting incorrectly. Moreover, any advantage an agent might

gain is short-lived and will be penalised in the future if they wish to build a trust*

relationship again. If they find it difficult to find trust* routes, then their future

behaviour will have no effect on other parties using trust*.

Simulating trust* will have subtle differences depending on the application

that trust* is being applied to. Subsequent application chapters in this dissertation

describe the implications and necessary changes that need to be made to the simu-

lation model discussed here in order to apply it to the application in question, and

report on the results of further tests.

Chapter 5

A Grid Computing Application

5.1 Introduction

This chapter describes how trust* can be used within a grid network or similar dis-

tributed environment. Examples of such environments rangefrom computational

grids that might be owned and shared by a company or organisation to volun-

teer computing projects where anyone can participate. Grids are generally used

to solve a computationally intensive problem distributed over multiple machines

and can include features such as redundancy, fault tolerance and scalability. Grids

also allow organisations to share resources in a cost effective way. For example, a

university might share access to their database in return for processing time on an-

other university’s cluster. Rather than each university investing time and effort in

buying, building, and maintaining their own database or cluster, they can simply

share such resources.

Ways in which trust can be built in computational grids (which are likely to

span organisational and domain boundaries) is a well researched problem [8, 12,

28, 76, 83, 85, 108, 109]. Popescu [89] outlines some security requirements of

the Globe middleware such as needing to cope with a lack of a centralised trust

authority and servers which span multiple administrative domains. However, these

problems are likely to be evident in any computational grid environment which is

required to scale in this manner.

43

CHAPTER 5. A GRID COMPUTING APPLICATION 44

5.2 Globe Distributed Object Middleware

The examples used in this chapter are loosely based on the Globe middleware [11,

53]. Globe’s focus is to provide a middleware that is scalable enough to enable

worldwide distributed computing.

The Globe infrastructure is built around Globe Object Servers (GOSes) which

host Distributed Shared Objects (DSOs) and replicas of other DSOs. Trust man-

agement policies can be written by GOS administrators that define the other GOSes

which are considered trusted and untrusted. This allows operations to be per-

formed on trusted and untrusted platforms depending on their importance. For

example, read only methods can be performed on untrusted servers whereas write

(state altering) methods might only be performed on trustedservers. Such trusted

servers might be those locally hosted by the organisation and untrusted servers

might be those that span other administrative domains.

Trust* can be applied as a solution to building trust in grid middleware and

other distributed environments. The trust* model could be used alongside Globe’s

existing trust management strategies, but could also usefully incorporate some

of the ideas introduced by Popescu in his thesis [87]. Popescu’s work involved

developing the security considerations and functionalityof Globe and introduces

mechanisms to enable Byzantine fault tolerance through reverse access control

and audit in order to maintain the integrity of the DSOs and their replicas in a

Globe system, especially in sensitive applications. The following sections explain

how these mechanisms relate to and could be used when applying trust* to such

an environment.

5.2.1 Byzantine Fault Tolerance

The need for fault tolerance is evident as Globe objects are allowed to be hosted

on third-party servers and it is important that Globe objects are behaving cor-

rectly. For example, in a critical application such as a stock market system, all

data and operations need to be correct (and non-malicious) and so damage preven-

tion would be required. Even one incorrect result or operation could be disastrous

(and could replicate, see Section 5.2.4). However, trust* is more likely to be used

CHAPTER 5. A GRID COMPUTING APPLICATION 45

for lower value operations whereby new unknown users can be trusted to perform

tasks (if the commission rates are high enough and hence the risk perceptions are

low enough). If the task is incorrectly performed, the user simply won’t be able

to continue with that particular project. So a damage control mechanism will be

sufficient for maintaining the overall integrity of such a project. For example,

Popescu uses two methods for damage control in Globe which are explained in

the subsequent sections. These are reverse access control and audit.

5.2.2 Reverse Access Control

Traditional forward access control mechanisms are used to check if an invoking

object is allowed toinvoke methods on another object. Reverse access control is

the converse where the invoking object checks whether another object is allowed

to execute a particular method for it. An object owner can select a trusted group

of replicas and write a policy allowing this group to performparticular operations

such as those that alter the state of the DSO. These core replicas can then re-

cruit other less trusted replicas to perform the read requests involved. Less trusted

replicas serve read requests only and are unable to propagate the request further to

other replicas. This relates to the type of policies that areused in trust* although

guarantees can be used to allow the less trusted replicas to perform a wider range

of tasks. Trust* allows reverse access control to be extended, by permitting a

trade-off to occur between the risk involved with a method invocation (or cor-

rectness of its results) and the level of compensation required if the results are

incorrect.

5.2.3 Audit with Cycles of Trust*

Trust* is intended to be deployed in environments where there is no universally

trusted arbiter or referee. If a principal starts claiming aforfeit regularly, the

guarantor might either stop providing the guarantees, or may charge more for

providing them. Alternatively, the guarantor or trust*ed principal could form a

cycle of trust*. Such a cycle consists of a trust* guarantee path in the opposite

direction (to an existing trust* relationship) in which theguarantor guarantees

compensation if a false claim is made. See Figure 5.1 below.

CHAPTER 5. A GRID COMPUTING APPLICATION 46

In Globe, the results of a method invocation on a less trustedreplica can be

audited by a trusted replica. This is analogous to a cycle of trust*. Rather than

the correctness of results being checked as in Globe at present, the correctness of

a claim will be checked. For example, in Figure 5.1, assume that Carol is trust*ed

by Alice via Bob to execute methodx and if Alice considers the results to be

correct, she will reward Carol (maybe with a small payment).Otherwise Carol

might have to pay Bob if it isn’t correct or simply will be removed from the set of

replicas hosting a DSO. Suppose that Carol suspects Alice offalsely claiming that

the results were incorrect, Carol could make a trust* cycle via David to protect her

against this (he might also verify the result and compensateCarol if it was in fact

falsely claimed). In a Globe context, Bob could be the auditor (regarding correct

execution) for Alice and David could be the auditor (regarding correct claims) for

Carol.

CA

B

D

Trust* to not falsly claim

Trust* to execute correctly

Figure 5.1: A cycle of trust* between Alice and Carol

5.2.4 Damage Prevention

Popescu also suggests two methods for providing damage prevention. These are

through state signing and state machine replication. The latter of these might be

useful in a more critical or anomaly sensitive application that uses trust*. Replica-

tion works by invoking the same method on a number of replicasand choosing the

result of the group majority. Although this will be effective in spotting malicious

replicas, it is expensive both in the amount of computational resources needed to

CHAPTER 5. A GRID COMPUTING APPLICATION 47

handle a request and the latency caused by waiting for multiple replicas to per-

form the method (although can proceed as soon as a majority ofresults have been

received). Here, there is a trade-off between security and efficiency; the more

critical an application is, the more replicas will be needed, although will be more

expensive. Less critical operations might only need one or two.

In the event that trust* is being used in a more sensitive application, Globe’s

replication technique could be used. For example, by building multiple trust* re-

lationships simultaneously via different guarantors between end-points. Suppose

that Alice requires two guarantees from two individual guarantors whom she trusts

before allowing Carol to execute methodx. If Carol fails to execute the method

correctly, not only will Alice be entitled to two forfeit payments but Carol will risk

losing trust from two principals rather than one. This also makes allowances for

the chances that one of the guarantors might be “faulty” and not pay the forfeit.

5.3 Routing

In a P2P network, routing protocols are generally provided within the client soft-

ware (such as Turtle). Grid middleware (such as Globe) on theother hand are

meant to be heterogeneous and don’t necessarily need or havea generic routing

strategy. A routing algorithm of the user’s choice can be used to route trust* pro-

tocol messages. This section provides an overview of some ofthe network routing

strategies that would be analogous to trust* routing (or finding an optimal route

between two principals).

There are many network routing strategies that could provide the underlying

trust path routing for the trust* protocol including those surveyed in [74, 96].

Fixed routing is certainly out of the question as trust relationships are volatile and

to configure permanent routes wouldn’t work. Flooding, dynamic or even random

routing would suit the needs of trust* better.

Finding the best route between two nodes on a network is analogous to finding

an optimal route between two principals who wish to form a trust* relationship

with one another. The small world phenomenon [77] implies a trust* route can

almost always be found. But the “best” route could be the cheapest (according

to commission or computational expense) or the most trusted. In this respect,

CHAPTER 5. A GRID COMPUTING APPLICATION 48

different levels of trust, forfeit and commission correspond in routing terms to

different network Quality of Services.

Most routing decisions are based on some form of least-cost or distance vector

criterion and are usually variations of graph search algorithms such as Dijkstra’s

algorithm [35] or the Bellman-Ford algorithm [42].

Dijkstra’s algorithm solves the shortest path problem in weighted graphs be-

tween a given source node and all other nodes. It orders pathsof increasing length

stage by stage. A routing table is initialised by calculating path costs to neigh-

bouring nodes. These are effectively shared with neighbours so paths to all nodes

in the network can be made. If a shorter route to a node is encountered, the short-

est path is recorded and all nodes update their least cost paths respectively. The

algorithm continues until paths have been calculated to allnodes in the network.

The Bellman-Ford algorithm solves the same problem howevera node only

needs knowledge of its neighbours and their surrounding link costs whereas Di-

jkstra’s algorithm needs complete topological information of the network. This

algorithm is more fitting to the requirements of trust* routing.

A popular deployment of a distance vector algorithm is the Routing Infor-

mation Protocol (RIP). In a network implementing RIP, each router maintains

a routing table of information about routes from itself to each destination [102,

p86]. A router generally initialises itself by inserting routes to hosts to which it

is directly connected. Each entry includes the next-hop address, the cost and an

entry age. RIP differs from algorithms such as those above asit only retains the

current minimum cost route rather than every possible route. This entry is up-

dated if a cheaper route can be found, however, this allows RIP routers to store

little information about its neighbouring hosts. In most RIP implementations, the

cost (or distance) might be the number of routers that a packet must pass or could

be relative to other computational expense. With trust*, neighbours are directly

trusted principals, and the cost would be the commission that needs to be paid to

a guarantor in the trust* route.

CHAPTER 5. A GRID COMPUTING APPLICATION 49

5.3.1 Routing in Trust*

To find a trust* route, such routing tables could be used although in a slightly

different way. For example, if Carol provides a commercial service, then she could

maintain a list of her local trust relationships in a similarway to destinations in

her physical network.

Assume that Alice needs a guarantee of Carol. Bob is in Alice’s routing table

and Carol is in Bob’s. Alice’s entry for Bob will include the commission that Bob

will charge for a guarantee. Bob’s entry is similar except itstates the charge from

Carol. There might be situations where multiple routes are possible. Therefore,

the cheapest route might be chosen. Routing tables store differences and the trust*

tables could do the same. The difference is that guarantees may add to or subtract

from the totals before passing the information on. Another difference is that Alice

will pay Bob the commission between them only, whereas in networking, the cost

between Alice and Bob, and Bob and Carol will be combined to give a total cost

between Alice and Carol. A trust* routing table will not require this as Alice will

only pay a commission to Bob and it is Bob’s obligation to pay Carol. Bob might

also have a choice of routes to continue to Carol some of whichmight be cheaper,

but he will surely only provide a guarantee if he probably isn’t going to lose out

himself. Hence, as a general rule, the longer the chain, the more expensive it will

be for Alice.

Another difference with conventional networking is that all our links are one

way, because trust isn’t generally symmetric, whereas mostservice contracts are

bi-directional. This isn’t a problem, because two trust* paths can be found in both

directions via a different route of guarantors1.

After a trust* protocol run, principals may update their commission rates in

respect to the outcome of the previous run. In distance vector algorithms, rout-

ing tables are normally shared with neighbours so that least-cost routes can be

re-calculated. In trust*, the corresponding step would simply be to update the

principals who are trusted with their new rate (if applicable). It might be that a

deceiving principal will be removed altogether (which corresponds to a link out-

age) or charged an extortionate rate (which is analogous to network congestion

1Review Section 5.2.3 on page 45.

CHAPTER 5. A GRID COMPUTING APPLICATION 50

control, see Section 7.9).

In summary, any established network routing protocol will suffice for finding

optimal chains of guarantors, although the choice of algorithm may have subtle

consequences2.

5.4 Heterogeneity

In order to implement the trust* relationship mechanism, whether to initiate, pro-

vide, or receive a guarantee, a way of making decisions and payments is neces-

sary. One of the advantages of our approach is that both the trust management and

payment systems used along a trust* route can be heterogeneous due to the fact

that trust (and payments) are confined or localised between directly trusting and

trusted principals. If a guarantee has been made from one principal to another,

any trust management and payment schemes could be used between them. At the

same time, other pairs of principals might use completely different schemes. As

long as an agreement has been made in advance on how the protocol will be fol-

lowed between a specific truster and trustee, then it doesn’tmatter what is being

used along other parts of the chain. This heterogeneity allows users to follow the

protocol with more flexibility. For example, by paying each other in a commodity

that’s of the most value to them.

5.5 Payment and Resource Brokering

As most grids are used to share computational resources (rather than content as in

the P2P application chapter) across organisations, these resources could be used

as the commodity for forfeit and commission payments. Resources might include

CPU cycles, storage or bandwidth. These typically vary in perceived value be-

tween the provider and receiver, so resources could also be brokered in this way,

converting one resource into another.

Due to the heterogeneous nature of the localised trust between individual pairs

of principals, the payments along a trust* chain may be of different types and

2For example, a routing algorithm which aims to use minimal resources will take the shortest
route.

CHAPTER 5. A GRID COMPUTING APPLICATION 51

could be something of a more immediately valuable commodityto them (which

may include micro-payments). If a guarantor is taking payments of one type (from

a principal they trust) and making payments of another type (to a principal who

trusts them), the guarantor is effectively acting as a resource broker between these

principals. Users can barter within their local trust relationships to agree on re-

sources that will be shared between them as payment commodities.

5.6 Simulation Implications

The grid simulation is almost identical to the P2P simulation in that a service is

provided from one party to another. There are two differences that need to be

taken into consideration when simulating the trust* protocol in a grid computing

scenario. These are:

• A trust* relationship in the P2P scenario is likely to be between two indi-

viduals who are totally unknown to each other who are dealingon a first

(and probably only) time basis. The purpose of grid computing is really the

same as P2P computing except that resources are being sharedrather than

content. Also, in grid computing, this might be on an institutional or organi-

sational scale. For example, an agreement to pay for or sharecomputational

resources between two universities or companies. The difference from the

P2P simulation is that rather than being independent, principals are now

representative for the reputation of the institute they belong to. For exam-

ple, habitual misbehaviour from an individual in a university will affect the

reputation of the university as a whole (in the eyes of the trusting institute)

and will affect how other members of the university might build trust in the

future. By applying this to the trust* simulation, the trust*ed agents can be

assigned a domain to which they belong. Agents who act incorrectly might

cause an overall price increase for themselves and the rest of their domain.

• When grid services are used between organisations, it’s likely that a service

agreement or contract will have been written. In comparisonto the P2P sce-

nario where connections are fairly ad-hoc and short-lived and where there

is no incentive for the server to act correctly, computational agreements are

CHAPTER 5. A GRID COMPUTING APPLICATION 52

likely to be between already reputable organisations and span for a longer

period of time. The primary difference in this simulation isthat Carol now

needs to care about her actions and be held accountable for them. For ex-

ample, Carol has agreed to share her cluster (perhaps for a fee or in ex-

change for other resources) and will need to pay the forfeit if a claim has

been made. Whereas, in P2P networks, peers download files at their own

risk and the serving peer typically has no contractual agreement with the

downloader and isn’t obliged to pay any compensation. To model this, the

attributecarolpaychance (previously used in the P2P multiple guaran-

tor simulation) defines how likely Carol will pay the forfeitwhen requested.

However, the trust*ee and guarantors will be less tolerant to non-payment.

The results for this simulation reflect the same features as those in the multi-

ple guarantor P2P simulation where Carol is offered the chance to pay the forfeit

(refer to Section 4.5). Results for this simulation regarding changes in credit are

given in Section A.4. They confirm the results of the previoussimulations in that

bad behaviour won’t be tolerated for long when using trust*.Especially when the

service provider refuses to reimburse the forfeit when a SLAmight be in place. A

bad service provider will quickly lose all possible guarantee routes to them if ha-

bitual claims are made and where reimbursement doesn’t occur. This is especially

important in a grid setting where services are subscribed toand usually paid for

in some way.

Figure 5.2: Credit values when Carol
defaults 100% of the time but always
reimburses the forfeit to Bob.

Figure 5.3: Credit values when Carol
defaults 100% of the time but never
reimburses the forfeit.

CHAPTER 5. A GRID COMPUTING APPLICATION 53

5.7 Conclusion

This chapter has described how trust* could be used to extendtrust in a grid

computing environment. This includes sharing any kind of computing resource

across domains, organisations, and countries. In particular, we have discussed

the trust mechanisms of a grid middleware (Globe), and how they might integrate

with and extend the trust* model. We have also identified waysof providing

mechanisms such as fault tolerance and routing.

This chapter has introduced two important features of the trust* model. Firstly,

due to all direct trust being local between pairs of principals in a chain, any mech-

anisms used to follow the trust* protocol are heterogeneousalong the chain. For

example, the way that trust decisions and payments are made.Secondly, due to

this heterogeneous environment, payments can be made by resources that might

be shared anyway. However, as particular resources might beof more value to dif-

ferent participants, this allows resource brokering to take place where a resource

of one type will be converted into another. Finally, we have discussed the impli-

cations of simulating trust* in a grid setting.

Chapter 6

A Click-through Licensing

Application

6.1 Introduction

This chapter introduces the idea of applying trust* in orderto provide assurances

where licence agreements are in place. For example, a “click-through” agreement

is commonly found in End-User Licence Agreements (EULAs) during software

installation. These types of electronic agreement are increasingly common as

more services are being provided digitally. Users can now download software

and music without the need to visit a traditional bricks and mortar shop. This

chapter discusses the potential benefits of applying trust*to provide assurance that

software or music being downloaded has been legally obtained. Other examples

of licensing situations where trust* could be beneficial arediscussed including

online donations and affiliate sponsorship.

6.2 Click-through EULAs

Before software and other digital media such as music was widely distributed

over the Internet, vendors would include a licence agreement within the packaged

product. The product would be shrink-wrapped before distribution. The agree-

ment needed to be visible through the shrink-wrapping and once an end-user had

54

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 55

bought the product and removed the wrapping, they were deemed to have agreed

to the software licence agreement. This arrangement led to many problems con-

cerning the compliance with such an agreement. It could be argued in court that

the end-user didn’t explicitly agree to the licence. Some software vendors coun-

tered this by giving an end-user the option of returning a product within a set

period if they didn’t assent to the licence agreement. However, due to the increase

of software being distributed via electronic mediums such as the Internet, there

needed to be a way of allowing end-users to agree to an EULA before actually

being able to install and use the software. The problem was solved by showing

the EULA as part of the installation process which would onlycontinue with the

installation if the user clicked “agree”. An electronic EULA or “click-wrap” is

now common with most boxed software too. This type of agreement is in place

to define how the software can be used and can be legally binding if an end-user

breaks the agreement. However, say that an end-user purchases software from a

third-party vendor (i.e. not the software producer), they might want assurance that

the software has been legally obtained and the licence is legitimate before accept-

ing it. Using trust* with a click-through licence agreementcan ease the hassle of

compliance by guaranteeing that the software being downloaded has been legally

obtained. Here the forfeit would involve the trusted guarantor making the neces-

sary payment to the producer (and claiming the cost of the licence back from the

third-party vendor later) and presenting evidence to the end-user that an appropri-

ate licence had been obtained. This way, an end-user can behave as if they know

that any of the software they might install is what it is explained to be in its EULA

and that it is legitimate. Figure 6.1 shows such a trust* scenario.

Table 6.1 shows a typical protocol for using trust* with click-through EULAs.

The first four steps are always performed and continue to steps 5 and 6 in a good

case scenario (the licence is legitimate) or skips to the alternate steps 5 and 6 for

a bad case scenario. Again, as in Section 3.4.1, steps 1 and 2 could be repeated in

order to negotiate a guarantee. Assume that Alice is the downloader (or buyer) of

the software, Bob is a guarantor and Carol is the software vendor (who sold Alice

the software). Also, David is the software developer or producer.

In a good case, the software that Alice has bought from Carol is a licensed copy

and she can safely install the software and accept the accompanying EULA. In

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 56

Guarantor ChainDownloader Software Vendor

Software Producer

Aquire license

Trust* to provide legitimate software

Legitimate license

Figure 6.1: An EULA trust* scenario.

1. A −→ B: Can Alice have a guarantee of Carol’s software,
commission=c

2. B −→ A: Guarantee, id=x
3. A =⇒ C: Buy and download software
4. A −→ D: Check the legitimacy of the software

Good 5. D −→ A: Software is legitimate
6. A: Install software and accept EULA

Bad 5. D −→ A: Software is not legitimate
6. A −→ B: Claim guarantee id=x
7. B −→ D: Buy licence for Alice
8. B −→ A: Legitimate licence for Alice
9. A: Install software and accept EULA
10. B −→ C: Request compensation for licence
11. C −→ B: Payment

Table 6.1: Click-through EULA protocol example.

the bad case, Alice claims on the guarantee from Bob who then buys a legitimate

licence directly from David. Alice receives this from Bob and can proceed with

the installation. Bob is likely to request compensation from Carol for his losses

and whether Bob ever guarantees her again depends on if she pays. Bob would

have charged Alice for the guarantee at the cost ofc and if he is sure that Carol’s

software is legally obtained, it is likely that Bob will makea small profit. If Carol

begins to supply illegal or unlicensed software, Bob is unlikely to guarantee her

for much longer.

A possible problem could be that Alice makes false claims. However, this is

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 57

unlikely as she has nothing to gain from doing so as she has already paid for the

software and would only receive a second licence. It is more likely that Bob could

forge a licence rather than buying one from David and keepingthe commission.

If Alice is suspicious of this happening, she could simply repeat step 4 with the

provided licence. It is assumed that a software producer like David will be happy

to perform these checks for those who want to ensure their licence is legitimate

before accepting.

6.3 Music Downloads

Trust* could similarly be used with a click-through licenceagreement when down-

loading music to be sure not only that it has been legally obtained, but also that

the artist actually receives the royalties they are due. Forexample, it might be

in the interest of an artist’s fan-base to ensure that this happens. Trust* could

be used to ensure that a music vendor (iTunes for example) will actually pass on

the 30 pence (or whatever was agreed) to the artist. If they can’t prove that they

did, then the guarantor will pay the artist, prove to the end-user that they did,

and claim the payment back from the third-party vendor later. This way the artist

will always receive their royalties. A possible privacy issue is that by proving

the money was paid for a specific individual’s purchase, thatindividual’s identity

might be divulged to the recording company or artist. Various payment protocols

address this, for example, anonymous payments which include a client challenge.

Examples of this are discussed later in this chapter.

6.4 Donations and Sponsorship

Suppose that a website is hosting a link claiming that 1p willbe donated to a

charity for every click made. An individual clicking the link might want some

assurance that the intended charity does actually receive this donation. Here the

forfeit would be for the guarantor to produce a receipt showing that the donation

has been made, possibly by the guarantor. This is an example where using trust*

can ensure that someone will always be held liable for makingthese types of

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 58

payment. Figure 6.2 shows this scenario.

Donator Guarantor Chain

Charity

Web Host

Receipt of payment

Donation

Trust* to make donation to charity

Figure 6.2: A charity donation trust* scenario.

There are other examples to which this scenario could be applied. These in-

clude sponsored links such as those provided by services such as Google Ad-

Words. These services allow businesses to bid for particular keywords which

relate to the products or services that they would like to advertise. If a user en-

ters any such keywords in their Google search, sponsored links will be displayed

above the organic search results. Popular keywords and search terms are more

expensive for the advertiser and payment of this type will bemade to Google each

time an advertiser’s sponsored link is clicked. Also, higher bids for keywords

will affect the frequency with which a link will be displayed. Trust* could be

used to ensure that sponsored link hosts are paid correctly in relation to their cost-

per-click agreement and the actual click-through rate thattheir site encountered.

Conversely, the advertiser might suspect that the click-through rate was less than

the host is claiming. An example scenario could be two small e-businesses that

sell similar products (not the same) and are likely to have the same customer base.

It might be beneficial for both businesses to form an affiliation with each other

and provide links to each other’s site. Without requiring a trusted infrastructure

such as Google AdWords, a trust* relationship between the two businesses can be

used to ensure that they are honest about the traffic their links have received. Ser-

vices such as Google Analytics can provide detailed information about a website’s

traffic which could be used to provide evidence of click-through rates.

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 59

6.5 Micro-payments

As described above, trust* can be utilised in situations where an agreement has

been made whether it be an EULA, a donation, a sponsorship or another small

payment to ensure that all parties involved are compliant with the agreement. Us-

ing micro-payments to enforce this lends itself to these types of business model as

the payments themselves are going to be very small and will likely be of the same

currency. The commission and forfeits (licence fees, royalties, donations, etc) can

also be transferred using micro-payments. This section gives a brief overview

of the types of micro-payment mechanisms that could be used in a click-through

trust* setting.

A survey [105] of all types of electronic payments systems analyses various

criteria regarding eleven chosen micro-payment systems. One of the first micro-

payment systems was Millicent [45] which allows small asynchronous payments

to be made. However, Millicent provides no anonymity to its clients. Many of to-

day’s electronic payment systems make use of mechanisms proposed by Chaumet

al. For example, the electronic “cash” system in [24], which was later improved

in [25] allows payments to be made off-line (with no connection to the bank).

Other work by Chaum focuses on the anonymity and untraceability of electronic

transactions [21, 22, 23]. For example, “blinded” paymentsin [21] make it hard

for a bank to link payments from the same client. This is achieved by multiplying

a serial number by a secret “blinding factor” known only to the payer before send-

ing it to the bank for signing. When a signed serial number is returned, the payer

can divide the result by the blinding factor to reveal the signed serial number.

Most of the time, trust* payments are confined within a local trust relationship

and so issues such as anonymity might not be a problem. However, there are cases

where principals who are using trust* need to make payments to principals outside

of their local trust relationships. For example, in the applications described in this

chapter, where a payment needs to be made to the developer to obtain a licence.

Also, to prove to the end-user that a legitimate licence has been purchased, the

guarantor would provide an electronic receipt along with the licence (the receipt

could be bound to a specific licence). The receipt of payment can be checked by

the end-user (e.g. by verifying a digital signature) and thelicence can be checked

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 60

by contacting the developer directly. The receipt is also cryptographic evidence

needed to claim the licence fee back from the original vendor(the trust*ee).

There have also been proposals for micro-payment schemes which use trust

management techniques to encode the necessary payment credentials. For ex-

ample, Blazeet al [16] use the KeyNote trust management system to enable an

electronic equivalent to bankers cheques. Their solution was successfully imple-

mented in the form of a drinks machine which accepted KeyNotemicro-cheques

(signed by a trusted bank) from an electronic device such as aPDA.

In [40] and [41], the KeyNote payment method is used to rewardclients in a

distributed computation platform called WebCom [79] for successfully completed

operations. Also, clients can pay servers in return for service usage. An example

of KeyNote micro-payments developed in the course of this research for use with

trust* is given towards the end of Appendix B.

6.6 Simulation Implications

This section discusses the comparison of simulating the EULA click-through ap-

plication using Repast Simphony to previous applications described in this disser-

tation. The model is very similar to the one described in Chapter 4 which forms

the basis of the click-through simulation. Applying trust*to music downloads,

sponsorship or donations would be the same apart from the roles each agent takes.

Below, changes such as these and the implications of simulating a click-through

scenario (in this case, EULAs) is described.

• In this simulation, the Alice agent acts as the software buyer, Bob is still

a guarantor and Carol is the software vendor. This simulation introduces a

new agent called David who is the software producer. Trust still travels in

the same direction as it did in the P2P simulation (i.e. from Alice to Bob,

and from Bob to Carol) although, in this case, Bob doesn’t ever need to pay

a forfeit to Alice. In the click-through licensing scenariodescribed above,

it is the software producer (David) who receives the paymentfrom Bob and

Alice only receives the obtained licence.

• Although the new agent (David) has been introduced to the simulation, he

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 61

needn’t actually be part of any trust* relationships. However, he is still

an actor in the protocol and might even be paid a commission. For exam-

ple, he will answer queries (from Alice) with regards to the validity of a

licence and will receive payments (from Bob) for a genuine licence if re-

quired. It is worth noting that David could be greedy and takepayments

for licences even if Alice’s current licence is valid. To simulate this, David

has atruthchance attribute which is similar to the attribute of the same

name that Alice had in the P2P simulation. In David’s case, this defines the

probability that he will be truthful when replying to Alice’s queries.

• Alice could also make false claims, however, she has nothingto gain from

doing so as she has already purchased the software and won’t be the receiver

of any monetary payments. When Bob comes to claim compensation from

Carol, she is likely to dispute this and prove that the licence was in fact le-

gitimate. Bob could stop providing guarantees to Alice or charge enough

to cover any potential losses. Bob has this option in the simulation to in-

crease his charge if he finds (through an investigation possibly with Carol

and David’s input) that Alice has falsely claimed. Otherwise, there is no

reason for Bob to increase prices for Alice but will more likely re-consider

the status of his trust in Carol.

Results for this simulation regarding changes in credit aregiven in Section A.5.

The results back-up the previous simulation findings in thattrust* usage will be

short-lived for non-compliance. This is evident for the current types of agent we

have already seen (the trust*er, the trust*ee, and the guarantors). However, the

effects of the software producer’s behaviour can be seen. For example, if David

habitually lies about the validity of a licence, he is effectively causing the guaran-

tor chain to break (or become too expensive) leading to the vendor. If principals

wishing to use trust* to validate their software receive false negatives from David,

they will either stop buying software from Carol or won’t care about the legit-

imacy of their software. Also, as it might be too expensive tofind a guarantor

route to Carol (as she’ll effectively be receiving the blamefor an illegitimate li-

cence), she’ll probably cease selling David’s software in the future.

CHAPTER 6. A CLICK-THROUGH LICENSING APPLICATION 62

Figure 6.3: Credit values when Carol
never defaults and David is always
truthful.

Figure 6.4: Credit values when Carol
never defaults, however, David is
never truthful.

6.7 Conclusion

In situations where licensing issues exist such as those described in this chapter,

mechanisms based on trust* can be used to provide an effective way of minimising

the cost and hassle of compliance between the involved parties. Also, applying

trust* in this way can be viewed as a self-enforcing protocolin that no advantage

can be made by cheating the system. For example, it’s in the interest of all agents

in this scenario to act correctly, otherwise they will only be burdening themselves.

For example, following from the points made in this chapter,Alice has no reason

to claim a guarantee if she already has a legitimate licence.Perhaps she could

sell the new licence to someone else, however, Bob’s premiumwill eventually

out-weigh any profit Alice might make especially if habitualclaims are made.

Carol has the incentive to provide genuine licences in the first place as she will

need to reimburse Bob if they aren’t (otherwise risk losing his trust and hence her

connections). David also has the incentive to answer queries correctly otherwise

it may cause the effects described above (premium increase for Alice or removal

of local trust to Carol) due to the effects made to Alice’s claim frequency. As

a software producer, David will be affected in the long run asCarol might stop

selling his software or Alice might stop caring if her licences are legitimate or

not.

Chapter 7

A Spam-proof Email Application

7.1 Introduction

This chapter shows how trust* can be used to deter principalsfrom sending un-

wanted or “spam” email. Spam email is responsible for a high percentage of traffic

on the Internet and is an annoyance to end-users. Applying trust* in this way, it is

hoped, will lower this traffic by deterring mass spammers by making it an unfeasi-

ble business model for them1. In order for a principal to send an email to another,

a trust* route needs to be found between the sender and the receiver in order to

guarantee that the email won’t be spam. A counter argument isthat email could be

charged for in the first place in a similar way to the postal service where “stamps”

would need to bought in order to send email. However, the point of trust* is to

avoid the need for this type of universal up-front payment. Moreover, trust* re-

duces the cost for a genuine email user. Although, up-front payments could be

used as a way of bootstrapping new users into the system who don’t yet have any

trust routes.

This chapter begins with an overview of current spam prevention techniques

and a discussion of the types of email user and perceptions ofspam email. This

is followed by the application of trust* and descriptions ofthe “spam-proof” pro-

tocol. Finally, the implications of simulating and implementing such a solution is

described.
1Or, conversely, allowing the recipient to earn a comfortable living by reading spam email.

63

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 64

7.2 Spam Prevention Techniques

Unsolicited email has been around since the use of the Internet became widespread.

Therefore, much work has been done to find ways of filtering andpreventing spam

email. This section gives an overview of the previous and current solutions to the

problem of spam email.

The most common solution is to filter email either at the mail server or at the

client. The problem with filtering mail at the server is that spam perceptions of

the host might be different to those of the end-user. Therefore, servers tend to

flag emails that they think might be spam and allow the user to decide whether to

delete it or not. These flags can be used to aid a filter built into an email client

such as Mozilla Thunderbird or Microsoft Outlook. Client filters tend to be more

configurable, and some can learn about what the user considers to be spam from

previous emails and filter incoming mail accordingly.

Mail servers and clients can also maintain whitelists and blacklists of domains

or other servers that might be considered senders of spam email. A whitelist is a

list of trusted email senders whose email should never be considered spam. The

opposite is a blacklist where known spam senders and relays are logged for future

reference when filtering spam (and mail from such senders is always considered

spam). This is a good solution in most cases where a mail server blocks emails

from a known spam relay. However, some institutions and companies have found

that their domain has been unduly blocked from certain mail servers. This might

be due to an account hijack or spoofed email headers of course, but could be an

employee sending copious amounts of unsolicited email fromtheir work account.

Hosts of blocked servers often need to prove that their problem has been rectified

before being unblocked by the blocking server. Updating this list can be a time

consuming and never ending task, so alternatively, mail servers might hold a pol-

icy whereby any email from unknown senders will initially bebounced and added

to a greylist [50]. Once the sender attempts to send the emailagain, the message

will be delivered. This works on the idea that it will be too costly for mass spam-

mers to resend an email for every bounced attempt (until the spammers catch on

at least).

Similarly, a client could hold a queue of messages from unknown senders

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 65

(perhaps that aren’t in a whitelist or address book) and to send a challenge back

to them before fully delivering the mail. The challenge willbe something like a

Turing test which will ensure that their message is delivered if answered correctly

in a reply. For each sender, this should usually only need to be done once, and

afterwards they will be added to a whitelist.

Challenge/response protocols such as those above ensure that email is being

sent from a real person (and with their consent) and it is unlikely that spammers

will resend an email or have time to reply to a challenge. However, challenge/re-

sponse filters are not widely used by email users. This is due to users ignoring

such challenges or mis-identifying them as spam and therefore causing mail to re-

main undelivered. A similar method proposed in [47] shows that only moderately

intrusive techniques are enough to stop outgoing spam from free email providers

such as Hotmail. According to [47], the cost of account creation (completing a

Turing test) can be amortised by sending 1000 spam emails at the cost of 0.002

cents per message and average earnings of 0.01 cents per message sent. Their so-

lution works by making users pay some cost such as a difficult computation after

every 100 messages sent. Legitimate users will only need to perform this 10 times

to prove that they are legitimate users. This small cost won’t affect legitimate

users but will affect spammers as their cost-per-message will become more than

their earnings.

Reputation systems can also be used as a way of reporting and filtering spam

email [46, 113]. The reputation of a specific user will define the weight that a spam

report carries from them. Also, trust perceptions and reputations could be shared

between mail servers to aid filtering [75]. However, these all suffer from the same

problems regarding reputation systems discussed previously in this dissertation.

Another method for reducing the amount of unnecessary and unsolicited email

is to charge for postage “stamps”. This works in the same way as traditional

mail but users need to buy digital tokens or tickets in order to send an email.

Abadi et al [7] propose a service which provides tickets that allow sending of

email. The service also maintains the number of tickets a particular user has in

stock. A receiver of an email can use the service to validate the token which can be

refunded if the email wasn’t spam. Apart from deployment issues such as gaining

mass user acceptance, the trouble with this proposal is thata universally trusted

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 66

ticket service will be required for the concept to take-off.A standard mechanism

would need to be used by all major email service providers (ina very competitive

market, e.g. between GMail, Hotmail and AOL etc), otherwiseemail users would

become distressed with acquiring the correct tickets for the various providers.

Schlegel and Vaudenay designed a system called XToken [95] which allows

users to monitor how their email addresses are used. It involves passing tokens

with every message which can be validated before reading. There are different

types of token, some which don’t expire until they are revoked and some which

expire after a specified number of uses or date. A system similar to XToken is

desirable because no changes need to be made to the email infrastructure for it to

work. With XToken, the tokens are distributed to all friendsand associates in ad-

vance and later included with a message when needed. The policy information for

each issued token is stored locally by the receiving user forvalidation purposes.

Ioannidis designed a system which is similar but encodes thepolicy for each token

within the email address itself [55]. This means that no information needs to be

stored locally but requires changes to the email infrastructure.

A peer-to-peer payment system calledi-WAT [94] can be used to counter-

balance a loss from receiving a spam email. It works by charging an email sender

1MU (Mail Unit) to send a message and works on the assumption thata healthy

email relationship between two users will evenly balance theMUs between them.

As most users are unlikely to reply to unsolicited mail, the sender will never re-

coup their spentMUs.

A corresponding real-world example is a door-bell system that was designed

to stop unsolicited callers disturbing a household [97]. The door bell is activated

by inserting a low value coin which upon answering is refunded if the caller is

welcome, otherwise it is kept. This design has various flaws in the real-world, but

the idea might be better suited to deterring spammers in the cyberworld. Although

the coin value is low, to call at hundreds of houses would soonadd up.

Most spam email is just an inconvenience to the receiver and an added cost to

networks such as the Internet. However, email senders existthat have malicious

intent. The most obvious attack is to send malware via spurious attachments.

More commonly these days, scams such as email phishing [30] can cause prob-

lems including monetary loss and identity theft. A study by Jakobssonet al [56]

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 67

shows that many of the subjects (ages ranging from 18–60 excluding anyone with

a computer science background) were fairly informed when itcame to identifying

indications of a phishing email or website. However, the study had only 17 partic-

ipants which probably isn’t enough to reflect the overall reactions of the general

public receiving this type of email. When considering that the scammer needs to

send millions of emails to get a handful of responses, there will always be a chance

of success as there will almost always be someone who is fooled by a phishing

email or website.

7.3 Perception of Spam Email

Email is a widely used medium on the Internet and most users have at least one

email account whether it be from an ISP, place of work, or a free account2. People

use their email accounts for different reasons. For example, a work address should

be used for professional reasons and maybe a free Hotmail account could be used

for personal and social reasons. Therefore, tolerances to spam email might differ

on an account-to-account basis.

Email addresses are shared to other users, companies and organisations which

are consequently stored in many places. For example, many websites require

you to validate an account via email and later use your address to log on to their

service. Also, most sites require you to “opt-out” from subscribing to their mailing

list which might be used to advertise new products or services in the future. To

the average user, this might not be obvious.

For these reasons (and those in the previous section), the longer an address has

been used, the higher the quantity of spam email it is likely to receive.

The problem with email is that every end-user might have a different percep-

tion of what constitutes as being “spam”. This problem confronts spam filtering

software in deciding what might be spam or not. Instead of thesoftware deleting

everything that it considers to be spam, it is likely to file them away for further

inspection by the user. Spam filters can aid the user as they lower the number of

emails that need to be checked manually.

2Such as Gmail, Hotmail or Yahoo etc.

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 68

Using spam filter software on the client side is a user’s choice but many email

hosts now do a check on the server side before the emails are actually downloaded.

The host will then flag the messages that might be spam to the end-user. An end-

user’s perception of whether the flagged messages are actually spam might be

different to the perception of the company or organisation hosting the mail server.

Some users might consider commercial email to be spam even ifthey haven’t

opted out of receiving it (the same applies to receiving a lotof internal memo-

randa). However, spam is generally considered to be unsolicited adverts for illegal

software, counterfeit watches, and drugs etc. Also, other scams such as phishing

and email that might contain malware. Using trust* can make the job of deciding

whether email is spam easier as a spam filter now can check suchemails for a

valid guarantee.

7.4 Reverse Routing for Trust*

In previous applications, trust* routes have been built from the source (the trust*er)

to the destination (the trust*ee). In the spam-proof application, the trust* route

must be built from the destination end. This is done by maintaining different rout-

ing tables depending on the direction that a trust* relationship needs to be built.

These are:

Forward where a routing table oftrusted principals is maintained. This table is

created and edited by a principal in relation to whom they trust and by how

much. In this case, a trust* route goes in the same direction as direct trust

does. The previous applications of trust* described in thisdissertation are

all examples of forward trust* relationships. This is usually invoked by a

client in a networked application.

Reverse where a routing table oftrusting principals is maintained. Principals

build this table by receiving information from their directtrusters. In this

case, a trust* route goes in the opposite direction to that ofdirect trust. The

spam-proof application is an example of a reverse trust* relationship and is

usually invoked by a server3.

3Reverse routing could also be used in other applications such as click-through when commis-

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 69

7.5 The Spam-proof Protocol

The protocol in Table 7.1 shows how trust* would work in the spam-proof email

application. It involves three principals with one path of delegation. Carol (the

trust*ee) wants to email Alice (the trust*er); Bob trusts Carol and Alice trusts

Bob. Note that for this example, for the first time, the commission payments and

the email itself, go in the opposite direction to the direction of trust4.

1. C −→ B: Can Carol have a token for Alice, forfeit=t, commission=c
2. B −→ A: Can Carol have a token for Alice, forfeit=t′, commission=c′

3. A −→ B: Token for email from Carol to Alice, id=x etc
4. B −→ C: Token for email from Carol to Alice, id=x etc
5. C =⇒ A: Email (tokenx in header)
6. A −→ B: Tokenx is OK/spam
7. B −→ A: Ack/here is the forfeit
8. B −→ C: Tokenx is OK/spam
9. C −→ B: Ack/here is the forfeit

Table 7.1: Spam-proof protocol example.

1. Carol sends a request to a principal who trusts her (Bob in this case) for a

token to send an email to Alice. A forfeit and commission offer are also

sent.

2. Assuming Bob is happy with thet andc values, he forwards this request to

a principal who trusts him. Alice will receive this request with Bob’s forfeit

and commission offer.

3. Alice checks thet′ andc′ values from Bob and generates a token which is

sent back to Bob.

4. Bob forwards the token to Carol. Bob now knows that a chain has been

made between Carol and Alice via himself and that his guarantee is active.

5. Carol can now email Alice directly with the token embeddedwithin the

email header.

sion is paid by the trust*ee.
4i.e. in the opposite direction to the previous applicationsin this dissertation.

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 70

6. Alice (or her email filter) checks that the token is valid before reading the

email. She decides whether the email is spam or not and sends aresponse

to Bob either way.

7. Depending on the response, Bob will either send an acknowledgement or

pay the forfeit to Alice. Bob now knows that this token has been used by

Carol.

8. Bob informs Carol of the decision.

9. Depending on the response, Carol acknowledges this or pays the forfeit to

Bob. In a longer chain, this process may continue; as usual, all forfeit and

trust updates are local.

7.6 Pricing Strategies

There are likely to be some legitimate senders who can’t find atrust route to

the intended recipient. This might be because they haven’t yet built any trust

relationships or simply that a chain of guarantors cannot befound.

A new user can bootstrap a trust relationship by paying a fee directly to the

receiver or to a guarantor. For example, we assume that the message;C −→ A:

Please may Carol have a token for Alice, forfeit=0, commission=.10 will always

work5. Now the real spammers need to find a cheaper route based on this.

Eventually, assuming Carol doesn’t send spam, Alice might begin to trust her.

This will enable the possibility of Carol buying tokens fromAlice for routes to

recipients that are beyond Alice.

Most payments should be of a very low value, sufficient to deter habitual spam-

mers and not affect ordinary email users. Having to occasionally pay a 0.5 pence

forfeit is a very different proposition to paying millions of forfeits.

In the protocol, values forc andt are proposed when requesting a token (steps

1 and 2 in this example). It might be that the receiver of such arequest isn’t happy

with the values offered. In this case, a negotiation of thesevalues might take place.

5As the receiver or guarantor is making 10 pence either way. Itis the sender’s incentive to not
send spam to earn trust and enjoy lower premiums in the future.

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 71

Bob could simply reject the request and leave it to Carol to re-submit the request

with different values. Or Bob could explicitly state the values he requires to pro-

vide the guarantee. However, this is most likely to happen after Bob estimates the

risk involved and his possible losses so we would expect thatthe forfeit he might

need to pay Alice is always lower than the forfeit Carol wouldpay him.

7.7 Security Requirements

The tokens that are used to allow a trust*ee to send an email could be cryptograph-

ically protected. This might be to prevent forgery of a tokenor for verification of

its origin. Also, a digital signature can be appended to the end of a token. Lo-

cal verification of this signature could also take place before checking the actual

guarantee. However, this isn’t strictly necessary as each user will keep a record of

tokens they have generated and locally distributed which are still active. Because

the protocol requires a response message is to be sent eitherway (steps 6 and 8),

a user always knows whether a token is still active or not and can limit their ex-

posure. Once a token has been received, the id number can be cross-referenced

with the generators table to retrieve information such as who the guarantor is and

the agreed forfeit etc. Hence, no details of the underlying guarantee need to be

encoded within the token6 and thus forged or already spent tokens won’t work.

This method also allows the possibility of issuing “bags” oftokens to more highly

trusted users. These could be set to expire if they aren’t used by a particular time

but will lower the overall computational expense of repeating the protocol for each

email that needs to be sent.

Also, some privacy is maintained as Carol can’t see the valueof the forfeit that

Bob might need to pay Alice if she defaults7. Users could be identified by anony-

mous keys if they wish to maintain further privacy when usingtrust*. However,

up-front payments need to be protected from forgery (and double spending etc)

and immediately claimable by the recipient. Also, this provides Alice with a way

for allowing anonymous email without risking spam.

6Although the tokens could carry the state cryptographically.
7Carol doesn’t need to know who the guarantor providing the guarantee to Alice is, especially

in a longer chain.

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 72

7.8 Bad Scenarios

After the email has been sent, Alice decides whether the email is spam or not.

Even though her perception of what is considered spam is likely to be different to

Carol’s and Bob’s perception, Bob is still obliged to honourthe guarantee forfeit

payment. And the same for Carol if Bob claims the message was spam. There are

some issues that may arise because of this.

7.8.1 False Claims

A false claim might be made by the receiver (Alice) where she might claim a

forfeit even if she doesn’t regard the email to be spam. Again, Bob would need

to honour this. Also, even if Alice doesn’t claim, Bob could falsely claim the

forfeit payment from Carol. Note that Bob trusts Carol but not conversely so if

Carol suspects that this might be happening regularly, she could negotiate a cycle

of trust* (as described in Section 5.2.3) to Alice or Bob to insure her against this.

This attack could also be blocked by requiring Bob to prove toCarol (directly or

via the cycle) that a claim has been made by Alice and that he has paid Alice the

forfeit. This could be in the form of a cryptographic micro-payment receipt. For

example, assume that Carol has found a cycle of trust* to Bob via David whom she

trusts. David trusts Alice or Bob to not make false claims. IfCarol is suspicious,

she can alert David who will investigate whether false claims have been made (by

requesting proof of payment from Alice or Bob) and will compensate Carol if

necessary. David will also charge a small commission for providing this service

however it will prevent Carol suffering greater loss from repeated false forfeit

claims.

7.8.2 Non-payments

Of course, Carol could refuse to pay the forfeit. Due to the payments being low in

value, this won’t affect Bob on a one-off basis. However, if regular non-payments

occur, Bob is likely to stop trusting Carol altogether. Hence, Bob will no longer

provide email tokens (or guarantees) for Carol or the price might go up (see the

following section).

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 73

If Bob fails to pay Alice, she will simply stop trusting him and will cease

accepting guarantees from him. The problem of non-payment of a forfeit or com-

mission is a local problem which can be solved using local trust management

mechanisms.

7.9 Congestion Control

The effects of false claims and non-payments in the trust* model are analogous

to some of the techniques used to control congestion of packets in data networks.

An example of such a technique is network back-pressure.

Paraphrased from Stallings [101, p384], back-pressure produces an effect sim-

ilar to that in fluids flowing down a pipe. When the end of the pipe is restricted,

the pressure backs up to the point of origin where the flow is stopped or slowed

down. This technique can be selectively applied to logical connections in a net-

work, so that the flow from one node to another can be restricted or halted. This

restriction propagates back to the source of the connection.

Analogously, if trust* is regularly broken between two principals, the guar-

antor is likely to either break the local trust completely (never provide guarantees

again) with the principal being guaranteed (which corresponds to a link outage) or

steadily increase their commission rates (which corresponds to a price increase,

or a delay). If a particular link drops between two nodes, a route which pre-

viously utilised this link might become more expensive for surrounding nodes.

This is likely to cause a bottleneck for other nodes following alternative routes

and further increasing their cost. These issues can be explicitly addressed using

standard network congestion control techniques such as credit based congestion

control [70, 71, 90].

Credit based congestion control is a scheme based on providing an explicit

credit to a node. The credit indicates the number of packets that the source node

may transmit. Nodes have to wait for additional credit if they run out. This is

also analogous to the commission and forfeit rates used in the trust* model except

the credit is a node’s reputation (or risk) rating (which affect the commission and

forfeit rates that will be charged).

If Carol repeatedly defaults the guarantee (by sending spam), Alice is likely

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 74

to increase the forfeit she requires from the guarantor (Bob). This will then prop-

agate to Carol as Bob is likely to increase his rates accordingly. Other routes that

Carol might take to reach Alice could become congested and therefore might be-

come expensive too. Just as in the networking case, congestion tends to spread

and will interact with adaptive routing decisions (and thiscan be addressed with

standard counter-measures e.g. hold-down time [102, p92]).

7.10 Simulation Implications

This section discusses the key enhancements required to simulate the spam-proof

application using Repast Simphony in comparison to previous applications in this

dissertation. The model described in Chapter 4 forms the basis of the spam-proof

simulation. Below, the major changes and their implications are described.

• In the spam-proof simulation, it is important to note that the trust* protocol

is invoked in the opposite direction to trust as mentioned earlier in this chap-

ter (also see Section 5.3.1). In the P2P simulation, Alice trusted Bob who

trusted Carol not to serve incorrect files. In this case, Carol is trusted by

Bob who is trusted by Alice not to send spam email. Due to this,the com-

mission payments are also made in the opposite direction to trust. For the

email application, the destination plays the role of the client (the trust*er),

and the sender plays the role of the server (the trust*ee). Itis now the server

who invokes the trust* protocol rather than the client in theP2P application.

• The agent types are the same except that Carol is now the emailsender and

Alice is the email recipient. The multiple Bob agents still act as guarantors.

Also, the properties that each agent holds are the same, however, the default

values for the forfeits will be the opposite compared to the default values in

the P2P simulation. This is due to the fact that the server is now the invoker

of the protocol. Commission payments go in the opposite direction as trust

now (see Chapter 8 for more on this).

• In this simulation, there are five global attributes that canalter a simula-

tion run rather than the two in the P2P simulation (truthchance and

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 75

malwarechance). The first isspamlevel which is an integer value

between 1 and 5 which defines the type of spam that Carol will send (if she

does). Level 1 can be seen as very low level spam email such as advertising

or chain mail. This ranges up to level 5 which might be a scam, fraudulent

or malicious email. Also, advertising of drugs, software orjewellery.

• The second isspamacceptwhich defines Alice’s tolerance of spam email.

This relates to thespamlevel that Carol sends. For example, if

spamaccept is set to 2, an email will only be considered as spam if its

spamlevel is 3 or more. This feature reflects real life perceptions of what

is considered spam and is intended to add some realism to the simulation.

• The third isspamchance which is similar to themalwarechance at-

tribute in the P2P simulation except it defines the probability that Carol will

send an email at herspamlevel.

• The fourth and fifth arerectruthchance and guartruthchance

which define the probability that the receiver or a guarantor(respectively)

will be truthful when making a claim. For example if therectruthchance

value is low, Alice is likely to claim even if Carol hasn’t sent an email that

she considers as spam. A lowguartruthchance value, will cause a

guarantor to claim from Carol (or another guarantor in a chain) even if Al-

ice hasn’t made a claim.

• Finally, due to the trust* protocol being invoked in the opposite direction

(by the trust*ee), the spam-proof protocol requires an acknowledgement

message to be sent even if no claim has been made for a particular email

(see steps 7 and 9 of the spam-proof protocol). This is to inform a guarantor

of the outcome of a guarantee if a claim hasn’t been made (and hence, a

forfeit doesn’t need paying). Theack() method provides this behaviour.

After a guarantor receives this message about a specific guarantee, they can

mark its status as complete.

Results for this simulation regarding changes in credit aregiven in Section A.6.

Again, the results correlate with previous application simulations. Habitually

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 76

sending spam or being untruthful about claims will only damage the chances of

the perpetrator forming trust* relationships in the futureeither by losing direct

trust locally or by routes becoming too expensive. This is the whole idea of using

trust* with email — to remove routes for habitual spammers — or to be paid a

decent amount to receive spam. In reality, peoples perceptions of spam vary and

claims should be honoured by a guarantor. Investigations could be made regarding

false claims if they are suspected but this is again a local problem. Cycles of trust*

can be built to mitigate the effect of false claims outside ofa local relationship.

Figure 7.1: Credit values when Carol
sends spam email 100% of the time
where Bob and Alice are always
truthful.

Figure 7.2: Credit values when Carol
never sends spam email where Bob
and Alice are always truthful.

Appendix B is a walk-through example of a spam-proof protocol run imple-

mented using the KeyNote trust management toolkit. It follows the approach given

in this chapter, however, a way of making micro-payments with KeyNote is also

included. The spam-proof application including payments is implemented purely

using KeyNote in this example and with each pair of principals using the same

mechanisms. In reality, this in unlikely to be the case as individual pairs are likely

to be using heterogeneous mechanisms.

7.11 Conclusion

Applying trust* to the sending of email differs from applications previously de-

scribed in this dissertation which are used to promise that aservice will be pro-

vided. With email, trust* is used to promise that an email isn’t spam. The intention

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 77

of using trust* to send email is not to penalise users that might send the occasional

unsolicited email but the spammers who aim to profit from sending this type of

email.

Due to the format of email addresses being simplyuser@host, it is easy to

generate a dictionary of usernames for a specific host. Many email servers also

use aliases to hide the underlying username of an account andto provide a more

human readable and memorable prefix to the address. However,the underlying

username is usually a combination of characters generated by the host which can

still be used as the prefix to an address. For this reason, it iseasy for a mass

spammer to generate lists of addresses. Another way to gather addresses would

be to buy (or steal) databases of addresses from other organisations.

Using trust* to provide guaranteed emails aims to deter these types of spam-

mers. For example, the “mass spammers” that purposely gather and generate

millions of addresses to send email to. Mass spammers rely onsending millions

of emails a day to make any respectable profit as only a very small percentage

of recipients will actually respond8. It would be non-viable for them to do this if

even low-value guarantees were required.

Legitimate mailers might unknowingly forward a spam email to another or

send an email that might be considered as spam. Trust* detershabitual spammers

and won’t be costly for the average email user. However, trust* could be extended

to unsolicited or unwanted email rather than just typical spam email. Deploying

trust* internally for email services in specific companies,universities or organisa-

tions could be effective before deploying it gains global acceptance.

For the trust* solution to work, email users participating in the use of guar-

anteed emails are required to filter emails without guarantees. However, existing

spam filter applications can be used for this. The more users who do this, the more

effective applying trust* will be in stopping routes for mass spammers. Eventu-

ally, habitual spammers won’t be able to find any free routes to send emails and

email users will only need to read emails with valid guarantee tokens.

People who aren’t yet using trust* are likely to still send emails to people who

are without realising that they need a guarantee to do so. However, if they adopt

trust*, there is a higher chance of these emails being read, which will act as an

8Also, addresses might be non-existent if they have been randomly generated.

CHAPTER 7. A SPAM-PROOF EMAIL APPLICATION 78

incentive for uptake to spread. Conversely, people will have an incentive to read

trust* certified email, as they will get paid if it’s spam.

Chapter 8

Full Description of the Trust* Model

8.1 Introduction

This chapter recapitulates the concepts and features of thetrust* model that have

been introduced and discussed so far. This dissertation hasintroduced new parts

of the model as required by specific application scenarios, however, this chapter

provides a full description of the trust* model and discusses further some of the

issues raised.

8.2 Trust* Notation

In order to formally describe the trust* model and examples of trust* relationships,

a variation of Jøsang’s notation in [62] is adopted. This section gives an overview

of the notation that is used in this chapter. The top divisionof table 8.1 is some

of the notation from [62] with the lower division being the additional constructs

required by the trust* model.

79

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 80

Symbol Meaning
A, C End-points of a trust* relationship.
B1..n Guarantors in a trust* chain.

: Connection of trust arcs.
σ Trust scope.
f Functional variant of trust.
r Referral variant of trust.
d Direct trust.
i Indirect trust.
∗ Represents a trust* relationship.
t The agreed forfeit.
c The agreed commission.
→ Direct functional trust.
 Direct referral trust.
99K Indirect functional trust.

Table 8.1: Trust* notation.

Take for example, a trust* relationship betweenA andC ([A, C; ifσ; ∗]). This

can be expressed diagrammatically as:

B CA drσ dfσ
(t, c) (t, 0)

ifσ∗

The same can be expressed symbolically as:

A
σ

(t,c)
B

σ→
(t,0)

C ⇒ A
σ∗
99K C (8.1)

Finally, the same trust* relationship can be expressed in the adapted version

of Jøsang’s notation:

([A, C; ifσ; ∗]) = ([A, B; drσ; (t, c)] : [B, C; dfσ; (t, 0)]) (8.2)

The examples above all represent the case whereA has indirect functional (if)

trust inC because she has direct referral (dr) trust inB andB in turn has direct

functional (df) trust inC. The scope (σ) might be defined to mean “trust to provide

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 81

legitimate licences with software”. The(t, c) represent the locally agreed forfeit

and commission rates regarding the guarantees that make up atrust* relationship

wheret andc can be equal to0 where they aren’t applicable.

Similarly, extending a trust* chain to an arbitrary number of hops can be ex-

pressed diagrammatically as:

B CA drσ
(t, c)

ifσ∗

ifσ
(t′, c′)

(t, c)

Again, where the same can be expressed symbolically as:

A
σ

(t,c)
B

σ∗
99K

(t′,c′)
C ⇒ A

σ∗
99K

(t,c)
C (8.3)

And in the adapted version of Jøsang’s notation:

([A, C; ifσ; (t, c); ∗]) = ([A, B; drσ; (t, c)] : [B, C; ifσ; (t′, c′); ∗]) (8.4)

The last notation in Equation 8.4 would be suitable for a KeyNote-like engine.

8.3 Components of the Trust* Model

8.3.1 Guarantees

The most common method of building trust between unknown entities in the real-

world is by using guarantees. Although trust* can be propagated transitively, the

risk is underwritten by a directly trusted principal. Guarantees only work if the

trusting principal trusts the guarantor directly and thetrusted principal is trusted

directly by the the guarantor. With multiple guarantors in achain, a guarantor

would trust their neighbouring guarantor, therefore creating a chain of direct trust

relationships between the trusting and trusted principals. For example, letA be a

trust*er,C be a trust*ee, andBi a guarantor:

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 82

A
σ

(t,c)
B1 σ

(t,c)
B2 σ

(t,c)
B··· σ

(t,c)
Bn σ→

(t,c)
C (8.5)

So long asA has direct referral trust inB1, andBn has direct functional trust

in C, and every otherBi has direct referral trust inBi+1, then a trust* chain can

be made betweenA andC. There is no need for end-to-end trust. In real-world

scenarios, these local relationships might already be existent and any guarantee

agreements between them are likely to be underwritten in some way, for example,

by signing a legally binding contract. Trust* is designed towork when there is no

umpire.

There is still a transitive combination of direct referral and direct functional

trust to form an indirect (functional) trust* relationshipbetweenA andC. How-

ever, the scope of the trust between each pair of principals has been agreed and

underwritten with the forfeitt. Guarantors in a chain can be identified by looking

at the type of trust used. For example, any referrals will be guaranteed by the

referring trustee makingB the guarantor in the examples in Section 8.2. A guar-

antor will receivec as a payment for their service and be required to pay the forfeit

t if the trusting principal requires. The trust*ed end-point(C) won’t receive ac

payment (as he isn’t a guarantor soc = 0) but in this example has agreed to pay a

forfeit t if required byB.

It is important to note that forfeit payments arealways paid in the opposite

direction to that of the direction of trust regardless of whom invoked the trust*

relationship (refer back to Section 7.4). It is only the direction of the commission

payments that changes as illustrated in the following examples.

The direction of the commission payment in a forward trust* relationship (e.g.

in the P2P application, see Figure 8.1) is made in the same direction as trust it-

self where the trust* relationship is initiated by the trust*er (a principal needing

trust* to another). The relationship in Figure 8.1 has previously been expressed in

Equation 8.2.

However, the direction of the commission payment in a reverse trust* relation-

ship (e.g. in the spam-proof application, see Figure 8.2) ismade in the opposite

direction to that of trust (i.e. the same direction as the forfeit payments). In this

case, the trust* relationship is usually initiated by the trust*ee (a principal needing

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 83

B CA df trustdr trust

t t

c

Trust*

Downstream trust* invocation

trust*eetrust*er

Figure 8.1: Example of a P2P forward trust* relationship where thetrust*er is
the initiator.

trust* from another).

B CA df trustdr trust

t t

Trust*

c
Upstream trust* invocation

trust*er trust*ee

Figure 8.2: Example of a spam-proof reverse trust* relationship where the
trust*ee is the initiator.

The relationship in Figure 8.2 can be expressed as:

([A, C; ifσ; ∗]) = ([A, B; drσ; (t, 0)] : [B, C; dfσ, (t,−c)]) (8.6)

Arrows in these diagrams which carry a value of 0 are not shown. However,

arrows corresponding to negative values in the formula are paid in the opposite

direction.

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 84

8.3.2 Payments

The trust* model includes two types of payment which are usedfor different pur-

poses. The first is a commission (or incentive) payment whichis paid to a principal

to act as a guarantor. The second is a forfeit payment which serves two different

purposes. Firstly, a forfeit can be paid to a principal who has made a claim on

a guarantee as a way of compensating them. This is paid by the locally trusted

guarantor to the claimant and later claimed from other guarantors until the end-

point of the trust* chain is reached. Secondly, the forfeit acts to deter the server

from defaulting in the first place as they will eventually be required to pay it. It

will be in their interest to pay forfeits if required otherwise they risk losing trust

from the local guarantor. Note the difference between the P2P application de-

scribed in Chapter 3 where the client invokes the trust* protocol compared with

the spam-proof application described in Chapter 7, where the server invokes the

trust* protocol. The forfeit payments still serve the same purposes in both appli-

cations but the trust* protocol is invoked in different trust directions (i.e. upstream

and downstream).

The two types of payment need not be like-for-like and may be of different

tender between other local trust relationships in a trust* chain. A specific agree-

ment between two principals will involve a negotiation of the commission and

forfeit rates that will be a sufficient to give the guaranteeing party enough incen-

tive and the guaranteed party adequate compensation. Theserates will reflect the

perceived trust between the two principals and the paymentswill likely be in a

commodity that is of most use to them.

After a trust* protocol run, principals (particularly the guarantors and the guar-

antee receiver) are likely to re-assess thec andt values they are willing to accept

from or pay to another. This is necessary to reflect the current level of risk in-

volved with providing a guarantee or receiving a guarantee from another and will

affect the subsequent routing costs of trust* relationships.

8.3.3 Protocol

The trust* protocol typically requires three types of principals. The two end-

points (the end-point requiring trust* and the trust*ing end-point) and at least one

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 85

guarantor. There are cases such as in the P2P example where the principal being

trust*ed might not actually take part in a protocol run but inmost cases, their

consent would also be needed.

The first part of a trust* protocol run consists of a number of guarantee re-

quests being sent to local guarantors and their responses. It is this stage where

agreements are made about what is being guaranteed and compensation arrange-

ments. Once a guarantee chain has been created between a trust*er and a trust*ee,

the transaction can take place. The second part of the protocol deals with notifica-

tion of a guarantee and its claim status. This is shortly followed by compensation

if a claim has been made.

The main difference in the way that a protocol is followed is defined by the

purpose for which trust* is being used in the first place. For example, in the

P2P application, Alice (the client) needed to find a way of trust*ing Carol (the

server). Hence, this is why Alice invoked the protocol by requesting guarantees

from principals whomshe trusts. Conversely, in the spam-proof application, Carol

needed to find a way to gain the trust of (or be trust*ed by) Alice. Carol now

invokes the protocol but makes guarantee requests to principals who trusther.

8.4 Issues and Features

8.4.1 Heterogeneity

Due to the fact that a trust* relationship consists of a set oflocally trusting prin-

cipals in sequence between a trust*er and a trust*ee, the mechanisms used to

implement the trust* protocol needn’t be uniform across thechain. For exam-

ple, Alice might deal with Bob in a different way than Bob deals with Carol.

Typically, some kind of trust management system or other decision maker is rec-

ommended for building a trust* guarantee chain as risk assessment calculations

can be enforced by a policy when following the protocol. However, so long as the

two principals in a pairing have agreed on how they will follow the protocol, it

doesn’t matter what other mechanisms are being used in otherparts of the chain.

The same applies to the payment protocols that they will follow and the specific

commodities they will use for the commission and forfeit payments.

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 86

8.4.2 Anonymity

In the trust* protocol, each guarantee is verified by the principal receiving it lo-

cally. Once a chain of guarantors has been found (say betweenC andA via B),

how doesC prove toA that she is in fact guaranteed to use their database? Some

kind of access control credential could be used to encode theguarantee chain de-

tails which can be verified byA. However,A doesn’t need to know whoC is.

All A needs to know is that she has received a guarantee from someone whom

she trusts (B) and from whom she can claim a forfeit ifA mis-uses the service

provided.A doesn’t care about any other local agreements in the chain, just the

one betweenB and herself. Conversely, ifC wants an assurance about the service

provided byA (by invoking a cycle of trust*) —A doesn’t need to know to whom

she isreally guaranteeing her service. Consequently, the trust* mechanism can be

deployed in protocols where anonymity is required1.

8.4.3 Resource Brokering

Due to the heterogeneous nature of localised trust relationships in the trust* proto-

col, the way that payments can be made is flexible and can allowresource broker-

ing to take place. For example, a principal could make payments in commodityx

and receive payments in commodityy and would be acting as a broker between

these two commodities. A more concrete example could followon from the previ-

ous chapter. Assume that for every spam email that Alice receives under guarantee

from Bob, Alice is entitled to 1 minute of CPU time on Bob’s personal computer

or cluster as a means of compensation. Bob happens to have ample CPU cycles

available to him and it would not be satisfactory compensation to him if he was

to claim the same from Carol. However, Bob is short of hard-disk space and has

an agreement with Carol that he is entitled to 10MB of data storage on her FTP

server as a means of forfeit payment. Bob is effectively brokering CPU cycles and

storage space and can prosper from resources that are more valuable to him and

share resources which aren’t so valuable to him. It’s this difference in perceived

value which drives commerce.
1Indeed, the guarantee chain can be used to provide anonymityas in Turtle.

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 87

The example given above might be considered unrealistic because everyone is

assumed to have a commodity that they are willing to share such as CPU time.

However, when applying trust* to an application such as gridcomputing where

resources are already being shared, resource brokering is possible. For example,

it might be that Alice already subscribes to a set amount of time on Bob’s CPU

cluster. A forfeit payment could simply be an extension (fee-free) to this allocated

time.

8.4.4 Risk Assessment

To estimate the expected cost to a guarantor for providing a guarantee of another,

a binomial distribution can be used. Pagano [84] defines binomial distribution as:

“The binomial distribution is a probability distribution that results

from a series ofN trials, where on each trial there are only two pos-

sible outcomes. The outcomes are mutually exclusive, and there is

independence between the outcomes of each trial. When thesere-

quirements are met, the binomial distribution tells us eachpossible

outcome of theN trials and the probability of getting each of these

outcomes.”

We usually assume that the probabilityp of receiving an amountt is worth

p · t, but often the variance is even more important than the expectation. However,

this depends on who you are (e.g. people buy both insurance and lottery tickets).

Assuming that for the trust* model, a fixed amount is preferable to a variable

amount with the same expected value, we model the value of a possible forfeit as:

µ − (x · σ) (8.7)

Whereµ is the expected value ofp · t, x is a co-efficient depending on the user,

andσ is the standard deviation ofp · t. A high volume user such as a guarantee

broker will tolerate a lowerx value because they deal with a higher volume of

transactions2.
2This is because the mean and standard deviation forN independent transactions areN · p · t

and
√

N · (1 − p) · t.

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 88

The forfeit payment is essentially binomial where the expectation isp ·t where

p = P (alice defaults) ·P (alice pays up). So the worth ist[p−x ·
√

p(1 − p)].

This expands as:

t[p − x
√

p +
x

2
p
√

p +
x

8
p2√p . . .] (8.8)

This behaves likep · t providedx <<
√

p and like−x
√

p · t whenx >>
√

p.

Bob can calculate his possible losses if he provides a guarantee of Carol. During

the request stages of the protocol, Bob can ensure that thec andt values that have

been agreed between Carol and himself will cover the value ofthese losses before

providing any guarantees to Alice. Consequently, this willaffect Alice’s route

costs via Bob.

We are not economists and are by no means suggesting that thisis the best

way to calculate expected loss, however, this could providea simple algorithm

for updating costs in trust* routing tables and investigating the features of such

algorithms is a possible direction of further work.

8.4.5 Cycles of Trust*

As a prevention mechanism against false guarantee claims, trust* can be deployed

in two ways to ensure compliance from both end-points (or even intermediate

guarantors). This is something that can be done initially ifbi-directional agree-

ments are required. However, it might be more likely that a cycle of trust* will

be made if a principal suspects that habitual false claims are being made in an

already existing trust* relationship.

It is important to note that even though the two trust* relationships in a cycle of

trust* travel in opposite directions between end-points, each individual relation-

ship is invoked in the same manner (i.e. forward or reverse, refer to Section 7.4).

Take for example the P2P relationship in Section 8.3.1 whichis expressed as:

([A, C; ifσ; ∗]) = ([A, B; drσ; (t, c)] : [B, C; dfσ; (t, c)]) (8.9)

Suppose that Carol has decided to always reimburse Bob if necessary (it may

be that Bob’s trust is important to her). Hence, she is careful about the quality of

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 89

her shared content. If Carol has good reason to suspect that Alice is making false

claims, she could request a guarantee from David (whom she trusts) who in turn

trusts that Alice will not make false claims. Carol pays David a commission to

investigate a claim, and David will reimburse the forfeit toCarol if he has found

Alice’s claim to be falsely made in the first place. It is in Alice’s best interests

not to make false claims as she will risk losing David’s trust. In order to prevent

this she is likely to provide evidence to David proving that her claim was in-fact

legitimate. This trust* relationship can be expressed as:

([C, A; ifσ; ∗]) = ([C, D; drσ; (t, c)] : [D, A; dfσ; (t, c)]) (8.10)

These are both forward routed trust* relationships as Aliceand Carol invoke

the protocol in the same direction as direct trust. Conversely, a cycle of trust* in

the spam-proof application will consist of two reverse trust* relationships.

8.4.6 Networking Analogues

Many of the problems encountered when deploying trust* havenetworking ana-

logues and hence have a choice of possible solutions obtained by applying the

analogy in reverse to a networking protocol which addressesthe corresponding

problem. The best solution depends on the specific application in which trust* is

being deployed and the infrastructure or services it might also provide. An exam-

ple of such an analogy is how an optimal trust* route can be found between two

principals. This is analogous to routing data packets in computer networks, how-

ever the cheapest route would be calculated on the commission cost rather than

computational cost or number of hops. It is assumed that the problem of trust*

routing is solved using conventional network routing algorithms or by a service

provided by the application scenario (for example, using the existing mechanisms

in a P2P client such as Turtle).

Another example of a networking analogue is congestion control. Using back-

pressure to slow the transmission rate of packets from a source in a network

is analogous to many guarantee claims being made and guarantors therefore in-

creasing their commission requirements. If this happens near the destination of a

trust* relationship, the effects will propagate back to thesource making it harder

CHAPTER 8. FULL DESCRIPTION OF THE TRUST* MODEL 90

for them to continue. Eventually, the source won’t be able torequest any more

guarantees if they habitually default guarantees. Analogously, in networking, the

source will no longer be able to transmit packets to the destination until the con-

gestion has been cleared. This process will affect other routes to the destination

and hence may become more expensive.

8.5 Conclusion

This chapter has provided a review of the components of the trust* model. Each

point reviewed in this chapter has already been introduced in this dissertation as

required by a specific application of trust*. This chapter has tied these features

together and provided a more formal description and discussion of the features

of the trust* model so to provide an abstraction of the model for application to

further scenarios requiring trust.

Chapter 9

Conclusions and Further Work

9.1 Introduction

This chapter reviews the contributions to knowledge made inthis dissertation.

Due to the flexibility of the trust* model and the fact that itsprotocol is very

generic, there are many more applications that it could be applied to. Accord-

ingly, we discuss some further developments of the trust* model and some other

applications to which it might be beneficial. Finally, we summarise our conclu-

sions.

9.2 Contributions to Knowledge

The main contribution to knowledge that this work makes is the trust* model. The

model is conveyed in this dissertation via a number of different applications and

comprises the following significant contributions:

• The use of localised guarantees to reduce the risk of transferring trust to

other parties is the main construct of the trust* model. Although the guar-

antee business model is a real-world model and so is not a new idea, our

novel use of trust management techniques to provide and manipulate elec-

tronic guarantees over derived trust relationships is a newconcept.

• We believe that transitively trusting unknown principals without further pro-

91

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 92

tocol support is a dangerous idea and claim that the additionof guarantees

lowers the risk of doing so. This is achieved by requiring a payment model

to be followed by principals to provide incentives to act correctly and de-

terrents for not. A trust* relationship is still transitively derived between

end-points, however, local agreements between each pair ofdirect trustees

underwrite the risk involved for each trusting party.

• A commission payment model is introduced to provide incentives to guar-

antors. Principals can be paid a spot-price to act as a guarantor in a local

trust relationship. This price is derived from an assessment of the risk and

the likelihood that the principal being guaranteed will default. This offers

flexibility in the cost of a guarantee depending on perceivedtrustworthiness

and also allows new principals to bootstrap trust relationships (by initially

paying a high premium).

• A forfeit payment model is introduced to provide both a deterrent for acting

incorrectly and a compensation payment to affected parties. The forfeit rate

also needs to be reconsidered when assessing the risk of other principals. A

forfeit will need to be paid by a guarantor if a guarantee is claimed. This

will force the guarantor to reconsider providing guarantees again, however,

the claimant is compensated for their losses.

• We have applied trust* to a number of application scenarios in order to

demonstrate its significance. These include P2P (Turtle), grid computing

middleware (Globe), click-through licensing, and spam-proof applications.

Trust* offers a way of extending trust to allow transactionsto take place be-

tween initially unknown or untrusted principals by using delegation rather than

transitivity of trust. Trust is extended by identifying a willing chain of guarantors

between the unknown principals. Each guarantor already trusts the next and is pro-

vided with an electronic guarantee by them. This guarantee is a local agreement

between two principals outlining what is being guaranteed,the cost of the guar-

antee, and the forfeit that will be paid if a claim is made. This type of agreement

localises the risk involved for trust*ing principals. Eachprincipal trusts another to

do the right thing or be held accountable (pay the forfeit). When something goes

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 93

wrong, the consequences are resolved locally between each pair of principals. If

a guarantor refuses to conform with the agreement, it is likely that local trust will

be damaged limiting their chances of providing (or receiving) future guarantees.

An advantage of requiring only localised trust is that the constructs used to

build the guarantees and means of paying forfeits can be heterogeneous. The in-

centives to act as guarantor are solved by payments of resources or other tender

that is valuable to another principal in local trust relationship. The combination of

a commission and forfeit payment allows configurability between pairs of princi-

pals. An increasing tariff to aid flow control is analogous tonetwork congestion

control. This work provides a mechanism to support multiplepolicies allowing

commission and forfeit rates to increase or decrease depending on the level of

trust that is already present.

The whole process of extending trust to trust* makes use of the already exist-

ing trust relationships rather than creating new ones. It uses delegation of guaran-

tees to bridge the gap between unknown principals with a sequence of localised

agreements which remove or reduce the perceived risk of the trust*ing principal

and shift it towards the principal being trust*ed.

Due to this, it is possible to use trust* alongside an existing trust infrastructure

such as a reputation system. Also, the flexibility in how payments can be made

in localised relationships could allow such payments to be made in a currency

related to the trust infrastructure that is being complemented. For example, a

principal could model their commission and forfeit rates onanother’s reputation

rating.

There are some orthogonal issues which are either beyond thescope of this

work or the trust* model. The main being that the trust* modeldoesn’t solve or

constrict the problem of local trust. It is assumed that these problems are solved

outside of the trust* model. Other issues could be addressedby future work, which

are discussed in the following section.

9.3 Further Work

This section outlines some further possible application scenarios with trust re-

quirements to which applying trust* might be beneficial. Also, we discuss some

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 94

possible refinements to the current trust* model and proposesome paths for future

research.

9.3.1 Volunteer Computing

Also known as CPU scavenging, Volunteer Computing is where people collabo-

rate on a large computational project by donating their spare CPU cycles to form

a virtual super-computer. For example, Folding@Home is a project that aims

to understand why proteins mis-fold. Another example is Seti@home which is

a search for extra-terrestrial intelligence. A final example is the SHA-1 project

which searches for collisions in the SHA-1 hash function. There are many more

projects which range a variety of disciplines and platformsand which are used for

different reasons.

Typically, a project is split into many units which can be distributively pro-

cessed with their results fed back to the project server. Each user who wishes to

participate with a project can register and connect their computer using a client

such as BOINC [2]. Participants are normally awarded some kind of rating or

credit depending on their contributions and successful computations. Trust* could

use this credit as a currency for commission and forfeit payments to provision

guarantees among participants. This will help to ensure theintegrity of results

from an untrusted computing base and help to isolate problemmachines. It will

therefore lower the overhead of checking and auditing of results.

9.3.2 Second Life

Trust* could be extended to real-world transactions such ase-commerce, but it’s

easier to keep a transaction purely electronic and use trust* purely in a virtual-

world. In Second Life, trust* could be used to facilitate thebuying and selling of

virtual objects. Second Life has its own currency (Linden Dollars) which could be

used for making the required commission or forfeit payments. Also, Linden Labs

have recently revised Second Life’s scripting language andcryptographic libraries

which could make key and guarantee creation and verificationeven more viable.

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 95

9.3.3 P(GP) Web of Trust*

To help solve the problems with key distribution when using services such as a

Public Key Infrastructure (PKI), the PGP suite provides a “web of trust” as a way

of storing public keys and calculating their trustworthiness and validity based on

who has signed them. A key’s status can increase if it is signed by multiple trusted

principals. The more signatories, the more valid the key is deemed. However,

this process is similar to leaving ratings in a reputation system as a principal will

be transitively trusting other principals about a particular key. Trust* could be

used to provide this assurance by reducing the risk1. Rather than just signing

a key, a guarantee could be included at a small price to ensurethat the key is

correct. Otherwise, a forfeit will be payable. So principals will need to think

twice before signing a key. Tools such as PGP could have built-in capabilities to

enable guarantee verification to take place. Keys that come with valid guarantees

can be deemed more trustworthy (and less risky) than those that don’t.

9.3.4 Trust* Implementation

The scope of this investigation was to develop the trust* model to enable trust to

be extended over existing trust relationships. Also, to investigate whether a guar-

antee and payment model would be feasible in order to achievethis. The trust*

model has thus far been simulated with regards to the applications presented in this

dissertation. This was to test whether the trust* model might work theoretically

in various scenarios but to also identify and analyse the keyissues and features of

such a model.

However, when modelling or simulating a trust environment,there is always

likely to be some degree of rigidity due to the volatile nature of trust relation-

ships (and how they are built) in the real-world. For example, the rate that a

principal might increase their forfeit requirement is hardto predict and might vary

drastically between principals. This could only be simulated by using randomly

incremented values. Also, in the spam-proof application, aprincipal’s tolerance

to spam email is going to vary too and could only be randomised. Therefore, the

1A masters student at the University of Hertfordshire has already started working on applying
trust* in this way [51].

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 96

next logical step should be to actually implement a real application of trust* such

as the P2P trust* client discussed in Chapter 3. This could involve implementing

a P2P client with built-in trust* capabilities. Perhaps heterogeneity could be sac-

rificed in this instance to allow a uniform decision maker andpayment system to

be used throughout a P2P network. Such an application could be tested by a real

user-base to identify any issues with the current trust* model so improvements

can be made.

By implementing and deploying a trust* solution, new research questions and

paths are likely to appear from real results. For example, how heterogeneous can

a trust* route be? It would be interesting to see how different schemes might be

used in a typical trust* route and what types of brokering might take place. Also,

the networking analogues discussed in this dissertation regarding issues such as

routing and congestion control could be verified (e.g. by implementing specific

routing algorithms or control techniques and analysing their effects). Further re-

search in these areas will be far more fruitful when trust* isdeployed in a real

application.

9.3.5 Reputation as a Currency

The trust* model has been designed in a way that allows it to beused with any

application where trusting unknown principals is necessary. At the same time, it

doesn’t necessarily need to replace any existing infrastructure, but could comple-

ment it. As shown in the spam-proof application, trust* could be used in com-

bination with a traditional spam filter to aid its decisions rather than making it

redundant. A possible line of future development could be toapply trust* to

an application where reputation systems are already in fulluse and provide the

mechanism to make risk assessments of others. Such servicesmay include sites

that act as auction houses such as eBay or other e-commerce companies includ-

ing Amazon. More recently, the web has seen an increase in person-to-person

services such as RentACoder and MyHammer. The first allows individuals or

businesses to contact and employ independent software developers to help with

projects. Coders have reputation ratings and can quote a price for completing a

project. The higher a coder’s rating is, the more they’ll be able to charge. My-

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 97

Hammer is a similar service but allows tradesmen such as carpenters, electricians

and plumbers to advertise themselves to people who need workdone.

Typically, a reputation rating is altered after a transaction and will either in-

crease, decrease or stay the same. It is proposed that the trust* mechanism could

overlay such a system but using this reputation rating itself as a currency for pay-

ing forfeits. Habitually defaulting a guarantee will severely damage one’s repu-

tation rating. For performing a task or transaction well, anaward payment could

be agreed in order to increase a user’s rating. This will enable users to more ac-

curately gauge another’s trustworthiness on sight but willalso lower the risk of

transacting with that person. They will have more to lose from not complying.

Referring back to Chapter 2 where the idea of community reputation is re-

viewed, the trust* model could be used alongside a reputation system that takes

into consideration the reputation of a group or organisation (or online communi-

ties such as those mentioned above). As mentioned previously in the grid comput-

ing application (refer to Chapter 5), grids or other applications that cross organisa-

tional boundaries could also utilise a community reputation system in conjunction

with trust* in this way.

9.3.6 More Anonymity

The fact that principals can be anonymous to other principals further down a trust*

chain is a nice side-effect from building a chain of local trust relationships. For

example, the end-points don’t need to know each other or how many guarantors

are between them. Principals in a chain only ever need to knowtheir direct neigh-

bours (i.e. principals whom they trust or who trust them directly) and thus some

privacy is maintained.

Although this level of anonymity comes for free, there mightbe cases where

a user wishes to be more anonymous. For example, onion routing could be used

when creating a trust* route where longer chains are better than short. An in-

teresting research project could involve applying Tor [37](or other anonymis-

ing network) to the task of finding trust* routes between end-points. Enforcing

anonymity in this way is likely to be more expensive for the initiating end-point

as the commission premium will increase in relation to the length of the guarantor

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 98

chain. The more anonymity that is required, the higher the cost will be.

9.3.7 Auditability

The trust* mechanism could also be extended to situations where a guarantee

chain needs to be identified (and verified) during audit. For example, an auditor

might want to verify each guarantee which extends trust betweenA andC in order

to prove a forfeit is payable (analogous to a bail bond agent or bounty hunter etc).

9.3.8 An Economic Model

Detailed economic modelling was beyond the scope of this work. Further work

could be done to extend and analyse the economics of the trust* model. For

example, exploring the effects of forfeit and commission payments in different

scenarios and how risk assessments can be made to define these. Or the effects of

differentx values (refer to Section 8.4.4) on brokering and volume of transactions

etc. Also, on a wider scale, do these constructs provide the correct deterrents from

being bad and incentives for being good? A proper economic model of trust*

and providing guarantees in a large online environment (e.g. a P2P network) is

something that can be further explored from both an economist’s and security

economist’s perspective.

9.4 Conclusion

This chapter has reviewed the contributions to knowledge that this dissertation

has made. Also, possible extensions to the trust* model itself and the resulting

expected research questions have been suggested as paths for future work. This

chapter has also suggested some other applications to whichapplying trust* might

improve the way that trust relationships are currently managed. Suggestions are

given of further research into features that move beyond thescope of this work

such as using trust to complement current trust mechanisms (e.g. reputation sys-

tems), and improvements to privacy and the economics of deploying trust* in

real-world applications.

CHAPTER 9. CONCLUSIONS AND FURTHER WORK 99

We conclude that trust* is an interesting and fruitful concept with which to

build upon pre-existing trust relationships.

Bibliography

[1] BBBOnLine. http://www.bbbonline.org.

[2] Berkeley Open Infrastructure for Network Computing.http://boinc.

berkeley.edu/.

[3] McAfee SiteAdvisor.http://siteadvisor.com.

[4] Repast Agent Simulation Toolkit.http://repast.sourceforge.

net/.

[5] TRUSTe.http://www.truste.org.

[6] WOT. http://www.mywot.com/en/wot/home/.

[7] Martı́n Abadi, Andrew Birrell, Michael Burrows, Frank Dabek, and Ted

Wobber. Bankable Postage for Network Services. InASIAN 2003, pages

72–90. Springer-Verlag, 2003.

[8] Jemal H. Abawajy and Andrzej M. Goscinski. A Reputation-Based Grid

Information Service. InInternational Conference on Computational Sci-

ence. Springer-Verlag, 2006.

[9] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer Infor-

mation System. InProceedings of the Tenth International Conference on

Information and Knowledge Management, pages 310–317, 2001.

[10] Sulin Ba. Establishing Online Trust through a Community Responsibility

System.Decision Support Systems, 31(3):323–336, 2001.

100

BIBLIOGRAPHY 101

[11] Arno Bakker, Ihor Kuz, Maarten Van Steen, Andrew S. Tanenbaum, and

Patrick Verkaik. Design and Implementation of the Globe Middleware. In

Technical Report IR-CS-003, 2003.

[12] Jim Basney, Wolfgang Nejdl, Daniel Olmedilla, Von Welch, and Marianne

Winslett. Negotiating Trust on the Grid. InProceedings of the 2nd WWW

Workshop on Semantics in P2P and Grid Computing, 2004.

[13] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos Keromytis.

The Keynote Trust-Management System, 1998.http://www.crypto.

com/papers/rfc2704.txt.

[14] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos Keromytis.

The Role of Trust Management in Distributed Systems Security. In Secure

Internet Programming: Security Issues for Mobile and Distributed Objects.

Springer-Verlag, 1999.

[15] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Manage-

mement. InProceedings of the 17th Symposium on Security and Privacy,

pages 164–173. IEEE, 1996.

[16] Matt Blaze, John Ioannidis, and Angelos Keromytis. Offline Micropay-

ments without Trusted Hardware. InProceedings of the Fifth International

Conference on Financial Cryptography. Springer-Verlag, 2001.

[17] Matt Blaze, John Ioannidis, and Angelos Keromytis. Experience with the

Keynote Trust Management System: Applications and Future Directions.

In Trust Management 2003, LNCS 2692, pages 284–300. Springer-Verlag,

2003.

[18] L. Jean Camp, Helen Nissenbaum, and Cathleen McGrath. Trust: A Col-

lision of Paradigms. InFinancial Cryptography, pages 82–96. Springer-

Verlag, 2001.

[19] Manuel Castells.The Rise of the Network Society. Blackwell, 2000.

BIBLIOGRAPHY 102

[20] Elizabeth Chang, Patricia Thomson, Tharam Dillon, andFarookh Hussain.

The Fuzzy and Dynamic Nature of Trust. InTrustBus 2005. Springer-

Verlag, 2005.

[21] David Chaum. Blind Signatures for Untraceable Payments. InAdvances in

Cryptology Proceedings of Crypto 82, pages 199–203, 1983.

[22] David Chaum. Security Without Identification: Transaction Systems to

make Big Brother Obsolete.Communications of the ACM, 28(10), 1985.

[23] David Chaum. The Dining Cryptographers Problem: Unconditional Sender

and Recipient Untraceability.Journal of Cryptology, 1(1), 1988.

[24] David Chaum, Bert den Boer, Eugene van Heyst, Stig Mjølsnes, and Adri

Steenbeek. Efficient Offline Electronic Checks. InProceedings of Euro-

crypt’89. Springer-Verlag, 1989.

[25] David Chaum, Amos Fiat, and Moni Naor. Untraceable Electronic Cash.

In CRYPTO, pages 319–327. Springer-Verlag, 1990.

[26] Bruce Christianson and William S. Harbison. Why Isn’t Trust Transitive?

In Proceedings of the International Workshop on Security Protocols, pages

171–176. Springer-Verlag, 1997.

[27] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and

Martin Strauss. REFEREE: Trust Management for Web Applications. The

World Wide Web Journal, 2(3):127–139, 1997.

[28] Brent N. Chun and Andy Bavier. Decentralized Trust Management and

Accountability in Federated Systems. InProceedings of the 37th Hawaii

International Conference on System Sciences, page 9, 2004.

[29] Richard Clayton. Poor Advice from SiteAdvisor. http:

//www.lightbluetouchpaper.org/2007/08/12/

poor-advice-from-siteadvisor/.

BIBLIOGRAPHY 103

[30] Richard Clayton. Insecure Real-World AuthenticationProtocols (or Why

Phishing Is So Profitable). InProceedings of 13th International Workshop

on Security Protocols. Springer-Verlag, 2005.

[31] Daniel Cvrcek and Ken Moody. Combining Trust and Risk toReduce the

Cost of Attacks. IniTrust 2005. Springer-Verlag, 2005.

[32] Paul B. de Laat. Trusting Virtual Trust.Ethics and Information Technology,

7(3):167–180, 2005.

[33] Emerson Ribeiro de Mello, Aad P. A. van Moorsel, and Jonida Silva Fraga.

Evaluation of P2P Search Algorithms for Discovering Trust Paths. In

EPEW, pages 112–124. Springer-Verlag, 2007.

[34] Chrysanthos Dellarocas. Mechanisms for Coping with Unfair Ratings and

Discriminatory Behavior in Online Reputation Reporting Systems. InICIS

’00: Proceedings of the Twenty First International Conference on Informa-

tion Systems, pages 520–525. Association for Information Systems, 2000.

[35] Edsger Dijkstra. A Note on Two Problems in Connection with Graphs.

Numerical Mathematics, 1(1):269–271, 1959.

[36] Roger Dingledine, Michael J. Freedman, David Molnar, David Parkes, and

Paul Syverson. Reputation. InDigital Government Civic Scenario Work-

shop, 2003.

[37] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The

Second-Generation Onion Router. InUSENIX Security Symposium, pages

303–320, 2004.

[38] John R. Douceur. The Sybil Attack. InPeer-To-Peer Systems: First Inter-

national Workshop, page 251. Springer-Verlag, 2002.

[39] Benjamin Edelman. Adverse Selection in Online “Trust”Certifications. In

WEIS06, 2006.

BIBLIOGRAPHY 104

[40] Simon N. Foley. Using Trust Management to Support Transferable Hash-

Based Micropayments. InFinancial Cryptography 2003, pages 1–14.

Springer-Verlag, 2003.

[41] Simon N. Foley and Thomas B. Quillinan. Using Trust Management to

Support MicroPayments. InProceedings of the Second Information Tech-

nology and Telecommunications Conference, 2002.

[42] L. Ford and D. Fulkerson.Flows In Networks. Princeton University Press,

Princeton, NJ, 1962.

[43] Batya Friedman, Peter H. Kahn Jr., and Daniel C. Howe. Trust Online.

Communications of the ACM, 43(12):34–40, December 2000.

[44] Samual Galice, Marine Minier, John Mullins, and Stephane Ubeda. Cryp-

tographic Protocol to Establish Trusted History of Interactions. In ESAS

2006, pages 136–149. Springer-Verlag, 2006.

[45] Steve Glassman, Mark Manasse, Martı́n Abadi, Paul Gauthier, and Patrick

Sobalvarro. The Millicent Protocol for Inexpensive Electronic Commerce.

In Fourth International World Wide Web Conference Proceedings, pages

603–618, 1995.

[46] Jennifer Golbeck and James A. Hendler. Reputation Network Analysis for

Email Filtering. InCEAS, 2004.

[47] Joshua Goodman and Robert Rounthwaite. Stopping Outgoing Spam. In

Proceedings of the 5th ACM Conference on Electronic Commerce, pages

30–39. ACM New York, NY, USA, 2004.

[48] Tyrone Grandison and Morris Sloman. A Survey of Trust inInternet Ap-

plications.IEEE Communications Surveys and Tutorials, 2000.

[49] William Saumual Harbison.Trusting in Computer Systems. PhD thesis,

Wolfson College, University of Cambridge, 1997.

BIBLIOGRAPHY 105

[50] Evan Harris. The Next Step in the Spam Control War: Greylisting.

Technical report, PureMagic Software, 2003.http://projects.

puremagic.com/greylisting/whitepaper.html.

[51] Sarvjeet Herald. One Way Non-Transitive Trust Model inPublic Key In-

frastructure. Master’s thesis, School of Computer Science, University of

Hertforshire, 2009.

[52] Donna L. Hoffman, Thomas P. Novak, and Marcos Peralta. Building Con-

sumer Trust Online.Communications of the ACM, 42(4):80–85, 1999.

[53] Philip Homburg.The Architecture of a Worldwide Distributed System. PhD

thesis, Vrije Universiteit, Amsterdam, 2000.

[54] Jingwei Huang and Mark S. Fox. An Ontology of Trust: Formal Semantics

and Transitivity. InICEC 2006, pages 259–270. ACM, 2006.

[55] John Ioannidis. Fighting Spam by Encapsulating Policyin Email Ad-

dresses. InNDSS, 2003.

[56] Marksu Jakobsson, Alex Tsow, Ankur Shah, Eli Blevis, and Youn-Kyung

Lim. What Instills Trust? A Qualitative Study of Phishing. In FC 2007 and

USEC 2007, LNCS 4886. Springer-Verlag, 2008.

[57] Junjie Jiang, Haihuan Bai, and Weinong Wang. Trust and Cooperation

in Peer-to-Peer Systems. InGCC 2003, pages 371–378. Springer-Verlag,

2004.

[58] Hai Jin, Xuping Tu, Zongfen Han, and Xiaofei Liao. A Community-Based

Trust Model for P2P Networks. InHPCC, pages 419–428. Springer-Verlag,

2005.

[59] Audun Jøsang. The Right Type of Trust for Distributed Systems. InPro-

ceedings of the 1996 Workshop on New Security Paradigms. ACM New

York, NY, USA, 1996.

[60] Audun Jøsang. Trust and reputation systems. InFOSAD 2006/2007, LNCS

4677, 2007.

BIBLIOGRAPHY 106

[61] Audun Jøsang, Elizabeth Gray, and Michael Kinateder. Analysing Topolo-

gies of Transitive Trust. InProceedings of the Workshop of Formal Aspects

of Security and Trust, pages 9–22, 2003.

[62] Audun Jøsang, Ross Hayward, and Simon Pope. Trust Network Analysis

with Subjective Logic. InACSC ’06: Proceedings of the 29th Australasian

Computer Science Conference. Australian Computer Society, Inc., 2006.

[63] Audun Jøsang, Roslan Ismail, and Colin Boyd. Survey of Trust and Repu-

tation Systems for Online Service Provision. InDecision Support Systems,

2005.

[64] Audun Josang, Stephen Marsh, and Simon Pope. ExploringDifferent Types

of Trust Propagation. IniTrust 2006. Springer-Verlag, 2006.

[65] Audun Jøsang and Simon Pope. Semantic Constraints for Trust Transi-

tivity. In APCCM 2005, pages 59–68. Australian Computer Society, Inc.,

2005.

[66] Audun Jøsang and Stéphane L. Presti. Analysing the Relationship between

Risk and Trust. InProceedings of the 2nd International Conference on

Trust Management, pages 135–145. Springer-Verlag, 2004.

[67] Tim Kindberg, Abigail Sellen, and Erik Geelhoed. Security and Trust in

Mobile Interactions: A Study of Users’ Perceptions and Reasoning. In

UbiComp 2004. Springer-Verlag, 2004.

[68] Peter Kollock. The Production of Trust in Online Markets. Advances in

Group Processes, 16, 1999.

[69] Eleni Koutrouli and Aphrodite Tsalgatidou. Reputation-Based Trust Sys-

tems for P2P Applications: Design Issues and Comparison Framework. In

Trust and Privacy in Digital Business. Springer-Verlag, 2006.

[70] H. T. Kung, Trevor Blackwell, and Alan Chapman. Credit-Based Flow

Control for ATM Networks: Credit Update Protocol, AdaptiveCredit Allo-

cation and Statistical Multiplexing. InSIGCOMM, pages 101–114, 1994.

BIBLIOGRAPHY 107

[71] H. T. Kung and Koling Chang. Receiver-Oriented Adaptive Buffer Allo-

cation in Credit-Based Flow Control for ATM Networks. InINFOCOM,

pages 239–252, 1995.

[72] Li Lifen. Trust Derivation and Transitivity in a Recommendation Trust

Model. InCSSE 2008, pages 770–773. IEEE Computer Society, 2008.

[73] Stephen P. Marsh.Formalising Trust as a Computational Concept. PhD

thesis, University of Stirling, 1994.

[74] Nicholas F. Maxemchuk and Magda El Zarki. Routing and Flow Control

in High-Speed Wide-Area Networks.Proceedings of the IEEE, 78(1):204–

221, 1990.

[75] Jimmy McGibney and Dmitri Botvich. Establishing TrustBetween Mail

Servers to Improve Spam Filtering. InATC 2007. Springer-Verlag, 2007.

[76] Nicola Mezzetti. Towards a Model for Trust Relationships in Virtual En-

terprises. InProceedings of the 14th International Workshop on Database

and Expert Systems Applications, 2003.

[77] Stanley Milgram. The Small World Problem.Psychology Today, 2:60–67,

1967.

[78] Anirban Mondal and Masaru Kitsuregawa. Privacy, Security and Trust in

P2P environments: A Perspective. InDEXA ’06: Proceedings of the 17th

International Conference on Database and Expert Systems Applications,

pages 682–686, 2006.

[79] John P. Morrison, James J. Kennedy, and David A. Power. WebCom: A

Web Based Volunteer Computer.Journal of Supercomputing, 18(1):47–61,

2001.

[80] Michael J. North, T. R. Howe, Nick T. Collier, and J. R. Vos. The Repast

Simphony Development Environment. InProceedings of the Agent 2005

Conference on Generative Social Processes, Models, and Mechanisms,

2005.

BIBLIOGRAPHY 108

[81] Michael J. North, T. R. Howe, Nick T. Collier, and J. R. Vos. The Repast

Simphony Runtime System. InProceedings of the Agent 2005 Conference

on Generative Social Processes, Models, and Mechanisms, 2005.

[82] Michael J. North, Eric Tatara, Nick T. Collier, and J. Ozik. Visual Agent-

Based Model Development with Repast Simphony. InProceedings of the

Agent 2007 Conference on Complex Interaction and Social Emergence, Ar-

gonne National Laboratory, 2007.

[83] Daniel Olmedilla, Omer F. Rana, Brian Matthews, and Wolfgang Nejdl.

Security and Trust Issues in Semantic Grids. InIn Proceedings of the

Dagsthul Seminar, Semantic Grid: The Convergence of Technologies, 2005.

[84] Robert R. Pagano.Understanding Statistics in the Behavioral Sciences.

West Publishing, 1990.

[85] Elvis Papalilo and Bernd Freisleben. Towards a Flexible Trust Model for

Grid Environments. InGSEM 2004, pages 94–106. Springer-Verlag, 2004.

[86] Filip Perich, Jeffrey Undercoffer, Lalana Kagal, Anupam Joshi, Timothy

Finin, and Yelena Yesha. In Reputation We Believe: Query Processing

in Mobile Ad-Hoc Networks. InMOBIQUITOUS 2004, pages 326–334.

IEEE, 2004.

[87] Bogdan C Popescu.Design and Implementation of a Secure Wide-Area

Object Middleware. PhD thesis, Vrije Universiteit, Amsterdam, 2006.

[88] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe and

Private Data Sharing with Turtle: Friends Team-up and Beat the System. In

In Proc. of the 12th Cambridge International Workshop on Security Proto-

cols, 2004.

[89] Bogdan C. Popescu, Bruno Crispo, Andrew S. Tanenbaum, and Mass Zee-

man. Enforcing Security Policies for Distributed Objects Applications. In

Proceedings of the International Workshop on Security Protocols, volume

3364, page 119. Springer-Verlag, 2005.

BIBLIOGRAPHY 109

[90] Jing-Fei Ren and Jon W. Mark. Design and Analysis of a Credit-Based

Controller for Congestion Control in B-ISDN/ATM Networks.In INFO-

COM, pages 40–48, 1995.

[91] Paul Resnick, Richard Zeckhauser, Eric Friedman, and Ko Kuwabara. Rep-

utation Systems: Facilitating Trust in Internet Interactions. Communica-

tions of the ACM, 43(12):45–48, 2000.

[92] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust Man-

agement for the Semantic Web. InISWC 2003. Springer-Verlag, 2003.

[93] Sini Ruohomaa and Lea Kutvonen. Trust Management Survey. In iTrust

2005. Springer-Verlag, 2005.

[94] Kenji Saito. Peer-to-Peer Money: Free Currency over the Internet. InHSI

2003, pages 404–414. Springer-Verlag, 2003.

[95] Roman Schlegel and Serge Vaudenay. Enforcing Email Addresses Privacy

Using Tokens. InCISC, 2005.

[96] Mischa Schwartz and Thomas E. Stern. Routing Techniques Used in Com-

puter Communication Networks.IEEE Transactions on Communications,

28(4):539–552, 1980.

[97] Popular Science. Dime put in slot rings doorbell, 1933.

http://blog.modernmechanix.com/2007/05/05/

dime-put-in-slot-rings-doorbell/.

[98] Ali A Selçuk, Ersin Uzun, and Mark R. Pariente. A Reputation-Based Trust

Management System for P2P Networks. InCCGRID, pages 251–258. IEEE

Computer Society, 2004.

[99] Ben Shneiderman. Designing Trust Into Online Experiences.Communica-

tions of the ACM, 43(12):57–59, 2000.

[100] Craig Van Slyke, France Belanger, and Christie L. Comunale. Factors

Influencing the Adoption of Web-Based Shopping: The Impact of Trust.

Database for Advances in Information Systems, 35(2):32–49, 2004.

BIBLIOGRAPHY 110

[101] William Stallings. Data and Computer Communications. Prentice Hall,

2007.

[102] Martha Steenstrup.Routing in Communication Networks. Prentice Hall,

1995.

[103] Yao-Hua Tan. A Trust Matrix Model for Electronic Commerce. InTrust

Management 2003, pages 33–45. Springer-Verlag, 2003.

[104] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck.

TRAVOS: trust and reputation in the context of inaccurate information

sources. Autonomous Agent and Multi-Agent Systems, 12(2):183–198,

2006.

[105] Octavian Ureche and Rejean Plamondone. Digital Payment Systems for

Internet Commerce: The State of the Art. InWorld Wide Web 3, 2000.

[106] Le-Hung Vu and Karl Aberer. A Probabilistic Frameworkfor Decentralized

Management of Trust and Quality. InCIA 2007. Springer-Verlag, 2007.

[107] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. InIn Interna-

tional Symposium on Software Security, pages 42–57, 2002.

[108] Shuo Yang, Ali R. Butt, Xing Fang, Y. Charlie Hu, and Samual P. Midkiff.

A Fair, Secure and Trustworthy Peer-to-Peer Based Cycle-Sharing System.

Journal of Grid Computing, 4(3):265–286, 2006.

[109] Shuo Yang, Ali R. Butt, Y. Charlie Hu, and Samuel P. Midkiff. Trust but

Verify: Monitoring Remotely Executing Programs for Progress and Cor-

rectness. InProceedings of the 10th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, pages 196–205. ACM New

York, NY, USA, 2005.

[110] Danfeng Yao, Keith B Frikken, Mikhail J Atallah, and Roberto Tamassia.

Point Based Trust: Define How Much Privacy Is Worth. InICICS 2006,

pages 190–209. Springer-Verlag, 2006.

BIBLIOGRAPHY 111

[111] Weiliang Zhao, Vijay Varadharajan, and George Bryan.Modelling Trust

Relationships in Distributed Environments. InTrustBus, pages 40–49,

2004.

[112] Weiliang Zhao, Vijay Varadharajan, and George Bryan.Analysis and Mod-

elling of Trust in Distributed Information Systems. InICISS05, pages 106–

119, 2005.

[113] Elena Zheleva, Aleksander Kolcz, and Lise Getoor. Trusting Spam Re-

porters: A Reporter-Based Reputation System for Email Filtering. ACM

Transactions on Information Systems, 27(1), 2008.

Appendix A

Simulation Results

A.1 P2P Tests 1–6

Tick Count These simulations lasted for 42, 42, 45, 48, 99 and∞ ticks re-

spectively before all possible guarantors became inactive. This would make sense

as when both Alice and Carol are bad, the guarantors would become exhausted

quickly. This time gradually gets longer as Alice and Carol become good. Even-

tually in test 6, Only one of the guarantors is ever used as there is no reason for

him to stop providing guarantees for Carol and he has no reason to suspect false

claims from Alice. Test 6 was stopped at around 500 ticks, however, it would have

carried on forever.

Credit Test 1 and 2 are very similar. The combination of a lowtruthchance

and a highmalwarechance means that Alice will claim a forfeit most of the

time. This makes her better off credit-wise, however, each guarantor only allows

this to happen for a short time before becoming inactive. By test 3, there is less

chance that a claim will be made, and two of the guarantors actually make a profit

for their service. Alice is still above zero but not by as muchconsidering that she

is still paying a commission every tick. By tests 4 and 5, mostof the guarantors

end with more credit than Alice who’s credit has gone below zero. Test 6 only

uses one of the guarantors and shows a steady decrease in Alice’s credit and a

steady increase for Bob. This reflects the commission that Alice has paid Bob and

112

APPENDIX A. SIMULATION RESULTS 113

the fact that no claims were ever made.

Alice’s COffer and FOffer The offers that Alice makes in the first tests in-

crease very steeply. This is due to claims being regularly made and hence Bob

requiring a higher commission and Alice requiring a higher forfeit to reflect this.

As less claims are made, these increases become more jagged and less steep as the

frequency of claims decreases. As Bob has a maximum forfeit that he is willing

to pay and Alice has a minimum commission she is willing to pay, these offers

APPENDIX A. SIMULATION RESULTS 114

will govern how long a particular guarantor is likely to be used and will effect the

simulation length (tick count). As the changes in offers become less steep, the

longer a guarantor will be used for. For example, in test 6, the offers never change

and hence, the charts have flat-lined.

Alice’s CPaid and FReceived The overall amount of commission that Alice

has paid Bob is initially lower than the forfeit that she has received from Bob.

However, the simulation time is at its lowest. As the number of claims decreases,

APPENDIX A. SIMULATION RESULTS 115

the forfeit received decreases too. Because of this, the simulation lasts longer and

by test 6, no forfeit is paid to Alice.

Bob’s CReceived Again, due to the the number of claims being high in test 1

and decreasing to none by test 6, the commissions received byall guarantors are

fairly uniform between them. By test 5, where claims were less frequent, some

guarantors received more commission than others from Alicebefore becoming

inactive. Overall, the average commission received increases as the number of

claims decreases.

APPENDIX A. SIMULATION RESULTS 116

Bob’s FPaid These results reflect the commission received in that the guaran-

tor who received the most commission also paid the most forfeit. However, the

average forfeit paid decreased as the number of claims decreased.

Alice’s Claims and False Claims The observations made thus far are mainly

related to the number of claims that Alice makes. Test 1 comprises of legitimate

claims only. This is due to Carol serving 100% malware, so Alice has no rea-

son to make any false claims. Tests 2, 3, 4 and 5 gradually increases the number

of false claims made. The randomness oftruthchance will effect the fre-

quency of false claims and hence will effect guarantors differently. By test 6, no

claims are made. Some interesting effects are caused here bythe combination of

truthchance andmalwarechance in the number of claims that are made.

Even though the total number of claims slowly decreases as both Alice and Carol

become good, there is still a high proportion of false claimsbeing made in tests

3–5. For example, in test 5, Alice made 16 legitimate claims and 17 false claims.

APPENDIX A. SIMULATION RESULTS 117

APPENDIX A. SIMULATION RESULTS 118

APPENDIX A. SIMULATION RESULTS 119

A.2 P2P Tests 7–12

Tick Count These simulations lasted for 36, 48, 44, 44, 54 and 41 ticks respec-

tively before all possible guarantors became inactive. Tests 7 and 12 appear to be

the quickest, however tests 9 and 10 also ended quickly. It isevident that when

either Alice or Carol act incorrectly (making false claims or serving incorrect con-

tent), their choices when using trust* will be hindered. Thebest trade-off between

truthchance andmalwarechance appears to be when they are both 0.2 and

0.8 (in tests 8 and 11 respectively). It is fairly conclusivethat when either of the

end-to-end principals behaves incorrectly, that the trust* protocol won’t tolerate

them and their use of trust* will be short-lived.

Credit The changes in credit take a similar pattern to that of the tick count

above. Test 7 and 12 are virtually identical except Alice finishes with slightly

less credit in test 12. Tests 8 and 11 are similar but appear inverted. For example,

test 8 shows Alice making a small profit and only one guarantormaking quite a

high profit. Whereas test 11 shows the opposite with Alice making a loss and

multiple guarantors making a gain. It appears from this thatAlice can still make

a profit from being untruthful (however short-lived it is). Tests 9 and 10 are again

very alike with Alice making a small profit in both cases. Someguarantors made

a profit however the average loss by a guarantor seems to be around 10 before they

refuse to continue providing guarantees to Alice about Carol’s files.

Alice’s COffer and FOffer Alice’s commission and forfeit offer values in-

crease very steeply with the steepest being in tests 7 and 12 where either Alice

APPENDIX A. SIMULATION RESULTS 120

or Carol are acting incorrectly 100% of the time. Some jaggedness is evident

throughout tests 8 to 11 and there is no flat-lining as there was for test 6. This

explains why the average simulation tick count was very low in tests 7 to 12.

Alice’s CPaid and FReceived In most of these tests, Alice received more forfeit

payments than she had paid in commission. Even in the worst case (test 11), the

difference is very small. It would appear that it might be in Alice’s best interests

to habitually make false claims as she is likely to make a profit. However, this

will not last long before a guarantor increases hiscMin beyond excess. Similarly

APPENDIX A. SIMULATION RESULTS 121

when Carol is at her worst in test 12, a guarantor will only tolerate so many claims

whether they be legitimate or not.

Bob’s CReceived As these tests involved someone always acting badly, there

are always claims being made. This forces the guarantors to increase their com-

mission requirements. Again, due to the randomness of the claims, guarantors are

affected differently with some fairing better than others.

Bob’s FPaid The guarantors pay a fair amount of forfeit before they become

inactive due to the number of claims being made. However, dueto their increas-

APPENDIX A. SIMULATION RESULTS 122

ing commission requirement mentioned above, their loss is minimised which is

reflected in their final credit rating.

Alice’s Claims and False Claims The results range from having 100% false

claims in test 7 which gradually decrease to no false claims by tests 11 and 12.

Again, the combination oftruthchance andmalwarechance restrict agents

from making certain decisions. For example, in test 10, 60% of Carol’s files are

likely to be incorrect. Alice will make false claims 60% of the time, however, this

only gives Alice the chance to make a false claim on the other 40% of Carol’s files.

Even though Alice and Carol are both abusing the trust* modelin this scenario,

the more malware that Carol serves, the less chance that Alice will falsely claim

and vice versa. This is why the guarantors need to make new risk assessments

between each protocol run to prevent personal loss for them.

APPENDIX A. SIMULATION RESULTS 123

APPENDIX A. SIMULATION RESULTS 124

APPENDIX A. SIMULATION RESULTS 125

A.3 P2P Multiple Guarantor Tests

A.3.1 Test 1

The results show that in Test 1, the trust* chain is much more volatile than a

shorter chain as it has more possible points of failure. Having a longer chain also

amplifies the effects such as price increases. For example, aprice increase towards

the end of the chain will cause all previous guarantors to increase their prices. As

each guarantor is likely to increase their price slightly tocover their losses, it

will lead to a much higher premium for Alice. Thus quickly making the cost of

buying a guarantee unfeasible for Alice. The effects of thisare more prominent

in this simulation as guarantors have different rates depending on whether they

are buying or providing a guarantee. For each guarantee thatis claimed, the price

charged by a guarantor will increase but he is also likely to decrease the price he

is willing to pay for a guarantee. This will lead to more linksbeing broken in a

chain as prices gradually reach the limits of other principals.

APPENDIX A. SIMULATION RESULTS 126

The graphs in this section reflect similar results to the corresponding tests in

the short chain simulation above. However, in this scenario, Alice only has one

route to Carol rather than five. It only takes a single guarantor to become inactive

for the chain to be open. Of course, in reality, a diversion can be taken around the

inactive link. This explains why the simulation tick countshere are roughly one

fifth of that of the previous simulation.

APPENDIX A. SIMULATION RESULTS 127

A.3.2 Test 2

As mentioned in Chapter 4, these tests follow the same combinations of the

truthchance and malwarechance attributes but assume that Carol will

only reimburseB3 with the forfeit50% of the time.B3 counts the number of times

Carol refuses to pay the forfeit and becomes inactive after three non-payments.

The results exhibit the same features as before, however, itis only B3 who

suffers greatly. However, this is assuming that he always pays the forfeit toB2

who always paysB1 etc. In reality, there might be non-payments between any

local relationship in a chain. Principals will reconsider how many times they

will tolerate non-payment from another and how much they will charge for future

guarantees of them.

This test could have been applied between other locally trusted principals in a

chain. However, the same effects would have been seen on the principal expecting

to be reimbursed. This test shows that non-payments only effect locally trusting

principals and that it is a locally solved problem. For example, if a principal whom

you trust never reimburses a forfeit payment, you simply stop trusting them.

APPENDIX A. SIMULATION RESULTS 128

A.3.3 Test 3

In these tests, both end-points (Alice and Carol) are fixed tobeing “good”. In

other words, Alice never has reason to claim a guarantee and never makes false

claims. The guarantors however will falsely claim the agreed forfeit from their

neighbour at the probability defined byguartruthchance.

The results show that the guarantors (regardless of which ones made the false

claim) always end up better off that Alice and Carol. This backs-up the case that

Alice should choose whom she trusts carefully. Carol (or other guarantors) could

also investigate a suspected false claim by initiating a cycle of trust* towards

another (B2 for example).

APPENDIX A. SIMULATION RESULTS 129

APPENDIX A. SIMULATION RESULTS 130

APPENDIX A. SIMULATION RESULTS 131

APPENDIX A. SIMULATION RESULTS 132

A.4 Grid Computing Simulation

This section presents the results from the grid computing simulation. This simula-

tion is similar to the P2P simulations except that Carol is now obliged to reimburse

the forfeit to a guarantor due to a SLA being in place. For thisreason, principals

in this simulation are far less tolerant to non-payments from Carol than they were

in the P2P simulation. The purpose of this simulation was to view the effects of

non-payment from Carol.

Table A.1 outlines the combinations of the probability attributes that make up

the 22 tests in this simulation. The initial values of agent properties are the same

as the P2P simulation.defaultchance is the chance that Carol will default,

truthchance is the chance that Alice will tell the truth about a computation,

andcarolpaychance is the chance that Carol will pay a forfeit when requested

to do so.

A.4.1 Tests 1–6

In these tests, Alice is always truthful and Carol always pays the forfeit if re-

quired by a guarantor. However, Carol starts by defaulting 100% of the time and

gradually defaults less often until she never defaults.

From the results, the length of a simulation can be seen to increase as Carol

starts to default less often. When Carol is at her worst (tests 1–3), Alice always

makes a profit. As Carol defaults less, Alice receives less forfeit payments, but is

still paying for guarantees so makes an overall loss. The guarantors always profit

from commission payments as any forfeits they might pay are always reimbursed.

Carol always makes a loss except in test 6 when she never defaults. Test 6 was

manually stopped as it would continue indefinitely.

These tests have shown that it is in Carol’s best interests toprovide a good

service as she will suffer the most.

Even though Alice is being paid forfeits for bad service fromCarol, she might

be less tolerant depending on how critical her application is. In reality, regardless

of whether she is compensated, she might stop using Carol’s service if the default

frequency is too high.

APPENDIX A. SIMULATION RESULTS 133

Test Defaultchance Truthchance Carolpaychance
1 1 1 1
2 0.8 1 1
3 0.6 1 1
4 0.4 1 1
5 0.2 1 1
6 0 1 1
7 1 1 0.8
8 1 1 0.6
9 1 1 0.4
10 1 1 0.2
11 1 1 0
12 0 0.8 1
13 0 0.6 1
14 0 0.4 1
15 0 0.2 1
16 0 0 1
17 0 1 0
18 0 0.8 0
19 0 0.6 0
20 0 0.4 0
21 0 0.2 0
22 0 0 0

Table A.1: Grid simulation test setup.

Guarantors will always be happy to provide a guarantee as long as Carol is

reimbursing their losses.

APPENDIX A. SIMULATION RESULTS 134

APPENDIX A. SIMULATION RESULTS 135

A.4.2 Tests 7–11

In these tests, Carol now always defaults and Alice is still always truthful (as she’ll

have no reason to make a false claim). However, the chance that Carol will pay

the forfeit to Bob starts at 80% and decrements by 20% in each test until Carol

never pays the forfeit.

As the guarantors only tolerate one non-payment from Carol before they be-

come inactive, the length of these simulations is reflected accordingly. The guar-

antors nearly always make a small loss from this single non-payment as they still

pay the forfeit to Alice. Due to this, Alice always profits in these tests.

APPENDIX A. SIMULATION RESULTS 136

A.4.3 Tests 12–16

In these tests, Carol never defaults and always pays the forfeit if required. How-

ever, Alice starts by being 80% truthful which decrements by20% in each test

until she’s never truthful when claiming.

The results show that the more that Alice falsely claims, theshorter the sim-

ulation will run for. This is because Carol is effectively taking the blame and

hence losing trust from guarantors. Although Carol is reimbursing the forfeit, the

guarantors still register a claim and alter their rates accordingly. Eventually, they

won’t provide a guarantee of Carol.

Carol always makes a loss but the guarantors profit. Alice starts to make a

profit when she becomes more untruthful, although it is short-lived. In reality,

Carol (or the guarantors) would invoke a cycle of trust* immediately after they

suspect that false claims are being made.

APPENDIX A. SIMULATION RESULTS 137

A.4.4 Tests 17–22

In these tests, Carol never defaults and never pays the forfeit if required by a

guarantor. Alice starts by being 100% truthful which decreases to never being

truthful.

Test 17 was stopped manually as it would continue indefinitely. As Carol never

defaults and Alice is always truthful, only one guarantor isused. This guarantor

makes a steady profit from commission that Alice has paid and has never needed

to pay a forfeit.

From test 18, a dramatic decrease in simulation run time can be seen. By test

22, a simulation only runs for 6 ticks. Here, Alice always profits from the forfeits

honoured by guarantors. The guarantors make a small loss from the non-payment

from Carol. Carol’s credit remains unchanged in these testsas she refuses to pay

any forfeits.

These results show that guarantors won’t tolerate claims when Carol doesn’t

reimburse the forfeit. Carol is right to not reimburse the forfeit as she never pro-

vides a bad service. Alice is effectively destroying possible trust* routes between

herself and Carol.

APPENDIX A. SIMULATION RESULTS 138

A.5 Click-through Licensing Simulation

Table A.2 shows the test combinations for the click-throughsimulation. The

defaultchance andcarolpaychance attributes have the same meaning

as the previous simulation. However, now we use thedavidtruthchance at-

tribute to define how truthful David will be when answering queries. We assume

that Alice is always truthful when claiming as this has already been tested in pre-

vious simulations. Also, she can make no immediate monetarygain from doing

so. Again, the initial values of agents are the same as the P2Psimulation.

A.5.1 Tests 1–6

In these tests, Carol never defaults but always pays. David starts by being 100%

truthful which gradually reduces to 0%.

Test 1 needed to be manually stopped but would have continuedas no claims

were made because David was always truthful.

APPENDIX A. SIMULATION RESULTS 139

Test Defaultchance Davidtruthchance Carolpaychance
1 0 1 1
2 0 0.8 1
3 0 0.6 1
4 0 0.4 1
5 0 0.2 1
6 0 0 1
7 1 1 1
8 1 1 0.8
9 1 1 0.6
10 1 1 0.4
11 1 1 0.2
12 1 1 0
13 0 1 0
14 0 0.8 0
15 0 0.6 0
16 0 0.4 0
17 0 0.2 0
18 0 0 0

Table A.2: Click-through simulation test setup.

As David’s truthfulness deteriorates, the guarantors become inactive quicker

due to the increase in claims. However, the guarantors stillprofit from the com-

mission from Alice as Carol always reimburses the cost of a legitimate licence.

By being untruthful, these tests have shown that David will not gain in the

long run as eventually all routes to Carol will be broken. Or she’ll stop selling his

software altogether.

APPENDIX A. SIMULATION RESULTS 140

A.5.2 Tests 7–12

In these tests, Carol always defaults and David is now alwaystruthful. The

chances that Carol will reimburse a guarantor ranges from always to never.

The length of the simulation decreases from 26 to 6 in relation to the chance

of Carol reimbursing Bob decreasing.

Alice suffers losses in these test whereas the guarantors make some profit.

However, even in test 7, the simulation doesn’t run for very long. Again, regard-

less of whether Carol reimburses the forfeit, the volume andfrequency of claims

if often more important causing routes to be broken between Alice and Carol.

APPENDIX A. SIMULATION RESULTS 141

A.5.3 Tests 13–18

In these tests, Carol never defaults but also never pays any forfeits to the guaran-

tors. David starts by always being truthful in test 13 until he is never truthful by

test 18.

Test 13 needed to be manually stopped but the following testsdecreased in

run time as the routes became exhausted faster. In these tests, the guarantors

make very small profits and Alice makes small losses.

Again, the results show that the truthfulness of David affects trust* routes to

vendors of his software. This is not in his best interests as he will lose sales of his

software in the long run.

APPENDIX A. SIMULATION RESULTS 142

APPENDIX A. SIMULATION RESULTS 143

A.6 Spam-proof Simulation

This section presents the results from the spam-proof simulation. Note that the

spamlevel attribute is fixed to 1 and thespamaccept attribute is fixed to 0.

These attributes are for modelling spam perceptions and tolerance and have been

fixed to reduce the number of required tests. Table A.3 outlines the attribute com-

binations for the spam-proof tests. The attributes used arespamchance which

defines the chance that Carol will send spam,guartruthchance defines the

truthfulness of a guarantor, andrectruthchance defines how truthful Alice is

when deciding whether email is spam or not. Initial values for agents are given in

Table A.4. The change in initial values (and their possible ranges when randomly

generated) has increased the tolerance of bad behaviour forall principals. This is

to allow the simulations to run for a longer period of time.

Test Spamchance Guartruthchance Rectruthchance
1 1 1 1
2 0.8 1 1
3 0.6 1 1
4 0.4 1 1
5 0.2 1 1
6 0 1 1
7 0.8 0.8 1
8 0.6 0.6 1
9 0.4 0.4 1
10 0.2 0.2 1
11 0 0 1
12 0.8 1 0.8
13 0.6 1 0.6
14 0.4 1 0.4
15 0.2 1 0.2
16 0 1 0

Table A.3: Spam-proof simulation test setup.

APPENDIX A. SIMULATION RESULTS 144

Carol Bob Alice
cOffer 3 2.9 n/a
fOffer 50 49 n/a
cMin n/a 1–5 n/a
cMax 5–10 ∞ n/a
fMin n/a 25–75 25–75
fMax 50–100 ∞ ∞

Table A.4: Initial values for the spam-proof simulation.

A.6.1 Tests 1–6

In these tests, the guarantors and the email receiver (Alice) are always truthful

about making claims. However, the probability that Carol will send spam email

starts at 100% and gradually decreases until she never sendsspam.

The length of a simulation increases in relation to the decrease in spam. By

test 6, no spam has been sent and as Alice and Bob are both 100% truthful, the

simulation continues via a single guarantor until manuallystopped.

When Carol is sending lots of spam, she makes quite considerable losses while

the guarantors and Alice make profits. This shows that over time, only spammers

will be penalised.

APPENDIX A. SIMULATION RESULTS 145

A.6.2 Tests 7–11

In these tests, the chance that Carol will send spam starts at80% and decreases to

0% of the time. The receiver is always truthful, however, theguarantors start by

being truthful 80% of the time which gradually decreases to 0% of the time.

It is only Carol who suffers a loss in these tests even when shenever sends

spam. This is because a guarantor’s chance of being untruthful increases as

Carol’s spam chance decreases.

The results show that the guarantors can make some profit frommaking false

claims before Carol refuses to reimburse the forfeit. This is a short-lived gain and

using trust* truthfully will be more beneficial in the long run. In reality, Carol

would’ve investigated such false claims by invoking cyclesof trust*. Or simply

try other routes to Alice to see if claims are still being made.

APPENDIX A. SIMULATION RESULTS 146

APPENDIX A. SIMULATION RESULTS 147

A.6.3 Tests 12–16

In these tests, the chance of spam ranges from 80% to 0%. However, this time

the guarantors are always truthful but now the truthfulnessof the receiver ranges

from 80% to 0%.

These results reflect a similar pattern to those in tests 7–11. They show that it

wouldn’t be sensible for Alice to make false claims as she will only be damaging

future possible trust* routes to herself.

Appendix B

Trust* KeyNote Implementation

B.1 Introduction

This appendix provides an example of how the trust* protocolcould be followed

by using the KeyNote trust management toolkit as the core decision maker and to

also provide the micro-payment mechanism. The example willfollow the protocol

of the spam-proof email application previously described in Chapter 7 and will use

monetary micro-payments for the commission and forfeits.

B.2 A Spam-proof KeyNote Implementation

This section shows how KeyNote might be used to negotiate a trust* relationship

between Bob and Carol. Bob wishes to send an email to Carol which is guaranteed

that it isn’t spam by someone whom she trusts directly. This example is a good

case scenario where there is at least one possible route. Figure B.1 shows a route

between Bob and Carol via Gordon and Frank. Principals are identified by RSA

public keys which have been replaced by names for the purposes of this example.

B G F C

Figure B.1: A trust* route between Bob and Carol.

148

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 149

B.2.1 Multiple Guarantors

Some previous examples in this dissertation have assumed that only one guarantor

is needed to extend trust between principals. This example uses two guarantors

(Gordon and Frank) to extend trust between Bob and Carol. Carol knows that she

is receiving a guarantee from Frank and Bob knows he is being guaranteed by

Gordon. However, Bob and Carol don’t necessarily know whether these are the

same people or how many other guarantors are in the chain. Similarly, Gordon

and Frank will transact with each other but are unaware of each others neighbours

(whether they be Bob, Carol or another guarantor). This example could be ex-

tended to an infinite number of guarantors of which only need to know whom

they are receiving a guarantee from or whom they are providing a guarantee to (or

both).

B.2.2 Policies

Every principal will have one or more policy files which defines whom they trust

and the forfeit and commission rates they are willing to accept from them. A

principal might have more policies depending on whom they might be dealing

with. For example, a policy might allow discounts for a set ofclose friends. In

this vanilla example, each principal only has one policy which governs who they

are willing to receive email guarantees from. Different policies might also be

used depending on whether a guarantee is being provided or being received by a

principal.

Figure B.2 is an example of Carol’s policy (who will be the receiver of the

guarantee). It allows her to be the recipient of a spam-proofguarantee from Frank

with a minimum forfeit value. If these conditions are all met, KeyNote will re-

turn true about a particular guarantee. The forfeit rate is fictitious and might be

pence or credit but this depends on what Frank and Carol have decided to deal in.

Assume for this example the currency is pence.

A guarantor will be interested in a commission as well as a forfeit value. Fig-

ure B.3 is an example of Gordon’s policy (who will be a guarantor).

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 150

Authorizer: "POLICY"
Licensees: kFrank
Conditions: type == "spamproof" &&
 @forfeit >= 8 −> "true";

Figure B.2: Carol’s policy.

Authorizer: "POLICY"
Licensees: kBob
Conditions: type == "spamproof" &&
 @commission >= 1 &&
 @forfeit >= 8 −> "true";

Figure B.3: Gordon’s policy.

B.2.3 Requests and Guarantee Credentials

Figure B.4 shows the direction of the requests and guarantees among the four

participating principals and their respectiveid numbers.

B G F C

811164398 510997698129436992

Trust*

Figure B.4: Request and guarantee paths and id numbers.

Figure B.5 is an example of Bob’s request to Gordon for him to act as a guar-

antor between himself and Carol.

Bob also sends a guarantee (Figure B.6) to Gordon stating thecommission rate

that he is willing to pay Gordon to forward the request and theforfeit he will pay

if the email is considered spam by Carol. Theid field is simply to link requests

to their corresponding guarantees for future reference.

Gordon will forward the request to principals who trust him.Frank receives

the request and the guarantee proposal from Gordon (Figure B.7). It is likely the

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 151

id = "129436992"
type = "spamproof"
from = "bob"
to = "carol"
forfeit = "8"
commission = "1"

Figure B.5: Bob’s request.

KeyNote−Version: 2
Authorizer: kBob
Licensees: kGordon
Conditions: id == "129436992" &&
 type == "spamproof" &&
 commission == "1" &&
 forfeit == "8" −> "true";
Signature: "sig−rsa−sha1−hex:7fbcde43..."

Figure B.6: Bob’s guarantee.

commission and forfeit rates will differ from other guarantees if the chain. This

way, Gordon can cover his loses if Bob was to default. Howeverfor this example,

they’ll stay the same.

KeyNote−Version: 2
Authorizer: kGordon
Licensees: kFrank
Conditions: id == "811164398" &&
 type == "spamproof" &&
 commission == "1" &&
 forfeit == "8" −> "true";
Signature: "sig−rsa−sha1−hex:08d5406c..."

Figure B.7: Gordon’s guarantee.

In the same manner, Carol will receive the request and guarantee from Frank

minus the commission value and will decide whether to generate a token from the

forfeit value and who the request was from. Carol trusts Frank and a minimum

forfeit of 8 pence is allowed. Frank’s guarantee is shown in Figure B.8

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 152

KeyNote−Version: 2
Authorizer: kFrank
Licensees: kCarol
Conditions: id == "510997698" &&
 type == "spamproof" &&
 forfeit == "8" −> "true";
Signature: "sig−rsa−sha1−hex:0d7bc346..."

Figure B.8: Frank’s guarantee.

B.2.4 Compliance Checking

All recipients of a guarantee will be able to pass the guarantee credential, the

request, the relevant public keys, and the policy to their KeyNote compliance

checker which will return an indication of whether to proceed or not. As Carol

is the intended recipient of the email from Bob, she will now generate an email

token for him and send it back to Frank. Frank will pass it backto Gordon and

so on until it reaches Bob. It is this process that notifies each guarantor that their

guarantee is now active.

It is the responsibility of each principal to verify any received guarantees be-

fore proceeding with the protocol. In a guarantor’s case, toproceed would be to

forward the request and guarantee. For Carol, this would be to generate the token.

Once Bob has the token, he can send the email directly to Carolwith the token

embedded in the header of the email. Figure B.9 shows the direction of the token

and the email.

B G F C

Email + token x

token x token x token x

Figure B.9: Direction of the token and email.

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 153

B.2.5 After Sending the Email

The next part of the protocol involves Carol responding to Frank with either a

notification that the email was not spam or a guarantee claim.Frank will reply

with an acknowledgement or the forfeit payment respectively. Figure B.10 shows

how this process continues until it reaches Bob.

B G F C

ack/forfeit payment ack/forfeit payment ack/forfeit payment

token x is OK/spam token x is OK/spam token x is OK/spam

Figure B.10: Direction of responses and payments.

B.3 KeyNote Micro-payments

This section will give an example of how the payment mechanism might be imple-

mented using KeyNote. It is based on a micro-payment scheme by Blazeet al [16]

which allows off-line payments of very low values to take place. The example will

show Bob’s commission payment to Gordon.

A principal needing to receive micro-payments will need a policy that iden-

tifies the public keys of the Provisioning Agents (PAs) that are trusted to issue

payer credentials. A PA can be seen as a bank who issue cheque books to their

account holders. People are generally happy to receive a cheque from another if

a well known bank is at the top of the cheque. When a cheque is presented to the

bank, they will be obliged to honour the payment and debit themoney from the

payer’s account. An example of Gordon’s policy is given in Figure B.11.

This policy authorises any payments in the spam-proof application which are

signed by any one of the three PAs1 that Gordon trusts.

1|| denotes OR.

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 154

Authorizer: "POLICY"
Licensees: kPA1 || kPA2 || kPA3
Conditions: type == "spamproof" −> "true";

Figure B.11: Gordon’s payment policy.

Principals needing to make payments are issued credentialsperiodically by

their PA which specify the conditions under which their payment will be autho-

rised. These credentials are signed by the issuing PA and a principal receiving

a payment will be able to verify this against their policy. Anexample of Bob’s

payer credential is given in Figure B.12.

Authorizer: kPA1
Licensees: kBob
Conditions: type == "spamproof" &&
 amount < "11" &&
 date < "20091031" −> "true";
Signature: "sig−rsa−sha1−hex:3eadb5e1..."

Figure B.12: Bob’s payer credential.

This simplified credential will allow Bob to make payments related to the

spam-proof application of up to 10 pence (for example) at a time until the expiry

date. The number of possible transactions could also be limited but assume these

credentials are issued daily and expire daily. This way the PA can do a regular

risk assessment of Bob and alter the conditions accordingly.

When Gordon wants to take payment (this might be before or after a guarantee

is forwarded depending on how much he trusts Bob) he will sendBob an invoice

which is shown in Figure B.13.

merchant = "kGordon"
type = "spamproof"
date = "20091030"
amount = "1"
nonce = "e7bdf5dbee3b"

Figure B.13: Payment invoice.

Bob now generates a signed micro-payment credential and sends it along with

his payer credential to Gordon. This credential is shown in Figure B.14.

APPENDIX B. TRUST* KEYNOTE IMPLEMENTATION 155

Authorizer: kBob
Licensees: kGordon
Conditions: type == "spamproof" &&
 amount == "1" &&
 date == "20091030" &&
 nonce == "e7bdf5dbee3b" −> "true";
Signature: "sig−rsa−sha1−hex:f7e5e22d..."

Figure B.14: Bob’s micro-cheque.

Gordon sends these credentials, Bob’s key, the invoice and his policy to his

KeyNote compliance checker to determine whether he is likely to be paid (and

whether to proceed). The compliance checker will verify thesignatures, and check

that the credentials link. It will also check that the conditions are met between the

credentials and Gordon’s policy. In the example given here,Gordon will have

confirmation from KeyNote that he will be able to receive his 1penny from PA1.

B.4 Conclusion

The point of using a trust management system like KeyNote is so that negotiations

of trust* routes can be made fairly autonomously. Policy files state the principals

you trust and the minimum rates you will accept from them. Thecompliance

checker could automatically be invoked when a guarantee or request is received

(say by building trust* functionality into an email client).

This example has assumed that the trust and payment mechanisms used within

the local trust relationships are homogeneous. KeyNote is used between Bob and

Gordon, Gordon and Frank, and Frank and Carol as the mechanism to follow the

protocol. In reality, as discussed in Chapter 5, the specificmechanism used is

more likely to be heterogeneous between principals. Maybe Bob and Gordon use

KeyNote but Frank and Carol might use another mechanism. Thesame applies to

the payments involved in a trust* protocol run.

Appendix C

Publications

This appendix includes two refereed publications that are aproduct of this work.

The first introduces the trust* model and formed the basis of the spam-proof appli-

cation described in Chapter 7 and was presented at the Security Protocols Work-

shop in Cambridge, UK. The second formed the basis of the P2P application de-

scribed in Chapter 3 which was presented at ADBIS in Riga, Latvia. Below are

their respective bibliography entries:

Stephen Clarke, Bruce Christianson, and Hannan Xiao. Trust*: Using Local

Guarantees to Extend the Reach of Trust. InProceedings of the Seventeenth

International Workshop on Security Protocols, Cambridge, UK, April 2009.

Stephen Clarke, Bruce Christianson, and Hannan Xiao. Extending Trust in Peer-

to-peer Networks. InProceedings of the Thirteenth East-European Conference on

Advances in Databases and Information Systems, Riga, Latvia, September 2009.

156

Trust*: Using Local Guarantees to Extend the
Reach of Trust

Stephen Clarke Bruce Christianson Hannan Xiao

Abstract

We propose a new concept called trust* as a way of avoiding theneces-
sity to transitively trust others in a range of distributed environments. The
trust* approach uses guarantees based upon already established trust rela-
tionships. These localised guarantees are then used to extend trust to a new
relationship (which we call trust*) which can hold between principals which
are unknown to and do not trust one another. Such chains of guarantees
enable the risk involved to be shifted to another party (in a similar way to
real world guarantees). If a guarantee is broken, some kind of ‘forfeit’ is
imposed, either to compensate the client or to deter the server from doing it
habitually. Due to trust (and hence also forfeits) being localised, the specific
micro-payment and trust management mechanisms that are used to imple-
ment the protocol can be heterogeneous. This paper describes the concept
of trust* and some possible applications within a domain where the service
being provided is also electronic.

1 Building on Trust

Building trust on the Internet is a well researched area. Many solutions assume
(often implicitly) that trust is transitive. Commonly usedexamples are reputation
systems where each of its users has a reputation rating. These ratings can be
viewed by other users and later increased or decreased depending on the outcome
of a transaction. Such reputation systems are commonly usedon the Internet for
various purposes and generally work well. However, as mentioned, reputation
systems have a vital flaw; they imply that trust is transitive[8, 7]. Assume a user
wants to determine the risk involved if they were to trust another (eg. to provide
a described service) by looking at their reputation rating.This might contain
comments and ratings left from previous transactions. It isunlikely that the user
looking knows (or trusts) the other users who have left the comments. But even

157

APPENDIX C. PUBLICATIONS 158

if they do know and trust the people who left the comments, they will still be
transitively trusting the service provider in question.

The motivation behind this work is to find a new way of buildingon trust
which avoids this need for transitivity. The ability to build trust in the real world
is also a common necessity. In real world protocols, this ability is often facilitated
by using a guarantor as a replacement for transitivity of trust. Guarantees work by
shifting the risk to another party thus lowering the risk forthe trusting party.

Trust* is based on the electronic equivalent of the real world guarantee solu-
tion. Say that Carol needs to trust Alice about something anddoesn’t personally
know or trust Alice. However, Carol trusts Bob who in turn trusts Alice to do
whatever it is Carol needs her to do. In order to change Carol’s perception of the
risk involved, Bob could guarantee to Carol that Alice will act as intended and
offer Carol compensation if Alice doesn’t. So, what’s Bob’sincentive to act as
a broker between Alice and Carol? We’ll come back to this later, but for now
assume that Alice pays Bob a commission.

This concept of ‘extending’ trust in this way by using localised guarantees is
what we call a trust* relationship. The trust*er (Carol) canthen actas if they trust
the trust*ee (Alice) directly. In order to shift the risk, forfeit payments are used.
These will be discussed later, but assume for now that they are micro-payments.
All forfeits are paid locally; if Alice defaults then Bob must pay Carol the agreed
forfeit whether or not Alice pays Bob the forfeit she owes him(and the two forfeits
may be of different amounts). Failure to provide a service - or to pay a forfeit -
may result in an update to alocal trust relationship.

Trust* can be composed to an arbitrary number of hops becauseall trust is
now local and so are the forfeits. It is worth noting that trust isn’t the same as
trust* even in a one hop scenario. If Bob trust*s Alice to provide a service, it
means that Bob trusts Alice to either provide the service or else pay the forfeit1.

B CA Direct trust Direct trust

Trust*

Figure 1: A trust* relationship.

1It may be that Bob would rather have the money, and believes that Alice cannot provide the
service, but will always pay the forfeit.

APPENDIX C. PUBLICATIONS 159

2 Applications

There are several promising application areas to which trust* might be beneficially
applied.

Spam-proof Email Trust* could be used to implement an email system where
messages can be forwarded with an accompanying guarantee claiming that the
email is not ‘spam’2. Spammers rely on sending millions of emails a day to make
any respectable profit so it would be unviable for them if evenlow-value guaran-
tees were required. I’ll happily read any email for 10p cash up-front. Now the
spammers need to find a cheaper route based on this. This requires email users to
filter out emails without guarantees, but existing spam filter applications can be
used for this.

Grid Computing How trust can be built in computational grids (which are
likely to span organisational and domain boundaries) is a well researched prob-
lem [4, 9, 11]. Trust* could easily be applied as a solution and as most grids are
used to share resource’s across organisations, these resources could be used as
the currency for forfeit and commission payments. Resources might include CPU
cycles, storage or bandwidth. These typically vary in perceived value between the
provider and receiver, so resources could also be brokered in this way, converting
one resource into another.

Peer-to-peer Computing When sharing files, most users feel more comfortable
knowing that what they might download is licensed, or at least untampered with.
Research into building trust in P2p environments has suggested ways of providing
this comfort [10, 14]. For example, the Turtle [12] P2p client allows a user to share
data with ‘friends’ or those you already trust directly. In their paper, they suggest
that Turtle can be enhanced with an economic model to encourage cooperation and
sharing. Applying trust* would not only provide a mechanismto enable this but
also allow new principals to join the sharing of files under guaranteed conditions.
This application is similar to grid computing except the content itself is now the
resource.

2The idea was inspired by a 1930’s door bell system that was designed to stop unsolicited
callers disturbing a household [13]. The door bell is activated by inserting a low value coin which
upon answering is refunded if the caller is welcome, otherwise it is kept. This analogy has various
flaws but the idea might be better suited to deterring spammers in the cyberworld. Although the
coin value is low, to call at hundreds/thousands of houses would soon add up.

APPENDIX C. PUBLICATIONS 160

Volunteer Computing Many volunteer computing projects require spare CPU
cycles to be donated (during screensavers etc) by millions of users worldwide in
order to solve a computationally difficult problem. Examples include SETI@Home,
a SHA-1 collision search and many others. Multiple projectscan be registered and
administered using a client called BOINC [1]. There are manysecurity issues [2]
related to volunteer computing which could benefit from applying trust*. Volun-
teer computing differs from grid computing in that anyone can volunteer, whereas
grids usually cross organisations which already have a reputation.

Second Life Trust* could be extended to real world transactions such as e-
commerce, but it’s easier to keep a transaction purely electronic and use trust*
in a virtual world. In Second Life, trust* could be used to facilitate the buying
and selling of virtual objects. Second Life has its own currency (Linden Dollars)
which could be used for making the required commission or forfeit payments.
Also, Linden Labs have recently revamped their scripting language and crypto-
graphic libraries within the virtual world which could makeguarantee creation
and verification possible.

Music Downloads Many people now buy music online rather than buying a
physical copy. Services such as iTunes offer single tracks for less than a pound.
However, it is unknown to the downloader how much of this money is actually
going to the artist or group who produced the music.

Trust* could be used to ensure that a music vendor (iTunes forexample) will
actually pass on the 30 pence (or whatever was agreed) to the artist. If they don’t
prove that they did, then the guarantor will pay the artist, prove that they did,
and claim it back from the vendor later. This way the artist will always receive
their royalties. A possible privacy issue is that proving the money was paid for a
specific individual’s purchase might divulge their identity to the recording com-
pany or artist. Various payment protocols address this, forexample, anonymous
payments which include a client challenge.

Charity Donations Similarly, a website might include a sponsored link with a
promise that 1p will go to charity for every click made. The individual clicking
the link might want assurance that the intended charity willactually receive this
donation. Here the forfeit would be to produce a receipt showing that the donation
has been made, possibly by the guarantor.

APPENDIX C. PUBLICATIONS 161

3 Discussion

3.1 Networking Analogies

By now you will have noticed that many of the problems with deploying trust* are
analogous to well known networking problems. Fortunately,the corresponding
network protocol solutions also have trust* analogues. Forexample, finding the
best route between two nodes on a network is analogous to finding an optimal
route between two principals who wish to form a trust* relationship with one
another. The six degrees of separation argument implies a trust* route can always
be found but the best route could be the cheapest (according to commission or
computational expense) or the most trusted3. It is assumed that any established
network routing protocol will suffice for finding optimal chains of guarantors,
although the choice of algorithm will have subtle consequences.

Another example is network back pressure. Analogously, if trust* is repeat-
edly broken between two principals, the guarantor is likelyto either break the
local trust completely (never provide guarantees again) with the principal being
guaranteed (which corresponds to a link outage) or dramatically increase their
commission or forfeit rates (which corresponds to a price increase, or a delay). If
a particular link drops between two nodes, a route which previously utilised this
link might become more expensive for surrounding nodes. This is likely to cause a
bottleneck for other nodes following alternative routes and further increasing their
cost. These issues can be addressed using network congestion control techniques,
and so on.

One difference with conventional networking is that all ourlinks are one way,
because trust isn’t generally symmetric, whereas most service contracts are bi-
directional. This isn’t a problem, because two trust* pathscan be found in oppo-
site directions via a different route of guarantors4.

3.2 Commission and Forfeits

The most obvious use of a forfeit is either to deter a principal from defaulting on
what they have guaranteed or to provide a way of compensatingthe other party if
they do. The commission payment was introduced in order to provide an incentive
for a principal to act as a guarantor and can be seen as a spot price for a guarantee.
A principal needing to be trust*ed could pay this commissionto a guarantor who
trusts them directly.

3Different levels of trust, forfeit and commission etc correspond to different network Quality
of Services.

4The analogy is thus with a network of links which are uni-directional for data flow, although
bi-directional for control flow.

APPENDIX C. PUBLICATIONS 162

Forfeit and commission payments serve different purposes and don’t need to
be of the same type (or paid by the same means). Also, these payments and the
actual service being provided need not be like-for-like.

The price of a guarantee or the forfeit that should be paid if it is broken are
variable and could be set by a guarantor to reflect their perception of the risk
involved in providing a guarantee. For example; as a risky guarantee is more
likely to be broken, a higher forfeit might be required by theguarantor. A low risk
guarantee is unlikely to be broken so the guarantor will get his incentive through
the commission as a forfeit payment is less likely to happen.Another incentive
to provide a guarantee is to make a profit from a forfeit. Assume that Alice is
trust*ed by Carol with Bob providing the guarantee to Carol.If Alice defaults,
the forfeit from Alice to Bob might be more than Bob has to pay Carol5.

These considerations lead to some interesting effects regarding the commis-
sion and forfeit rates along a chain of guarantees. In this scenario, if Alice was
to default the guarantee, only Alice will be out of pocket as the forfeit rate is
higher at her end of the chain (and decreases towards the trust*ing end). Every
guarantor will make a profit in this case but if we consider a longer chain where
risk perceptions fluctuate, guarantors might lose out. For this reason, it is likely
that guarantors will only provide guarantees where they believe the rates involved
will make them better off in most cases. This flexibility of perception is vital in
ensuring that guarantors get their incentive and principals who might default are
sufficiently deterred.

3.3 Heterogeneity

In order to implement the trust* relationship mechanism, whether to initiate, pro-
vide, or receive a guarantee, a way of making decisions and payments is necessary.
In our initial implementation, we used the Keynote trust management system [5]
to act as the core decision maker and also to provide the syntax and semantics
of the guarantee credentials and policies. To make payments, a micro-payment
system [6] (also implemented in Keynote) provided a way for principals to pay
commission and forfeits to each other. However, one of the advantages of our
approach is that both the trust management and payment systems can be hetero-
geneous due to the fact that trust (and payments) are confinedor localised. If
a guarantee has been made from one principal to another, any trust management
and micro-payment schemes could be used between them. At thesame time, other

5Note that this gives Bob an incentive to hope that Alice defaults. Alternatively, Alice may
pay Bob a commission instead of a forfeit, in which case Bob hopes that she doesn’t default. The
second case is like buying insurance. Commission c has the same expectation (but lower variance)
for Bob aspqf , wherep is Bob’s estimate of the chance of Alice defaulting, andq is his assessment
of the chance of Alice paying the forfeitf .

APPENDIX C. PUBLICATIONS 163

pairs of principals might use completely different schemes. As long as an agree-
ment has been made in advance on how the protocol will be followed between a
specific truster and trustee, then it doesn’t matter what is being used in other parts
of the chain.

3.4 Anonymity

Do guarantees ever need to be verified outside of the localised trust relationship?
In our protocols, each guarantee is verified by the principalreceiving it locally.
Once a chain of guarantors has been found (say between Alice and Carol via
Bob), how does Alice prove to Carol that she is in fact guaranteed to use Carol’s
database? Some kind of access control credential could be used to encode the
guarantee chain details which can be verified by Carol. However, Carol doesn’t
need to know who Alice is. All Carol needs to know is that she has received a
guarantee from someone whom she trusts (Bob) and from whom she can claim a
forfeit if Alice misuses the service provided. Carol doesn’t care about any other
local agreement in the chain, just the one between Bob and herself. Consequently,
the trust* mechanism can be deployed in protocols where anonymity is required6.

Trust* is intended to be deployed in environments where there is no univer-
sally trusted arbiter or referee. If Carol starts claiming that every email she re-
ceives is spam, Bob will either stop providing the guarantees, or will charge more
for providing them. Alternatively, Alice may form a cycle oftrust; Alice might
trust Dave (who trusts Carol) to refund her forfeit if it is unfairly claimed.

3.5 Payment by Resource

Micro-payments are generally considered to be small electronic monetary trans-
fers. Due to the heterogeneous nature of the localised trustbetween individual
pairs of principals, the payment could be something of a moreimmediately valu-
able commodity to them (in comparison to using purely monetary payments). As
mentioned, payment could be by a resource such as CPU time, database access or
bandwidth.

If a guarantor is taking payments of one type (from a principal they trust) and
making payments of another type (to a principal who trusts them), the guarantor is
effectively acting as a resource broker between these principals. Also, trust* could
be used alongside an existing trust infrastructure and use payments of an existing

6Indeed, the guarantee chain can be used to provide anonymity. Of course, the trust* mech-
anism could also be extended to situations where a guaranteechain needs to be identified (and
verified) during audit. For example, an auditor might want toverify each guarantee which extends
trust between Alice and Carol in order to prove a forfeit is payable (analogous to a bail bond agent
or bounty hunter etc).

APPENDIX C. PUBLICATIONS 164

commodity such as reputation ratings or credit (maybe when aforfeit hasn’t been
paid). Indeed, existing trust or reputation could also be used as a commodity of
payment. The point is that this flexibility should make it possible to use trust* to
complement existing infrastructures rather than replace them.

4 Conclusion

The whole concept of extending trust to trust* makes use of already existing trust
relationships rather than creating new ones. It uses guarantees to bridge the gap
between unknown principals with a sequence of localised agreements which re-
move or reduce the perceived risk of the trust*ing principaland shift it towards
the principal being trust*ed.

The next stage of this work will involve applying the idea of trust* to some
of the various applications outlined in this paper. The chosen applications will be
modelled using a discrete event simulator such as Repast [3]upon which trust*
will be applied. This will be a means to defining the boundaries of the existing
model. For example, problems might become evident when applying trust* to
grid computing that weren’t in the spam-proof application.

Trust* is flexible in that it can be used in many different applications, how-
ever because it builds upon already existing trust, it won’tneed to replace any
existing trust infrastructures. It will integrate with them and can utilise existing
commodities such as reputation.

A The Anti-spam Protocol

This protocol shows how trust* might work in the spam-proof email application.
It involves three principals with one path of delegation, asin Fig 1. Alice wants
to email Carol; Carol trusts Bob and Bob trusts Alice. Note that the forfeit and
commission payments, as well as the email itself, go in the opposite direction to
the arrows of trust.

APPENDIX C. PUBLICATIONS 165

1. A −→ B: Please may Alice have a token for Carol, forfeit=f, commission=c
2. B −→ C: Please may Alice have a token for Carol, forfeit=f’, commission=c’
3. C −→ B: Token for email from Alice to Carol, id=x etc
4. B −→ A: Token for email from Alice to Carol, id=x etc
5. A =⇒ C: Email (token x in header)
6. C −→ B: Token x is OK/spam
7. B −→ C: Cheers/here is the forfeit
8. B −→ A: Token x is OK/spam
9. A −→ B: Cheers/here is the forfeit

The tokens need to be crypto-protected but Alice, Bob and Carol can be iden-
tified by anonymous keys. We assume that the message;A −→ C: Please may
Alice have a token for Carol, forfeit=0, commission=.10 will always work.

References

[1] BOINC. http://boinc.berkeley.edu/.

[2] BOINC. http://boinc.berkeley.edu/trac/wiki/
SecurityIssues.

[3] Repast Agent Simulation Toolkit.http://repast.sourceforge.
net/.

[4] J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett. Negotiating
Trust on the Grid. InIn 2nd WWW Workshop on Semantics in P2P and Grid
Computing, 2004.

[5] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos Keromytis.
The Keynote Trust-Management System, 1998.http://www.crypto.
com/papers/rfc2704.txt.

[6] Matt Blaze, John Ioannidis, and Angelos Keromytis. Offline Micropayments
without Trusted Hardware. InProceedings of the Fifth International Con-
ference on Financial Cryptography, 2001.

[7] Bruce Christianson and William S. Harbison. Why Isn’t Trust Transitive?
In Proceedings of the International Workshop on Security Protocols, pages
171–176, London, UK, 1997. Springer-Verlag.

[8] Audun Jøsang, Elizabeth Gray, and Michael Kinateder. Analysing Topolo-
gies of Transitive Trust. InProceedings of the Workshop of Formal Aspects
of Security and Trust (FAST), pages 9–22, 2003.

APPENDIX C. PUBLICATIONS 166

[9] Nicola Mezzetti. Towards a Model for Trust Relationships in Virtual Enter-
prises.Database and Expert Systems Applications, International Workshop
on, 2003.

[10] Anirban Mondal and Masaru Kitsuregawa. Privacy, Security and Trust in
P2P environments: A Perspective. InDEXA ’06: Proceedings of the 17th In-
ternational Conference on Database and Expert Systems Applications, pages
682–686, 2006.

[11] Daniel Olmedilla, Omer F. Rana, Brian Matthews, and Wolfgang Nejdl. Se-
curity and Trust Issues in Semantic Grids. InIn Proceedings of the Dagsthul
Seminar, Semantic Grid: The Convergence of Technologies, 2005.

[12] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe and
Private Data Sharing with Turtle: Friends Team-up and Beat the System. In
In Proc. of the 12th Cambridge Intl. Workshop on Security Protocols, 2004.

[13] Popular Science. Dime put in slot rings doorbell, 1933.
http://blog.modernmechanix.com/2007/05/05/
dime-put-in-slot-rings-doorbell/.

[14] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In In Interna-
tional Symposium on Software Security, pages 42–57, 2002.

Extending Trust in Peer-to-Peer Networks

Stephen Clarke Bruce Christianson Hannan Xiao

Abstract

This paper presents a way of reducing the risk involved with download-
ing corrupt content from unknown (and hence untrusted) principals in a P2P
network. This paper gives a brief overview of the need for trust in P2P net-
works, introduces a new notion called trust*, and shows how this may be
used in place of the conventional notion of trust. Finally, we apply trust* to
the Turtle P2P client and show how the integrity of downloaded content can
be guaranteed without assuming that trust is transitive.

1 Introduction

Peer-to-peer (P2P) based networks are widely used on the Internet to enable file
sharing, streamed media and other services. With a traditional client-server based
network, many clients connect to a fixed server. Whereas P2P clients are all con-
sidered equal and connect directly to each other. Because ofthis topology, tasks
such as sharing files and other resources can be more efficientas a client can
connect to many other clients and download content simultaneously.

Much of the content currently distributed via P2P networks is either illegal or
violates copyright laws in some way. However, there are alsomany legitimate
reasons why content might be distributed using P2P, and there is copyright-free
content also available such as open source software. P2P protocols such as BitTor-
rent enable sharing of very large files such as operating systems, and many Linux
based distributions are downloadable in this way in order tolower the load on an
individual server.

P2P networks have many advantages such as scalability, and due to there being
no centralised server, network loads can be easily balanced. However, for the same
reasons, a problem with P2P networks is that all peers are regarded as equal and
there is no real way to moderate content. Anyone can use a P2P client and share
any files they wish. Malicious users can easily insert incorrect files into a network
which are searchable by other clients and will therefore propagate further. Even
non-malicious users might be unaware that they are serving incorrect files from

167

APPENDIX C. PUBLICATIONS 168

their computer. To counter this, hosts might publish an MD5 check-sum on their
website. However, this is unlikely and it is the user’s decision whether and how
they actually verify this, and getting hold of the correct checksum leads us back
to the initial problem. Also, this approach assumes that thetrustee is the original
source and not just a middleman provider.

This paper describes how a new concept called trust* [3] can be applied to
P2P networks to guarantee the integrity of files being shared. This paper uses the
Turtle P2P client [11] as a basis on which to discuss the concept, although trust*
can be applied to various other P2P clients. Turtle enables files to be shared among
friends (people whom you know in the real world) in the hope toimprove safety
and overall integrity of the shared content. However, friendship isn’t transitive.
Trust* aims to reduce the perceived risk involved when sharing files over multiple
hops with unknown principals. Trust* achieves this by providing incentives to act
correctly and deterrents for acting maliciously or incompetently.

2 Extending Trust

This section briefly describes the concept of trust* [3]. Themain purpose of trust*
is to allow unknown principals to interact whilst at the sametime lowering the per-
ceived risk incurred by transitively trusting or relying onreputation (particularly
when the intention is to use a clientonce and never again).

In the real world, this is often achieved by using an intermediary as a guar-
antor. An example of this is letting houses to students, where landlords require
a guarantee against a particular tenant. The guarantor trusts the tenant and the
landlord trusts the guarantor so the landlord has shifted the risk of not receiving
the rent to the guarantor. The landlord believes that he willalways get his rent
whether it be from the tenant or the guarantor.

Trust* is based on the electronic equivalent of the real world guarantee solu-
tion. Say that Alice needs to trust Carol about something anddoesn’t personally
know or trust Carol. However, Alice trusts Bob who in turn trusts Carol to do
whatever it is Alice needs her to do. In order to change Alice’s perception of the
risks involved, Bob could guarantee to Alice that Carol willact as intended and
offer Alice compensation if Carol doesn’t. The concept of “extending” trust in
this way by using localised guarantees is what we call a trust* relationship.

The trust*er (Alice) can then act as if they trust the trust*ee (Carol) directly.
In order to shift the risk, forfeit payments are used. All forfeits are paid lo-
cally; if Carol defaults then Bob must pay Alice the agreed forfeit whether or
not Carol pays Bob the forfeit she owes him (and the two forfeits may be of dif-
ferent amounts). Failure to provide a service – or to pay a forfeit – may result in
an update to alocal trust relationship; for example, between Bob and Alice, or

APPENDIX C. PUBLICATIONS 169

between Carol and Bob. Figure 1 illustrates a typical trust*relationship.

B CA Direct trust Direct trust

Trust*

Figure 1: A trust* relationship.

Trust* can be composed to an arbitrary number of hops becauseall trust is
now local and so are the forfeits. It is worth noting that trust isn’t the same as
trust* even in a one hop scenario; in this case, if Bob trust*sCarol to provide a
service, it means that Bob trusts Carol to either provide theservice or else pay the
forfeit1.

3 Trust in P2P Networks

Due to the nature of P2P networks and the likelihood that interactions are be-
tween completely unknown and untrusted principals, peers in a network need a
way to mitigate the risks they would incur if they temporarily trust others. The
risks involved are likely to vary depending on what is actually being shared. For
example, software should be the correct version and should not be corrupted in
any way, documents should be authentic and music should be licensed.

There are many security and trust issues related to P2P networks [1, 5, 9, 13]
and the trustworthiness of others is normally gauged using some kind of reputation
system [8, 12]. However, reputation systems have a vital flaw; they imply that trust
is always transitive [6] which can be a bad assumption [2]. Assume a user wants to
determine the risk involved if they were to trust another (eg. to provide a described
service) by looking at their reputation rating. This might contain comments and
ratings left from previous transactions. It is unlikely that the user looking knows
(or trusts) the other users who have left the comments. Also,reputation systems
are prone to threats such as Sybil attacks [4] where the same user can operate
under many pseudonyms. But even if a user does know and trust the people who
left the comments, they will still be transitively trustingthe service provider in
question.

According to Jøsanget al [7], transitivity is possible with the correct combina-
tion of the referral and functional variants of trust. However, trust* allows the risk

1Bob may believe that Carol cannot provide the service, but will always pay the forfeit.

APPENDIX C. PUBLICATIONS 170

involved to be underwritten, even when these delicate conditions for transitivity
are not satisfied. With trust*, Bob is not only making a recommendation to Alice,
but also offering compensation if something goes wrong. Thetrust scope is de-
cided locally between Alice and Bob when the guarantee is created. It is assumed
that the final guarantor in a trust* chain will have functional trust in the end-point
(or trust*ee).

Most services provided over a distributed system or networkhave (as in the
real world) an underlying contract or agreement. In most cases, this could simply
be that serviceX will be provided for a feeP and that the service will conform to
the terms and conditions ofX. In P2P networks, such guidelines do not at present
generally exist and clients connect to other clients to become an equal part of the
network. Peers are usually free to download anything they wish from other peers
and vice versa. There may be situations where content could be charged for or
where a particular service level agreement is in place, however, it is more likely
that peers in a P2P network hold a “download at your own risk” policy regarding
the files that they are sharing.

Trust* can be deployed to provide the missing assurance whenindirectly trust-
ing others. For example, Carol doesn’t care if someone wantsto download fileX
and doesn’t care if they are unhappy with it. However, Bob haspreviously down-
loaded files from Carol, and hence trusts that her files are of ahigh standard. Alice
trusts Bob so Bob’s guarantee reduces the risk for Alice. If Bob was wrong, he
will compensate Alice with the agreed forfeit. However, in this example, Carol
hasn’t necessarily done anything wrong and isn’t obliged toreimburse Bob. Bob
however is likely to lower his high perception of the qualityof Carol’s files and
perhaps never guarantee her again. Bob’s motivation to provide the guarantee is
a commission payment from Alice2. Bob will set the level of this commission
depending on his perception of the probability of Carol defaulting3.

4 Applying Trust* to Turtle

The Turtle client requires you to list your friends whom you trust to share files
with. The Turtle protocol works by only sending queries for files to these friends,
who pass on the query to their friends as their own query and soon4. Such queries

2In a commercial case, where Carol provides a service for payment, Carol may pay Bob a
commission for acting as an intermediary.

3Provided Bob’s estimate of the probability of Carol defaulting is lower than Alice’sa priori
estimate, then both Alice and Bob will be happy with the guarantee.

4If you have read the spam-proof application in [3], please note that the direction of trust in
that case goes in the opposite direction to that described here for Turtle. Trust* works perfectly in
either direction.

APPENDIX C. PUBLICATIONS 171

and their results are only ever swapped within these local trust relationships. The
second stage is for the original requester to choose the file to be downloaded from
the list of results. The file is then downloaded locally by each peer in the chain in
the same manner as the search query.

This localised trust setting is perfect for also finding routes of trust* guaran-
tees, as the query and result route used could also make up a chain of guarantees.
Extending the example to a longer chain, Alice wants to download fileX and
sends a query to Bob whom she trusts. Bob forwards this query to Carol whom he
trusts. Carol continues to forward this to her friends. Davereceives the query, he
has fileX and sends back a positive response to Carol which is forwarded back
to Bob and then Alice. Assuming now Alice chooses Dave’s file via Bob from
the list of search results and requests that it comes with a guarantee from Bob, a
guarantee chain could be negotiated at the same time as retrieving the file. The
scope of the trust* guarantee is also negotiated between each pair which states the
terms of the guarantee and what constitutes a breach.

Suppose Alice discovers that the fileX is corrupt in some way. Alice can
claim the forfeit from Bob. Bob may also claim from Carol. Suppose Dave does
not care if his files are correct. So rather than Carol claiming from Dave, she is
likely to stop trusting him altogether, or not guarantee against him again, or charge
a higher commission from Bob in future for providing the guarantee.

Eventually, say that Dave is habitually sharing corrupt content, all principals
who once trusted him are likely to never guarantee his files again. In a fair P2P
system where credit or reputation is gained depending on thequantity of uploaded
content, and is used to download files from others, Dave will also have trouble
buying guarantees from others (or they will be very expensive for him). In this
example, the commission can be thought of as an insurance payment.

Alternatively, someone might guarantee only certain typesof files from an-
other peer. For example, Carol might be happy to guarantee any of Dave’s music
files but considers the software that he shares as risky so Carol will not guaran-
tee these files. Trust* can enable these fine-grained decisions to be made. Even
when Carol trusts Dave directly, she can still be selective over what she’ll actually
guarantee.

4.1 Simulation of Trust*

In order to analyse the effectiveness of applying trust* to aP2P scenario, the
model was simulated with the Repast Simphony modelling toolkit [10]. A sce-
nario where Alice wishes to download a file from Carol was simulated. There are
five possible trust* routes (via the guarantors numbered 1 to5) and each principal

APPENDIX C. PUBLICATIONS 172

holds many properties including a credit rating5. Two global attributest andm

define the probability of Alice being truthful and Carol sharing incorrect files re-
spectively. The trust* protocol is invoked once every “tick” of the simulation and
stops when all available routes have been exhausted. The graphs in figures 2 and 3
show the resulting credit ratings for each principal and howlong each simulation
ran for.

In graphs (a) and (b), where Carol has a high chance of sharingcorrupt files,
the simulations stop after 42 ticks. By graphs (c) and (d), the probability of files
being corrupt decreases, and hence, the simulation runs forlonger. By graph
(d) where the corruption chance is 0%, only one guarantor is ever used and the
simulation would run forever. Many other graphs show fluctuations in forfeit
rates and claims etc, however results presented here are limited for space reasons.
The results show that long term trust* usage implies good behaviour from all
involved principals. The guarantors will only tolerate misbehaviour for so long
before refusing to provide further guarantees of the offending principal.

Figure 2: Principals exhibiting bad behaviour.

5 Discussion

5.1 Heterogeneity and Anonymity

In order to implement the trust* relationship mechanism, whether to initiate, pro-
vide, or receive a guarantee, a way of making decisions and payments is necessary.
This functionality could easily be incorporated within P2Pclient software. One of
the advantages of our approach is that the trust management and payment systems
can both be heterogeneous, due to the fact that trust (and payments) are confined
or localised. If a guarantee has been made from one principalto another, any trust

5This is purely to gauge the total gains and losses of a principal.

APPENDIX C. PUBLICATIONS 173

Figure 3: Principals exhibiting good behaviour.

management and payment schemes could be used between them. At the same
time, other pairs of principals might use completely different schemes.

Because of this localisation of trust, end-point anonymitycan also be main-
tained as principals only speak to their direct neighbours.No knowledge need be
gained about other principals or the schemes they might be using. Also, partici-
pants need not know whom they are downloading from.

5.2 Payment by Resource

The most obvious use of a forfeit is either to deter a principal from defaulting on
what they have guaranteed or to provide a way of compensatingthe other party
if they do6. The commission payment was introduced in order to provide an in-
centive for a principal to act as a guarantor and can be seen asa spot price for a
guarantee. A principal needing to trust* could pay this commission to a guarantor
whom they trust directly. Forfeit and commission payments serve different pur-
poses and don’t need to be of the same type (or paid by the same means), although
in the case of P2P networks, they could easily be.

Due to the heterogeneous nature of the localised trust between individual pairs
of principals, the payments could take the form of a more immediately valuable
commodity to them than a conventional micro-payment. In P2Pfile sharing appli-
cations, this could be the content itself. For example, credit to download further
files or to buy licenses or guarantees.

6Note that these are slightly different requirements; a lower forfeit will often suffice for the
first.

APPENDIX C. PUBLICATIONS 174

6 Conclusion

This paper has presented the concept of trust* as a mechanismfor guaranteeing
the integrity of content or services provided over a P2P network. Trust* builds
on the idea of sharing with friends in the Turtle P2P client but also guarantees the
integrity of downloaded content from unknown peers derivedthrough transitivity.

Using trust* in this way also reduces the risk involved for the downloader as
they will be compensated in the worst case scenario. It therefore lowers the risk
of transitively trusting others, and privacy is still maintained. This is because the
guarantees and payments are confined within the same localised trust relation-
ships as the ones that are used to communicate the actual search queries and their
corresponding results. This approach therefore allows complete localisation of
trust management, and the risk of trusting by referral is underwritten by the guar-
antees. We regard local trust management as a significantly easier problem than
global reputation management, particularly in a P2P systemwhere the majority of
participants wish to be anonymous (except to their friends). As mentioned earlier,
the use of trust* does not constrain the way in which local trust is managed.

Simulation of the trust* protocol shows that misbehaving principals quickly
become isolated before major damage can be made. This means that threats such
as a Sybil attack can be identified and the perpetrator will eventually be removed
from local trust relationships. This will make it harder forthem to share files in
a P2P community that employs the trust* model as eventually all routes will be
removed (or become too expensive).

The Turtle client was developed with an emphasis on privacy and safety of
sharing files that might be of a controversial or provocativenature. Due to the
localised direct trust in a trust* chain, such privacy can beeasily maintained7. We
have argued that applying trust* to P2P file sharing will alsobe beneficial in guar-
anteeing the integrity of free content such as open source software or copyright-
free movies.

7However, privacy is not so much of an issue when sharing open content, and in other applica-
tions where the integrity of the content is more important.

APPENDIX C. PUBLICATIONS 175

References

[1] Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer Infor-
mation System. InProceedings of the Tenth International Conference on
Information and Knowledge Management, pages 310–317, 2001.

[2] Bruce Christianson and William S. Harbison. Why Isn’t Trust Transitive?
In Proceedings of the International Workshop on Security Protocols, pages
171–176. Springer-Verlag, 1997.

[3] Stephen Clarke, Bruce Christianson, and Hannan Xiao. Trust*: Using Local
Guarantees to Extend the Reach of Trust. InProceedings of the Seventeenth
International Workshop on Security Protocols, April 2009. To appear.

[4] John R. Douceur. The Sybil Attack. InPeer-To-Peer Systems: First Interna-
tional Workshop, page 251. Springer-Verlag, 2002.

[5] Junjie Jiang, Haihuan Bai, and Weinong Wang. Trust and Cooperation in
Peer-to-Peer Systems. InGCC 2003, pages 371–378. Springer-Verlag, 2004.

[6] Audun Jøsang, Elizabeth Gray, and Michael Kinateder. Analysing Topolo-
gies of Transitive Trust. InProceedings of the Workshop of Formal Aspects
of Security and Trust, pages 9–22, 2003.

[7] Audun Jøsang, Ross Hayward, and Simon Simon Pope. Trust Network Anal-
ysis with Subjective Logic. InACSC ’06: Proceedings of the 29th Aus-
tralasian Computer Science Conference. Australian Computer Society, Inc.,
2006.

[8] Eleni Koutrouli and Aphrodite Tsalgatidou. Reputation-Based Trust Sys-
tems for P2P Applications: Design Issues and Comparison Framework. In
Trust and Privacy in Digital Business. Springer-Verlag, 2006.

[9] Anirban Mondal and Masaru Kitsuregawa. Privacy, Security and Trust in
P2P environments: A Perspective. InDEXA ’06: Proceedings of the 17th In-
ternational Conference on Database and Expert Systems Applications, pages
682–686, 2006.

[10] Michael J. North, T. R. Howe, Nick T. Collier, and J. R. Vos. The Repast
Simphony Development Environment. InProceedings of the Agent 2005
Conference on Generative Social Processes, Models, and Mechanisms,
2005.

APPENDIX C. PUBLICATIONS 176

[11] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe and Pri-
vate Data Sharing with Turtle: Friends Team-up and Beat the System. InIn
Proc. of the 12th Cambridge International Workshop on Security Protocols,
2004.

[12] Ali A Selçuk, Ersin Uzun, and Mark R. Pariente. A Reputation-Based Trust
Management System for P2P Networks. InCCGRID, pages 251–258. IEEE
Computer Society, 2004.

[13] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In In Interna-
tional Symposium on Software Security, pages 42–57, 2002.

