On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models

Vicedo, Benoit, Magro, Marc, Delduc, Francois and Lacroix, Sylvain (2016) On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models. Journal of Physics A: Mathematical and Theoretical, 49 (41). ISSN 1751-8113
Copy

Yang–Baxter type models are integrable deformations of integrable field theories, such as the principal chiral model on a Lie group G or σ-models on (semi-)symmetric spaces G/F. The deformation has the effect of breaking the global G-symmetry of the original model, replacing the associated set of conserved charges by ones whose Poisson brackets are those of the q-deformed Poisson–Hopf algebra Uq ( ) g . Working at the Hamiltonian level, we show how this q-deformed Poisson algebra originates from a Poisson–Lie G-symmetry. The theory of Poisson–Lie groups and their actions on Poisson manifolds, in particular the formalism of the non-abelian moment map, is reviewed. For a coboundary Poisson–Lie group G, this non-abelian moment map must obey the Semenov-TianShansky bracket on the dual group G*, up to terms involving central quantities. When the latter vanish, we develop a general procedure linking this Poisson bracket to the defining relations of the Poisson–Hopf algebra Uq ( ) g , including the q-Poisson–Serre relations. We consider reality conditions leading to q being either real or a phase. We determine the nonabelian moment map for Yang–Baxter type models. This enables to compute the corresponding action of G on the fields parametrising the phase space of these models.


picture_as_pdf
1606.01712.pdf
subject
Submitted Version
Available under Creative Commons: BY 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads