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Summary 

Modelling strategies for value-added multilevel models are examined. These types 
of models typically include an endogenous variable and this causes difficulties for 
the standard estimation techniques that are commonly used to analyse multilevel 
models. Two alternative estimation strategies are proposed: one using an 
instrumental variable approach and the other using a Bayesian analysis as 
available through the BUGS software. We conclude that the approach offered by 
the BUGS software has advantages over more classical estimation methods. 
 
Keywords: Hierarchical Modelling; Iterative Generalized Least Squares; Gibbs 
Sampling; Endogeneity. 
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1 Introduction 
Since the mid 1980s, the analysis of hierarchically structured data through 
estimation of random effects multilevel models has become commonplace. A 
variety of procedures have been developed and algorithms implemented in readily 
available software (VARCL (Longford, 1988), HLM (Bryk et al, 1996), Proc 
Mixed from SAS (SAS Institute, 1992), MLn and MLwiN (Rasbash and 
Woodhouse, 1995; Goldstein et al, 1998)). The MLn and MLwiN software we use 
in this paper is developed around the Iterative Generalised Least Squares (IGLS) 
methods of Goldstein (1995). More recently, Markov Chain Monte Carlo 
(MCMC) methods of carrying out modelling in a Bayesian framework have 
increased in popularity, implementing Gibbs and other sampling techniques. 
Improvements in technology have meant that these computer intensive approaches 
to modelling have become more accessible to researchers, and the development of 
the BUGS software package (Spiegelhalter et al, 1995a) has further increased 
interest in such modelling strategies. A good account of the methodology 
surrounding these procedures is provided by Draper (1998). 
 
In this paper we discuss a multilevel model which is an example of a common 
situation where classical assumptions of independence of explanatory variables 
and the random effects no longer holds. The IGLS procedures available in 
MLwiN will in this case not directly yield consistent estimators. However, 
adaptations based on instrumental variable (IV) methods to produce a consistent 
estimation procedure have been suggested by Fielding and Spencer (1997). This is 
available as a MLwiN macro IV 
(http://www.bham.ac.uk/economics/staff/tony.htm). Here we discuss a case where 
the Bayesian modelling strategy through the MCMC methods of the BUGS 
software may be preferable in many regards. It should be noted, however, that the 
recently available update of MLn, called MLwiN, now also has the capability to 
carry out some Bayesian modelling. Further work comparing the BUGS and 
MLwiN approaches is planned. 
 
Below, we present the dataset and model used in this paper, and then contrast 
results from the alternative estimation strategies. We then present results obtained 
using simulated datasets and consider different parameterisations of the scale 
matrices used in BUGS. Conclusions and ideas for further work are presented. 
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2 Dataset and Model 
We consider a hierarchical dataset consisting of data collected on 1946 pupils 
from 14 educational establishments in England. The response variable considered, 

, is a standardised points score in General Certificate of Education Advanced 

Level (A-level) for pupil j in establishment i. This is a measure of academic 
success over usually two, three or four examinations normally taken when aged 
approximately 18 years. Explanatory variables are GCSE points score (a measure 
of academic success over several subject areas in the British “General Certificate 
of Secondary Education”, normally taken when aged approximately 16 years), age 
and gender for a pupil. 

ijy

 
More specifically, the model we consider is 
 
 y x x x uij ij ij ij i ij= + + + + +β β β β ε0 1 1 2 2 3 3  (1) 

 
where,  is the standardised GCSE points score,  is the pupil's age and 

 is a binary variable indicating gender. The  parameter is a random effect 

varying between schools, with variance , and 

ij1x ij2x

ij3x ui

σ u
2 ε ij  is the usual pupil-level 

random effect, with variance σ . ε
2

 
It is deliberately simple in form as the object of the work presented here is to 
compare modelling approaches rather than draw substantive conclusions from the 
data. It also serves to remind the reader that models need not be complex in order 
to be problematic. 
 
Despite its simplicity, this model is of considerable interest in school effectiveness 
work. By controlling for the GCSE points score and other relevant factors for a 
pupil when analysing the A-level points score, the study can examine the “value 
added” by a school. This is usually evaluated by estimation of the school random 
effects or “residuals”. This form of model is of the same genre as that used by 
Gray et al (1995) and Goldstein and Thomas (1996). 
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3 The Problem of Endogeneity 
Estimates of the parameters of the model shown above can be easily obtained 
using standard multilevel modelling packages. However, this approach ignores the 
fact that the GCSE point score may not be independent of the random effects in 
the model which such estimation requires for good properties. Indeed this variable 
may be regarded as endogenous and could itself be modelled using the same data: 
 
 x x x vij ij ij i ij1 0 2 2 3 3= + + + +γ γ γ  (2) 
 
where ,  and  are as above,  is a random effect varying between 

schools and  is the pupil- level random effect. The  in the model for  

and the  may both be regarded as school effects. It could therefore be argued 

that we may encounter estimation difficulties due to the correlation between  

and the school random effect in the A-level model through the . However, the 
extent to which this correlation exists is open to question as most of the students 
did not study for their A-level examinations at the same establishment at which 
they studied for their GCSE examinations. The  could then be regarded as 
exogenous for the A-level model. For situations where correlations at this level of 
the data structure may be problematic, Rice et al (1998) have developed strategies 
known as conditional IGLS. 

ij1x ij2x ij3x vi

eij ui ijy
vi

ij1x
vi

vi

 
Of prime concern in this paper is the correlation that exists between  and the 

random part of the A-level model through the pupil-specific random terms  

and . Both these terms contain unexplained and unmeasurable pupil factors 

and thus cause  to be endogenous for the A-level model. 

ij1x
ε ij

e ij

ij1x
 
This endogeneity means that the assumption of independence of regressors and 
model error cannot be sustained and thus the parameter estimates obtained by a 
direct MLwiN analysis may be inconsistent. The degree to which this 
inconsistency affects the estimates is governed by the size of the covariance 
between the pupil effects at GCSE and A-level. As these covariances are not 
known at the time of the analysis, some adjustment of the estimation process must 
be undertaken to ensure that consistent estimates are produced. As the 
endogeneity is caused by correlations at the lowest level of the data hierarchy, the 
conditional IGLS methods of Rice et al (1998) are not available. 
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4 Consistent Estimation using 
Instrumental Variables 

A method for obtaining consistent parameter estimates for models such as those 
considered in this paper is given in Fielding and Spencer (1997). An instrument 
set is created using the regressors in the A-level model with the endogenous 
regressor (the GCSE score) being replaced by an instrumental variable (IV). This 
instrumental variable is obtained by a multilevel modelling of the GCSE score 
using variables that are assumed to be independent of the school and pupil effects 
in the A-level model. Here, we use dummy variables that define whether the A-
levels taken by the student are all science/mathematical subjects, all non 
science/mathematical subjects or a mixture. In order to create an instrumental 
variable that is a good predictor of GCSE score, it would be preferable to have a 
number of regressors that are relatively unrelated to the A-levels. However, 
further regressors of this type are not available from the study and this raises the 
issue of the collection of good relevant data in future studies so that this IV 
procedure can be carried out more efficiently. 
 
Once the estimation of the parameters of the GCSE model has taken place, 
estimates of the GCSE score are obtained using just the fixed part of the model 
(i.e. ignoring any school and pupil effects) and these estimates are used in place of 
the original GCSE score in the instrument set. There is a danger of introducing 
correlations between the instrument set and the random part of the A-level model 
if any of the random effects are used to produce estimates of the GCSE score so 
we choose here to only use the fixed part of the model. If the regressors used in 
the GCSE model are truly independent of the school and pupil effects in the A-
level model, then the estimate of the GCSE score from the fixed part of the model 
will be as well. The instrument set is then independent of the disturbance of the A-
level model, and consistent estimates of the parameters of the A-level model can 
be obtained using standard IV techniques. 
 
The Iterative Generalized Least Squares algorithm (used in MLwiN) can then be 
used to obtain estimates of the random parameters of the A-level model, with the 
fixed parameters being constrained to those obtained by the IV estimation. These 
random parameters can then be used to obtain standard errors for the IV estimates. 
 
It could be argued that the dummy variables used to construct the instrument for 
the GCSE score may not be independent of the school and pupil effects in the A-
level model. This problem of selecting appropriate regressors for the modelling of 
the GCSE score is an essential problem with the instrumental variable method of 
obtaining consistent parameter estimates. All that can be said regarding this 
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problem here is that the resulting instrument is likely to be less correlated 
with the disturbance of the A-level model than the original GCSE score, and the 
problems of inconsistency are thus likely to be less. 
 
Table 1 shows the results of estimating the parameters of the A- level model using 
MLwiN with and without the IV method of estimation. It appears from these 
results that inconsistency of a standard analysis does not present a serious problem 
for this example. However, in general it is not always the case that reliable 
estimates are obtained and later we shall see a case where they are not. As a 
general rule we may prefer the IV estimators since they will suffer less from any 
consistency problems. 
 

Table 1: Results 
 

Parameter Without IV With IV BUGS 

0β  0⋅0236 (0⋅0551)l 0⋅0097 (0⋅0667)l 0⋅0363 (0⋅1241)l 

1β  0⋅5735 (0⋅0210)l 0⋅5116 (0⋅0903)l 0⋅5453 (0⋅2188)l 

2β  0⋅0775 (0⋅0196)l 0⋅0729 (0⋅0268)l 0⋅0747 (0⋅0339)l 

3β  −0⋅0185 (0⋅0383)l −0⋅0180 (0⋅0403)l −0⋅0158 (0⋅0500)l 

σε
2  0⋅6936 (0⋅0223)l 0⋅6972 (0⋅0272)l 0⋅7731 (0⋅0246)l 

σ u
2  0⋅0261 (0⋅0132)l 0⋅0236 (0⋅0122)l 0⋅4833 (0⋅2038)l 

 
Of course, as may be seen from table 1, the standard errors obtained from the IV 
estimation procedure are larger, but not much larger, than those obtained from 
straightforward IGLS. The general problem of large standard errors and implied 
efficiency is well known. However, in many instances, as in these results, 
acceptable results can be obtained (see Spencer, 1998 for a fuller discussion of 
this problem). 

5. Modelling with BUGS 
The advantage of a Bayesian approach to the modelling of the data, as 
implemented in BUGS, is that the endogeneity of the GCSE points score, 
described above, can be built into the model. To show this, a directed graph can 
be created (see figure 1). In the graph, rectangles denote constants fixed by the 
study design (age, gender). Nodes with circles/ovals around them are stochastic 
variables that are given a distribution and may be data (e.g. GCSE points score, 
A-level points score) or parameters (e.g. β0 , ). Dashed arrows linking nodes 
indicate that there is a local function linking the parent nodes (at the tails of the 

γ 0
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arrows) to the child nodes (at the heads of the arrows). Solid arrows indicate 
that a stochastic dependence exists. As well as being an alternative way to display 
the model being used, this graph can be used as an aid to write the model in the 
BUGS language. 
 

Figure 1: Directed Graph 
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ui
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Using the directed graph, we define the A-level score to be dependent on the 
GCSE score, age and gender (the fixed part of the A-level model). We also 
simultaneously define the GCSE score to be dependent on age and gender (the 
fixed part of the model above). Both the A-level score and GCSE score have 
school effects associated with them. To define these on our directed graph, we 
have created two effects (  associated with the A-level score and  associated 
with the GCSE score) coming from a bivariate normal distribution. To define two 
pupil effects, we have the A-level score and GCSE score coming from a bivariate 
normal distribution. It is these bivariate normal distributions (which have non-
zero covariances associated with them) which induce endogeneity. 

ui vi

 
The basic idea behind the MCMC techniques is that instead of carrying out 
complex calculations to arrive at an exact or approximate estimate of a quantity of 
interest from the model, series of simulated values are obtained. The idea is that 
these simulated values are eventually (once the iteration process has converged) 
coming from the distribution appropriate for the quantity of interest. If this is the 
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case then the mean, standard deviation, etc. of the posterior distribution of the 
quantity of interest can be examined using the simulated values. Gibbs sampling is 
a technique for obtaining MCMC simulations where, sequentially, each parameter 
of interest is simulated from its conditional distribution given the most recent 
updates available of the other parameters. For more details of MCMC and Gibbs 
sampling techniques, see texts such as Draper (1998), Smith and Roberts (1993). 

6 Assigning Priors 
A frequent criticism of Bayesian approaches to statistical analyses is that 
concerning the need to assume prior distributions for the parameters. In the 
analysis presented here, we use non-informative priors. For the fixed effect 
coefficients, we use Normal distributions with means of zero and precisions of 
0⋅00001. For the random parameters, we need to define two bivariate normal 
distributions. Each of these distributions has a vector of means associated with it 
and we define these to be zeros. Each distribution also has a 2 dimensional 
covariance matrix associated with it, and the precision of the covariance matrix is 
assumed to have a Wishart distribution. This Wishart distribution has an 
associated 2 dimensional scale matrix and degrees of freedom chosen to be as 
small as possible (the rank of the bivariate normal distribution: 2) to represent 
vague prior knowledge (Spiegelhalter et al, 1995b). The difficulty comes when 
having to define the scale matrix and is investigated in later, but for now we 
proceed by defining an arbitrary scale matrix with the numbers 2 on the main 
diagonal and 1 in the off-diagonal positions. See Spiegelhalter et al (1995a) for 
more discussion on this issue. 

7 Burn-in Iterations and Convergence 
In order to obtain results from BUGS, the MCMC iterations begin with pre-set 
starting values and a number of “burn-in” iterations are required until the 
parameter realisations obtained by the Gibbs sampling are not influenced by these 
starting values and have converged so that they come from stationary 
distributions. 
 
One way of deciding on the number of “burn-in” iterations that need to take place 
is to look at a trace plot of the estimates of a parameter against the iteration 
number. Figure 2 shows an example of a trace plot in which the parameter 
estimates appear to be exhibiting a pattern of random fluctuations around a steady 
mean after only a very small number of iterations. Here, very few “burn-in” 
iterations are required. Another often viewed pattern for a trace plot is one where 
the parameter estimates take a larger number of iterations before the trace plot 
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takes on the appearance of figure 2. In this latter case, all the iterations before 
the parameter estimates take the form of random fluctuations around a steady 
mean are regarded as “burn-in” iterations. 
 
Diagnostic statistics such as those proposed by Geweke (1992), Gelman and 
Rubin (1992), Raftery and Lewis (1992), Heidelberger and Welch (1983) can also 
be used to aid determination of the number of “burn-in” iterations required. 
 
The trace plots and diagnostic statistics can be obtained from a BUGS analysis 
with the help of a suite of menu-driven S-Plus functions known collectively as 
CODA (Best et al, 1995) that accompanies the BUGS software. 
 

Figure 2: Trace Plot 
 

Iteration

Estimate

 

8 BUGS Results 
Table 1 shows the results obtained from a BUGS analysis of the data described in 
above with a large burn-in of 5000 iterations and 5000 monitored iterations. The 
results obtained again indicate that the estimates produced by the initial MLwiN 
analysis are acceptable. The BUGS estimates of the fixed effects are similar to 
those produced by MLwiN, but have higher standard errors. The estimates of the 
variances of the random effects are larger than those produced by MLwiN, 
particularly for the school level random effect. This may be in part due to 
difficulties in obtaining an estimate of a variance which is near the lower limit of 
zero. 
 
In this example data it appears that all three methods used give comparable 
results. We have already commented on general reasons why we might prefer IV 
methods to standard IGLS. However, given that MCMC modelling is more 
complicated to implement, it appears to convey few advantages for the case 
discussed, particularly in view of the lower precision of the results. Below we 
shall see, however, that the MCMC approach can have advantages when the 
endogeneity issue has more impact on the standard IGLS estimation procedure. 
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9 Simulated Data 
In this section, we explore the issue further by means of simulated datasets, each 
with a similar structure to that defined by equations (1) and (2). The parameter 
values that the simulations are based on come from the BUGS analysis discussed 

above:  = 0⋅0363,  = 0⋅5453, 0β 1β 2β  = 0⋅0747, 3β  = −0⋅0158,  = 0⋅7731, 

 = 0⋅4833,  = −1⋅1419,  = 0⋅1346,  = −0⋅1221, σ  = 0⋅9533,  = 
0⋅2252,  = 0⋅4462,  = 0⋅0689, where 

σε
2

σ u
2 γ 0 γ 2 γ 3 e

2 σ v
2

σεe σ uv σεe  is the covariance between  

and  and  is the covariance between  and . Results obtained using 

parameter values from the MLwiN with or without the IV procedure could have 
been presented here. However, these parameter values are similar in scale and 
nature to the BUGS ones used here and yield similar results. They are thus not 
presented here for the sake of brevity. The authors’ experience with other datasets 
and models, not closely related to those shown in this paper but having similar 
endogeneity problems, also yield similar conclusions. 

ε ij

e ij σ uv ui vi

 
Table 2 shows the mean estimate for each parameter over the fifty datasets 
obtained using each estimation method, together with the associated empirical 
standard deviation. 
 

Table 2: Simulation Results 
 
 Target  MLwiN   
Parameter Values  Without IV With IV BUGS 

0β  0⋅0363  0⋅1210 (0⋅2066)l 0⋅2250 (1⋅159)l 0⋅0408 (0⋅2402)l 

1β  0⋅5453  1⋅010 (0⋅0242)l 0⋅4628 (9⋅592)l 0⋅6682 (0⋅4770)l 

2β  0⋅0747  0⋅1245 (0⋅0287)l 0⋅0045 (1⋅422)l 0⋅0891 (0⋅0631)l 

3β  −0⋅0158 − 0⋅0723 (0⋅0531)l 0⋅2153 (2⋅077)l −0⋅0141 (0⋅1251)l 

σε
2  0⋅7731  0⋅4669 (0⋅1753)l 92⋅31 (403⋅4)l 0⋅9640 (0⋅0512)l 

σ u
2  0⋅4833  0⋅5571 (0⋅0290)l 20⋅16 (84⋅33)l 0⋅4146 (0⋅0717)l 

 
From table 2, we see that we have a situation where the MLwiN results without 
the instrumental variable procedure appear to be suffering from problems of 
inconsistency. The mean estimate of 1β  is well over 2 empirical standard 
deviations from the target value and it is this pattern of an inflated estimate for the 
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coefficient of the endogenous variable that is typical when no adjustment for 
the endogeneity is made. This is because the positive correlation between the 
GCSE score and the random part of the A-level model causes a positive bias in 
the estimate of the coefficient. 
 
When the instrumental variables procedure is employed, it is apparent that 
although we may well be obtaining consistent estimates, the large standard errors 
mean that the usefulness of the results is limited. This pattern of large standard 
errors is a feature of the instrumental variables procedure when the instrument 
constructed is not a good predictor of the endogenous variable. The results 
obtained by BUGS are more useful with lower standard errors being produced and 
the mean parameter estimates being relatively near the target values. The only 

difficulty apparently being experienced is with the estimate of  which is 
slightly higher than we would wish, with a relatively small standard error. 

2
eσ

10 Alternative Scale Matrices 
Above, we stated that we were able to use non-informative priors for the BUGS 
analysis, but still had to define scale matrices associated with the covariance 
matrices of the school and pupil effects. In this section, we investigate the 
sensitivity of the parameter estimates to changes in the scale matrices. 
 
The first parameterisation of the scale matrix considered here has the number 1 on 
the main diagonal and 0⋅5 in the off-diagonal positions. Scale parameterisation 
two is the identity matrix. Scale parameterisation three has 0⋅7731 and 0⋅9533 on 
the main diagonal and 0⋅4462 in the off-diagonal positions for the pupil effects 
(the A-level and GCSE pupil level variances that the above simulations are based 
on) and for the school effects has 0⋅4833 and 0⋅2252 on the main diagonal and 
0⋅0689 in the off-diagonal positions (the A-level and GCSE school level variances 
that the simulations are based on). Scale parameterisation four has 100 on the 
main diagonal and 10 in the off-diagonal positions for both the pupil and school 
effects. 
 

Table 3: Results from Alternative Scale Parameterisation 
 

 Target Scale Parameterisation 
Parameter Values 1 2 3 4 

0β  0⋅0363 0⋅0427 
(0⋅2413)

0⋅0395 
(0⋅2414)

0⋅0423 
(0⋅2423)

−1⋅426 
(0⋅6555)

      

1β  0⋅5453 0⋅6673 0⋅6512 0⋅6584 −1⋅954 
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(0⋅4884) (0⋅4856) (0⋅4968) (1⋅420)

      

2β  0⋅0747 0⋅0893 
(0⋅0648)

0⋅0872 
(0⋅0645)

0⋅0884 
(0⋅0661)

−0⋅2168
(0⋅2038)

      

3β  −0⋅0158 −0⋅0141
(0⋅1268)

−0⋅0117
(0⋅1270)

−0⋅0128
(0⋅1284)

0⋅4349 
(0⋅3942)

      

σε
2  0⋅7731 0⋅9626 

(0⋅0512)
0⋅9626 

(0⋅0512)
0⋅9627 

(0⋅0512)
1⋅108 

(0⋅0513)
      
σ u

2  0⋅4833 0⋅3297 
(0⋅0711)

0⋅3304 
(0⋅0710)

0⋅2652 
(0⋅0707)

8⋅784 
(0⋅5490)

 
Table 3 gives the results from analysing the 50 simulated datasets used above. As 
can be seen, the mean estimates are quite stable for parameterisations 1, 2 and 3 
and that used in table 2. This is a good sign in that it appears that the results are 
fairly robust to the choice of scale matrices. Parameterisation 4, with the extreme 
scale matrices, produces worse results. As in table 2, the mean estimates for the 
variances are less satisfactory than those for the fixed effect coefficients. 

11 Conclusions and Further Work 
In this paper, we have shown that a BUGS analysis which has the endogeneity of 
the GCSE score built into the model structure can produce results which are 
clearly preferable to a classical analysis which ignores the endogeneity problem. 
The BUGS analysis can also be preferable to an analysis using instrumental 
variable methods which may produce estimates with unacceptably large standard 
errors. Also with the endogeneity being properly modelled, assumptions do not 
have to be made regarding the independence of the instrumental variable and the 
disturbance in the A-level model. It has been shown that non-informative priors 
can be used and that the results appear to be robust to different choices of scale 
matrices, providing these choices are reasonable. 
 
More work is needed to identify those occasions, such as demonstrated in table 1, 
where a classical analysis can produce acceptable results despite endogeneity 
concerns. Additionally, further research is needed regarding the BUGS estimates 
of the variances in the model and how they can be improved. Nevertheless, 
despite these areas of research that need more investigation, it is clear from this 
paper that the BUGS approach to modelling can give distinct advantages over 
more classical approaches. 
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