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Abstract

The principal theory concerning the origin of the elements heavier than the Fe-peak,

such as Ba, strongly suggest that for old, metal-poor environments, the rapid (r-)

process is the most likely path taken in their synthesis, while the slow (s-) process

becomes more substantial in younger, more metal-rich stellar populations.

In this work I test this theory by evaluating the isotope ratios of Ba. It is under-

stood that Ba consists of seven stable isotopes, five of which are synthesised by the

two neutron-capture processes. The two odd isotopes, 135,137Ba, as well as 138Ba are

synthesised via both the r- and s-processes while two of the even isotopes, 134,136Ba are

synthesised via the s-process only. The relative contribution of the r- and s-process

to these isotopes can be understood via nucleosynthesis calculations and is described

using the parameter fodd, where fodd = [N (135Ba) +N (137Ba)] /N (Ba). Low values of

fodd (∼ 0.11) indicate an s-process regime, while high values of fodd (∼ 0.46) indicate

an r-process regime.

In the Ba II 4554 Å line the even isotopes lie close to the line centre, while the

odd isotopes, which are hyperfine split because of their non-zero nuclear spin, lie in

the wings of the line. From an analysis of the line profile shape, one can determine

whether Ba has been synthesised primarily through the r-process or s-process; a broad,

asymmetric line would indicate a high r-process contribution, while a line with a deeper

core and shallower wings would indicate a high s-process contribution.

Using the radiative transfer code ATLAS, which assumes local thermodynamic

equilibrium (LTE) and employs 1-dimensional (1D) KURUCZ06 model atmospheres,

I synthesised line profiles for six metal-poor stars: HD 140283, HD 122563, HD 88609,

HD 84937, BD−04◦ 3208 and BD+26◦ 3578 - for a range of isotope ratios. All six

are of sufficiently low metallicity that Ba was expected to have an r-process origin.

These were fit to high resolution (R ≡ λ/∆λ = 90 000 − 95 000), high signal-to-noise
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(S/N = 550 − 1100) observed stellar spectra using a χ2 code. It was found that the

Ba isotopic ratios were extremely sensitive to a star’s macroturbulent velocity, which

is a measure of the velocity distributions in the gas of a star’s atmosphere. So that the

star’s macroturbulence could be measured independently of the Ba line, I fit synthetic

Fe lines to a few dozen observed Fe lines for each star adopting a Gaussian macro-

turbulent profile. Through fitting fully-resolved synthetic Ba profiles to the observed

stellar spectra, I found that the Ba II line profiles indicated an s-process signature,

which disagrees with current theoretical expectations.

As a confirmation of the isotopic ratio derived from the Ba II 4554 Å line, the Ba II

4934 Å line was examined for one star. However, blends with other lines made it difficult

to accurately determine the isotopic ratio. Nevertheless, it seemed to confirm the

isotope ratio derived from the 4554 Å line, but with a significant increase in uncertainty.

Two further types of symmetric profiles were examined to model the stellar macro-

scopic broadening, in addition to the Gaussian profiles already used. It was found that

fitting the observed lines with synthetic lines broadened by v sin i profiles, which are

used to model the effect of rotation on line broadening, produced poorer fits than the

Gaussian macroturbulent broadening profiles. The third profile used to model stellar

macroturbulence was a radial-tangential (ζRT) broadening profile. Improvements to

the statistical fits (as measured by their χ2 minima) were seen when compared to the

Gaussian profiles.

However, it was found that using a 1D LTE radiative transfer code and 1D model

atmospheres produced poor fits to the observed spectra, regardless of the type of profile

used to model the stellar macroturbulence. In particular, the observed Fe profiles

showed greater absorption in the red wing than in the blue wing, particularly ∼ 140 mÅ

redward of the line centre. It was suspected that this could be attributed to the

simplistic assumptions that 1D atmospheres and radiative transfer codes make when

synthesising synthetic spectra, leaving them unable to model asymmetries caused by

convection, which are visible in the high quality stellar spectra used in this thesis.

In an attempt to fit these lines better, two different techniques were examined using

the Fe lines. The tests used Fe lines as they are relatively simple to model, compared
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to the Ba II 4554 Å line which has multiple components. In the first test, synthetic

spectra were computed using the non local thermodynamic equilibrium (NLTE) radia-

tive transfer code MULTI. The synthetic line profiles were fit to a number of lines in

HD 140283. Although this technique might have improved the fit in the line core, it

was found that such a treatment did not improve upon fitting errors associated with

the best fit 1D LTE synthetic profiles.

The second test used a 3-dimensional (3D) radiative transfer code (LINFOR3D) that

employed 3D, time-dependent atmospheres produced with CO5BOLD. The 3D synthetic

profiles were fit to a selection of Fe lines and improvements over the poor fits produced

by the 1D LTE synthesis were seen. It was found that the 3D synthesis could almost

completely reproduce the line asymmetries seen in the observed stellar spectrum. This

result suggests that further work to refine the 3D calculations and synthesis code would

be valuable.
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Chapter 1: Introduction

Heavy element production via the two neutron-capture processes, the rapid (r-) and

slow (s-) process, has been of long standing interest in nuclear astrophysics, particularly

the consideration of the sites in which they occur. It is fairly well established that the

majority of the s-process occurs in evolved, low- to intermediate-mass stars via sub-

reactions during advanced burning stages (Burbidge et al., 1957; Iben, 1983; Smith

& Lambert, 1989; Busso et al., 1999, etc.). A sub-class of the s-process, which is

responsible for the majority of the heavy elements between Fe and Sr (60 . A . 90),

takes place in more massive stars (Prantzos et al., 1990; Raiteri et al., 1991; Pignatari

et al., 2010, etc.). These are known as the main and weak s-process respectively.

The exact physics behind the various mixing processes that must precede s-process

nucleosynthesis are still not fully understood. Details of these two s-processes are

discussed in §1.3.1. The r-process site(s), however, has never been observed directly

and debates are on going as to where they may occur (Wanajo & Ishimaru, 2006).

Clues to the origin of the r-process site(s) can be studied through observations

of r- and s-process elements in metal-poor stars. In extremely metal-poor stars, the

overabundance of r-process nuclei relative to s-process nuclei would support the most

favoured hypothesis that the r-process occurs in supernova (SN) events of massive,

short lived, progenitor stars (details on this are presented in §1.3.2). In the early

Universe, as the first stars form, it is believed that the metal-free environments would

preferentially form massive stars (see formation in §1.2).

These stars would not have the ability to synthesise heavy elements via the weak

s-process as that requires the presence of Fe seed nuclei, which cannot be synthesised

in early stages of massive star evolution. However supernovae (SNe) events would have

the ability to produce Fe and free neutrons in large quantities via runaway nuclear

fusion processes (see advanced burning stages in §1.1.2). High contributions by the

r-process in metal-poor stars would strengthen current theories on the formation of the

first stars in the Universe, which are believed to have induced the epoch of reionisation

(Haiman & Loeb, 1997; Sokasian et al., 2004).
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In this scenario the r-process should dominate over the s-process at early times, an

hypothesis established by Truran (1981). Results published in Spite & Spite (1978)

were particularly influential in developing this postulate. See §3.1 for further details on

these two studies. The question of whether this hypothesis is upheld observationally

in the Ba isotope ratio is the main motivation for the research presented in this thesis.

By examining the isotope ratios of Ba in metal-poor stars we can probe the con-

tribution of the r- and s-process to them. Ideally, one would conduct such an analysis

for several different heavy elements to construct a clear picture of the r- and s-process

contributions in the metal-poor star. Currently this is not possible to a high enough

degree of accuracy, as Roederer et al. (2008) demonstrated. They studied the iso-

topic fractions of Eu, Sm and Nd for two metal-poor stars, using high signal-to-noise

(S/N ∼ 160− 1000), high resolution (R ≡ ∆λ/λ ∼ 120 000) spectra. Despite the high

quality of their data and their analysis, the results were tainted by large uncertainties,

particularly for their analysis of Nd. The large uncertainties were due to the insufficient

quality of the data so that accurate detections of the extremely minute changes in the

isotope configurations could not be achieved, even though the resolution and S/N of

the data was amongst the highest possible with current instrumentation.

For Ba, which has five stable isotopes that form via the two neutron-capture pro-

cesses, two of the isotopes (134,136Ba) are produced exclusively by the s-process, whilst

the other three isotopes (135,137,138Ba) can form via both processes. Also, the Ba 4554 Å

absorption line’s hyperfine structure (hfs) is such that the even isotopes, the major frac-

tion of which is synthesised via the s-process, form close to the centre of the line whilst

the odd isotopes, the major fraction of which is synthesised via the r-process, form

towards the wings of the line. As such, the relative contributions of the isotopes are

distinct enough in this line to allow for much more accurate detections of the r- and

s-process contributions relative to those heavy elements just discussed. However, one

must still employ the highest quality data. I will discuss details of the isotope struc-

ture of Ba and the hyperfine structure of its absorption lines in Chapter 2. Although

using one atomic species in this manner to explore the r- and s-process contributions

is not ideal, it represents the sum of what is possible with the current generation of
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telescopes and, as we’ll see throughout this study, the most popular spectrum synthesis

codes currently employed.

In this chapter I give a brief overview of the physics evolved in stellar evolution

and the nuclear fusion processes associated with each particular phase in the context

of chemical evolution. In the first section I shall describe the processes involved in

stellar evolution for two stellar mass ranges; low- to intermediate-mass stars and high-

mass stars. This should not only show the distinctions in their evolution, but also the

difference in their evolution from the first stars in the Universe, which is described

in §1.2. It should also explain how chemical processes taking place throughout their

lifetimes allow for the r- and s-processes to occur. Finally, in §1.3, I discuss the r- and

s-processes in detail, particularly the locations of their sites.

1.1 Stellar evolution

Stars with initial mass M < 0.5 M� do not evolve through different branches on the

Hertzsprung-Russell (H-R) diagram. They will continually replenish their supply of H

in the core and mix freshly synthesised He into the envelope and atmosphere. This is

because these stars are fully convective. As such when their source of H is depleted

they will evolve off the main-sequence to become a He white dwarf. Also they will

never chemically enrich the Galaxy as their atmospheres will not detach and pollute

the ISM, due to the low luminosities associated with these stars. The same fate applies

to more massive progenitor stars that experience significant mass loss on the red giant

branch (RGB) so that the star’s mass falls below the 0.5 M� limit before the onset of

He core burning. This can be achieved through binary interaction, which has been well

documented (Serenelli et al., 2002; Steinfadt et al., 2010; Parsons et al., 2011).

During a more massive (M > 0.5 M�) star’s lifetime it evolves through several

phases of evolution, which are driven by the relationship between gravitational collapse

and nuclear fusion. In this section I briefly discuss these phases of evolution for a

further two scenarios: low- to intermediate-mass stars of mass 0.5 M� ≤ M ≤ 10 M�,

and massive stars (M > 10M�), and the various nuclear processes that work to halt
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the star’s collapse. The evolution of the two types of star differ in the later stages of

their evolution. In §1.1.1 I discuss the evolution of low- to intermediate-mass stars as

they evolve along the H-R diagram (Fig. 1.1) and in §1.1.2 I discuss the evolution of

massive stars as they evolve along their part of the H-R diagram.

1.1.1 Low- to intermediate-mass stars

Fig. 1.1: A H-R diagram schematic for a solar-metallicity intermediate-mass (M = 5 M�) star. Image
from Carroll & Ostlie (2006).

Formation and the main-sequence

Stars are formed out of molecular gas clouds that collapse under their own gravity. As

a gas cloud collapses, initially on a free-fall time-scale

tff =

(
3π

32Gρ0

) 1
2

, (1.1)

where ρ0 is the initial density of the molecular gas cloud, interactions between particles

cause the temperature of the system to increase. The protostar slowly contracts in

hydrostatic equilibrium on a thermal (Kelvin-Helmholtz) time-scale

tKH =
3

10

GM2
∗

R∗L∗
, (1.2)



1.1 Stellar evolution 5

where L∗ R∗ and M∗ are the luminosity, radius and mass of the protostar respectively.

The heat generated from its collapse eventually ignites fusion at the centre. The energy

it releases effectively halts any further collapse. The outward gas pressure is almost in

equilibrium with the force of gravity which drives the star’s collapse. At this stage of

its life, the star is said to be a main-sequence star. A main-sequence star’s radiated

energy comes from fusion of H to He. There are two processes by which this is achieved,

which I will now discuss.

The pp-chain

A main-sequence star can fuse H to produce He as part of a chain known as the pp-

chain, which can be split into three separate branches (see Fig. 1.2). The first reaction

in the main chain, p (p, e+ νe) d, operates via the weak force through β-decay, p → n.

As such it is an extremely slow reaction; roughly 1010 yr per proton pair in low- to

intermediate-mass stars (Pagel, 1997). The second reaction is much faster, with a

typical reaction time of 1.6 s.

p (p, e+ νe) d

d (p, γ) 3He

↙ ↓
↓ 3He (α, γ) 7Be

↓ ↓ ↘
↓ ↓ 7Be (p, γ) 8B

↓ 7Be (e−, ν̄e)
7Li 8B (e+, νe)

8Be∗

3He (3He, 2p) 4He 7Li (p, α) 4He 8Be∗(α) 4He

pp− 1 pp− 2 pp− 3

Fig. 1.2: The three branches of the pp-chain.

Each branch in the chain operates simultaneously, but have different contributions

to the total energy production rate, of 86%, 14% and 0.02% for the pp-1, pp-2 and pp-

3 in the Sun respectively (Prialnik, 2000). Whereas pp-1 only loses 2.0% of the total

energy output (Qpp = 26.73 MeV) through neutrino production, pp-2 and pp-3 lose

4.0% and 28.3% through neutrino loses respectively (Rolfs & Rodney, 1988). However,
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the relative importance of each branch to the total energy production of the pp-chain

increases with increasing temperature (Prialnik, 2000).

The pp-chain requires the lowest temperature to initialise (∼ 4×106 K) and has the

smallest temperature sensitivity, T 4, of all the thermonuclear processes. However, it

releases the largest energy per complete reaction, which is measured as the difference

in mass between four protons and one He nucleus, Qp−p = 4∆M(p) − ∆M(α) =

26.73 MeV (Prialnik, 2000).

Fig. 1.3: The temperature dependence on the pp-chain and CNO-cycle. The dashed arrow indicates
the solar temperature. It is shown that for the Sun the pp-chain would be the dominant form of
energy production. Image from Pagel (1997).

The CNO-cycle

A main-sequence, metal-abundant star, with core temperatures higher than those in

the Sun, would also use the CNO-cycle to burn hydrogen, see Fig. 1.3. This process

uses C, N and O like catalysts; the total abundance of C+N+O remains unchanged,

however there is some modification to the isotope ratios of C, N and O due to the

different reaction rates. In fact most of the C, and at higher temperatures most of

the O, in the burning zones will be converted over the main-sequence lifetime to 14N

(Pagel, 1997).

Like the pp-chain, the CNO-cycle can be further divided into a bi-cycle (Fig. 1.4).
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The main part of the cycle, the CN-cycle, is responsible for the majority of the energy

production whilst the second cycle, the ON-cycle, contributes little energy to the total

output. However the ON-cycle will begin to contribute a larger proportion of the total

energy as temperatures increase.

12C (p, γ) 13N 14N (p, γ) 15O
13N (, e+νe)

13C 15O (, e+νe)
15N

13C (p, γ) 14N 15N (p, γ) 16O
14N (p, γ) 15O 16O (p, γ)17F

15O (, e+νe)
15N 17F (, e+νe)

17O
15N (p, 12C) 4He 17O (p, 14N) 4He

CN− cycle ON− cycle

Fig. 1.4: The CNO bi-cycle.

The CN-cycle is highly temperature dependent, as Fig. 1.3 shows, due to the high

Coulomb barriers. The energy production rate for the CNO-cycle, for stars with masses

large enough for core temperatures to increase beyond ∼ 1.5 × 107 K, is much higher

due to this larger temperature dependence (Prialnik, 2000). As such, when the core

temperatures in a star are hotter than this, the CNO-cycle becomes the dominant

source of nuclear fusion (Fig. 1.3).

First ascent red giant stars

The evolution of low-mass (M ≤ 1 M�) stars off the main-sequence varies slightly to

the intermediate-mass (M > 1 M�) case. For low-mass stars that have depleted their

H in the core, there is an almost immediate activation of H burning in the shell that

surrounds the He core. The core begins to contract, which increases the temperature

of the surrounding burning shell, increasing its energy production rate, which increases

its luminosity. This causes the effective temperature (Teff) of the star to decrease as

the surrounding layers and the stellar envelope expand slightly.

For intermediate mass stars, the scenario is slightly different. Unlike the low-mass

case, the shell of H surrounding the core does not switch on immediately following core
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burning extinction, rather the whole star begins to contract slightly under gravity over

a Kelvin-Helmholtz time-scale. The contraction of the star forces the luminosity and

effective temperature to increase. Once the temperature in the H shell, surrounding

the core reaches high enough, H burning begins. The surrounding layers of the star

absorb some of the energy generated by the burning shell, which causes them to expand

outward slightly, which drops the effective temperature and luminosity slightly. These

processes have an effect on the path of the star’s evolution on the H-R diagram, which

can be seen in Fig. 1.1 after the zero age main-sequence (ZAMS) and before the subgiant

branch (SGB).

In both types of star described here, this evolutionary phase is known as the main-

sequence turn-off. The freshly synthesised He from the H burning shell is steadily

deposited on to the He core, increasing its mass. This increases the rate of core con-

traction, increasing its temperature which causes further expansion of the stellar en-

velope, further decreasing Teff . At this point the star is said to be a SGB star. As

the star evolves along the SGB, further increases to the mass of the He core causes

more contraction and its temperature to rise. The H burning shell increases its energy

production rate.

The increasing outward pressure forces the stellar envelope to expand further, which

causes the effective temperature to reduce. A large convection zone develops near the

surface and descends through the stellar atmosphere. The star begins to ascend the

RGB as continued core contraction causes the H shell’s luminosity to increase. This

increase in luminosity and moderate decrease in Teff means that RGB stars ascend

near the so-called Hayashi limit (Hayashi, 1961), on tracks similar to the one seen in

Fig. 1.1 labelled RGB. These tracks are characteristic of RGB and asymptotic giant

branch (AGB) evolution along the H-R diagram. The zone to the right of the track is

forbidden as the conditions for hydrostatic equilibrium are no longer fulfilled; stars are

fully convective at the limit so there is no adequate energy transport mechanism that

can transport the luminosity out of the star at lower values of Teff . During this stage

of evolution the convective zone of its atmosphere becomes important to its chemical

enrichment. Because stars at the Hayashi limit would be fully convective the envelope
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of an RGB star is convectively unstable.

As the developing convective zone reaches down to layers of the star where nuclear

fusion has taken place, convection causes mixing of initially present isotopes1 with new

material synthesised via nuclear reactions. This can be detected at the stellar surface

when comparing two stars of equal mass and metallicity at different phases of evolution,

e.g. an RGB and main-sequence star. This mixing event is known as first dredge-up

and is discussed further in the next section.

As a star evolves, its rotation reduces. It is believed that this is due to magnetic

winds that remove mass from the star, reducing the star’s angular momentum (Washimi

& Shibata, 1993). Magnetic breaking has little to no effect in massive stars. This is

because such stars are short lived, whereas the breaking effect caused by magnetic fields

is very gradual. As such only older, less massive stars lose angular momentum via this

process. The exact physics behind this are beyond the scope of this work, however,

observations show that evolved low-mass giant stars show very little rotation (Gray,

1989).

First dredge-up

Dredge-up is an important chemical mixing event in stars. It involves the mixing of

material that has been synthesised or depleted by thermonuclear fusion into the outer

convection zone of stars. Dredge-up occurs at the end of a dominant nuclear fusion

event (e.g. when H and He core burning ceases) and the stellar envelope expands

and cools while the core contracts and heats up (Herwig, 2005). As mixing is poorly

modelled, the exact physics behind dredge-up events are still relatively unknown.

First dredge-up occurs in early-type2 RGB stars after H core burning ends (parts D

to E, Fig. 1.5). As the star evolves along the RGB, the stellar envelope is continuously

expanding whilst the He core is contracting and heating up. Standard theory states

that the convective envelope extends inwards and reaches the He core, where material

processed by the CNO-cycle and pp-chain are dredged-up through the convective zone

1Present during the star’s formation.
2Newly evolved RGB stars that are approaching the Hayashi limit on the H-R diagram are some-

times referred to as early-type RGB stars.
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Fig. 1.5: The evolution of a 5 M� star from the ZAMS to the thermal pulsing asymptotic giant
branch (TP-AGB). (a): The structure of the star as a function of time of units 10 Myr. It shows the
various burning regions (thick horizontal stripes), regions of variable chemical composition (dots), and
convection zones (circles). (b): The corresponding H-R diagram for the evolution of the star. Each
part (A to K) represents a particular part on the top panel (top axis). Image from Kippenhahn &
Weigert (1990).

to the stellar atmosphere. In Fig. 1.5(a), the convective envelope reaches maximum

depth at point E, but does not reach all the way down to the H-burnt core, and

so no first dredge-up occurs in this model. In particular 7Li and 3He abundances

increase whilst the 12C/13C ratio decreases (Charbonnel, 1995). However, observational

comparisons between SGB and RGB stars in globular clusters suggest that the 12C/13C

ratio continues to decrease after the completion of the first dredge-up event (Gilroy &

Brown, 1991). In addition, the standard model predicts that 3He abundances would

remain constant until ejection from the star at the end of its lifetime (Olive et al.,

1995), however, observations do not support this as 3He/H ratios in the ISM remain

much lower than are predicted (Rood et al., 1998).

Charbonnel (1995) suggests a non-standard model that corrects for the observed
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3He abundance in the ISM and accounts for the decreasing 12C/13C ratio in RGB stars

by introducing extra mixing on the RGB, the efficiency of which is dependent on the

composition of the H burning shell as well as the initial stellar mass. Boothroyd et al.

(1995) referred to this as cool bottom processing. Higher-mass stars (M > 1.8 M�),

that do not experience a He core flash (discussed in detail below), will not initiate cool

bottom processing as they evolve off the RGB before it can take place (Boothroyd &

Sackmann, 1999). As you can see, the exact cause and effect of this dredge-up event

is still in debate.

Helium core burning phase

The conditions at the point of ignition of the He core are dependent on initial mass

(Herwig, 2005). For low-mass stars, 0.5 M� < M < 1.8 M�
3, He core burning starts

violently with a He core flash. This is because in this mass range, the inert He core

of the RGB becomes electron-degenerate. As such, the temperature and pressure are

largely independent of one another. When the conditions become hot enough for He

burning through the triple-α process, the initial energy release is nearly explosive.

In contrast, the He cores of the more massive stars, M > 1.8 M�, are not electron

degenerate and there is no He core flash when temperatures are high enough for the

triple-α to occur.

Horizontal giant branch (HB) and clump stars are fuelled by He core and H shell

burning (parts E to G on Fig. 1.5). The difference between these stars has to do with

their mass and metallicity. Low-mass, metal-poor stars are found on the HB part of

the H-R diagram, otherwise stars evolving through this phase are found in a clump on

the H-R diagram. This phase of evolution is far shorter than the main-sequence as He

burning releases roughly a tenth of the energy that H burning does, and the luminosity

of such stars are much higher than when they were on the main-sequence (Prialnik,

2000).

The high temperature dependence of the triple-α process means that the core is

convective (Prialnik, 2000). In fact, He burning takes place at the very centre of the

3Remember that stars with M < 0.5 M� do not evolve through the giant branch.
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core, where the temperatures are hottest, and the convection in the core means that

He is continuously replenished, and newly synthesised C and O transported outwards.

After a relatively short time, the He core is depleted after converting He into C and

O. In fact this phase would be even shorter, except that H shell burning contributes

to the total energy output of the star, which slightly decreases the rate at which He is

needed to be burnt in order to maintain hydrostatic equilibrium.

The triple-α process

As temperatures reach ∼ 1× 108 K, He can be fused into C and O. This is a known as

the triple-α process. The various reactions that make up the triple-α process are listed

in Fig. 1.6.

4He (α) 8Be∗

8Be∗ (α, γ) 12C

And as 12C densities increase:

12C (α, γ) 16O

Fig. 1.6: The triple-α process.

This process is extremely sensitive to the time-scales for the reaction 8Be∗ (α, γ) 12C

as the lifetime of 8Be∗ is only 2.6 × 10−16 s. However, in 1952 Edwin Salpeter found

that the scattering time of an α particle at T ≥ 108 K is less than the Be lifetime.

This being true, the relative Be abundance at any one time is ∼ one in 109 particles

(Prialnik, 2000). The solution to this came shortly after when Fred Hoyle realised that

the probability of an 8Be∗(α) reaction would be increased if the C nucleus had a nuclear

energy level close to the 8Be∗ + α energies, which we now know it does. This is known

as a resonant reaction.

Second dredge-up

In the final stages of HB evolution, the star will have a He burning core surrounded

by unprocessed He, which will accumulate below the H burning shell. As He in the
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core is depleted, it will contract. This will cause temperatures to rise until He shell

burning is ignited around the CO core, which causes expansion of the He burning shell

and overlaying layers, temporarily switching off the H burning shell. Second dredge-up

occurs at this stage (part K, Fig. 1.5), when the convective envelope descends into

layers where material synthesised via the triple-α reaction is found.

In low-mass stars, the convective envelope is incapable of descending this far into

the star. Only stars with mass M & 4 M� are able to go through second dredge-up

(Boothroyd & Sackmann, 1999). The 4He and 14N4 abundances are enhanced relative

to H at the stellar surface, and small changes to the C and O isotopic ratios are found

(Boothroyd & Sackmann, 1999; Karakas, 2003).

A lot of work has been published on the second dredge-up in metal-poor populations

such as globular clusters (Lau et al., 2008; Pumo et al., 2008; Decressin et al., 2009,

and references therein). Models published by Decressin et al. (2009) predict that the

second dredge-up for a 5 M�, non-rotating star at metallicities Z = 0.001, 0.0005,

0.0001 and 0.000015 sees the sum of the CNO abundances (12C, 16O and 14N) remain

constant throughout dredge-up, whilst the abundance of 14N increases on the stellar

surface, which agrees well with Karakas (2003). In rotating models, with initial ZAMS

surface rotation assumed to be 300 km s−1 for the same mass and metallicities they

find that the chemical structure is modified compared to the non-rotating case. The

total sum of CNO abundances still remain constant and 14N is still enhanced whilst

12C and 16O decreases at the surface, however, the abundance gradients are smoothed

out, which allows for easier diffusion between layers in the star (see Decressin et al.,

2009, their Fig. 1 for further details). As metallicity decreases, remaining rotation of

the star (calculated from the ZAMS rotation) increases, increasing the mixing between

layers in the star.

4An important isotope for s-processing via the weak path, which is discussed in §1.3.1.
5[Fe/H]≈ −1.3, −1.6, −2.3 and −3.3 respectively, where [Fe/H]≈ logZ/Z�.
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Asymptotic giant branch stars

During second dredge-up the convection zone descends through the star reaching the

He burning shell. As well as dredging up He- and N-rich material, H is mixed with

deeper layers in the star. This allows the H burning shell to ignite. An AGB star is

fuelled by dual shell burning; the inert CO core is surrounded by a He burning shell,

which is surrounded by a dormant He rich shell, surrounded by a H burning shell. A

basic schematic of an AGB star is shown in Fig. 1.7. During the early asymptotic giant

branch (E-AGB) the major source of the energy comes from the He burning shell. At

this stage the H burning shell is mostly inactive.

Fig. 1.7: A basic schematic of the interior layers of a 5 M�, solar-metallicity AGB star designed to give
some understanding as to the scales of the various layers with the overall radius of the star. Image
from Carroll & Ostlie (2006).

The increasing luminosities brought about from He shell burning causes the AGB

star’s envelope to extend further and the star to evolve near the Hayashi limit on the

H-R diagram. The freshly synthesised He from the H burning shell falls to the He rich

layer, causing its density to increase and for it to become degenerate. The pressure

and heat in the He shell causes the He to ignite periodically in a violent He shell

flash. The effect of the flash pushes the H burning shell further out (in terms of its

radius coordinate relative to the core), which cools the shell and causes it to extinguish.
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The He shell will begin to contract again until the H shell is once again ignited. This

process acts periodically (∼ 104 yr, Karakas, 2003) and is known as the thermal pulsing

asymptotic giant branch (TP-AGB) phase, which is discussed below.

Low- to intermediate-mass stars that are on the AGB experience severe mass loss

through stellar winds. The theoretical understanding of AGB mass loss is still incom-

plete. An extensive review on current mass loss theory is presented in Willson (2000)

and more recent theoretical models are presented in Mattsson & Höfner (2011) and

Ventura et al. (2012). For the purposes of this short review, the mechanisms for mass

loss are not important. By means of these stellar wind mechanisms, coupled with high

luminosities and stellar pulsations brought upon by flash episodes, material that has

been through dredge-up can be ejected into space during this phase where it will enrich

the ISM.

Thermal pulsing and third dredge-up

Third dredge-up occurs during a star’s AGB phase over a period of instability where

the star experiences several thermal pulses. The star is gravitationally supported by

H and He shell burning where thermal instabilities in the He shell cause it to ignite

violently and flash roughly every 104 yr (Karakas, 2003).

A He flash increases the energy output of the He burning shell. This causes a

convection zone between the H and He burning shells in the He shell (see Fig. 1.5).

The convection zone in the envelope deepens with the He shell flashes. After the first

thermal pulse the AGB star is said to be a TP-AGB star. These flashes may cause

the convective regions in the AGB star to descend into the regions where He burning

has taken place, mixing freshly synthesised material with the stellar atmosphere. It

can cause the star to become C-rich (C/O ratios greater than 1) and is known as third

dredge-up. However, for intermediate-mass stars, M & 4 M� (Ventura & D’Antona,

2011), during the periods in between thermal pulsing, CNO-cycle burning at the base

of the convective envelope via hot bottom burning can convert the majority of 12C,

dredged-up by third dredge-up, into 14N, impeding the formation of a C-rich star

(Renzini & Voli, 1981)
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Third dredge-up is an important mixing event for the purposes of this thesis as it is

the mechanism by which the products of s-process nucleosynthesis are brought to the

surface. Details on the s-process site are discussed in detail in §1.3.1.

Post AGB and planetary nebulae

For more massive stars (M ≥ 10 M�) the fusion processes continue onto C, O and Si

burning. However, for low- to intermediate-mass stars fusion ceases after He and H

shell burning. As the degenerate CO core cools through neutrino losses, the outward

pressure it exerts will decrease. This means that the surrounding layers will begin to

contract. As mentioned above, AGB stars experience high mass loss rates6. As the

stellar wind begins to deplete the H envelope, the star will evolve toward the bluer side

of the H-R diagram (top of Fig. 1.1). The severe mass-loss and increase in luminosity

is typical of a star that has evolved to be a post-AGB (Kwok, 2000).

When the central star is hot enough (T ∼ 30 000 K) it will ionise the ejecta from

mass loss. As the gas from the detached envelope expands ever outward, ultraviolet

light emitted from the central star can be absorbed by the gas. The excited electrons

re-emit photons in the visible wavelength range, causing it to glow. This object is

known as a planetary nebular (PN). This period is relatively short lived as specific

conditions for nebula emission are only fulfilled over a short period of time. The gas

from the PN will dissipate, enriching the ISM. Eventually the chemically rich gas will

become part of a new collapsing gas cloud system where new, more metal-rich stars are

formed. The electron degenerate central star enters the white dwarf cooling sequence

and will remain structurally unchanged and cool down for the rest of time.

1.1.2 Massive stars

The evolution of a massive stars differs from low- to intermediate-mass stars on the

H-R diagram, as Fig. 1.8 shows. As will be discussed in the later parts of §1.2, SN

progenitors (M ≥ 10 M�) evolve from massive stars. Conti (1976) proposed a scheme,

6This is dependent on metallicity; high metallicity increases mass loss efficiency due to high opac-
ities in the atmosphere. Low metallicity stars retain more of their envelope as opacity driven winds
are less efficient.
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Fig. 1.8: A H-R diagram schematic for massive solar-metallicity stars with an initial rotation of
300 km s−1 (solid lines) and without rotation (dotted lines). Image from Meynet & Maeder (2003).

the so-called Conti Scenario, for massive star evolution that included the existence of

Wolf-Rayet (WR) stars discovered by C. Wolf and G. Rayet in 1876, which I shall

discuss shortly. In the Conti Scenario massive O-type stars evolve through different

phases of evolution, which are dependent on the star’s initial mass.

The Conti Scenario is outlined in Fig. 1.9. It must be stated that this is a purely

theoretical scenario, but it does illustrate diversity of massive star evolution if true.

However the mass limits shown would be a function of the star’s metallicity (Massey,

2003). The best known super-massive star in the Milky Way is η-Carinae. Mass deter-

minations of this star are variable, but current mass limits set this star between 80 and

120 M� (Davidson & Humphreys, 1997; Hillier et al., 2001), which makes it the most

massive star known in our galaxy. It is also an ideal example of a luminous blue variable

(LBV) star. Similarly, a well known red supergiant (RSG) star is Betelgeuse. These

stars are also very good examples of massive star mass-loss. Present estimates show

the current mass-loss rate of η-Carinae Ṁ & 10−4 M� yr−1 (Davidson & Humphreys,

1997), whilst Betelgeuse has a mass loss Ṁ ≈ 10−6 M� yr−1 (Mauron & Josselin, 2011).
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M > 85 M� : MS −→ LBV −→WN −→WC −→ SN

40 M� ≤M ≤ 85 M� : MS −→WN −→WC −→ SN

25 M� ≤M ≤ 40 M� : MS −→ RSG −→WN −→WC −→ SN

20 M� ≤M ≤ 25 M� : MS −→ RSG −→WN −→ SN

10 M� ≤M ≤ 20 M� : MS −→ RSG −→ BSG −→ SN

Fig. 1.9: The Conti Scenario for massive star evolution.

Massive stars on the main-sequence

The main-sequence phase of a massive star will consist of similar processes to those we

observe in low- to intermediate-mass stars; fusion of H to He via the CNO-cycles. The

effective temperatures of these stars are ∼ 30 000 − 50 000 K (Massey, 2003). During

their lifetime on the main-sequence, their effective temperatures will begin to decrease

whilst their bolometric7 luminosities remain relatively unchanged. This is because most

of the bolometric luminosity is radiated at wavelengths beyond the visible region of

the spectrum, e.g. ultraviolet. When the temperature decreases, there is a shift in

wavelength from which the majority of the luminosity is radiated, in accordance with

Wien’s law, meaning that more of the luminosity is radiated in the visible part of the

spectrum; the star will get brighter as it evolves. Therefore it is difficult to classify

these stars as, e.g. a zero-age 60 M� star has an almost identical spectral type as an

older 85 M� star (Massey, 2003).

During the main-sequence and subsequent evolutionary phases, their high lumi-

nosities and strong stellar winds have a large impact on the surrounding ISM. They

effectively drive the evolution of galaxies. In fact Brott et al. (2011a) say that one

can think of massive stars as cosmic engines. Whether they drive (Koo et al., 2008)

or disrupt (Massey, 1998) further star formation is still very much in debate. Issues

surrounding mixing and mass-loss massive star evolutionary models have long been a

problem (Chiosi & Maeder, 1986), and are still being perfected today (Brott et al.,

2011a,b).

7The total energy radiated by a star at all wavelengths.
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Red supergiant stars

Current theory suggests that stars, such as Betelgeuse, with M . 40 M� evolve off the

main-sequence through the RSG branch (Massey, 2003). Problems between observa-

tions and models are prominent for this transition as current evolution codes cannot

evolve a massive main-sequence star to the RSG branch because they cannot cool the

main-sequence atmospheres sufficiently to produce RSGs. It is believed that this has to

do with how mixing in the stellar atmosphere is dealt with (Maeder & Meynet, 1987).

Metallicity appears to have a large impact on RSG production. As the metallicity is

increased, it would appear that the length of time a star spends as a RSG decreases as

mass-loss rates increase with increasing metallicity (Massey, 2003).

Luminous blue variable stars

LBV stars (Conti, 1984) have extremely variable mass-loss rates that can be as high as

10−1 M� yr−1 (Massey, 2003), coupled with increases in visual magnitude (> 1−2 dex)

leading to large alterations in spectral type (Conti, 1997). These outbursts can happen

on time-scales of the order of 101 − 102 yr (Massey, 2003) making them difficult to

classify but when they are experiencing one of these events, they are amongst the

brightest resolved stellar objects in the Universe. The mechanism(s) behind these

periods of extreme variability is not yet understood as detection of these objects is

difficult due to long periods without change (relative to human lifetimes) in their

spectral classification (Davidson & Humphreys, 1997; Massey, 2003).

As stated, η-Carinae’s mass-loss is currently measured at Ṁ & 10−4 M� yr−1, how-

ever during the 1840’s there was a very large increase in its apparent magnitude and

mass-loss rate (Hillier et al., 2001). It is still unclear what the mechanisms that drove

this transformation were and evidence would suggest that this was not an isolated

event. Proper motion studies conducted by Walborn et al. (1978) seem to suggest that

another similar event occurred in the 15th century. If one chooses to accept the Conti

Scenario (Fig. 1.9), η-Carinae is in the early stages of massive star evolution as a LBV.
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Wolf-Rayet stars

Another type of star that experiences heavy mass-loss is a WR star, with mass-loss

rates Ṁ > 10−4 M�yr−1, which can be seen through their strong emission lines (Nugis

et al., 1998). They are known via chemical analysis of their atmospheres to have evolved

stellar surfaces. In the early stages of the WR phase the star’s spectrum will most likely

include strong N emission lines, which is in good agreement with the products of the

CNO-cycle, as N is overproduced relative to C and O in massive stars during CNO

cycling (Maeder, 1983). Such a star is known as a WN type WR star.

Strong winds will eventually blow away this N layer and its spectrum will change

to show almost no N but strong C lines with a little O. These are known as WC or WO

type WR stars. WO stars are very rare and depend upon the products of the triple-α

process. In general C will be more abundant than O (Maeder, 1983).

According to theory only the most massive stars, with metallicities approaching

solar or beyond, will achieve sufficient mass-loss to evolve through to the WC or WO

phase (see Fig. 1.9). WR stars are progenitors to Type Ib/c SNe, which have a similar

core collapse mechanism to the more common Type II SNe but H lines are absent.

The basic distinction between Type Ib and Type Ic SNe comes from the presence or

absence of strong He lines respectively. It is therefore quite clear that these stars would

have significant impact on the chemistry of the Galaxy. However, the existence of WR

stars would only emerge once the metallicity of the Galaxy was high enough. This is

discussed further in §1.2.

Further burning stages

Early burning phases of massive stars would include H burning and He burning via the

CNO-cycle, pp-chain and the triple-α processes, like those found in low- to intermediate-

mass stars. The high central temperatures in massive stars would mean that these pro-

cesses would have increased burning rates when compared to lower-mass stars, which

would lead to shorter time-scales on the main-sequence and early giant phases. How-

ever, for massive stars thermonuclear fusion will not cease with the termination of the
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triple-α process.

As temperatures rise to T > 6×108 K, C begins to fuse with itself. There are many

variations on the end product of C–C burning that are energetically allowable, unlike

the previous reactions discussed in §1.1.1.

Fig. 1.10 shows the various paths C–C burning can take. Experiments conducted

in the laboratory show the 12C(12C, p)23Na and 12C(12C, α)20Ne reactions have nearly

equal probability of occurring, whereas 12C (12C, γ) 24Mg and 12C (12C, 2α) 16O reac-

tions have a low probability of occurring. Therefore it can be expected that the prod-

ucts of the C burning process are dominated by 23Na, 20Ne, protons and α-particles

(Clayton, 1984). There is a significant network of secondary reactions that occur along-

side C burning. The protons and α-particles will quickly be captured by other isotopes

at these high temperatures as their Coulomb barriers are so low.

12C (12C, γ) 24Mg
12C (12C, n) 23Mg
12C (12C, p) 23Na
12C (12C, α) 20Ne
12C (12C, 2α) 16O

16O (16O, γ) 32S
16O (16O, p) 31p
16O (16O, n) 31S
16O (16O, α) 28Si
16O (16O, 2α) 24Mg

Fig. 1.10: The C–C and O–O burning paths.

At temperatures high enough for C burning the Coulomb barrier is still large enough

so that the 12C + 16O reaction is too slow to contribute significantly. Then, as the

star contracts and temperatures sufficiently rise for it to occur, C is all but depleted.

Therefore the next set of reactions to significantly affect stellar abundances are 16O

burning, which like C burning has several energetically allowable routes, see Fig. 1.10.

This channel of reactions has a slightly larger set of secondary reactions than C

burning. Also the isotopes involved can be heavier, as the temperature (T > 1×109 K)

helps overcome the Coulomb barrier. Also, like C burning there is a higher probability

route that O burning takes; the most abundant final isotope from the primary set of

reactions is 28Si.

At T > 3× 109 K, Si burning can take place to produce nuclei around the Fe-peak.
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Fig. 1.11: A schematic layout of a SNe progenitor, in this case a well evolved 25 M� star, showing the
different layers of nucleosynthesis events (not to scale). This is for illustration purposes only. Image
from Kippenhahn & Weigert (1990).

However, at these temperatures nuclides can be broken down into lighter species. This

occurrence, called photodisintegration, is similar to photoionisation of atoms but this

time the reaction is nuclear, not atomic. Photodisintegration of a species usually occurs

at temperatures roughly 106 times higher than its photoionisation since ionisation

energies are of order 8 eV whereas nuclear binding energies (per nucleon) are around

8 MeV. During the Si burning phase (which is extremely short-lived if it occurs at all)

nuclides are continuously being fused together and broken down. In fact one of the first

major disintegrations, which is initialised before O–O burning is 20Ne via the reaction

20Ne(γ, α)16O (Clayton, 1984).

Chief among the isotopes produced during Si burning is Fe. This is one of the

most stable of the elements as it has almost the highest nuclear binding energy per

nucleon. Fig. 1.11 shows how the various advanced burning stages could influence the

interior of a massive star (in this example M = 25 M�). It shows an almost “onion

skin” structure.
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After this short-lived phase, the core will collapse under its own gravity. This

generates a thermal runaway, triggered by electron capture and photodisintegration,

on dynamical time-scales of ∼ 1 ms (Prialnik, 2000). Details of SNe events can be found

at the end of §1.2. This is believed to be a critical time for heavy element production,

particularly for r-process nucleosynthesis, which I will discuss in §1.3.2. I now move on

to discuss how the first stars in the Universe formed, evolved and died.

1.2 The first stars

Moments after the big bang, t ≈ 2 s, protons and neutrons began to combine to form

d, He and trace amounts of Li. This was known as big bang nucleosynthesis (BBN).

The whole process lasted only a few minutes. After the Universe was roughly ten

minutes old, temperatures and densities required for nuclear fusion were too low and

nucleosynthesis stopped. Throughout, free neutrons, which are unstable (τn = 890 s),

decayed into protons via the reaction n (e−ν̄e) p (Wagoner et al., 1967).

After the Universe had cooled sufficiently (t ≈ 3×105 yr), protons began to combine

with electrons to form atoms. This was known as the epoch of recombination. Up

until this stage the Universe was opaque, as free electrons caused photons to scatter.

Recombination caused photons to decouple from matter and the Universe became

transparent for the first time. The first stars that formed in the Universe induced

photoionisation in the surrounding areas of gas, causing them to ionise. This was

known as the epoch of reionisation and occurred roughly 30 Myr after the big bang, or

at redshift, z ≈ 65 (Naoz et al., 2006).

Formation

The first stars are believed to have formed in dark matter halos from pristine gas, i.e.

gas composed of the remnants of BBN. These primordial, metal-free stars are known

as population III stars. Although never observed, population III stars are thought

to be super-massive, M > 100 M�, due to a top-heavy initial mass function (IMF),

brought upon by the lack of effective gas cloud cooling during star formation (Abel
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et al., 2002; O’Shea & Norman, 2007). In the current epoch of star formation, the

most effective gas cloud cooling is through interactions between high velocity particles

and metals, which would ionise the metals, decrease the particles’ velocities, and thus

cool down the gas. Energy escapes the system via line radiation when the ionised

gas de-excites. As pristine gas is free of metals, molecular hydrogen (H2), which is

less efficient at cooling than metals is the primary cooling mechanism. This means

that higher temperatures are required in order to excite the rotational and vibrational

energy states of H2 (Tegmark et al., 1997).

Nakamura & Umemura (2001) propose that the IMF could in fact be bimodal with

peaks about 1 M� and 100 M�. They state that the initial mass of the star would

depend on the density of the primordial gas cloud. For higher mass gas clouds, where

H2 cooling is more effective, the fragmentation mass is lowered to 1 M�, but their

models do predict that the majority of the mass fraction falls at 100 M�. Contrary

to this however, the latest 3D simulations of population III star formation show that

protostellar cores do not fracture when the gas becomes fully molecular into several,

less massive cores viz. several stars, but rather collapse to form one super-massive star

(Abel et al., 2002). Typically then only a single population III star would form in any

one dark matter halo.

Evolution

The lack of empirical evidence makes it difficult to predict the evolution of population

III stars; their evolution could differ from other stars studied in the Galaxy because

of their chemical composition. Magnetic fields would certainly be less significant to

population III evolution as field strengths would be minute in comparison to popula-

tion I (metal-rich) stars due to the lack of ionised metals, which are responsible for a

significant portion of a stellar magnetic field. Population III stars would certainly form

with a much smaller initial magnetic field (O’Shea & Norman, 2007).

Another large departure between metal-rich and metal-free evolution would be the

nuclear processes occurring in the core during the main-sequence. It is well understood

that the CNO-cycle acts as the dominant nuclear process in more massive stars on the
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main-sequence. However, metal-free stars would not initially have the necessary nuclei

for the CNO-cycle to occur. Rather, a population III star would have to rely on the p-p

chain for its energy generation. The p-p chain is less efficient compared to the CNO-

cycle, which means that extremely high temperatures must be reached in the stellar

core to sustain surface radiation losses (Marigo et al., 2001). It is therefore plausible

that C, N and O could form via the triple-α process, in the core of a metal-free star

during its main-sequence phase (Cassisi & Castellani, 1993), which would imply that

the p-p chain and triple-α processes could occur at the same time. This would mean

that during a star’s lifetime on the main-sequence a switch from the p-p chain to the

CNO-cycle as the primary energy source could occur, which could affect the stellar

structure (Marigo et al., 2001).

Theoretical simulations of metal-free star evolution seem to suggest their evolution

for a given mass would not differ much from the evolution of a metal-rich star of the

same mass. According to Marigo et al. (2001) population III stars with low- to inter-

mediate mass would have a main-sequence, RGB and AGB phase in their evolution,

and stars with high-mass would continue through C, N, O and Si burning, like a mas-

sive metal-rich star. However, unlike metal-rich populations, massive population III

stars would not develop high opacity-driven super-winds, which otherwise would blow

away large amounts of their atmospheres and cause severe mass loss. This means that

population III stars would not evolve through the WR phase of evolution like mas-

sive metal-rich stars (discussed in §1.1.2). Chemical enrichment of their atmospheres

through dredge-up phases also seem to occur in these models. Dredge-up is discussed

in §1.1.1 in the context of low- to intermediate-mass stellar evolution. However, models

by Lau et al. (2008) find that He core luminosities are too low during an AGB thermal

pulse for third dredge-up to occur in metal-free regimes in 5 M� and 7 M� stars.

Another possible difference between present epoch and population III evolution

could be due to the higher rotational speeds in low metallicity stars achieved by less

efficient mechanisms that would otherwise reduce the angular momentum in the system,

such as magnetic winds (discussed briefly in §1.1.2). Rotation has effects on both the

evolution of the star and chemical mixing processes that occur, and the SN event at
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the end of the star’s life (Meynet et al., 2006; Chiappini et al., 2006; Heger & Woosley,

2010)

Death

It is well studied and understood that massive stars are short lived. We can quantify

their lifetimes using equations found in Romano et al. (2005). The typical lifetimes of

8 M�, 140 M�, and 260 M� stars are ∼ 36.5, 0.2, and 0.07 Myr respectively.

At the end of a massive star’s life, if there has not been sufficient mass loss, the

star becomes highly unstable as all its thermonuclear fusion processes cease. When

this occurs it has long been understood that the star will explode as a SN (Baade

& Zwicky, 1934) depending on the size of the star (Heger et al., 2003). Run away

nuclear processes can lead to the quick production of heavy elements via the e-, p- and

r-processes. The r-process is discussed in detail in §1.3.2.

The e-process involves a series of (γ, α), (γ, n), (γ, p), (α, γ), (p, γ), (n, γ), (p, n)

reactions with elements close to the Fe-peak that will convert them from one element,

e.g. Fe, to another, such as V, Cr and Mn (Hoyle, 1946, 1954; Hainebach et al., 1974).

The p-process involves a series of proton-captures that lead to a small abundance of

heavy elements not synthesised via either of the two neutron-captures (Burbidge et al.,

1957; Glorius et al., 2011). For either of these two processes to occur conditions leading

to very high temperatures (T > 109 K) must be satisfied. Both processes are beyond

the scope of the work discussed in this thesis, but references supplied here give detailed

accounts to both of them.

The most common and most understood of the three types of SNe discussed here

is a core-collapse SN. This occurs in stars with a SN progenitor mass range 10 M� ≤

M ≤ 140 M� (Anderson & James, 2008) but is also reported to occur in stars with

masses down to 8 M� (Smartt, 2009). However, this mass range may also depend on

metallicity (Cassisi & Castellani, 1993). The top panel of Fig. 1.12 illustrates the mass

threshold of each core-collapse SN as a function of metallicity. As the thermonuclear

processes cease, the core undergoes rapid contraction. The outer layers of the star,

which are primary candidates as sites for the r-process (Wheeler et al., 1998; Kajino



1.2 The first stars 27

Fig. 1.12: Top: The mass/metallicity relationship for a given type of SN event. The two white regions
represent complete collapse of the star with no SN explosion. Bottom: SN remnants for a given initial
mass as a function of metallicity. Both figures are the product of evolution models for non-rotating
single stars with mass ranges 9−300 M�. Mass loss is also taken into account in the evolution models
used to generate the two figures, which are taken from Heger et al. (2003).
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et al., 2002), are explosively ejected into the ISM. In this type of SN explosion, a core

remnant is left behind.

The core-collapse SN can be split into three distinct categories; Type II, Type Ib,

and Type Ic. Type Ib/c SNe have a similar core collapse mechanism to Type II SNe

but their spectra are devoid of H lines, and are distinct from each other through the

presence or absence of strong He lines respectively.

In solar metallicity regimes Type Ib/c SNe cover the high end of the mass range

(M > 34 M�, Heger et al., 2003), removing the possibility of pair instability (PI) SN

or direct collapse (discussed below). This is not entirely surprising as Type Ib/c SN

progenitors experience high mass loss (Heger et al., 2003) and super-winds as they

evolve through the WR phase. WR stars and Type Ib/c SNe are briefly discussed in

§1.1.2. In metal-free and metal-poor stars, a Type II SN is expected for the lower mass

range of progenitors (M < 40 M�).

The bottom panel of Fig. 1.12 shows that for the progenitor mass range of 9−25 M�

in metal-free populations, a neutron star is produced8. As the core collapses, temper-

atures and pressures increase dramatically. The increase of pressure and temperature

create the necessary conditions for electron capture, p (e, ν̄e) n, on very short time-

scales. Neutrons, like electrons, are fermions, which are subject to the Pauli exclusion

principle. This leaves an extremely dense, neutron-degenerate remnant which is left

to cool for eternity. Between the masses of 25 − 40 M� (Fig. 1.12 bottom panel) a

black hole by fall back is produced. This occurs when the core collapses into a massive

neutron star and the gravity it produces causes some of the SN ejecta to fall back

in to the remnant, which increases its mass. The degenerate neutron pressure is no

longer able to balance the enormous gravitational force of the structure and the star

undergoes further collapse into a singularity, or black hole. Finally between the masses

of 40 − 140 M� the stellar core will directly collapse under its own gravity to a black

hole (Heger et al., 2003).

In extremely high-mass stars of mass range 140 M� < M < 260 M�, in low metallic-

8For high metallicity stars, Z ≥ Z�, with M > 34 M� the remnant is extremely metallicity
dependent as the bottom panel of Fig. 1.12 illustrates.
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ity regimes, PI SNe occur. Here, high temperatures and the onset of the pair-production

(e−/e+) instability, brought on by γ(γ, e+)e− reduces thermal pressure inside the star

and produces a thermonuclear runaway. This reverses the gravitational collapse and

ejects the entire star into the ISM with a highly energetic explosion (E ≤ 1053 erg),

which leaves no remnant behind (Kasen et al., 2011). The SN event can be long lasting;

expectations from simulations indicate a PI SN flash could last up to 300 days. As

metal-free stars would experience very little mass loss throughout their lifetime as the

lack of metals would drive down opacities, PI SNe may have been fairly common in the

early Universe and may have contributed a high fraction to the chemical enrichment in

metal-free/poor regimes. In the present epoch of star formation, models such as those

presented in Fig. 1.12 would seem to suggest that high metal content would prevent

stars exploding as PI SN, however, evidence presented in Gal-Yam et al. (2009) suggest

that SN2007bi may in fact have been a PI SN.

Stars with M > 260 M� in metal-poor regimes are thought to go through total

collapse (Fig. 1.12, bottom panel). This means that the star would collapse with no

ejecta into a black hole with no SN (Fryer et al., 2001). Therefore the super-massive

star would not enrich the ISM with newly synthesised material. However, if the IMF

at early times is as described in Nakamura & Umemura (2001) then these stars would

still be quite rare.

After the SN event, for SN projector masses M < 260 M�, chemically rich material

will be ejected into the ISM, polluting the metal-free environment. New stars will begin

to form from gas enriched by the SNe remnants of the population III stars. The higher

metal content will help in gas cloud cooling and less massive, metal-poor stars will

emerge. With the understanding of massive star lifetimes and the violent nature of SN

events, it would be plausible to believe that the population III epoch would have been

very short lived, relative to the lifetimes of low-mass stars we observe in the metal-rich

environment of the present Universe.

With the onset of SNe events of population III stars, the heavy elements that are

synthesised via the r-process path should begin to pollute the ISM, but those produced

via the s-process should not. This is because the s-process, which occurs in earlier
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stages of massive star evolution, requires Fe seed nuclei to be present. As metal-free

stars do not have any initial metal content, there will be no Fe available for the s-process

to take place, as Fe is only produced in the much later stages of nuclear burning in

massive stars. I shall now move on and discuss the neutron-capture processes in detail.

I clarify the distinction between the two processes and the locations of where they

occur.

1.3 The neutron-capture processes

In §1.1 we considered the various thermonuclear fusion processes that occur in a star as

it evolves along the H-R diagram. After a star’s death, the products of those reactions

will be expelled from the star and enrich the ISM. However the products of the processes

discussed so far only account for the first 26 known elements of the periodic table. The

majority of the heavier isotopes are synthesised via a series of neutron-captures by seed

nuclei, typically assumed to be 56Fe.

Proton-captures contribute a very small fraction to the heavy element abundances.

Like thermonuclear fusion, proton-captures have to overcome the Coulomb barrier. For

lighter isotopes in high temperature environments, such as SNe sites, this isn’t par-

ticularly difficult. However, when overcoming the Coulomb barrier of heavy elements

proton captures become rare. As such, proton-captures do not contribute much to the

heavy element abundance. As this thesis is not centred around proton-captures, they

will not be discussed any further.

There are two types of neutron-capture, the slow (s-) process and the rapid (r-)

process. The s-process neutron-capture rate is much slower than the β-decay rate of

the unstable isotope, whereas neutron-captures for the r-process occur on time-scales

much shorter than β-decay rates. This is due to the neutron fluxes in the environments

where the r- and s-processes occur, which will be discussed in §1.3.1 & §1.3.2.

For the s-process, which takes place during evolutionary states prior to the forma-

tion of Fe, the Fe seed nuclei must be present during the star’s formation for it to occur.

The Fe content remains constant from formation up until the s-process initialises. The
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r-process, which is believed to occur in SNe, does not require any Fe in the progenitor

star, as massive stars can fuse up to the Fe-peak. Even during the SNe event, freshly

synthesised Fe is still being produced, see further burning stages in §1.1.2. Also we

know that massive stars are short lived relative to lower mass stars. This would im-

ply that the r-process would occur shortly after the formation of the first stars, which

means that in metal-free and metal-poor environments the majority of the elements

beyond the Fe-peak must have formed via the r-process (Truran, 1981).

1.3.1 The s-process

The s-process is defined as the path taken by neutron-capture that runs along the

valley of β stability (Burbidge et al., 1957). This is represented by the thick black line

on Fig. 1.13. In other words the flux of neutrons is low, which allows for β-decay of an

unstable nucleus, e.g. (A + 1, Z), where A and Z are the baryon number and atomic

number respectively, to the point of stability, (A+ 1, Z + 1), before another neutron is

captured. As such the s-process path is fixed to follow the path of stability.

Fig. 1.13: A section of the chart of nuclides showing the stable nuclides and path that the s-process
takes (thick black line) along the valley of β stability from Fe to Zr. The dashed diagonal lines show
the β-decay of extremely unstable isotopes, which were populated by the r-process. The image also
shows the r- and s-process-only isotopes which are created by shielding. Image adapted from Kappeler
et al. (1989).
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The main s-process

The third dredge-up plays a crucial role in main s-process nucleosynthesis. As discussed

in §1.1.1, a star that is on the TP-AGB and is experiencing third dredge-up events is

extremely likely to be s-processing as well.

Mixing of C rich material with overlying H and He during third dredge-up events

allows for the thermonuclear reaction 12C(p, γ)13N(β+)13C(α, n)16O, which releases free

neutrons in low- to intermediate-mass stars (1 M� ≤ M ≤ 10 M�, Busso et al., 1999).

This reaction produces the neutron flux for the s-process to occur and is responsible

for the main s-process.

Fig. 1.14: A schematic of chemical mixing during and after a third dredge-up event with respect to
the mass coordinate over time. Image from Busso et al. (1999).

Fig. 1.14 shows the third dredge-up events induced by thermal pulses, and how they

mix the various layers of the AGB star. When the He shell pulses, the outer layers

of the star expand outward. This cools these layers and switches the H burning shell

off, which allows for the convective zones in the stellar envelope and the He shell to

mix materials (shown as triangular shapes in Fig. 1.14). Some unknown event allows

protons to mix down into regions of the star containing C to produce 13C, which is

represented by the grey regions in Fig. 1.14. Regions A (the H burning shell) and B

(the He shell between the H and He burning shells) in the schematic mix with the
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convective envelope which becomes polluted with freshly synthesised material as well

as s-process material (Busso et al., 1999).

The main s-process can be observed by measurable Tc abundances in the star’s

atmosphere. Tc isotopes, which are synthesised by the s-process, are unstable. The

98Tc and 99Tc isotopes have the largest β-decay half-lives, which are very close to the

TP-AGB lifetime of a 1 M� star, ∼ 1 − 1.5 Myr (Iben, 1983). Studies such as Smith

& Lambert (1989) measured abundances of Tc I in TP-AGB stars as a tracer of active

s-process sites.

The weak s-process

The weak s-process is responsible for most of the s-process isotopes between Fe and Sr

found in solar type stars. It does not have the ability to produce the heavier elements

due to the low neutron fluences that are involved in the process (Boothroyd & Sack-

mann, 1988; Blöcker, 1995). The neutrons are supplied via the reaction 22Ne (α, n) 25Mg,

which requires higher temperatures than can be managed in low- to intermediate-mass

TP-AGB stars as such more massive stars are required, M > 8 M� (Pignatari et al.,

2010), for the reaction to take place.

The s-process in this case takes place at the end of convective He core burning

(Prantzos et al., 1990) and again at the end of convective C shell burning (Raiteri

et al., 1991). It will also most likely occur during C core burning, however material

synthesised via the s-process path during this time will not contribute significantly

to the weak s-process abundance; it is likely any s-process material will collapse with

the core during the subsequent SN event before any substantial mixing takes place

(Pignatari et al., 2010).

As previously stated (§1.1.1), 14N abundances are important for weak s-processing.

The 22Ne abundance originates from the initial 14N abundance, which is converted

to 22Ne via the reaction 14N(α, γ)18F(βνe)
18O(α, γ)22Ne during He burning. Finally,

s-processing takes place once the He core reaches temperatures beyond 2.5 × 108 K.

However, the supply of 22Ne is not depleted at He core exhaustion and s-processing

can continue during C burning once sufficient quantities of α-particles are released via
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the reaction 12C(12C, α)20Ne (Prantzos et al., 1990).

1.3.2 The r-process

For the r-process, neutron-capture occurs on time-scales much faster than subsequent

β-decays. While the s-process path is limited to the path of stability (see Fig. 1.13), the

r-process path is limited by the neutron drip-line, where the neutron binding energy

becomes effectively 0 eV, meaning that neutrons can no longer be added. Unlike the

s-process, the r-process path can take many different neutron-capture paths, which

is determined by neutron density, nn, and temperature (Pagel, 1997). The r-process

path is not expected to follow the neutron drip-line however, rather the drip-line is an

absolute limit on the number of neutrons, N , that a given species, Z, can contain. The

drip-line is far from well understood empirically as it has only been completed as far as

Z = 9 (29F), and according to Woods & Davids (1997) this is not expected to progress

too much further in the foreseeable future.

Fig. 1.15: The table of nuclides that demonstrates a range of r-process paths (shaded area) for a
temperature range, 0.8×109 ≤ T (K) ≤ 1.2×109 and neutron density range, 1022 ≤ nn (cm−3) ≤ 1026.
It can be seen that at the magic neutron numbers (28, 50, 126) the neutron-capture rates are halted
temporarily until sufficient β-decay has brought the isotope closer to the path of stability, where
neutron-capture cross-sections are larger. Image from Seeger et al. (1965).

Fig. 1.15 shows another example of the table of nuclides. Unlike Fig. 1.13, however,

it shows a possible route that the r-process could take along the table of nuclides for a
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given neutron density and temperature, which was calculated by Seeger et al. (1965). It

can be seen at the magic neutron numbers (N = 50, 82, 126 etc.) the neutron-capture

rate slows down to allow β-decay of extremely unstable isotopes. This is not because

the neutron flux is reduced but rather that the isotope cross section is much smaller;

isotopes at the magic neutron numbers are statistically unlikely to capture another

neutron until the neutron binding energy is large enough, which increases the closer to

the valley of stability the unstable isotopes are.

Whereas the s-process can synthesise isotopes up to Bi, with the majority of s-

process synthesis ending at Pb, the nature of the r-process path allows heavier, less

stable nuclei to form, such as all of the actinides, e.g. Th, U and Pu.

Unlike the s-process, the r-process site is still not established observationally. It is

well understood however that the r-process requires environments where nuclear physics

allows the production of many many free neutrons and extremely unstable nuclei. Over

the years there have been several suggestions for the r-process site, not that there

must only be one. These include the “neutrino wind” scenario, where neutrino heated

ejecta from high mass SNe allow for r-processing (Meyer et al., 1992; Woosley et al.,

1994); neutron star mergers (Freiburghaus et al., 1999; Goriely et al., 2005); a “prompt

explosion” of a lower mass (8 M� ≤ M ≤ 11 M�) SN (Sumiyoshi et al., 2001; Wanajo

et al., 2003); and “collapsars” or failed SN explosions, where the core collapse of a star

fails to produce a SN explosion and instead collapses to become a low-mass (2− 3 M�)

black hole (MacFadyen & Woosley, 1999; Pruet et al., 2004).

All of these scenarios have yet to fully theoretically explain the r-process (Wanajo

& Ishimaru, 2006), although the most agreed upon site for the r-process is a SN event.

The collapsar and neutron star merger events would be extremely rare relative even to

SN explosions.

I shall now move on to Chapter 2 and discuss how I make use of the hyperfine

splitting patterns in Ba absorption lines to detect r- and s-process fractions in metal-

poor stars. This will include details about spectrum synthesis using a 1-dimensional

(1D) local thermodynamic equilibrium (LTE) radiative transfer.
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Chapter 2: Modelling a stellar

spectrum in 1-dimension

The delay in the development of modern stellar atmosphere models impeded the pursuit

of obtaining a clear picture of the chemical history of the Galaxy through the study of

elemental abundances in stars. This was mainly because of the limitations in computer

power, up until approximately ten years ago. Before this, the most basic atmospheres

and radiative transfer codes were slow in modelling a star’s spectrum for analysis,

which would have to be repeated several times for different parameter sets because,

as we shall see over the course of this thesis, the use of just one synthetic spectrum

cannot tell you a great deal about a stellar atmosphere. Over the last ten years or so

there has been an increase in the number of abundance publications that utilise faster,

more powerful computers, that have been responsible for quicker spectrum analysis,

through abilities such as parallel processing synthesis and subsequent χ2 fitting. They

have also been extremely important in the development of newer, more precise stellar

atmospheres and radiative transfer codes.

The implementation of codes, such as MULTI (Carlsson, 1986), that use non-local

thermodynamic equilibrium (NLTE) radiation fields to compute the radiative trans-

fer calculations of stellar atmospheres, which we briefly explore in §4.4, is now fairly

commonplace. Such a treatment of an atmosphere is important when modelling very

hot or low-gravity stars, such as massive main-sequence stars, hot white dwarfs and

giant stars. However, to employ NLTE for a simple abundance analysis of a single

element in a star, requires the construction of a detailed model atom. This means that

a list of (ideally) all transitions to and from each energy level is required, which is time

consuming to construct (see Thévenin & Idiart, 1999, their Fig. 1 for a graphical repre-

sentation of the number of transitions mapped for Fe I and Fe II) and which suffer from

incomplete and/or inaccurate data. More complex atoms, such as Ba, are currently

difficult to calculate due to the added complication of isotope blends and hyperfine

structure (hfs) effects.
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Other codes that are able to compute time-dependent radiative transfer calcula-

tions for a star in 3-dimensions, and include effects caused by phenomena such as

stellar granulation and convection, referred to as 3D hydrodynamics, are currently be-

ing developed and tested (Stein & Nordlund, 1998; Steffen, 2007; Freytag et al., 2010).

These codes are extremely complex, so the completion of the radiative transfer calcula-

tions is currently extremely time consuming. Nevertheless, I explore this new approach

in Chapter 5.

Eventually, the development and coalescence of these totally separate treatments

should lead to the implementation of time-dependent, fully 3-dimensional, non-local

thermodynamic equilibrium atmospheres to solve the radiative transfer equations,

which will replace more basic codes currently in use. There have already been in-

vestigations that employ both these treatments to the line synthesis (Asplund et al.,

2003; Kromer et al., 2009), however, it would seem that there is still much to be learnt

from simpler 1-dimensional (1D) local thermodynamic equilibrium (LTE) codes. They

have the advantage of providing a more standard result that can be replicated easily by

other investigators, and can be computed much faster (discussed in Chapter 5) allowing

for finer sampling of atmospheric parameter space. In this work, I use 1D codes (LTE

and NLTE) in Chapters 3 and 4, and utilise a 3D code in Chapter 5. In the present

chapter, I introduce the radiative transfer theory on which these codes, especially the

1D code, are based.

2.1 Basic assumptions

For my early studies I used a radiative transfer code that assumes LTE and employs

model stellar atmospheres that infer a 1D geometry. As the majority of my stars are

not giants subject to extreme NLTE effects and large amounts of convection, it seemed

like a sensible approximation to start with. When working in 1D LTE, the following six

basic assumptions are taken into consideration when constructing model atmospheres

(Rutten, 2003):

1. Only one spatial coordinate (1D) is considered when solving the equations of
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radiative transfer.

2. The atmosphere is in a state of local thermodynamic equilibrium; free electrons

obey the Maxwell-Boltzmann distribution1.

3. There is no noticeable collapse or expansion of the star and no significant mass-

loss that would affect gravity, implying changes to the density of the star at

a given optical depth in the atmosphere; the star is in a state of hydrostatic

equilibrium.

4. The effect of stellar granulation, starspots and other such structures that would

affect continuum opacities are negligible and as such are ignored.

5. Magnetic fields are ignored in the photosphere as it is assumed that the majority

of magnetic activity occurs in the chromosphere, which is also ignored.

6. Convective mixing of the elements in a star’s model atmosphere that affect local

temperatures is approximated by a parameter called the mixing-length.

The 1D LTE analysis discussed in Chapters 3 and 4 was completed using the radia-

tive transfer spectrum synthesis code ATLAS (Cottrell & Norris, 1978) with KURUCZ06

model atmospheres2, which are an improved grid of atmospheres, based upon the Ku-

rucz (1979) model atmosphere grids.

In the first section of this Chapter, I discuss the various steps required to create a

1D LTE model atmosphere. I then move on to discuss the basics of radiative transfer,

which ATLAS uses to produce a synthetic spectrum. Next I briefly discuss the Fe lines,

which were used to determine a star’s macroturbulent broadening and then I discuss

the synthesis of the Ba lines in detail. Finally I discuss details of the acquisition of the

observed stellar spectra used in Chapters 3 to 5.

1The Maxwell-Boltzmann distribution describes the speed of a particle within a gas of a given
temperature.

2downloadable at kurucz.harvard.edu/grids.html.

http://kurucz.harvard.edu/grids.html
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2.2 Modelling a stellar atmosphere in 1-dimension

A 1D LTE model atmosphere is characterised by three basic input parameters; its

effective temperature (Teff)3, metallicity (parametrised by [Fe/H]), and surface gravity

(gs), which is usually quoted as a logarithm (log g). The Kurucz atmosphere is simply a

list of physical quantities, based on these three parameters, which are calculated using

the six assumptions tabulated above for 35 layers of the photosphere4. An example of

a KURUCZ06 model atmosphere is given in Appendix A.1. The six quantities used to

describe the atmosphere are:

RHOX The line-of-sight integral of the density within each layer multiplied by the

thickness of the layer or the integral of ρdz measured in g cm−2, i.e. a column

mass.

P The total pressure (PT) within each layer, measured in dyne cm−2.

T The temperature within each layer, measured in K.

XNE The number density of free electrons (Ne) within each layer, measured in cm−3.

ABROSS The Rosseland mean opacity (κROSS) for a given layer.

PRAD The radiation pressure (Prad) for a given layer, measured in dyne cm−2.

RHO The total density, measured in g cm−3.

2.2.1 Basic input physics

The 35 layers in the atmosphere are evaluated over a mean optical depth (τ̄ν) range

0.00 ≤ τ̄ν ≤ 10.00 for all quantities tabulated, thus τ̄ν is not tabulated itself. Each

layer is almost equidistant in d log τ̄ν space. The precise manner in which the Kurucz

atmospheres are constructed are beyond the scope of work presented here. For concise

3The effective temperature of a star is a relationship that describes the temperature which a black
body would need to have if it were to radiate the same amount of energy per cm2 s as the star;
F = σT 4

eff .
4The KURUCZ06 atmospheres are capable of producing the same relationships for 72 layers, however,

ATLAS requires that the layers be evaluated for only 35 layers.
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instructions on how this is done see Kurucz (1970). However, in the next four parts of

this section I briefly outline some of the assumptions involved in producing parts of a

Kurucz atmosphere.

Temperature relationships

Empirical T (τν) relationships are based upon solar centre to limb observations. Fig. 2.1

illustrates the effect of limb darkening, which restricts us to observing higher, cooler

and less bright layers in the photosphere for a given optical depth (τν); τν = τ 0
ν cos θ,

where τν = τ 0
ν at the solar centre and θ is the angle of the line-of-slight relative to the

normal as shown in Fig. 2.1.

Fig. 2.1: The effects of limb darkening on observations of the photosphere (in white). The grey region
represents layers beneath the photosphere.

As the intensity (Iν) is dependent on τν and, as a consequence of 1D LTE, the

source function (Sν) has the relationship

dIν
dτν

= Sν − Iν (2.1)

with Iν . This is the general, differential equation of radiative transfer. Through manip-

ulation of Eq. (2.1) that accounts for how Sν varies with θ, and mapping the relative

intensity (Iν/I
0
ν ) for different frequencies across the centre-to-limb in the Sun, the op-

tical depth dependence of Sν can be calculated. For a more detailed review of how this

is achieved, I refer the reader to Gray (2008). Sν is defined as the ratio of the emission
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(jν) to absorption (κν) at a given optical depth

Sν =
jν
κν
. (2.2)

If one assumes LTE, Sν can be expressed by the Planck function (Sν = Bν(T )), which

describes the behaviour of a black body

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
, (2.3)

then the Sν depth dependence can be solved for T (Gray, 2008).

Opacity relationships

The opacity of a photosphere is highly dependent on the wavelength. For example,

observing the solar photosphere at 1.6µm, allows us to see furthest into the Sun (Gray,

2008).

The procedure for calculating κν is rather complex and the details are not needed

here, however, I refer the reader to Kurucz (1970) for a full description on how the Ku-

rucz atmospheres establish and calculate the various components that determine this.

One must consider all sources of absorption (briefly discussed in §2.3.1) and calculate

their dependence on wavelength, temperature and chemical structure. From these de-

terminations κν will be equal to the sum of the constituents for a given wavelength.

However, to tabulate the opacity at each wavelength in every model atmosphere pro-

duced would be an extremely large undertaking. As such the Kurucz atmospheres

tabulate the Rosseland mean opacity (κROSS), which is a flux weighted opacity evalu-

ated over all wavelengths

1

κROSS

=

∫∞
0

(1/κν) (dBν/dT ) dν∫∞
0

(dBν/dT ) dν
, (2.4)

whereBν is the Planck black body function and is defined in Eq. (2.3) and
∫∞

0
(dBν/dT ) dν

is evaluated as 4σT 3/π (Kurucz, 1970). This can be useful as it makes re-evaluating

the temperature scale based upon a new Teff value easier to resolve as it is assumed
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that at large optical depths

T (τROSS)new =
T new

eff

T old
eff

T (τROSS)old, (2.5)

where τROSS in the Kurucz atmospheres has values between 10−5 and 10 distributed

over 35 layers. However, Bν = Sν at large values of τν . Therefore this relationship only

holds at large optical depths.

Fig. 2.2: Left : The temperature scale as a function of the Rosseland mean optical depth (τROSS) taken
as a logarithm for HD 140283’s model atmosphere (Teff/log g/[Fe/H] = 5750/3.7/− 2.5). The dashed
lines indicate where T = Teff at τROSS = 2

3 . Right : The corresponding temperature scale as a function
of geometrical depth (z). The dashed lines again indicate where T = Teff at τROSS = 2

3 . It is shown
to occur at z ≈ 2900 km from the edge of the star.

Fig. 2.2 shows T as a function of both τROSS and geometrical depth (z) for HD 140283,

a metal-poor subgiant star with Kurucz atmosphere parameters Teff/log g/[Fe/H] =

5750/3.7/ − 2.5. The atmosphere file used to create these plots is available in Ap-

pendix A.1. From Fig. 2.2 we can see that for the given atmosphere parameters, its

geometrical thickness is 2500 km (in the range 10−4 ≤ τROSS ≤ 1) and at z ≈ 2900 km

T (τROSS) = Teff (τROSS = 2
3
). By comparison, the Sun’s photosphere reaches T (τROSS) =

Teff ≈ 700 km (Gray, 2008). This is because the geometrical depth of a star at a given

optical depth depends upon the opacity and density at that depth

dτν = κνρ dz. (2.6)
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where gs and ρ are the surface gravity and density. Therefore because the Sun has a

higher surface gravity (log g = 4.4) than HD 140283 (log g = 3.7), and hence a higher

density, so that T −→ Teff at a smaller value of z. In addition altering the metallicity

of the star will affect the number of free electrons through ionisation. This means that

the pressure resulting will be affected further affecting the opacity. Therefore once

the pressure for a given temperature distribution is solved, the Kurucz models then

determine the opacities at this time (Kurucz, 1970). The pressure determinations are

discussed below.

Pressure relationships

We have established from the basic assumptions that the star can be treated as though

it is in a state of hydrostatic equilibrium; the forces of gravity and all sources of

outward pressure (gas, radiation, electron) are balanced. (Note that this assumption

is dropped in the 3D models we will meet in Chapter 5, which are allowed to respond

hydrodynamically.) The equation of hydrostatic equilibrium can be evaluated as

dP = ρgs dz. (2.7)

The optical depth (τν) at a given geometrical depth is given by Eq. (2.6). Substituting

this into Eq. (2.7) we find

dP

dτν
=
gs

κν
. (2.8)

The majority of the total pressure (PT) in Eq. (2.8) comes from the gas pressure Pg

as a result of solving the equation (Gray, 2008; Böhm-Vitense, 1989). This is illustrated

by Fig. 2.3 as it is difficult to differentiate the PT from Pg. To solve Eq. (2.8) for the

Kurucz optical depth range, the corresponding opacities must be known. The pressure

from all other sources must also be considered.

The Saha equation calculates the ratio of the atomic species at any ionisation (Ni)

to the number at the next ionisation (Ni+1), which is temperature dependent. By

extension the number of free electrons (Ne) will vary according to the ratio Ni+1/Ni;
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Fig. 2.3: Each source of pressure in HD 140283 as a function of the optical depth. The total pressure
is taken as the sum of the three constituent pressures. The gas pressure has the largest contribution
to the total pressure in the star; it is difficult to distinguish it from the total pressure.

a small ratio would imply fewer free electrons than a high ratio. These ratios are

also sensitive to the chemical structure of the star. Fewer metals with low ionisation

energies would result in fewer free electrons, particularly in cool stars where H is not

ionised. The Kurucz models calculate Ne at each layer of the atmosphere. The electron

pressure for a given layer is then Pe = NekT , where k is the Boltzmann constant.

Electromagnetic radiation, like particles of matter, has momentum determined by

its energy divided by its speed (the speed of light). The pressure (Prad) exerted by these

photons are computed and tabulated in the Kurucz atmosphere. This is related to the

intensity of the radiation field Iν and is temperature dependent. For hot stars Prad

becomes quite important, however, for my sample consisting of relatively cool stars it

is less important than the gas and electron pressures.

Another source of pressure in real stars is that related to the magnetic field. The

effect that magnetic fields have on pressure is not important outside of star spots.

However, for 1D LTE atmospheres magnetic fields are ignored (assumption 5). The

total pressure from all three pressure terms is tabulated for every layer in the Kurucz
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model atmosphere.

Abundance determinations

The Kurucz atmosphere contains a list of elemental abundances adopted from the

Anders & Grevesse (1989) solar abundance observations. An elemental abundance is

often quoted as

A(X) = log10

(
N(X)

N(H)

)
+ 12. (2.9)

However, Kurucz, like Anders & Grevesse (1989), tabulates log10(N(X)/N(total)),

which in effect ignores the addition of 12 and has an offset of 0.03 dex. Using the

scaling factor included in the atmosphere, which scales the list of solar abundances to

the metallicity of the atmosphere, one can determine the abundance of a particular

element in a star. For example, the scaling factors for an [Fe/H] = −2.0 and −3.0

atmosphere would be 10−2 and 10−3 times the solar abundance, respectively, where

[X/Y] = log10

(
N(X)

N(Y)

)
∗
− log10

(
N(X)

N(Y)

)
�
. (2.10)

As well as altering the elemental solar abundances used during the synthesis of

a spectrum, the change in the metallicity will affect the temperature and density re-

lationships with opacity. The star gets hotter (increasing its effective temperature,

Teff ≈ T (τν = 2/3)) and more compact when the metallicity is decreased.

Convective mixing

Convective mixing is strictly a time-dependent phenomena; it requires a certain amount

of time for a convection cell to rise or sink. However, time-independent approximations

through iterative calculations that compensate for the rapid and nonlinear change in

the opacity with temperature, which produces the convective instability, are used in

most 1D LTE atmospheres, including the Kurucz atmospheres used in the present work.

The convective mixing of the elements is dealt with using the local mixing-length theory

(Böhm-Vitense, 1958; Kurucz, 1970) (Assumption 6).
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Incorporating this theory into 1D models has three positive characteristics: firstly

has a certain amount of plausibility which improves the accuracy of the model, it is

a relatively simple concept, and it is relatively easy to program (Lester et al., 1982).

Also, with today’s computing power, this routine needs an unnoticeable amount of

runtime to compute. In the mixing-length theory, convectively unstable levels in a star

are pictured as rising hot elements and cooler elements that sink, this is known as the

Schwarzschild criterion, which can be written as

(
d log T

d logP

)
average

> 1− 1

γ
+

d log µ

d logP
, (2.11)

where P is the total pressure, µ is the mean molecular weight, T is the temperature

and γ is the ratio of specific heats. Through an iterative process, the averaged temper-

ature is re-evaluated from the changing temperatures that are expected in convectively

unstable gas and the convective flux contribution to the total flux is determined from

this.

2.3 Synthesis of a stellar spectrum with ATLAS

In this section I discuss the procedures and basic input physics that are involved when

synthesising a stellar spectrum using the radiative transfer code, ATLAS. The code

requires several input parameters: a model atmosphere, a list of spectral features such

as absorption line information to calculate line opacities, and stellar macroturbulent,

microturbulent and instrumental broadening. My work required the analysis of Fe lines

and Ba lines. The details of these line lists are discussed in §2.4 and §2.5.

2.3.1 Continuous and line opacity

The Kurucz model atmospheres considers sources of continuous opacity i.e. interac-

tions between photons and absorbers, based on the star’s chemical structure which

shape the continuum of its spectrum. The flux weighted opacity is then tabulated for

each of the 35 layers calculated, although this is not required until the synthesis of
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a spectrum. Working in 1D LTE allows us to assume that the radiation field can be

modelled as a black body, Eq. (2.3). The various sources of opacity then remove flux

through absorption as the photons travel through the photosphere. There are three

types of absorption mechanisms considered in a 1D LTE atmosphere, two of which are

responsible for the continuous opacity and the other for the line opacity. All three are

discussed below.

Continuous opacity

The continuous opacity in a 1D LTE atmosphere depends on processes such as bound-

free and free-free transitions. However, when working in a crowded spectral region,

overlapping spectral lines can behave much like the continuum opacity, but for this

to occur, the user must tabulate these lines separately. The majority of the continu-

ous opacity is due to H in the atmosphere as it is considerably more abundant than

any other element. Neutral H is responsible for a series of continuous absorptions

such as Lyman, Balmer and Paschen absorption. These are examples of bound-free

absorptions.

Another state of H that contributes to the continuous opacity is H−. This ion is

extremely dependent on the amount of metals in the atmosphere, which ionise easily

(relative to H or He) and their freed electrons are subsequently captured by H. It

requires very little energy to ionise this, photons with λ < 16 421 Å ionise H− (Gray,

2008). This source of opacity only affects cooler stars, like the Sun, which implies

that for most of my star sample, this would be a significant contribution to the overall

continuous opacity. However, because the stars I work with are extremely metal-poor,

the abundances of the electron donors, metals, is small relative to solar, reducing the

overall contribution of the H− ion to the continuum opacity, relative to solar metallicity.

As He is the second most abundant element, one would naively expect that this

would have a large contribution to the overall opacity in a star. Certainly in extremely

hot stars, such as O-type stars, this is true, but because of the amounts of energy

required for excitation and ionisation of He, it has little affect in the Sun or my star

sample in the infra red or visible wavelengths where the majority of the flux in these
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stars is found.

Free electrons contribute to the continuous opacity at the same rate over all wave-

lengths and is an example of a free-free interaction. This is because electron-photon

interaction (known as Thompson scattering) is wavelength independent. Like H−, the

amount that electron scatter contributes to the overall continuous opacity depends on

the amount of electron donors. In metal-rich O- and B-type stars, this becomes very

important as metals, H and, if temperatures are hot enough, He will donate electrons

to the atmosphere, increasing the probability of scattering and hence opacity. For

my metal-poor star sample, however, this source of opacity will be less significant but

nevertheless must still be considered.

Metals in significant quantities will also contribute to continuous opacity through

bound-free transitions. Like electron scattering, this becomes more significant in metal-

rich regimes but must still be taken into consideration when synthesising a spectrum

of a metal-poor star, particularly in the UV where photon energies are large enough to

ionise significant quantities of metals (Bell et al., 2001). Kurucz calculates the opacities

for C I, Mg I, Al I and Si I, which is not a complete opacity source list, but it is assumed

that these are responsible for the majority of the opacity caused by metals (Kurucz,

1970).

Line opacity

So far I have discussed various sources of opacity that contribute to the overall profile

of the continuum. ATLAS will calculate this based on the temperatures and densities

tabulated in the KURUCZ06 atmosphere. In addition ATLAS will calculate line opacities

of any spectral feature the user wishes to include. This requires the input of a line list

that contains several key pieces of information on every spectral feature synthesised.

Details of the line lists are discussed in §2.4. Bound-bound transitions are responsible

for absorption in this case.

Unlike continuous opacity, the line opacity affects a specific wavelength in a spec-

trum. This is determined by the specific photon energy a spectral feature absorbs. The

line opacities for a given atomic species also depend on the continuous opacity at this
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wavelength. For example, at UV wavelengths the ionisation of metals, which contribute

to the continuous opacity, remove absorbers that would otherwise contribute to line

opacities thus removing absorption lines from the spectrum. Spectral lines are affected

by several physical processes that broaden them. These processes are now discussed.

2.3.2 Broadening of spectral lines

To properly model the observed broadening of an absorption line (∆λobs) several phys-

ical parameters must be resolved. The observed broadening of an absorption line

represents the convolution of several parameters so that

∆λobs = ∆λnatural ∗∆λpressure ∗∆λDoppler ∗∆λinst, (2.12)

where ∆λnatural, ∆λpressure, ∆λDoppler and ∆λinst represent the FWHM of the natural,

pressure, Doppler and instrumental broadening respectively. The ∗ symbol represents

a convolution. Each term is individually discussed below. ATLAS convolves these

parameters during or just after the spectrum synthesis. The Doppler term includes

several parameters

∆λDoppler = ∆λthermal ∗∆λξ ∗∆λΓ, (2.13)

where ∆λthermal, ∆λξ and ∆λΓ are the FWHM of the thermal, microturbulent and

macroturbulent broadening respectively. If all these terms are represented by a Gaus-

sian, which they usually are in 1D LTE, it is acceptable to calculate ∆λDoppler by

adding the separate terms in quadrature, i.e. z2 = x2 + y2, where xyz are numbers

representing the profile’s FWHM . I often describe these parameters in terms of their

velocity-space FWHM (i.e. vobs, vDoppler, etc.) throughout the present work, which

can be calculated by using ∆λ/λ = v/c, where c is the speed of light and v is the

velocity-space FWHM . I now briefly discuss each broadening component in turn.
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2.3.3 Natural broadening

A parameter that is calculated by ATLAS during the synthesis of a spectrum is the

natural broadening. It is calculated for all spectral features included in the synthesis.

This is caused by the spontaneous de-excitation of electrons in excited states, which

have typical lifetimes of ∼ 10−8 s. The limited lifetime of the higher energy levels

implies an uncertainty in the energy of any transition from them according to the

Heisenberg uncertainty principle

∆E∆t ≥ ~
2
. (2.14)

As a result of the uncertainty, spectral lines broaden without any other external influ-

ence, e.g. pressure exerted by other particles.

2.3.4 Pressure broadening

The collisional effect of perturbing particles with the absorbing species in the atmo-

sphere results in further broadening of the spectral feature. We call this pressure

broadening. For metals such as Fe and Ba in the cool stars analysed in the present

work, the strongest pressure effect is often treated as coming from the van der Waals

interaction. In ATLAS this is calculated by the Unsöld approximation

C6 = 3× 10−31

[
1

(I − χ− χλ)2 −
1

(I − χ)2

]
, (2.15)

where χ, χλ and I represents the excitation potential, the energy of the photon in the

line and the ionisation potential respectively, and all are measured in units of eV. The

energy of the photon, χλ = hν = 12398./λ, with λ in Ångstroms (taken from Gray,

2008). The ionisation potential gives the energy required to ionise the atom or ion

from its ground state, e.g. Fe I to Fe II requires 7.902 eV. Lists of the energies required

to ionise several ionised stages of an atomic species can be found for reference in books

like Gray (2008), his Appendix D. For a more complete listing see Allen (1976).

The broadening constant, C6 is used in the following approximation to calculate
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the broadening parameter γ6 (Steffen et al., 2010)

γ6 = 8.08C
2/5
6 v

3/5
rel NH, (2.16)

where vrel represents the relative velocity between the absorber and the perturber. For

perturbing particles smaller than the absorber (i.e. H relative to Fe), which is mostly

the case, v2
rel = 8kT/πmH = 2.105 × 108 T (cm s−1)2 so that γ6 can be expressed as

(Steffen et al., 2010)

log
γ6

NH

= 3.404 +
2

5
logC6 +

3

10
log T. (2.17)

We shall see in §2.4 that the Unsöld/van der Waals approximation constantly under-

estimates γ6, and I show how ATLAS compensates for this.

2.3.5 Doppler broadening

Thermal, rotational, macroscopic and microscopic motions of matter in the stellar

photosphere result in further broadening of spectral lines

∆λ

λ
=
vDoppler

c
, (2.18)

where vDoppler represents the velocity of the absorber due to the Doppler effect and ∆λ

is the change in the wavelength λ of the photons that the absorber will absorb due to

the velocity of the absorber vDoppler.

While ATLAS treats the thermal and microscopic (microturbulent) component dur-

ing the synthesis, the rotational and macroscopic components are ignored as it assumes

the star has a static, time-independent atmosphere. In reality we know this isn’t the

case. Using the Sun as an example, we know from observations that it rotates and that

there are convective cells that move through the photosphere. Also, when we compare

its spectrum to 1D LTE model spectra we see an excess in line broadening, which is

not due to the effects discussed above or the thermal Doppler component discussed

below.
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The effect of the microscopic motions of matter to the broadening of spectral lines

is not as large as those caused by macroscopic motions but are important to synthesise.

Though they are treated separately during the synthesis, it is common to model both

the macroturbulent and microturbulent profiles as a Gaussian. In this section I discuss

how I (or for thermal broadening, ATLAS) take into account each of the Doppler effects

when modelling a stellar spectrum, beginning with the thermal component.

Thermal broadening

All absorbers in the stellar atmosphere will have some component of thermal broad-

ening. The thermal broadening redistributes the opacity of an absorption line over a

wavelength range ∆λ. The redistribution of the line opacity has a Gaussian distribution

which is calculated as

αthermal =
π1/2e2fλ2

mAc∆λD

e−(∆λ/∆λD)2

, (2.19)

where e is the charge of an electron, mA is the mass of the absorber, f is the oscillator

strength of the absorber and ∆λD is the Doppler shift of the most probable velocity cal-

culated as
√

2kT/mA, also known as standard deviation of the wavelength distribution

(Gray, 2008, his Eq. 11.42). The standard deviation (σ) of the Gaussian distribution

in Eq. (2.19) is calculated as

∆λD = 4.301× 10−7λ

√
T

A
, (2.20)

where A is the atomic weight in atomic mass units and T is the local temperature

of the gas around the absorber. Therefore ∆λD = σ. The FWHM of a Gaussian

distribution is given as FWHM = 2σ ln 2. The velocity component of the FWHM is

calculated by Eq. (2.18). Therefore Eq. (2.20) can be rewritten in velocity-space as

vthermal = 1.788× 10−1

√
T

A
, (2.21)

in units of km s−1.
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In my star sample, this parameter is small relative to other Doppler effects discussed

below, vthermal ∼ 1.0−2.0 km s−1. ATLAS calculates the thermal broadening component

for each atomic species during the synthesis using these assumptions and equations.

Microturbulent broadening

We must consider the effect small scale motions of particles (i.e. motions of particles on

scales smaller than the photon mean free path) have on the absorber. We call this the

microturbulence (ξ). Traditionally, we model ξ as a Gaussian profile. This broadening

value is usually small relative to the macroturbulent broadening.

Fig. 2.4: Curve of growth computed using ATLAS for the synthetic Fe I 4282 Å line at ξ = 0.00, 0.50,
1.00, 1.50 and 2.00 km s−1 for the HD 140283 model atmosphere (Teff/log g/[Fe/H] = 5750/3.7/−2.5).
The macroturbulence is set to 0.0 km s−1 but would have no effect on the structure of this plot. There
are three distinct regions to the curve of growth. The linear part, where W ∝ A, shows how weak lines
behave. Here there is no saturation so that one can model the broadening of these lines through their
Doppler motions without pressure effects dominating. The next part of the curve of growth shows
how lines react under core saturation where W ∝ lnA. Here the core of the line begins to saturate.
Increasing ξ increases the equivalent width at which this occurs. The final part of the curve of growth,
where strong lines reside, shows the relationship between W and abundance change again. At this
stage W ∝

√
A, as τν in the wings becomes large relative to κν (Gray, 2008).

Like the macroturbulence, ξ is another parameter that cannot be properly modelled

by synthesis codes so is calculated separately from it. A synthetic curve of growth, like
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Fig. 2.4 for ξ = 0.0 km s−1, underestimates the point at which saturation of the line

core occurs. The inclusion of ξ > 0 in the synthesis shifts the point at which saturation

occurs to higher equivalent widths (W ), which is a measurement of line strength

W =

∫ ∞
0

Fc − Fλ
Fc

dλ, (2.22)

where Fc and Fλ are the fluxes at the continuum and at the line core respectively.

Re-evaluating the synthesis to include ξ values that fit the observed spectral lines with

consistent abundances allows one to constrain this parameter.

Macroturbulent broadening

If we observe how matter in the photosphere of the Sun behaves, we notice it moves

in convection cells that rise to the surface and fall back into the deeper layers of the

atmosphere. We can also see that the Sun rotates. A subroutine of ATLAS, called

ATLAS VELBROADEN, calculates three types of symmetric profile; a Gaussian, a radial-

tangential (ζRT) and a v sin i profile. The macroturbulence of the star is modelled by

either a Gaussian or ζRT profile, while the rotation is modelled using a v sin i profile.

By convolving any of these profiles with the synthetic spectrum we can mimic and

therefore measure this excess broadening of spectral features caused by the macroscopic

turbulence and the rotation of the star. Fig. 2.5 demonstrates how the line profile of

an absorption line is affected by each type of broadening.

Each convection cell in the Sun (or a star) has the effect of Doppler shifting photons

that particles emit or absorb. Studying the Sun tells us that there are many convec-

tion cells with different velocities. Therefore when we take a spectrum of a star, we

know that the light collected would have come from or been absorbed by many similar

convective cells of varying Doppler shifted velocities (Gray, 2008).

When modelling the velocity distribution of the Doppler shifted convective cells it

is common to treat its behaviour as Gaussian. A simple Gaussian profile of user input

FWHM is convolved with the synthetic spectrum, thereby broadening the profile of

each absorption line in the spectrum. Grids of varying Gaussian broadening are then
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Fig. 2.5: The effect that each type of broadening has when convolved with the profile of an ab-
sorption line (Fe I 4282 Å). The profiles were synthesised using the HD 140283 model atmosphere
(Teff/log g/[Fe/H] = 5750/3.7/ − 2.5). All profiles shown here include thermal, natural and pressure
profiles as well as the excess macroturbulence. The velocities of all three profiles were set to 8.0 km s−1

and there was no microturbulence included.

compared to observed data to measure the macroturbulence.

However, it has been established for some time through solar observations that

the velocity distributions of these convective cells are not distributed as a perfect

Gaussian (Gray, 2008) and that spectral features are in fact asymmetric. In the past,

however, quality of a solar spectrum was vastly superior to any stellar spectrum so

asymmetric behaviours visible in a solar spectrum were obscured in stellar data. With

more powerful telescopes and improvements in instrumentation, the quality of stellar

data has improved enough so that asymmetries in stellar absorption lines caused by

asymmetric velocity fields in the convection cells are now observable (Gallagher et al.,

2010). This means that synthetic fits to stellar data worsen as 1D LTE codes are

limited to calculating symmetric profiles.

I show later (Chapters 3 and 4) that a radial-tangential (ζRT) profile simulates

line shapes better than a Gaussian (Gallagher et al., 2010, 2012). The profile is still

symmetric so still not able to fully replicate the effects of true 3D convection, but unlike

a simple Gaussian the ζRT profile considers the Doppler broadening of absorbing and
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emitting photons within convective cells separately in two directions; the radial or line-

of-sight broadening and the direction tangential to this. A schematic diagram of the

radial-tangential consideration can be found in Fig. 2.6 and the effect this parameter

has on the absorption profile is shown in Fig. 2.5.

Fig. 2.6: The overall effect of the two velocity components in an ζRT broadening profile on the
photosphere. Photons that are absorbed or emitted in these velocity cells are subject to broadening
(Gray, 2008).

As is illustrated, the two components simulate the turbulent motions of the gas

within a convective cell, which rises and falls through the photosphere, as it emits and

absorbs light. From Gray (2008) the integrals that define these two components are

evaluated as

∆λR =
1

π1/2ζR

∫ π
2

0

e(−∆λ/ζR cos θ)2

sin θ dθ (2.23)

∆λT =
1

π1/2ζT

∫ π
2

0

e(−∆λ/ζR sin θ)2

cos θ dθ (2.24)

where ζR and ζT are the radial and tangential velocity components respectively. The

derivations of these components is beyond the scope of the work presented here. Usu-

ally, and in the present work, it is assumed that ζR = ζT = ζRT, however, varying the

ζR and ζT components could be considered when utilising ζRT in future works.
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Rotational broadening

The rotation of a star Doppler shifts the light it emits; the light emitted from the

star’s edge with a negative velocity component will be blue shifted relative to the light

emitted from the positive velocity component, which is red shifted. This is modelled

by v sin i where v is the equatorial rotation speed of the star and i represents the

inclination of the rotation axis to the line-of-sight. Fig. 2.5 shows how v sin i affects an

absorption line profile.

The rotational component in metal-poor stars is usually negligible as they have usu-

ally spun down through the mechanisms discussed in §1.1.1. This is nicely illustrated

in Chapter 3 where I determine HD 140283’s maximum rotational value and again in

Chapter 5 where I determine v sin i for several Fe lines using a 3D LTE modelling

technique.

2.3.6 Instrumental broadening

As a direct result of the finite slit width and image characteristics of spectrographs, an

additional broadening mechanism must be accounted for when synthesising a spectrum:

the instrumental broadening. The mathematics that explain image quality goes beyond

the scope of the work presented here. Suffice it to say that the spectral resolution of

the spectrograph is quantified by measuring ThAr emission lines exposed before or

after the stellar spectrum. Measuring the FWHM of the ThAr lines can tell you two

things: the resolution of the spectrograph’s configuration

R ≡ λ

∆λ
, (2.25)

where ∆λ is the FWHM of the ThAr emission lines, and the instrumental broadening

contribution in velocity-space found by using Eq. (2.18).

In general, the instrumental profile is modelled using a Gaussian profile (Aoki et al.,

2004). Similarly if the macroscopic Doppler broadening is modelled as a Gaussian,

rather than modelling both these profiles separately and convolving them post synthe-

sis, I simply add vinst (in quadrature) to the velocity-space Doppler FWHM contribu-
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tion vDoppler, which I call vconv.

2.3.7 Chemical abundances

Changing the abundance parameters of the model atmosphere affects the number of

absorbers in the atmosphere. An increase in absorbers (an increase in abundance)

would increase line strength as photons have a higher probability of being absorbed

(Fig. 2.4). This also has an effect on line profile. Fig. 2.7 shows how increasing the

abundance affects the strength of the line and how it behaves under core saturation.

Fig. 2.7: The effect of changing A(Fe) on HD 140283’s Fe I 4282 Å absorption line’s equivalent width
with A(Fe) = 4.10, 4.50, 5.10 and 6.30. As saturation occurs the wings of the line become significantly
broadened.

As the abundances in the Kurucz model atmospheres are scaled to solar, it is easy

to convert them to the standard abundance scale, defined in Eq. (2.9)

A(X)∗ = A(X)Kurucz + [Fe/H] + [X/Fe], (2.26)

where A(X)∗ is the abundance as defined by Eq. (2.9), A(X)Kurucz is the Kurucz solar

abundance scale (from Anders & Grevesse, 1989), [Fe/H] is the model atmosphere
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metallicity, and [X/Fe] is the abundance scale set by the model atmosphere metallicity.

2.3.8 Running ATLAS

To run ATLAS, I wrote two tc-shell scripts so that grids of synthetic spectra could be

produced relatively easily for either Fe or Ba lines. The script includes the option to

run ATLAS for several different values of microturbulence, abundance and isotope ratio

(for Ba only). The script then calls ATLAS VELBROADEN once ATLAS has computed the

intrinsic spectrum to compute and convolve macroturbulent or rotational broadening

to it. An example of this script, which I used for synthesising grids of Fe lines, can be

found in Appendix A.2.

The scripts also allowed me to set the wavelength spacing (∆λ) and the wavelength

ranges of the spectra. Given that my observed data had resolutions of∼ 90 000−95 000,

which equates to 〈∆λ〉 = 0.02 Å averaged over the wavelength ranges of my spectra, it

seemed satisfactory to run my synthetic grids with ∆λ set at 0.01 Å.

As I stated in the opening of this Chapter, faster, more powerful computers have

meant that spectrum synthesis construction is incredibly fast. It takes roughly five

seconds to synthesise one spectrum over a wavelength range 4100 ≤ λ (Å) ≤ 6900 with

a wavelength spacing ∆λ = 0.01 Å (the wavelength sampling size and range used in

the analysis of HD 140283). Therefore completing a typical grid of 680 spectra with

various abundances and macroturbulences, used for the analysis in Chapter 3 (the

specific details on the abundance and macrotrubulence are found there), takes roughly

one hour of computation.

2.4 The Fe line data

For ATLAS to synthesise absorption lines, a list of lines must be input along with

the atmosphere. This list must include several physical parameters, characteristic to

each line to synthesised. They are the central wavelength (λc), the atomic number

(Z), the atomic weight, the excitation potential (χ), log gf and the van der Waals γ6

enhancement factor (Eγ). An example of the formatting of this file is shown in Fig. 2.8.
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As shown, Z is not represented by an integer number, but rather by a real number,

which represents the ionised state of the line, e.g Fe I and Fe II are represented by 26.00

and 26.01 respectively.

Fig. 2.8: An example of the Fe line list input into ATLAS. From left to right the columns represent λc,
Z, atomic weight, χ, gf and Eγ .

The excitation potential (χ) represents the energy of the lower-level transition, and

in the present work is expressed in eV. For example the excitation potential for an

n = 2 to n = 4 transition would be the energy at n = 2, where n represents the energy

level, with n = 1 as the ground state level (χ = 0 eV).

The input parameter gf represents the product of the statistical weight (g) of the

lower-level transition and the oscillator strength (f), or rather gf represents the prob-

ability of a transition. ATLAS requires its input in this manner, although it is more

usual to see gf values tabulated as a logarithm (log gf). For hydrogen or hydrogenic

ions5, g can be calculated by g = 2n2. However, g is calculated empirically for more

complex atomic or ionic systems. The parameter f represents the quantum mechan-

ical correction to the harmonic-oscillator line strength calculated using the classical

approach and, like g, is also typically measured under laboratory conditions.

The parameter Eγ is not a mandatory parameter for ATLAS and can be set to

1.0. It represents an enhancement factor usually included when using the Unsöld

approximation for C6, Eq. (2.15), to calculate γ6, Eq. (2.17). In §2.3.4 I stated that the

Unsöld approximation for the van der Waals pressure broadening (γ6,vdW) constantly

underestimates γ6. Therefore Eγ is used to re-evaluate this term to a more realistic

value. I set Eγ = 2.2 throughout the present work, unless stated otherwise (Ryan,

1998).

The Fe line data comes from several sources; the IRON PROJECT (which consists of

several papers written over the last 20 years), Kurucz & Peytremann (1975), Blackwell

5Hydrogenic ions are atoms with only one electron, e.g. He II, Li III, etc.

http://cdsweb.u-strasbg.fr/topbase/TheIP.html


66 Modelling a stellar spectrum in 1-dimension

et al. (1979), Blackwell et al. (1980), Blackwell et al. (1982), Fuhr et al. (1988), Bard

et al. (1991), O’Brian et al. (1991), Bard & Kock (1994) and Nave et al. (1994).

2.5 The Ba lines

To accurately explain the heavy element chemical history in a star through interpreta-

tion of its observed spectrum, one must study the relative contributions of the s- and

r-process for several atomic species for comparison to current nuclear theory. In the

present work I have studied Ba in great detail, and Eu to a lesser degree (§3.6), rather

than a series of heavy elements. This is for two reasons, which I now discuss.

Currently, analysis of the Ba isotopes requires the most precise stellar spectra with

the highest levels of R and S/N even though, as we shall see over the rest of this chapter,

Ba has a large differences in the isotope configurations between the s- and r-process

limits, relative to other heavy element isotope configurations. However, Roederer et al.

(2008) carried out an isotope analysis on Eu, Sm and Nd with precarious results.

The relative contributions by the s- and r-processes to isotopes in the solar system

varies for different species. For example, Eu has two stable isotopes: 151Eu has relative

s- and r-process contributions 6.5% and 93.5% respectively and 153Eu has relative s-

and r-process contributions 5.1% and 94.9% respectively (Arlandini et al., 1999). To

determine the relative contributions of this species, Roederer et al. (2008) used the

relationship f151, where:

f151 =
N(151Eu)

N(Eu)
. (2.27)

According to isotope information presented in Arlandini et al. (1999), f151 = 0.54

for an s-process-only isotope configuration and f151 = 0.47 for an r-process one. This

means that an extremely sensitive analysis would be required to determine the precise

s- and r-process contributions to the Eu line, which is beyond the capabilities of all 1D

LTE codes due to the assumptions used to calculate them (§2.1).

In summary, new instrumentation is constantly improving and the data obtainable
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via various techniques designed to improve upon how systematic errors associated with

their reduction are treated (e.g. Butler et al., 1996) are also increasing the level of

sensitivity. As such, individual isotopes in absorption lines are partially resolvable. The

trade off however, is that real astrophysical effects (e.g. 3D convection etc.) become

more apparent in the data (Gallagher et al., 2010). Modelling these effects with newer,

more powerful synthetic codes is a relatively new concept and as such the codes are still

in the development phase. Therefore there has been little to no analysis of isotopes in

this manner using such codes. Below we see that the isotope structure and configuration

of Ba currently make it the best element to work with for heavy element isotope studies.

2.5.1 Isotopic data

The relative s- and r-process contributions to nuclides used to determine the isotopic

abundances of Ba, were calculated in Arlandini et al. (1999) for nuclides ranging from

63Cu to 209Bi. They used the hydrostatic LTE code FRANEC (Straniero et al., 1997;

Gallino et al., 1998) to model two AGB stars with masses 1.5 M� and 3 M�, at half

solar metallicity (Z = 1
2

Z� = 0.01). They assumed all the s-process yields to be

the result of synthesis through the main s-process only. They say it is possible to

model the weak s-process with the code, however the reaction rate of 22Ne(α, n)25Mg

has large uncertainties associated with it (Käppeler et al., 1994), which would have

enhanced uncertainties in their results, so it was excluded. As such, the release of

neutrons is determined by the rate of the 13C(α, n)16O reaction, which is also rather

uncertain at kT = 8 keV (T ≈ 108 K; He burning temperatures) as it is calculated

using experimental data at higher energies (Denker et al., 1995). They state that no

third dredge-up was found for lower mass (M < 1.5 M�) stars.

The code requires the input of a free parameter, the artificial “13C pocket”, as the

precise physics of how 12C and H are mixed before the 12C(p, γ)13N(β+, νe)
13C reaction

takes place, during H burning shell reignition, is still unknown. The 13C pocket is

located at the top of the convective He shell and below the H burning shell. Future

generation hydrodynamic codes should be able to simulate the mixing processes in this
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region of the star via time-dependent simulations, which would eliminate the need for

the artificial 13C pocket (Busso et al., 1999). The study presented by Herwig et al.

(2006), who invested He-shell flash convection using multi-dimensional simulations,

suggest that mixing occurs when convective motions cross the established convective

boundaries, which is caused by high-velocity convection pockets bridging the two re-

gions. The subsequent 13C(p, γ)14N reaction on the CN-cycle which is faster than the

13C(α, n)16O reaction, and would prevent s-processing if H is plentiful, cannot con-

sume large amounts of 13C if the number of H nuclei available per 12C nucleus is small

(Gallino et al., 1998). The size of the 13C pocket thus determines the neutron fluence

in the model (Arlandini et al., 1999). The 13C pocket is heated to ∼ 8 keV (Straniero

et al., 1995) after subsequent thermal pulses, brought on by He shell instabilities. The

13C(α, n)16O reaction takes place between thermal pulses, releasing free neutrons un-

der radiative rather than convective conditions (Straniero et al., 1995). This means

that the s-processing is extremely efficient in these zones; most of the free neutrons are

consumed during s-process events (Arlandini et al., 1999).

The neutron-capture cross sections used for their stellar models were taken from a

variety of sources, all of which are discussed in Arlandini et al. (1999). They find a

satisfactory reproduction of the solar distribution of the s-process isotopes in the range

88 < A < 208 (where A here represents the baryon number). Although not stated,

one would assume this to be because the lighter elements calculated, 63 < A < 87, are

primarily synthesised via the weak s-process (Pignatari et al., 2010), which Arlandini

et al. (1999) do not model. This is seen through large discrepancies that exist between

solar-system measurements of isotope abundances (Anders & Grevesse, 1989) and the

results produced by the Arlandini et al. (1999) stellar models.

Ba has five stable isotopes that can be synthesised via the two neutron-capture pro-

cesses, all of which can be synthesised via the s-process. For 134,136Ba, synthesis via the

r-process path is blocked by the stable isotopes 134,136Xe respectively. Therefore these

two isotopes are s-process-only isotopes. The remaining three isotopes, 135,137,138Ba,

can be synthesised by both the s- and r-process. Table 2.1 presents details on the

relative contributions of the s- and r-processes to the isotope abundances from the
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Arlandini et al. (1999) calculations.

I use the ratio fodd as a surrogate measure for the s- and r-process contributions,

where

fodd =
[N(135Ba) +N(137Ba)]

N(Ba)
. (2.28)

Limits on the s- and r-process values of fodd can be set using the theoretical s-process

and the r-process isotope abundances. Using the relationship in Eq. (2.28) with results

presented in rows (1)− (5) in Table 2.1 for an s-process or r-process-only isotope mix,

we find fodd,s = 0.11 ± 0.01 and fodd,r = 0.46 ± 0.06 respectively. The r-process limit

is expected to have a larger uncertainty associated with it, as Nr is taken to be the

residual of Ns relative to solar (Nr = N� −Ns).

Table 2.1: Isotopic abundances of Ba for the s- and r-process when normalised to 150Sm (Arlandini
et al., 1999), 134Ba and 136Ba. Nr is calculated as the residual of Nmain

s relative to N�. Errors on the
isotope abundances presented in Arlandini et al. (1999) are given in rows (1)− (5).

Isotope N� Nmain
s Nr contribution by contribution by

the s-process the r-process
normalised to 150Sm

(1) 134 0.109 0.107± 0.008 · · · 98.2% 0.0%
(2) 135 0.296 0.078± 0.006 0.219± 0.019 26.4% 74.0%
(3) 136 0.353 0.354± 0.025 · · · 100.0% 0.0%
(4) 137 0.504 0.330± 0.024 0.174± 0.040 65.5% 34.5%
(5) 138 3.220 2.760± 0.179 0.459± 0.270 85.7% 14.2%

normalised to 134Ba
(6) 134 0.109 0.109 · · · 100.0% 0.0%
(7) 135 0.296 0.079 0.217 26.7% 73.3%
(8) 136 0.353 0.361 · · · 102.3% 0.0%
(9) 137 0.504 0.336 0.168 66.7% 33.3%
(10) 138 3.220 2.810 0.408 87.3% 12.7%

normalised to 136Ba
(11) 134 0.109 0.107 · · · 98.2% 0.0%
(12) 135 0.296 0.077 0.219 26.0% 74.0%
(13) 136 0.353 0.353 · · · 100.0% 0.0%
(14) 137 0.504 0.329 0.175 65.3% 34.7%
(15) 138 3.220 2.750 0.468 85.4% 14.5%

The isotope abundances presented in Arlandini et al. (1999) are normalised with re-

spect to s-process-only isotope 150Sm. Therefore discrepancies can occur in the relative

isotopic abundances for other isotopes. This can be seen for 134Ba, a main s-process-
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only isotope, where the total contribution by the main s-process is reported as 98.2%,

rather than 100%. To avoid unnecessary errors that could occur when propagating this

normalisation to the Ba isotope abundances, we renormalised them to the Ba isotopes

for two cases, 134Ba and 136Ba, both of which are s-process-only isotopes meaning the

total measured solar abundance for them should originate from s-process nucleosyn-

thesis only. This was used primarily as a test to check the rigidity of the limits on

fodd set by the s- and r-process-only isotopic abundances used during my analysis.

When the isotopes were renormalised to 134Ba, rows (6) − (10), Table 2.1, fodd,s re-

mained unchanged at 0.11, however the r-process limit to fodd was increased such that

fodd,r = 0.49. When the abundances were renormalised to 136Ba, rows (11) − (15),

Table 2.1, no change was found to either fodd,s or fodd,r.

As little to no difference was found when renormalising the Ba isotopes, it seemed

logical to use the values calculated in (Arlandini et al., 1999) to construct the line lists

used for the work conducted in Chapters 3 & 4.

2.5.2 Hyperfine splitting

Fig. 2.9 shows various energy levels for several transitions of Ba II. The Ba II 4554 and

4934 Å resonance lines were used to determine fodd in the present work. Other higher

excitation lines were considered but subsequently rejected from any analysis as the

hyperfine splitting in these lines is too small for us to detect the subtle changes in

the line profile asymmetries due to different isotope mixtures to an acceptable degree

of accuracy. The 4554 and 4934 Å lines have large hfs splitting patterns with ∼ 56

and 77 mÅ separating the bluest and reddest lines respectively, and are substantially

larger than those found in higher excitation lines, e.g. the 4130, 5853 and 6141 Å lines

have a total hfs split of ∼ 4.4, 10.3, and 12.2 mÅ, typical of the higher excitation lines.

These transitions, as well as the 4554 and 4934 Å transitions can be seen in Fig. 2.9. In

Chapter 4 I only analyse the Ba II 4554 Å line due to difficulties in the measurement of

the 4934 Å line caused by Fe blends located within the blue wing, the details of which

are discussed in §3.4.3.
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Fig. 2.9: The energy level diagram for several transitions of Ba II. The energies of each transition are
displayed in eV on the right. No hfs is included in any transition. Image adopted from (Rutten, 1978).

For the purposes of the work conducted in this thesis I will only be discussing the

6S 1
2
− 6P 3

2
and 6S 1

2
− 6P 1

2
fine split transition (4554 and 4934 Å lines respectively).

Further splitting occurs in both transitions as each isotope has a slightly different

transition energy that shifts the wavelength at which they absorb light (χ = hc/λ),

which is shown in the wavelength and relative isotope strength schematic in the bottom

panel of Fig. 2.10. However the odd isotopes, where there is a non-zero net nuclear

spin caused by an unpaired nucleon, experience further splitting due to hfs effects at

the lower (6S 1
2
) and upper (6P 1

2
and 6P 3

2
) energy levels. The schematic energy level

diagrams in the top panel of Fig. 2.10 demonstrate the fragmentation at the lower and

upper energy levels for both transitions.

We consider the 4554 Å line first. The hfs at the 6S 1
2

energy level is large relative

to the hfs at 6P 3
2
. This causes a larger wavelength split relative to the one seen in 6P 3

2
,

which is represented by two large shifts either side of the central wavelength to the

blue and the red (see Fig. 2.10, bottom left-hand panel). The 6P 3
2

energy level, with a

smaller difference in energies relative to those seen in 6S 1
2
, causes further splitting of

the odd isotopes at both the red and the blue wavelengths relative to the even isotopes.

In fact there are three odd isotope transitions at the blue and red of the even isotopes.
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Fig. 2.10: Top panel : The schematic energy level diagram for the 4554 and 4934 Å lines showing hfs.
The larger energy difference in the 6S 1

2
level leads to the large wavelength shift, either side of the

line’s centre, shown in the bottom panel. Bottom panel : The hyperfine structure schematic for the
4554 Å line (bottom left) and the 4934 Å line (bottom right). Both have an odd isotope split essential
for the work conducted in this thesis, however, the structure of the 4934 Å line shows a larger overall
splitting of the isotopes than is found in the 4554 Å line. This is because the energy difference in the
6P 1

2
transition is larger than that in the 6P 3

2
transition.

The nature of the hfs in the odd isotopes in the 4934 Å line is in principle the same as

in the 4554 Å line. However, Fig. 2.10 shows that there are only two hfs energy levels

at 6P 1
2
. The effect of this causes two odd isotope splits either side of the even isotopes

of 4934 Å rather than the three seen at 4554 Å, however, their wavelength shift relative

to the even isotopes is larger than at 4554 Å due to a larger energy difference in the

hfs of the 6P 1
2

energy level relative to the 6P 3
2

energy level.

The hfs information for Ba used throughout my work was adopted from Wendt et al.

(1984) and Villemoes et al. (1993). Wendt et al. (1984) measured the isotope shifts of

all seven stable Ba isotopes6, and the hfs in the 4554 and 4934 Å lines. The even isotope

6The proton-capture isotopes 130,132Ba and the neutron-capture series 134−138Ba.
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wavelength information was adopted from this work. Villemoes et al. (1993) studied

higher excitation lines with smaller hfs as a means of testing their subtle improvements

to the Wendt et al. (1984) technique. They had made some improvements to the

laser beam apparatus that had allowed them to constrain the hfs information with

an improved accuracy. The odd isotope hfs information came from a combination of

both studies, as Villemoes et al. (1993) only calculated the excited energy levels (6P 1
2

and 6P 3
2
) for each odd isotope. Table 2.2 displays the hyperfine magnetic dipole (A)

and electric quadrupole (B) constants, which indicate the scale of the splittings of the

energy levels. The relevant citation is also tabulated.

Table 2.2: The A and B constants taken from Wendt et al. (1984) and Villemoes et al. (1993) including
their respective error estimates.

Level 135 137 Refs.

A (MHz) B (MHz) A (MHz) B (MHz)
6S 1

2
3593.3± 2.2 · · · 4020.3± 2.3 · · · (1)

6P 3
2

113.0± 0.1 59.0± 0.1 127.2± 0.2 92.5± 0.2 (2)

6P 1
2

664.6± 0.3 · · · 743.7± 0.3 · · · (2)

(1) Wendt et al. (1984)
(2) Villemoes et al. (1993)

The A and B constants are processed via a simple Fortran code (written by Sean

G. Ryan) that utilises the equations taken from McWilliam et al. (1995):

∆E =
1

2
AK +B

[ 3
2
K(K + 1)− J(J + 1)I(I + 1)

2I(2I − 1)(2J − 1)

]
, (2.29)

where

K = [F (F + 1)− I(I + 1)− J(J + 1)] , (2.30)

I is the nuclear spin quantum number (for both lines of interest and for both isotopes

I = 3/2),

J is the total electronic angular momentum quantum number and

F is the total allowable angular momentum quantum number in a given level.

The Fortran code calculates the splittings ∆E using Eqs. (2.29) & (2.30) with the
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constants from Table 2.2, over every allowable energy state, which is dependent on its

quantum mechanical electronic angular momentum and nuclear spin. This gives the

change in energy for each hfs split, which is displayed in Table 2.3 along with the even

isotope energy differences, all with respect to the line centres.

Table 2.3: The Ba hfs wavelength information for the Ba II 4554 (λc = 4554.0332 Å) and 4934 Å
(λc = 4934.0768 Å) lines relative to 138Ba in both λ (∆λ = λisotope − λ138, where λ138 = λc) and ν
space taken from the Wendt et al. (1984) and Villemoes et al. (1993) studies.

Isotope 4554 Å 4934 Å

δν (MHz) ∆λ (mÅ) δν (MHz) ∆λ (mÅ)
134 233.9 −1.6 222.6 −1.8
135 4654.6 −32.2 5369.0 −43.6

4582.3 −31.7 4051.4 −32.9
4510.1 −31.2 −1847.1 15.0
−2052.7 14.2 −3164.8 25.7
−2471.9 17.1 · · · · · ·
−2616.4 18.1 · · · · · ·

136 186.9 −1.3 179.4 −1.5
137 5088.3 −35.2 5910.9 −48.0

5016.0 −34.7 4408.5 −35.8
5016.6 −34.7 −2142.7 17.4
−2399.6 17.1 −3645.0 29.6
−2963.3 20.5 · · · · · ·
−3035.6 21.0 · · · · · ·

138 0.0 0.0 0.0 0.0

Combined with the isotope information from Arlandini et al. (1999) I was able to

create two Ba isotope lists; a fully s-process list and a fully r-process list. Copies of

both lists are available in Appendix A.3. Gallagher et al. (2010) calculated, using

their Fig. 1 (Fig. 3.1), a linear relationship between fodd and the r-process percentage;

fodd = 3.5 × 10−3 r-process (%)+0.11. Using the s- and r-process line lists and the

equation from Gallagher et al. (2010), I could create hybrid lists by taking percentages

of the s- and r-process lists’ of gf values. They were then used as an input to the

spectrum synthesis code ATLAS to create grids of Ba lines of varying fodd.

2.6 Observations

The synthetic spectra described above were used to analyse several dozen Fe lines

and the Ba isotopes in six metal-poor stars. For each star I have high resolution
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(R ≡ λ/∆λ = 90 000− 95 000), very high signal-to-noise (S/N = 550− 1100) observed

stellar spectra, which were obtained through observations using the High Dispersion

Spectrograph (HDS) mounted on the Subaru 8.2 m optical-infrared telescope, located

on the summit of Mouna Kea, Hawai’i.

The metal-poor subgiant star HD 140283 has the highest quality spectrum in my

sample and is unique in its quality. This was obtained during the commissioning of

the HDS by W. Aoki and reduced by S. Kawanomoto and first used in Aoki et al.

(2004). As HD 140283 is a bright metal-poor star (V = 7.21 Cousins, 1984) a total

of just 82 minutes spread over two nights (22nd and 29th July 2001) was required to

obtain a spectrum with R = 95 000 and S/N = 1100, about 4500 Å. The two giants in

my sample, HD 122563 and HD 88609, were obtained over a number of nights between

2004 and 2005 and took 90 and 210 minutes to acquire spectra with R = 90 000 and

S/N = 850 and 750 about 4500 Å, respectively. They were obtained and reduced by S.

Honda for work published in Honda et al. (2006) and Honda et al. (2007). The turn-off

star, HD 84937, was obtained and reduced by A. Aoki for work with Li abundances in

metal-poor turn-off stars (Aoki et al., 2009). The spectrum was obtained on the 22nd

March 2003 and took a total of 180 minutes of exposure time. The final two stars in my

sample are the turn-off stars, BD−04◦ 3208 and BD−26◦ 3578. They were taken over

three nights between the 17th and 19th of May 2005 and were obtained and reduced by

A. Garćıa Pérez for work on Li isotopes (Garćıa Pérez et al., 2009).

As every spectrum in my sample is of the highest quality, which is needed for

determining the Ba isotope ratios, it would have been difficult for me to obtain my

own spectra for these stars of equal quality for the work conducted here because of the

large amount of time required on an 8 m telescope to obtain even a single high quality

spectrum. For further details of their acquisition I refer the reader to §3.2 and §4.2.
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Norris, J. E., & Carollo, D. 2009, ApJ, 698, 1803 [ADS]

Aoki, W., Inoue, S., Kawanomoto, S., Ryan, S. G., Smith, I. M., Suzuki, T. K., &
Takada-Hidai, M. 2004, A&A, 428, 579 [ADS]
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Chapter 3: The barium isotopic

mixture for the metal-poor

subgiant star HD140283

The following chapter contains the unedited journal paper published by Gallagher,

Ryan, Garćıa Pérez, & Aoki (2010), which was submitted and accepted for publication

in Astronomy & Astrophysics. The associated online material for this article can be

found in Appendix B.1. For analyses conducted after the publication of this paper

please read Appendix C.

Abstract

Current theory regarding heavy element nucleosynthesis in metal-poor environments

states that the r-process would be dominant. The star HD 140283 has been the subject

of debate after it appeared in some studies to be dominated by the s-process. We

provide an independent measure of the Ba isotope mixture using an extremely high

quality spectrum and an extensive χ2 analysis. We have acquired a very high resolution

(R ≡ λ/∆λ = 95 000), very high signal-to-noise (S/N = 1110 around 4554 Å, as

calculated in IRAF) spectrum of HD 140283. We exploit hyperfine splitting of the Ba II

4554 Å and 4934 Å resonance lines in an effort to constrain the isotope ratio in 1D LTE.

Using the code ATLAS in conjunction with KURUCZ06 model atmospheres we analyse 93

Fe lines to determine the star’s macroturbulence. With this information we construct

a grid of Ba synthetic spectra and, using a χ2 code, fit these to our observed data to

determine the isotopic ratio, fodd, which represents the ratio of odd to even isotopes.

The odd isotopes and 138Ba are synthesized by the r- and s-process while the other even

isotopes (134,136Ba) are synthesized purely by the s-process. We also analyse the Eu

lines. We set a new upper limit of the rotation of HD 140283 at v sin i ≤ 3.9 km s−1, a

new upper limit on [Eu/H] < −2.80 and abundances [Fe/H] = −2.59± 0.09, [Ba/H] =

−3.46 ± 0.11. This leads to a new lower limit on [Ba/Eu] > −0.66. We find that, in
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the framework of a 1D LTE analysis, the isotopic ratios of Ba in HD 140283 indicate

fodd = 0.02 ± 0.06, a purely s-process signature. This implies that observations and

analysis do not validate currently accepted theory. We speculate that a 1D code, due

to simplifying assumptions, is not adequate when dealing with observations with high

levels of resolution and signal-to-noise because of the turbulent motions associated with

a 3D stellar atmosphere. New approaches to analysing isotopic ratios, in particular 3D

hydrodynamics, need to be considered when dealing with the levels of detail required to

properly determine them. However published 3D results exacerbate the disagreement

between theory and observation.

3.1 Introduction

Heavy-element abundances are predominantly due to two classes of neutron-capture

processes, the rapid (r-) process and the slow (s-) process. For the s-process the beta-

decay lifetime is shorter than the time-scale for neutron-capture. These two classes

can be sub-dived into the main, weak and strong s-process (Clayton & Rassbach, 1967;

Busso et al., 2001; The et al., 2007; Sneden et al., 2008) and the main and weak r-

process (Travaglio et al., 2004; Wanajo & Ishimaru, 2006; Izutani et al., 2009). Each

neutron-capture process occurs in different environments. The main s-process occurs

in late-type, low- to intermediate-mass stars (1 M� . M . 8 M�), during thermal

pulsing on the asymptotic giant branch (AGB). An uncertain physical event or process

is presumed to cause unprocessed H to mix with C-rich material in the He-burning

shell to form 13C (Busso et al., 2001). In this environment 13C supplies the necessary

neutrons via the reaction 13C(α, n)16O (Burbidge et al., 1957). In the core He-burning

phase of solar-metallicity massive stars, where temperatures are relatively high, the

nuclear reaction 22Ne(α, n)25Mg provides the main source of neutrons, however neutron-

capture is mostly weak s-process (Pignatari & Gallino, 2008). The 22Ne abundance is

heavily dependent on the initial CNO abundance and the weak s-process produces little

Ba relative to lighter species such as Sr (Gallino et al., 2000).

The astrophysical origin of the r-process is still relatively unknown. The most
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widely proposed site for the r-process is when a massive star (M > 8 M�) becomes

a core-collapse supernova (Wheeler et al., 1998; Kajino et al., 2002). During a core-

collapse supernova the neutron flux is believed to be so high that the neutron-capture

time-scale is shorter than the beta decay lifetime. Other possible r-process sites have

been considered such as neutron star mergers (Freiburghaus et al., 1999), however,

these seem to have been ruled out as dominant sources for r-process material due to

their low rates of occurrence (Argast et al., 2004). Several theoretical scenarios have

been explored in an effort to understand this phenomenon (Wanajo & Ishimaru, 2006).

The relative importance of the r- and s-process throughout Galactic history depends

on the evolutionary time-scales of the proposed sites and their elemental composition.

The lifetimes for massive stars are much shorter than for low- to intermediate-mass

stars. Typical lifetimes for 25 M�, 8 M�, 3 M� and 1 M� stars are ∼ 7× 10−3, 0.04,

0.4 and 10 Gyrs respectively (Romano et al., 2005). As such, the interstellar medium

(ISM) at the time at which metal-poor (halo) stars were forming (∼ 12 Gyr ago) should

have been enriched by the supernovae of massive stars and hence, r-process material.

Papers by Spite & Spite (1978) and Truran (1981) have been particularly influential

in establishing this framework, as we now discuss.

Spite & Spite (1978) analysed 11 metal-poor halo stars that have a metal abundance

less than 1/100 the solar metal abundance. They found that Ba and Y were overly

deficient relative to Fe. Both elements can be formed via either neutron-capture process

but are dominated by the s-process in the solar system where 81% of Ba and 92% of Y

is formed via the s-process (Arlandini et al., 1999). The more metal-poor stars in Spite

& Spite’s sample had a greater [Ba/Fe]1 deficiency than [Y/Fe] deficiency meaning

that as [Ba/Fe] decreases, [Ba/Y] decreases also. This is because a greater fluence of

neutrons is needed to form Ba (Z = 56) than Y (Z = 39) so that [Ba/Y] gives a good

indication of the number of neutrons captured (see Seeger et al., 1965). In contrast,

Spite & Spite found that Eu, 94% of which is formed via the r-process in solar system

material (Arlandini et al., 1999), has the same deficiency as Fe, such that [Eu/Fe]

remains constant as [Fe/H] increases and is essentially solar at [Fe/H] ≥ -2.6.

1[X/Y]=log10

(N(X)
N(Y )

)
∗ − log10

(N(X)
N(Y )

)
�
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A consideration of the possible sites and seed requirements for neutron-capture

led Truran (1981) to postulate that neutron-capture-element abundances in metal-

poor stars should be dominated by those synthesized through the r-process. This

expectation arises from the realisation that massive stars are capable of producing both

the Fe-peak seed nuclei and the high neutron fluxes even from very low-metallicity gas,

whereas intermediate-mass stars, while capable of producing neutrons, cannot produce

the Fe-peak seeds necessary for the main s-process (see also Gallino et al., 1998). In

Truran’s interpretation, the variance of [Y/Fe] and [Ba/Fe] with [Fe/H] are exactly

what one would find if the primary source for nuclei beyond the Fe-peak in metal-poor

stars is due to r-process nucleosynthesis, while the s-process begins to contribute more

significantly as [Fe/H] increases giving rise to the increase in [Y/Fe] and [Ba/Fe] seen

by Spite & Spite (1978). He reasoned in addition that the enhancement of r-process

nuclei would indicate that a prior generation of massive stars formed during or before

the formation of the Galaxy. In a more quantitative calculation, Travaglio et al. (1999)

examined the metallicity dependence of Ba synthesized in AGB stars via the s-process

using the chemical evolution model, FRANEC (Straniero et al., 1997; Gallino et al.,

1998). They found that Ba formed via the s-process has no significant contribution to

the Ba abundance in the Galaxy until [Fe/H] & −1. This supports Truran’s hypothesis.

Different mixtures of odd and even Ba isotopes are produced by the r- and s-

process. In particular, 134Ba and 136Ba are produced only by the s-process due to

shielding by 134Xe and 136Xe in the r-process. Although the spectral lines of different

Ba isotopes are not well resolved in stellar spectra, the profile core is dominated by the

even isotopes while the odd isotopes, which experience hyperfine splitting (hfs), have

more importance in the wings of the line profile, relative to the even isotopes. This

means that the profiles of Ba II 4554 Å and 4934 Å are dependent on the contributions

of the two processes. Hyperfine splitting arises from the coupling of nuclear spin with

the angular momentum of its electrons. The nuclear spin is non-zero in nuclides with

odd-N and/or odd-Z, i.e. where the nucleus has an unpaired nucleon. Hyperfine

structure has been well documented in Ba (e.g. Rutten, 1978; Wendt et al., 1984;

Cowley & Frey, 1989; Villemoes et al., 1993). As Ba has an even Z, only the two odd
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isotopes, 135,137Ba, experience hfs. Arlandini et al. (1999) calculate that the fraction

of odd isotopes2 of Ba is fodd,s = 0.11 ± 0.01 for a pure s-process mixture of Ba and

infer fodd,r = 0.46 ± 0.06 for a pure r-process mixture. Their numbers are based on

models which best reproduce the main s-process using an arithmetic average of 1.5 and

3 M� AGB models at Z = 1
2

Z�. The errors stated here are our propagation of errors

associated with individual isotope abundances for Ba. We show the linear relationship

between r-process contributions (as a percentage) and fodd in Fig. 3.1(a).

Fig. 3.1: (a) Relation between fodd and the r-process contribution calculated from Arlandini et al.
(1999). Coefficients are given where fodd = a × r-process (%) + b. (b) LAP02 : the Lambert & Allende
Prieto (2002) result for fodd. M95 : the Magain (1995) result for fodd. CAN1D : the Collet et al.
(2009) 1D LTE result for fodd. CAN3D : the Collet et al. (2009) 3D hydrodynamical result for fodd.

Magain (1995) attempted to verify Truran’s proposal by measuring the odd fraction

in HD 140283, a well studied metal-poor subgiant at [Fe/H] = -2.5 (Aoki et al., 2004),

but found instead that theory and observations were not comparable. He used high-

resolution (R ≡ λ/∆λ = 100 000) high signal-to-noise (S/N ≈ 400) data. Magain

reported the fractional odd isotope ratio, fodd, of Ba to be 0.08±0.06, implying that

Ba production in HD 140283 is predominantly due to the s-process (see Fig. 3.1 (b))

despite [Fe/H] and [Ba/Fe] being very low, [Ba/Fe] = -0.8 (Spite & Spite, 1978). The

code used to resolve the macroturbulence and analyse the Ba II 4554 Å line solves the

equations of hydrostatic equilibrium under the assumption that the stellar atmosphere

has a plane-parallel geometry (1D) and local thermodynamic equilibrium (LTE). In

2fodd ≡ [N(135Ba) +N(137Ba)]/N(Ba)
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contrast some more recent analyses, which we describe below, compute hydrodynamical

3D model atmospheres (3D) where the radiative transfer along multiple lines of sight

is assessed.

The star was later reanalysed by Lambert & Allende Prieto (2002), again assuming

1D LTE. They obtained a very high-resolution (R ≡ λ/∆λ = 200 000) high signal-

to-noise (S/N ≈ 550) spectrum about the Ba II 4554 Å line. They found a value for

fodd = 0.30±0.21 and concluded that, contrary to Magain’s result, the star is r-process

dominated. A value for fodd = 0.30 ± 0.21 would imply an r-process contribution of

54%± 60%. We note, however, that the error in their measurement of fodd means that

their result covers the full range of possibilities from a pure s-process mix (fodd,s = 0.11)

to a pure r-process mix (fodd,r = 0.46); see Fig. 3.1. This means that although they

state that their result indicates that HD 140283 is r-process dominated, the range of

fodd is too broad to be conclusive. We consider that an r-process contribution of 54%

does not substantially imply that the star’s neutron-capture elements are dominated

by those synthesised via the r-process.

Against this background, we sought to improve the determination of the s-process

contribution to Ba in this star to help us understand the apparent conflicts.

While we conducted our study, Collet et al. (2009) reanalysed the Lambert &

Allende Prieto (2002) spectrum in 1D LTE and, more significantly, also conducted a

new 3D hydrodynamical analysis of the Ba isotopic fraction of HD 140283. In 1D LTE

they found that fodd = 0.33 ± 0.13, meaning that 64% ± 36% of the Ba isotopes in

HD 140283 are synthesized via the r-process. The central value (0.33) is little changed

from that obtained by Lambert & Allende Prieto (2002) (0.30), which is not entirely

surprising since they used the same spectrum, but Collet et al. (2009) quote smaller

error bars. This is because Lambert & Allende Prieto (2002) adopted the standard

deviation of macroturbulent broadening estimates as the main underlying measurement

error. Collet et al. (2009) use the standard error σ/
√
N (where N is the number of

Fe lines used) as a measurement of error. The latter is a more reasonable estimate of

the error as it is a measure of the uncertainty in the mean estimate of the broadening.

Their analysis of the line using 3D hydrodynamics gives a value for fodd = 0.15± 0.12
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meaning only 11%± 34% of the isotopes are synthesized via the r-process. This value

is in good agreement with the solar Ba isotopic mix (fodd,ss = 0.16 implying that only

14% of isotopes formed via the r-process (Arlandini et al., 1999)) but is once more at

odds with the high r-process fraction expected under Truran’s hypothesis.

We have obtained a high resolution (R ≡ λ/∆λ = 95 000) very high signal-to-noise

(S/N = 870 − 1110) spectrum of HD 140283. During the course of this paper we

discuss how we have constrained the macroturbulence by fitting synthetic spectra to

Fe lines. In a detailed error analysis we show how we have improved constraining the

macroturbulence, which was a major source of error that dominated previous studies

that analyse the Ba II 4554 Å line in 1D LTE. The improvement is partly due to the

higher quality spectrum we have used in this investigation. We also explore the impact

of using radial-tangential macroturbulence, ζRT, and rotational broadening, v sin i (used

by Collet et al. (2009)) to help constrain macroscopic broadening. We then move on to

discuss the method used to re-evaluate the r- vs. s-process mix by analysing the Ba II

4554 Å line and, for the first time in this context, the Ba II 4934 Å line in 1D LTE.

Furthermore we discuss the difficulties in analysing the Ba II 4934 Å line due to close

blends with other lines. Also because of the exceptional quality of the data, we have

been able to revise downward the Eu abundance limit for the star.

3.2 Observational data

Our stellar and ThAr calibration spectra were obtained over two nights during the

commissioning of the High Dispersion Spectrograph (HDS) mounted on the Subaru

Telescope. The stellar spectrum is the sum of 13 exposures totalling 82 minutes. This

gives a S/N = 1110 per 12 mÅ wide pixel around the Ba II 4554 Å line and a S/N = 870

per 12 mÅ wide pixel around the Ba II 4934 Å line, as measured from the scatter in the

continuum of the reduced spectrum. The typical resolution as measured from ThAr

lines is R ≡ λ/∆λ = 95 000. The spectrum was reduced using a ThAr spectrum

to wavelength calibrate the stellar spectrum, with typical RMS errors of 1.5 mÅ (Aoki

et al., 2004). We utilise the 4554 Å and 4934 Å lines as both arise from the ground state
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where hyperfine structure is large. Although the 4934 Å line is weaker - we measure

equivalent widths W4554 = 20.1 mÅ and W4934 = 13.6 mÅ - the hfs of the 4934 Å line

is greater, which means both lines can be useful diagnostics. We do not attempt to

analyse higher excitation lines of Ba which are weaker and have much smaller hfs.

3.3 Spectral profiles

To analyse the two Ba II line profiles in our spectrum we compared our observed pro-

file to synthetic profiles produced by the 1D LTE code ATLAS (Cottrell & Norris,

1978). We describe below how Fe I and Fe II lines are used to constrain macroturbu-

lence, and then proceed to analyse the Ba II lines. A 1D KURUCZ06 model atmosphere

(http://kurucz.harvard.edu/grids.html) was used with parameters for the star

Teff = 5750 K, [Fe/H] = −2.5 and microturbulence, ξ = 1.4 km s−1 (Aoki et al., 2004)

and log g = 3.7 [cgs] (Collet et al., 2009).

3.3.1 Instrumental Profile

Two ThAr hollow-cathode-lamp spectra over the intervals 4102 − 5343 Å and 5514 −

6868 Å, taken during the observing run with the same instrumentation and set-up

as the stellar exposures used in this study, were used to calculate the instrumental

broadening. Using IRAF, the full-width at half-maximum (FWHM) and equivalent

widths of 993 emission lines were measured. It was found that at a wavelength of 4554 Å

the ThAr line FWHM in velocity-space (vinst) was 3.31 km s−1, and at 4934 Å was

3.25 km s−1. The error in these measurements is taken as the standard error of the mean

of the individual measurements, σ/
√
N , which is 0.01 km s−1, where σ is the standard

deviation of the individual measurements, which is 0.22 km s−1. We assume here that

the ThAr lines are unresolved and hence that the measured ThAr line width represents

the instrumental broadening. The instrumental broadening could be slightly less than

that stated, but the difference is immaterial since, in §3.3.2, we measure the combined

instrumental and macroturbulent broadening without needing to distinguish between

the two contributions precisely. Aoki et al. (2004) showed that the instrumental profile

http://kurucz.harvard.edu/grids.html
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is well approximated by a Gaussian.

3.3.2 Macroturbulence

Lambert & Allende Prieto (2002) established that one of the major limiting factors in

their analysis was the accuracy with which macroturbulence could be measured. They

found that δfodd/δFWHM = −0.51 (km s−1)−1, and hence for σFWHM = 0.33 km s−1

they achieved an accuracy in macroturbulence corresponding to σfodd
∼ 0.17, domi-

nating their total error of 0.21. It was clear that we would have to improve on this

significantly to make progress.

We began to constrain macroturbulence by measuring the equivalent widths and

the FWHM (in velocity-space), vobs, of 257 apparently unblended Fe I and Fe II lines

by fitting Gaussian profiles in IRAF. We used this information to produce Fig. 3.2. As

∆λ/λ remains constant with wavelength in an echelle spectrum (where ∆λ is the width

of the pixel in wavelength units) it is possible to use Fig. 3.2 as a check of the quality

of measurements.

Fig. 3.2: FWHM versus equivalent width for the 257 Fe I and Fe II lines measured for HD 140283. 93
lines fall into the range of 10 ≤W (mÅ) ≤ 50; the mean value for vobs in this range is 6.9 km s−1.
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From Fig. 3.2 we can see that weaker lines, W ≤ 50 mÅ, almost form a plateau.

Here, vobs remains constant even as the Doppler core deepens in lines on the linear part

of the curve of growth, where the Doppler broadening components are dominant. At

W > 50 mÅ, pressure broadening become significant as the core of the line saturates,

so the wings begin to broaden. Where W < 10 mÅ, the uncertainty produced by the

finite signal-to-noise makes it difficult to measure the lines accurately, which is shown

by the scatter in this region of Fig. 3.2.

Of the 257 Fe lines measured, 93 fell between 10 mÅ≤ W ≤ 50 mÅ and were used

to constrain macroturbulence (recall that W4554 = 20.1 mÅ and W4934 = 13.6 mÅ).

The average value for the observed velocity FWHM , vobs, in this range is 6.9 km s−1.

The full list of measurements can be found in Table B.1.

Gaussian macroturbulence

We convolve the synthetic flux spectrum of the star with a Gaussian of FWHM vconv

which represents the convolution of the Gaussian instrumental profile with a Gaussian

macroturbulent profile. For now we assume that the star has no significant rotation;

we shall return to this point in §3.3.2. Current estimates of rotation of HD 140283 are

v sin i = 5.0± 2.0 km s−1 (de Medeiros et al., 2006). We create a grid of 385 convolved

synthetic spectra for 11 values of macroturbulence 4.9 km s−1 ≤ vconv ≤ 6.9 km s−1 in

steps ∆vconv = 0.1 km s−1 and 35 values for A(Fe)3, 4.09 ≤ A(Fe) ≤ 5.45 with steps

∆A(Fe) = 0.04. Each synthetic spectrum covered the wavelength range 4100− 6900 Å

in intervals of ∆λ = 0.01 Å.

To determine the best fit for vconv we compare our synthetic model grid to the

observed spectrum employing a χ2 test, χ2 ≡
∑

(Oi−Mi)
2/σ2

i , where Oi is the observed

continuum-normalised profile, Mi is the model profile of the line produced using ATLAS

and σ2
i is the standard deviation of the observed points that define the continuum, i.e.

σ = (S/N)−1. All 93 Fe I and Fe II lines were individually fitted using a χ2 code (Garćıa

Pérez et al., 2009). This code allows small wavelength shifts, ∆λ, which we discuss

below and local renormalisation of the continuum of the observed profile for every line.

3A(X) ≡ log10

(N(X)
N(H)

)
+ 12
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It finds values for ∆λ, A(Fe) and macroturbulence that minimize χ2 for each Fe line

analysed over a window 0.6 Å wide and with continuum windows typically 0.5 Å to

1.0 Å on each side of this, depending on neighbouring spectral features. Values of vconv

found by the χ2 code for the 93 lines covering the wavelength range 4118− 6253 Å are

shown in Fig. 3.3. The full table of results from the χ2 code is found in Table B.1.

Fig. 3.3: Values of vconv that satisfy the minimum value for χ2 for the 93 lines (plus symbols). The
standard error represents the scatter from the mean of each line (σ/

√
N) and a and b are coefficients

of the least squared fit, vconv = aλ+ b. The Ca I and Fe I lines used by Aoki et al. (2004) to constrain
macroturbulence have been plotted (triangles) to show the consistency of our χ2 fits with their results
at red wavelengths.

We use an ordinary least squares (OLS) fit to determine vconv at the wavelengths

4554 Å and 4934 Å. The OLS has the equation vconv = aλ + b, where a and b are

coefficients of the OLS. We find that vconv = 5.75 km s−1 and vconv = 5.76 km s−1 at

the Ba II 4554 Å and 4934 Å lines respectively. The error in these values, represented

by the standard error, is 0.02 km s−1. As the uncertainty in these values is greater

than the difference between them, we adopted one value for vconv for both Ba II lines,

vconv = 5.75±0.02 km s−1. Subtracting the instrumental FWHM at 4554 Å we find the

macroturbulence, vΓ, to be vΓ =
√

5.752 − 3.312 = 4.70±0.02 km s−1. This value agrees
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well with that found by Aoki et al. (2004). The error in vΓ is given by σ2
vΓ

= σ2
vconv

+σ2
vinst

,

which is equal to ±0.02 km s−1.

In using the Fe lines to determine the macroturbulence appropriate to Ba, it is

important that we measure lines forming over a similar range of depths in the pho-

tosphere. This was achieved in the first instance by restricting the equivalent width

range of the Fe lines to span the two Ba lines (see Fig. 3.2). In addition, we have

regressed the vconv measurements against equivalent width, W , and against excitation

energy, χ, and find no statistically significant trend of vconv with W , and a weak (2.5σ)

trend with χ. This suggests that using a stricter restriction on the Fe line list would

not materially alter the macroturbulent velocity. In the most extreme case, the value

for χ = 0 eV would imply vconv = 5.62± 0.05 km s−1, which (as we show below) would

increase fodd by 0.09.

The χ2 code also determined that A(Fe) = 4.91 ± 0.01, where the error is taken

as the standard error. Taking the solar Fe abundance to be A(Fe)� = 7.50 ± 0.05

from Grevesse & Sauval (1998), we calculate the metallicity, [Fe/H] = −2.59 ± 0.05,

where the error in [Fe/H] is the propagation of the statistical error in A(Fe)∗ and

A(Fe)� but so far excludes the systematic errors associated with the imperfect choice

of atmospheric parameters. That error, based on calculations we provide in §3.5, is

around 0.07 dex, giving a total error of 0.09 dex. This is in good agreement with

metallicity we adopted from Aoki et al. (2004). We note that there is an updated list

of solar abundances given in Grevesse et al. (2007) calculated using 3D hydrodynamics,

however we decided to use the 1D LTE results given in Grevesse & Sauval (1998) as

we are working in 1D LTE.

We found that the mean wavelength shift, ∆λ, was −12.0 mÅ with a standard

deviation σ∆λ = 3.8 mÅ. There are several reasons why we would expect to find a

wavelength shift between the observed and synthetic profiles. The most likely is an

error in the approximate radial velocity correction of the star, but line-to-line differences

require further comment. There could be inaccuracies in the assumed wavelengths in

the Fe line list, however the Fe line list was produced using the most up to date data

available through the IRON PROJECT and Nave et al. (1994), where wavelengths are

http://cdsweb.u-strasbg.fr/topbase/TheIP.html
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quoted to 1 mÅ, and are believed to be accurate to < 1 mÅ. The RMS error in the

wavelength calibration was reported as only 1.5 mÅ (Aoki et al., 2004), so the line-

to-line scatter σ∆λ exceeds that error. The excess could be due to the inability of 1D

hydrostatic model atmospheres to model turbulent motions in a star’s hydrodynamic

atmosphere. Indeed, the residuals shifts were found to depend, at least partially, on

the excitation potential, χ, and the equivalent width, W , suggesting an astrophysical

cause.

Non-Gaussian symmetric broadening

So far we have adopted a Gaussian macroturbulent broadening mechanism. We looked

at two other macro-scale broadening mechanisms, radial-tangential macroturbulence

(ζrt) and rotation (v sin i) (Gray, 2008, Chapter 18). Each broadening run was given

the same atmospheric parameter set; Teff = 5750 K, log g = 3.7, [Fe/H] = −2.5,

ξ = 1.4 km s−1. Table 3.1 shows the results from fitting the 93 Fe lines using the three

broadening types, along with Gaussian instrumental broadening (vinst = 3.31 km s−1).

The third column indicates how many of the 93 lines were best fit by that broadening

mechanism, as judged by the minimum χ2 value for the three methods.

Table 3.1: Comparison of all three broadening types. Column two gives the broadening based on all
93 Fe lines for the wavelength 4554 Å, determined using the method described in §3.3.2. The errors
given are the standard error (σ/

√
N). Column three shows how many of the Fe lines were statistically

better fits with that particular broadening technique.

Broadening Parameter Parameter (km s−1) # of best fit lines
vΓ 4.70± 0.02 32
ζrt 4.37± 0.02 58

v sin i 3.89± 0.02 3

Only three of the 93 Fe lines were fit best by rotational broadening, and hence we

concluded that using only rotational velocities to broaden the lines would be unsound.

The derived value provides a firm upper limit on rotation, v sin i ≤ 3.9 km s−1, in the

case with no macroturbulent broadening. The fact that most lines are fit better by a

macroturbulent profile emphasises that we have not detected true rotation of the star

at this 3.9 km s−1 level.
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The radial-tangential broadening function within the 1D LTE framework, provides

a better fit than Gaussian macroturbulence to almost two thirds of the Fe lines. We

present Ba results for both macroturbulent prescriptions in §3.4.4, but unless specified,

our analysis is conducted using Gaussian fitting.

3.4 The Ba II resonance lines and the barium iso-

topic ratio

3.4.1 Ba II line structure

There are five principal, stable Ba isotopes that are formed via the two neutron-capture

processes. The r- & s-process produce different mixes of odd and even isotopes. The

r-process does not contribute to two even isotopes, 134,136Ba, which are pure s-process

isotopes. The two odd isotopes, 135,137Ba, and even isotope 138Ba are formed from both

the s- & r-process. The odd isotopes broaden the line and make it asymmetric, whereas

the even isotopes contribute to the centre of the Ba II line and make the core deeper.

We use the hfs information from Wendt et al. (1984) and Villemoes et al. (1993) to

compute energy level splittings for the lower and upper levels of 135,137Ba in the 4554 Å

and 4934 Å lines, and incorporated the isotopic shifts relative to 138Ba. Importantly,

we note that the hfs splitting and isotope shift data in these papers is quite similar to

that of some older studies (references can be found in Wendt et al., 1984; Villemoes

et al., 1993), and hence we are confident that there is no significant uncertainty in the

line structure. The line wavelength structure, relative to 138Ba, is shown in Fig. 3.4,

in which each isotope is shown with a total strength of 1.0. Using the s- and r-process

contributions to the five isotopes from Arlandini et al. (1999), we construct line lists

for pure s-process and pure r-process isotope mixes for the two Ba II lines, adopting

total log gf values of +0.16 and -0.16 for 4554 Å and 4934 Å respectively, see Table 3.2.

From these two lists we created a further 13 hybrid line lists. These covered a range

for fodd equal to 0.00 ≤ fodd ≤ 0.46 where ∆fodd = 0.035. We recognise that according

to Arlandini et al. (1999), the cases with fodd < 0.11 are not achieved astrophysically
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Table 3.2: The isotopic and hfs information for both Ba lines. The oscillator strengths relative to
138Ba for each line are given in column 3 and the calculated gf -values are given in columns 4 and 5.

gf -value
λ (Å) Isotope Relative strength s-process r -process

4553.9980 137 0.1562 0.0210 0.0471
4553.9985 137 0.1562 0.0210 0.0471
4553.9985 137 0.0626 0.0084 0.0189
4554.0010 135 0.1562 0.0049 0.0594
4554.0015 135 0.1562 0.0049 0.0594
4554.0020 135 0.0626 0.0019 0.0238
4554.0316 134 1.0000 0.0429 0.0000
4554.0319 136 1.0000 0.1450 0.0000
4554.0332 138 1.0000 1.1256 0.7972
4554.0474 135 0.4376 0.0136 0.1663
4554.0498 137 0.4376 0.0589 0.1320
4554.0503 135 0.1562 0.0049 0.0594
4554.0513 135 0.0311 0.0010 0.0118
4554.0537 137 0.1562 0.0210 0.0471
4554.0542 137 0.0311 0.0042 0.0094

4934.0288 137 0.3125 0.0197 0.0441
4934.0332 135 0.3125 0.0045 0.0556
4934.0410 137 0.0625 0.0039 0.0088
4934.0439 135 0.0625 0.0009 0.0111
4934.0750 134 1.0000 0.0201 0.0000
4934.0753 136 1.0000 0.0678 0.0000
4934.0768 138 1.0000 0.5265 0.3729
4934.0918 135 0.3125 0.0045 0.0556
4934.0942 137 0.3125 0.0197 0.0441
4934.1025 135 0.3125 0.0045 0.0556
4934.1064 137 0.3125 0.0197 0.0441

because even a pure s-process mixture has a non-zero contribution of 135,137Ba.

3.4.2 χ2 test

The observed continuum was renormalised over a window of 1 Å either side of each of

the two Ba lines. A new grid comprising 231 synthetic spectra around each of the two

Ba II resonance lines was produced in ATLAS. Values for vconv and A(Fe), constrained

in the last section, were fixed. There were three free parameters in the new grid:

A(Ba), ∆λ and the r- & s-process contributions. The χ2 code allowed small changes
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Fig. 3.4: The splitting patterns of the Ba II 4554 Å line relative to 138Ba. The relative strengths of
each isotope are normalised to 1 (Table 3.2, column (3)).

in these parameters exactly like the code described in §3.3.2. We used 21 values for

A(Ba), −1.40 ≤ A(Ba) ≤ −1.20, where ∆A(Ba) = 0.01. Each synthetic spectrum

covered the range 4550− 4560 Å (around 4554 Å), 4930− 4940 Å (around 4934 Å) and

was computed every 0.01 Å. The windows in which both Ba lines were analysed was

±0.25 Å from their centroid.

3.4.3 The iron blends at 4934 Å

It has been documented that the Ba II 4934 Å line has a known blend with a weak Fe I

line (Cowley & Frey, 1989). We use the information for two Fe lines which are found

in Nave et al. (1994, their table 2). The relevant data can be found in our Table 3.3.

When these wavelengths are compared with the wavelengths for the Ba 4934 Å line

given in Table 3.2 it is clear that the two Fe lines would influence the r-process fraction

found by analysis of the line. This is shown in Fig. 3.5 for pure s- and r-process isotope

ratios. The analysis of the 4934 Å line is very sensitive to the characteristics of the Fe
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Fig. 3.5: Synthetic spectra showing the effect of the Fe I blends on the 4934 Å Ba II line. The top plot
shows the r-process-only isotope fraction and the bottom shows the s-process-only isotope fraction.
Solid line: the underlying Fe I blends. Dashed line: the uncontaminated Ba II line. Dash-dot line: the
overall line profile.

Table 3.3: Spectroscopic information on the two weak Fe lines that are blended with the Ba II

4934 Å line as reported by Nave et al. (1994). The log gf values reported here were sup-
plied by G. Nave (2009, private communication) but can be found using the Kurucz database
http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html.

λ (Å) Ion χ (eV) log gf
4934.0052 Fe I 4.15 -0.589
4934.0839 Fe I 3.30 -2.307

lines, as we show in §3.5.2. We include these Fe lines in our Ba 4934 Å line analysis.

3.4.4 The r-process contribution

The Ba abundances of the two lines are found to be A(Ba)4554 = −1.28 and A(Ba)4934 =

−1.30. We take the implied Ba abundance as an average of the two, A(Ba) = −1.29±

0.08. Using the solar abundances calculated in Grevesse & Sauval (1998) we find that

for HD 140283, [Ba/H] = −3.46 ± 0.11, and hence [Ba/Fe] = −0.87 ± 0.14. Errors

stated here are calculated in §3.5. Results from other papers are given in Table 3.4. It

http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html
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is shown that our result for [Ba/Fe] is in good agreement with previous results.

Table 3.4: Results from previous studies of HD 140283.

Paper Teff (K) log g (cgs) [Fe/H] [Ba/H] [Ba/Fe]
SSa 5727 3.30 -2.40 -3.20 -0.80

MMZb 5640 3.10 -2.73 -3.86 -1.13
GSc 5690 3.58 -2.53 -3.17 -0.64

RNBd 5750 3.40 -2.54 -3.45 -0.91
MGBe 5640 3.65 -2.30 -3.10 -0.80

Ff 5650 3.40 -2.40 -3.43 -1.03
MKg 5650 3.50 -2.50 -3.28 -0.78
LAPh 5777 3.74 -2.70 -3.79 -1.09
CANi 5690 3.67 -2.50 ... ...

GRPAj 5750 3.70 -2.59 -3.46 -0.87

a Spite & Spite (1978). b Magain (1989) and Zhao & Magain (1990). c Gratton &
Sneden (1994). d Ryan et al. (1996). e Mashonkina et al. (1999). f Fulbright (2000).
g Mishenina & Kovtyukh (2001). h Lambert & Allende Prieto (2002). i Collet et al.
(2009). j This work.

Our χ2 fitting procedure included a possible wavelength shift as a free parameter.

The 4554 Å line has a wavelength shift ∆λ = −14.8 mÅ. The 4934 Å line has a wave-

length shift ∆λ = −21.5 mÅ, possibly because of imperfect modelling of the Fe blend

in the blue wing. Both lines fall within 3σ of the mean wavelength shift found in the

Fe lines, -12.0 mÅ with σ∆λ = 3.8 mÅ.

From the χ2 analysis we find the best statistical fit for the 4554 Å line is fodd = 0.01±

0.06. The best statistical fit for the 4934 Å line indicates a value of fodd = 0.11± 0.19

(meaning an r-process contribution of 0%±54%). The 1σ errors stated here arise from

uncertainties discussed in §3.5 and are larger for the 4934 Å line because of uncertainties

associated with the underlying Fe blends. Our result is in good agreement with Magain

(1995) who found that Ba II 4554 Å yielded fodd = 0.08±0.06, but seems to be at odds

with values found by Lambert & Allende Prieto (2002) (fodd = 0.30 ± 0.21) and the

1D result found for the same spectrum by Collet et al. (2009) (fodd = 0.33± 0.13).

The reduced chi-squared values, χ2
r, for the 4554 Å line and the 4934 Å line are 6.6

and 2.0 respectively. The two best statistical fits for both lines and their residuals

(observed - synthetic profiles) are shown in Fig. 3.6. We also plot the synthetic profiles

for the Ba lines with an r-process contribution of 100%, best fit A(Ba) = −1.30 for
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Fig. 3.6: Panel a) i): The best statistical fit synthetic profile (solid line) for the observed Ba II

4554 Å line (diamonds) with the residual and χ2 plots below. For comparison, a pure r-process line
and residual has been plotted (dash-dot line). The value for A(Ba) has been optimised to one that
minimises χ2, values for A(Fe) and macroturbulence remain the same. Panel a) ii): The χ2 fit for the
4554 Å line, the cross shows where the minimum of the fit lies. Also plotted are the splitting patterns
for Ba relative to Ba-138 (see Table 3.2). Panels b) i) and ii): Show the same as a) i) and ii) for the
4934 Å line.

both lines. It can be seen in the residual plots for both lines that the pure r-process

fits are very poor. In 4554 Å, χ2
r changes faster with fodd than for the 4934 Å line.

This indicates that although the 4934 Å line is broader due to the effects of hyperfine

structure, the 4554 Å line is more sensitive to changes in fodd. This could be both

because the 4554 Å line is stronger (W = 20.1 mÅ) than the 4934 Å line (W = 13.6 mÅ),

and because the latter has an Fe blend.

Based on the calculations by Arlandini et al. (1999), our 4554 Å result should not

be achievable, and corresponds to an r-process contribution of -29% (i.e. the s-process

contribution is equal to 129%). We have also plotted in Fig. 3.7 the fit and residual

for the nearest physically possible value for fodd (0.11). This fit has χ2
r = 7.7. We have

also plotted the fit for fodd = 0.01, which is quite similar.

When we adopted radial-tangential macroturbulence, it was determined that fodd =

−0.02±0.06 and−0.03±0.19 for the 4554 Å and 4934 Å lines respectively, with χ2
r = 6.1

and 2.8. Errors stated here are assumed to be the same as those calculated using a

Gaussian macroturbulence as only the broadening mechanism differs; the errors in the
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Fig. 3.7: Comparison between the nearest physical fit (solid line) where fodd = 0.11 and the best
statistical fit (dash-dot line) where fodd = 0.01, for the 4554 Å line. Also plotted are the splitting
patterns for Ba relative to Ba-138 (see Table 3.2).

Fig. 3.8: Panel a): The best statistical fit for the 4554 Å line (diamonds) using a radial-tangential
velocity profile (solid line). We have included a pure r-process, fodd = 0.46, synthetic profile for
comparison(dash-dot line). Also plotted are the splitting patterns for Ba relative to Ba-138 (see Table
3.2). Panel b): Same as panel a) but for the 4934 Å line.

two broadening techniques have the same value. The best fits are shown in Fig. 3.8.

So the radial-tangential fit for the 4554 Å line is a statistically better fit than the

Gaussian macroturbulent fit, as seen by the residual plots (Figs. 3.6 (a)(i) & (b)(i) vs.

Figs. 3.8 (a) & (b)). Both broadening mechanisms, which were analysed separately,

yield similar values for ∆λ, fodd and [Ba/H]. Both indicate a strong s-process signature

for Ba. Although these fodd numbers are again beyond possible physical values, we

inform the reader that due to the finite confidence in the χ2
r test (discussed further in

§3.7), the non-physical values fodd ' 0.01 are not greatly preferred over the physical

value fodd = 0.11.
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We have given values for fodd for the two Ba lines and we have shown that the two

lines are in agreement within the stated errors. We now discuss those uncertainties

and what stellar parameters fodd is sensitive to.

3.5 Uncertainties and sensitivity tests

In this section we scrutinise the analysis procedures and statistical tests employed in

this study to determine the likely statistical and systematic errors. These include

errors associated with the atmospheric parameters used in constructing the synthetic

spectra, the calculated macroturbulence and the errors associated with the Fe lines

used in conjunction with the Ba 4934 Å line.

Table 3.5 lists values found for [Ba/H] and fodd by varying the temperature and

log g of the model atmosphere. There are two cases. In case 1 we recalculate [Fe/H]

and macroturbulence for every value of Teff and log g, whereas in case 2 we fix the

macroturbulence and [Fe/H] to values calculated for Teff = 5750 K and log g = 3.7.

Perhaps the first thing to note from this table is that altering temperature by ±250 K

and log g by ±0.3 does not drive fodd to an r-process dominated fraction. The errors

quoted in this paper for HD 140283 are based on uncertainties in Teff and log g of

±100 K and ±0.1 respectively.
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From Table 3.5 it is possible to calculate the error associated with [Fe/H], A(Ba),

and hence [Ba/H] & [Ba/Fe], by examining how it is affected by the stellar parameters.

We use case 1 to calculate these uncertainties. It is shown in Table 3.5 that gravity

as very little affect on [Fe/H]. Temperature has a much greater affect on [Fe/H], al-

tering the ratio by ±0.07 dex for every 100 K. Therefore we find a total uncertainty

in [Fe/H] of ±0.07. We find that δA(Ba)/δlog g = 0.35. Therefore an error of 0.1

in log g implies an error σA(Ba),log g = 0.04. Similarly we find for temperature that

δA(Ba)/δTeff = 0.0007 K−1. Taking the uncertainty in temperature to be ±100 K we

find that σA(Ba),Teff
= 0.07. Macroturbulence affects the shape of lines but not the

equivalent width. As such we do not include the uncertainties associated with macro-

turbulence here. Also [Fe/H] has very little affect on [Ba/H] when compared to tem-

perature and gravity effects so this is not included in our error analysis of [Ba/H]. The

solar Ba abundance is A(Ba)� = 2.17 ± 0.07 (Grevesse & Sauval, 1998). When these

uncertainties are added in quadrature we find that [Ba/H] = −3.46± 0.11. Therefore

we find that [Ba/Fe] = −0.87± 0.14.

3.5.1 The 4554 Å line

We have stated that potentially the most significant parameter that fodd is sensitive

to is macroturbulence. The difference between columns (9) and (10) in Table 3.5 show

how fodd is sensitive to macroturbulence. We find that on average, δfodd/δvconv w

−0.7 (km s−1)−1 meaning that for σvconv = 0.02 km s−1, calculated in §3.3.2, σfodd
w

0.01. That is, by using a large number of Fe lines to constrain vconv, we have minimized

the impact of this error.

Realistically, when you vary one parameter you alter all other parameters to com-

pensate for this change. Increasing temperature increases the derived macroturbulence,

which on its own decreases fodd. For case 1 we see that an uncertainty in temperature

of ±100 K implies an uncertainty in macroturbulence of 0.01 km s−1 to 0.02 km s−1 with

increasing gravity (see Table 3.5, column (3)). Using the relation we found between

fodd and macroturbulence we see that σfodd
= 0.02 to 0.06. In case 2 (where we only
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look at how fodd is affected by one stellar parameter) we find that for an error in tem-

perature of ±100 K, σfodd
≈ ±0.004 to 0.01 depending on log g (Table 3.5 column (10),

case 2).

The uncertainty in log g for HD 140283 is quite small, . 0.1, due to its reliable

Hipparcos parallax. As gravity affects line broadening, we find that log g influences the

macroturbulence and fodd. Firstly we calculate the effect of log g on macroturbulence

(case 1). We find δvconv/δlog g w 0.4 km s−1 depending on temperature. So for an

uncertainty in log g = 0.1, σvconv w 0.04 km s−1. Using the sensitivity we calculated for

macroturbulence suggests an uncertainty in fodd w 0.03. In comparison, the total case

1 sensitivity is δfodd/δlog g ≈ 0.2 implying σfodd
= 0.02. We can see from Table 3.5 the

separate effect that log g has on fodd when we fix macroturbulence (case 2). Here we

find that δfodd/δlog g w −0.17 meaning that an error in log g of 0.1 alters fodd directly

by 0.02. The implication is that some of the change in case 1 is driven by the revision

of the macroturbulence, and some is driven more directly but in a way that partially

compensates.

When examining the effect of microturbulence on fodd one would expect to see two

things. If we allow macroturbulence to compensate for the change in microturbulence

(case 1) we would expect find that fodd is essentially unchanged. If we fix macrotur-

bulence and alter microturbulence, fodd will change. Table 3.6 shows these two cases.

As expected in case 1, the macroturbulence is driven up/down when the microturbu-

lence is decreased/increased and fodd is unaffected. In case 2 we see the sensitivity in

fodd as microturbulence is altered given by δfodd/δξ = −0.5 (km s−1)−1. Therefore an

uncertainty in microturbulence of 0.1 km s−1 implies an error in fodd = 0.05. It is case

1 that is relevant to our Ba analysis.

In summary we can assign an uncertainty in fodd for the 4554 Å line σ2
fodd

=

σ2
vconv

+σ2
Teff

+σ2
log g =

√
0.012 + 0.022 + 0.032 = 0.04 (case 1 - remember that vconv com-

pensates for any effect ξ has on fodd). In case 2, where we look at the separate effects

the stellar parameters have on fodd, we find that for uncertainties in macroturbulence,

temperature, log g and microturbulence σfodd
=
√

0.012 + 0.012 + 0.022 + 0.052 = 0.06.

Case 1 is probably more applicable, but we adopt the larger error, case 2, as a pre-
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Table 3.6: The sensitivity of fodd to ξ. Temperature and log g are fixed at 5750 K and 3.7 respec-
tively. case 1 : The sensitivity of fodd to microturbulence when macroturbulence is re-evaluated to
compensate for the change to microturbulence. case 2 : The sensitivity of fodd to microturbulence
when macroturbulence is fixed at the value calculated when ξ = 1.4.

ξ vconv fodd

(km s−1) (km s−1) 4554 Å 4934 Å
case 1 case 2 case 1 case 2 case 1 case 2

1.3 5.81 ... 0.01 0.06 0.11 0.14
1.4 5.75 5.75 0.01 0.01 0.11 0.11
1.5 5.68 ... 0.01 -0.04 0.11 0.07

caution, i.e. ±0.06. We now move on to errors and uncertainties associated with the

4934 Å line.

3.5.2 The 4934 Å line

In order to assign an uncertainty in fodd to the 4934 Å line we must also explore how

uncertainties in the Fe blend (see Table 3.3) affect fodd.

We explored how the equivalent width of the Fe blend is affected by temperature and

log g. As in Tables 3.5 and 3.6, we computed two cases where we allow macroturbulence

and [Fe/H] to vary with varying temperature and log g (case 1) and where we have fixed

macroturbulence and [Fe/H] (case 2) - in Table 3.5.

The net result of an increase in log g, decrease in macroturbulence, and increase in

[Fe/H], is a small increase in synthesized WFe, but these effects are minimal compared to

the effects that macroturbulence has on fodd. Consequently we see a similar behaviour

in fodd (Table 3.5, column (11)) as that exhibited by the 4554 Å line (column (9)) (a

roughly linear increase in fodd with log g with ∆fodd,4934 comparable to ∆fodd,4554).

In case 2 an increasing temperature decreases the equivalent widths of the Fe lines.

Unlike case 1, macroturbulence and A(Fe) are not compensating for the increasing

ionisation fraction meaning that Fe I level populations are decreasing. This decreases

the strength of the Fe lines, decreasing their equivalent widths.

As log g is driven up in case 2, we find that the equivalent widths are decreasing,

recall that A(Fe) is fixed in case 2. Overall, however, we see little or no change in fodd

in column (12) in Table 3.5.
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We also investigate how the log gf values, which are not well known for the two Fe

lines, affect fodd. The 4934 Å line is driven to a pure r-process fraction if the Fe blend

is eliminated from the line list, so we would expect that fodd would be quite sensitive to

log gf . Table 3.3 shows the parameters of the two lines. We analyse the case that the

log gf values have an error ±0.15 as a heuristic estimate. Table 3.7 shows how fodd for

the 4934 Å line is affected by this increase/decrease in Fe strength. We have tabulated

the results for fodd for all values of temperature and log g we use in our sensitivity

analysis. It can be seen for case 2 at a temperature of 5500 K and where the Fe blend

strengths have been increased, that fodd becomes so small and so non-physical that

our χ2 program cannot find a minimum solution. Similarly this is seen in case 1 at a

temperature of 6000 K. It is clear from Table 3.7 that for 4934 Å, fodd is more sensitive

to the uncertainty in the strengths of the Fe lines than the atmospheric parameters.

We see in case 1 that as we alter the Fe log gf by ±0.15, fodd is altered by ∓0.18. This

means that when added in quadrature to the error discussed in §3.5.1, we find that for

case 1, fodd = 0.11± 0.18. For case 2, fodd = 0.11± 0.19. We take the error to be the

average of the two, so fodd = 0.11± 0.19.
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3.5.3 Overall result

Inverse-variance-weighting the results for 4554 Å (0.01) and 4934 Å (0.11) give an over-

all result fodd = 0.02± 0.06 when macroturbulence is modelled as a Gaussian. When a

radial-tangential broadening mechanism is used we find that inverse-variance-weighting

gives an overall result fodd = −0.02± 0.06.

So far the uncertainties discussed in the section have been limited to errors in

Teff , log g, vconv and log gf . We have not yet quantified the impact of finite S/N and

possible systematic errors associated with a 1D LTE analysis. We recall from §3.3.2

that systematic errors of order 0.09 may arise from using Fe lines to estimate, in 1D,

the macroturbulent broadening of Ba. We discuss this further in §3.7. We shall now

move on and discuss the Eu abundance and the various implications of the Ba and Eu

results.

3.6 Europium abundance limit

Within our spectral range (4118−6253 Å) there are two Eu II resonance lines, 4129.70 Å

and 4205.05 Å. Honda et al. (2006) report that the latter has a known blend with a

V I line. Gilroy et al. (1988), Magain (1989) and Gratton & Sneden (1994) report

[Eu/H] to be −2.31, −2.49 and −2.41 respectively. However, these lines do not appear

strongly in our spectrum. This becomes clear when studying Fig. 3.9, which presents

the observed data and several synthetic spectra. The Eu line lists were constructed

using hyperfine splitting information from Krebs & Winkler (1960) and Becker et al.

(1993). We acknowledge that more recent hyperfine splitting information is available

from Lawler et al. (2001), which is in good agreement with Krebs & Winkler (1960)

and Becker et al. (1993) but we do not use that data here. An isotopic ratio of 0.5:0.5

for Eu 151:153 was chosen for the r- and s-processes (the solar system isotopic ratio

of Eu 151:153 is 0.48:0.52 (Arlandini et al., 1999)), and gf values from Biemont et al.

(1982) and Karner et al. (1982) were used. The synthetic spectra were produced

using KURUCZ06 model atmospheres in conjunction with the 1D LTE code ATLAS. The

macroturbulence and [Fe/H] was set at values calculated in §3.3.2.
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Fig. 3.9: Synthetic spectra for the Eu 4129 and 4205 Å lines for [Eu/H] = −2.80 and for the abundances
calculated in three other studies of this star (see text). It is clear that they over estimate the strength
of both lines. While the 4205 Å line includes several blends particularly V II 4205.09 Å, the 4129 Å has
none. We show the V II line separately in the right-hand panel (dot-line).

The Eu 4205 Å synthesis includes several blends which

we have adopted from the Kurucz theoretical database

(http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html). The dom-

inant blend is a V II line at λ = 4205.09 Å, which has a gf value of 0.089 and

χ = 2.04 eV. The abundance of V was taken as the solar abundance scaled to the

metallicity. We found no blends associated with the 4129 Å line. As these line

blends are theoretical, we make no claim that the abundances we deduce from the Eu

analysis are as accurate as the analysis conducted on the Ba lines. We interpret the

absorption feature at 4205.1 Å as due to V II, not Eu, as it is much narrower than the

synthesised, hfs-broadened Eu line. Moreover if it were Eu, not V, it would require

an abundance inconsistent with the weakness of the Eu 4129 Å line. We find that a

[Eu/H] abundance of −2.80 seems to be a generous upper limit on the Eu abundance,

rather than a genuine detection and lower than the cited detections. Therefore we

assign a lower limit [Ba/Eu] > −0.66. This marginally excludes an r-process ratio,

http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html
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whether we assume an r-process limit set in Burris et al. (2000) (−0.81, which were

calculated using the Anders & Grevesse (1989) isotopic abundances) or Arlandini

et al. (1999) (−0.69). A pure s-process ratio (+1.45, (Burris et al., 2000) or +1.13,

(Arlandini et al., 1999)) or a mixed s- and r-process regime, is compatible with the

data. However, our [Ba/Eu] limit does agree well with observations found in François

et al. (2007) for stars of similar metallicity to HD 140283.

We shall now move on and discuss the various implications of the results found in

this paper and look at possible solutions to reduce systematic errors associated with a

1D LTE analysis.

3.7 Discussion

We have found that fodd = 0.02 ± 0.06, and hence the r-process fraction implies a

purely s-process signature of Ba in HD 140283. The [Ba/Eu] ratio, > −0.66, is also

marginally inconsistent with a pure r-process regime. The isotope result does not

entirely contradict previous work by Lambert & Allende Prieto (2002) and Collet et al.

(2009) since, due to the size of their 1σ errors, an s- or r-process isotopic mixture was

feasible (see Fig. 3.1). Although we find that fodd for the 4554 Å line is non-physical

(at the 1.8σ level) based on Arlandini et al. (1999), we must consider the possibility

that the adopted s- and r-process isotope contributions may not be accurate, as they

are based on our simplified understanding of nucleosynthesis, which could be flawed.

For example, the Arlandini et al. (1999) calculations give a solar-system r-process

isotopic ratio, and we cannot be certain that this applies in the Galactic halo. However,

metal-poor stars with r-process enhancements do at least have similar neutron-capture

abundance patterns to the Sun, e.g. CS 22892-052 (Sneden et al., 1996).

We also question whether the S/N ratio is high enough to measure these fractions

accurately, and whether a 1D LTE analysis is an adequate tool in investigating isotopic

ratios at these high levels of S/N , by looking at the confidence limits of the χ2 minima,

which we now discuss. The fact that our best fitting spectra have χ2
r values significantly

greater than 1 (χ2
r = 6.6 and 2.0 for the 4554 Å and 4934 Å line respectively) indicates
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that the χ2 denominator (σi) is not a good description of the deviation of the model

spectrum from the data. We interpret the high χ2
r values to indicate that systematic

errors are present which exceed the random fluctuations in the signal. This influence is

confirmed by inspection of Figs. 3.6, 3.7 & 3.8, where it can be seen that the residuals

do not oscillate randomly from one pixel to the next but rather seem to meander over a

cycle of a few pixels. In short, this tells us that the failure of the model profile to match

to the data exceeds the error due to noise (mostly photon noise) in the spectrum, and

hence σi as judged from the S/N underestimates the true residual. From Fig. 3.6 it

can be seen that the best fit under-fits the core of the lines in order to fit the wings of

the lines better. The r-process contributes more to the wings of the line, see Fig. 3.4

and Table 3.2. It is interesting to note that we under-fit the red wing of the 4554 Å

line between 4554.11 Å and 4554.17 Å (see Figs. 3.6 & 3.7). Lambert & Allende Prieto

(2002) and Collet et al. (2009) in 1D, see the same residual feature at this wavelength

interval. When they reanalysed the line in 3D, Collet et al. (2009) appeared to remove

the feature in the wing. This would suggest that it is a result of convection in a 3D

atmosphere rather than a feature induced by inaccuracies when calculating the isotopic

shifts. We suspect that the error arises due to the assumptions used in 1D LTE codes

that are unable to correctly model physical conditions in a 3D atmosphere.

To explore this further, we have searched for evidence of asymmetries in the Fe line

data. We have produced two Fe line plots by co-adding the residuals from all 93 lines

to find an average residual, shown in Fig. 3.10 (top panel). The lower panel shows

the average residual for the 82 Fe lines found to have no additional features or close

non-Fe lines within the window over which the χ2 analysis is calculated (0.6 Å). Lines

marked with an asterisk in Table B.1 denote the 11 Fe lines that were rejected. For one

plot (dash-dot curve) the average residuals (obs-syn) are based on synthetic spectra

calculated using the average wavelength shift (-12.04 mÅ) and average macroturbulence

(5.75 km s−1) for all Fe lines. The average residual is very asymmetric, in that the blue

wings are better fit than the red wings. The large residuals in the red wings, around

60−170 mÅ from the line centre, are clearly not due to errors in the central wavelengths

of the Fe lines, which are known to better than 1 mÅ (§3.3.2).
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Fig. 3.10: Average residuals for fits to 93 Fe lines, for two cases. It is quite clear that assuming a
constant wavelength shift and macroturbulence is adequate when working in 1D LTE but assuming
1D LTE when dealing with high quality data is not. Top panel : the reduced-noise residual plot for
all 93 lines. Bottom panel : the reduced-noise residual plot for 82 lines without other close absorption
features. Lines not included in lower panel are noted with an asterisk in Table B.1.

We also computed a new set of synthetic spectra using the optimised vconv and

∆λ values belonging to each Fe line as found from the χ2 analysis (see Table B.1),

and recalculated the residuals (obs-syn) for these. These new residuals were coadded

and averaged, and plotted in Fig. 3.10 (solid curve). These slightly reduce the overall

amplitude of the residuals, as expected since we are optimising the fit to each Fe line.

However, even after allowing each one to be optimised, the residuals are still quite

asymmetric, with the red wings standing out as having larger residuals than the blue

wings. From Fig. 3.10 we can see that a similar red feature to the one we see in Fig. 3.6

for Ba is present in both Fe residual plots, and appears at the same distance from the

centroid of the Fe lines as the residuals for the Ba 4554 Å line (∼ 100 mÅ). The feature

remains whether we optimise vconv and ∆λ or not. We suspect this feature may be the

result of convection in the observed, dynamic atmosphere, similar to the feature seen
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in the Ba spectrum, that underlying assumptions in 1D LTE do not compensate for.

Collet et al. (2009) conduct a 3D analysis of HD 140283. Our measurements of

the residuals for the Fe lines provide a future test of whether 3D modelling produces

similar residuals. We hope to explore this at a later date. As the 3D process calculates

the velocity field ab initio, there is no concept of micro- or macroturbulence in that

framework. Consequently, Collet et al. (2009) ascribe any excess broadening to stellar

rotation, and for this they infer v sin i = 2.5 km s−1. We note that the upper limit on

v sin i which we infer for zero macroturbulence is 3.9 km s−1. Their value is compatible

with our limit. We note that Collet et al. (2009) find a lower r-process fraction for

HD 140283 using a 3D analysis than they find for 1D. If our findings are similar, then

this will further accentuate the difference between the analysis of HD 140283 and the

expectations based on Truran’s hypothesis.

One possible alternative explanation of the asymmetries is that we are seeing the

combined spectra of more than one star, offset in velocity. It may be difficult to

generate the observed levels of asymmetries for a realistic second star, and we have

not attempted to do so, but note this possibility nonetheless. We also note that the

radial velocity of HD 140283 has been steady to ±0.35 km s−1 over long periods of time

(Lucatello et al., 2005), decreasing the likelihood that it is a binary.

Finally we shall move on to discuss the conclusions we have drawn from our analysis

of the isotopic ratio of Ba in HD 140283.

3.8 Conclusions

We have used very high quality data (S/N = 870 − 1110, R ≡ λ/∆λ = 95 000)

to analyse the Ba isotopic fraction and the Eu abundance limit in the metal-poor

subgiant HD 140283. We obtain [Fe/H] = −2.59 ± 0.09, [Ba/Fe] = −0.87 ± 0.14, and

[Eu/H] < −2.80. Using a 1D LTE analysis, we find fodd = 0.02± 0.06, corresponding

to a Ba isotopic fraction which indicates a 100% contribution by the s-process. This

result contradicts the theory put forward by Truran (1981). The result published by

Lambert & Allende Prieto (2002) has error bars which are too broad to allow one to
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state conclusively that HD 140283 is r-process dominated. We have set a new lower

limit to the [Ba/Eu] ratio, [Ba/Eu] > −0.66. This lower limit marginally rules out

a pure r-process ratio in HD 140283, consistent with the isotopic fraction for Ba. A

new high resolution spectrum with a greater S/N around the 4129 Å line is needed to

constrain a genuine abundance for Eu.

We have also carried out a careful examination of the 4934 Å line, which is more

sensitive to the effects of hyperfine-splitting. We found that, due to the lack of labora-

tory gf data surrounding the Fe blend affecting the wings of this line, it is less effective

as a tool to analyse the isotopic mixture than Ba 4554 Å.

By examining the spectral residuals for 93 Fe lines and for Ba 4554, 4934 Å, we

find strong line asymmetries in the red wing. These may show the shortcomings of

using a 1D LTE analysis to explore isotope ratios; using a more sophisticated 3D

analysis may be warranted. We are looking to take this work further in the future

and analyse HD 140283 using a 3D code. We note that Collet et al. (2009) find a

lower r-process fraction for HD 140283 using a 3D analysis than they find for 1D. If

our findings are similar, then this will further accentuate the difference between the

analysis of HD 140283 and the expectations based on Truran’s hypothesis.

We set a new limit on the rotation of HD 140283: v sin i < 3.9 km s−1.
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investigation. SGR wishes to acknowledge Ph.D. thesis work by Blake (2004) on a spec-

trum of HD 140283 which, while not having the benefit of a large number of Fe lines

for the determination of macroturbulence, nevertheless gave a value fodd = 0.08±0.11.



References

Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197 [ADS]

Aoki, W., Inoue, S., Kawanomoto, S., Ryan, S. G., Smith, I. M., Suzuki, T. K., &
Takada-Hidai, M. 2004, A&A, 428, 579 [ADS]

Argast, D., Samland, M., Thielemann, F.-K., & Qian, Y.-Z. 2004, A&A, 416, 997
[ADS]

Arlandini, C., Käppeler, F., Wisshak, K., Gallino, R., Lugaro, M., Busso, M., &
Straniero, O. 1999, ApJ, 525, 886 [ADS]

Becker, O., Enders, K., Werth, G., & Dembczynski, J. 1993, Phys. Rev. A, 48, 3546
[ADS]

Biemont, E., Karner, C., Meyer, G., Traeger, F., & Zu Putlitz, G. 1982, A&A, 107,
166 [ADS]

Blake, L. A. J. 2004, PhD thesis, Open University (United Kingdom) [ADS]

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957, Reviews of Modern
Physics, 29, 547 [ADS]

Burris, D. L., Pilachowski, C. A., Armandroff, T. E., Sneden, C., Cowan, J. J., & Roe,
H. 2000, ApJ, 544, 302 [ADS]

Busso, M., Gallino, R., Lambert, D. L., Travaglio, C., & Smith, V. V. 2001, ApJ, 557,
802 [ADS]

Clayton, D. D. & Rassbach, M. E. 1967, ApJ, 148, 69 [ADS]

Collet, R., Asplund, M., & Nissen, P. E. 2009, Publications of the Astronomical Society
of Australia, 26, 330 [ADS]

Cottrell, P. L. & Norris, J. 1978, ApJ, 221, 893 [ADS]

Cowley, C. R. & Frey, M. 1989, ApJ, 346, 1030 [ADS]

de Medeiros, J. R., Silva, J. R. P., Do Nascimento, Jr., J. D., Canto Martins, B. L., da
Silva, L., Melo, C., & Burnet, M. 2006, A&A, 458, 895 [ADS]

François, P., Depagne, E., Hill, V., Spite, M., Spite, F., Plez, B., Beers, T. C., Andersen,
J., James, G., Barbuy, B., Cayrel, R., Bonifacio, P., Molaro, P., Nordström, B., &
Primas, F. 2007, A&A, 476, 935 [ADS]

Freiburghaus, C., Rosswog, S., & Thielemann, F. 1999, ApJ, 525, L121 [ADS]

Fulbright, J. P. 2000, AJ, 120, 1841 [ADS]
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Chapter 4: The barium isotopic

mixture in five metal-poor stars

The following chapter contains the unedited journal paper published by Gallagher,

Ryan, Hosford, Garćıa Pérez, Aoki, & Honda (2012), which was submitted and accepted

for publication in Astronomy & Astrophysics.

Abstract

Theory and observations of heavy element nucleosynthesis are in conflict with one-

another. Theory states that in the most metal-poor stars, the rapid (r-) neutron-

capture nucleosynthetic process would be dominant over the slow (s-) process. The

most recent determinations of r- and s-process yields do not support this. We provide

measurements of the Ba isotopic fractions for five metal-poor stars derived with a

local thermodynamic equilibrium (LTE) analysis with 1D model stellar atmospheres.

This increases the comparisons with heavy element nucleosynthesis theory. We use high

resolution (R ≡ λ/∆λ = 90 000−95 000), very high signal-to-noise (S/N > 500) spectra

to determine the fraction of odd Ba isotopes (fodd) by measuring subtle asymmetries

in the profile of the Ba II line at 4554 Å. We also use two different macroturbulent

broadening techniques, Gaussian and radial-tangential, to model the Fe lines of each

star, and propagate each technique to model macroturbulent broadening in the Ba

4554 Å line. We conduct a 1D non-LTE (NLTE) treatment of the Fe lines in the red

giant HD 122563 and the subgiant HD 140283 in an attempt to improve the fitting. We

determine [Ba/Eu] ratios for the two giants in our study, HD 122563 and HD 88609,

which can also be used to determine the relative contribution of the s- and r-processes

to heavy-element nucleosynthesis, for comparison with fodd. We find mathematical

solutions of fodd for HD 122563, HD 88609 and HD 84937 of −0.12±0.07, −0.02±0.09,

and −0.05 ± 0.11 respectively. BD+26◦ 3578 yielded a value for fodd = 0.08 ± 0.08.

Only BD−04◦ 3208 was found to have a physical fodd ratio of 0.18± 0.08. This means

that all stars examined here show isotopic fractions more compatible with an s-process
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dominated composition. The [Ba/Eu] ratios in HD 122563 and HD 88609 are found

to be −0.20± 0.15 and −0.47± 0.15 respectively, which indicate instead an r-process

signature. We report a better statistical fit to the majority of Fe profiles in each

star when employing a radial-tangential broadening technique during our 1D LTE

investigation. With the increase of the number of stars for which the Ba isotope

fraction fodd has been measured, and the nature of their results, there is now a stronger

argument to suggest that other synthesis codes that employ alternative approaches to

radiative transfer (e.g. 3D hydrodynamics) have to be considered to tackle the high

level of precision required for the determination of isotopic ratios. We have shown that,

from a statistical point of view, one must consider using a radial-tangential broadening

technique rather than a Gaussian one to model Fe line macroturbulences when working

in 1D. No improvement to Fe line fitting is seen when employing a NLTE treatment of

the Fe lines.

4.1 Introduction

Nuclei heavier than the Fe-peak are mainly synthesised via two neutron-capture pro-

cesses, the slow (s-) and rapid (r-) process. For the s-process, neutron-capture rates

are much lower than β-decay rates in unstable isotopes, whereas for the r-process,

neutron-capture rates are higher than β-decay rates. Each n-capture process has a dif-

ferent site for nucleosynthesis (Burbidge et al., 1957). Low- to intermediate-mass stars

(1 M� . M . 8 M�) evolving along the thermal pulsing asymptotic giant branch (TP-

AGB) provide the necessary conditions for the “main” s-process, which is responsible

for the majority of the s-process elements in the solar-system between 88 ≤ A ≤ 204

(Sneden et al., 2008), releasing free neutrons via 12C(p, γ)13N(β+νe)
13C(α, n)16O re-

action occurring in the He-rich zone in radiative conditions (Straniero et al., 1997).

Evidence of active s-processing in TP-AGB stars can be seen through absorption line

detections of short lived 98Tc and 99Tc isotopes (Smith & Lambert, 1988, and references

therein) visible at 4238, 4262 and 4297 Å.

There are many candidates for r-process sites including neutron star explosions
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(Imshennik, 1992), neutron star surface explosions (Bisnovatyi-Kogan & Chechetkin,

1979) and neutron star winds (Panov & Janka, 2009; Wanajo et al., 2001), to name

a few. However, presently the most favoured sites for the r-process are core-collapse

supernovae (Wanajo & Ishimaru, 2006). Extreme temperatures and run away nuclear

processes produce an extremely high fluence of free neutrons (Wanajo et al., 2003),

which are necessary for r-process nucleosynthesis.

The presence of seed nuclei with high n-capture cross-sections (σ), such as Fe,

is critical for n-capture nucleosynthesis. As low- to intermediate-mass stars cannot

synthesise nuclides up to the Fe-peak, high-σ nuclei must be present at the time of the

star’s formation for the s-process to occur. High-mass supernova progenitors (M >

8M�) reach high enough temperatures at the very end of their evolution immediately

before the supernova explosive phase to synthesise nuclides up to the Fe-peak. Unlike

the s-process, the r-process does not need the presence of high-σ nuclei at the time

of formation as they are produced in situ shortly before the end of the life of the

star. Also, low- to intermediate-mass stars are long lived in comparison to high-mass

stars. As such, r-process enrichment from supernovae explosions should dominate in

the early universe, i.e. in metal-poor regimes, with the s-process signatures becoming

increasingly dominant in more metal-rich regimes. This theory was set out by Truran

(1981) and the chemical evolution of n-capture elements from Ba to Eu was quantified

by Travaglio et al. (1999). Indications to support this theory can be seen in evidence

presented in François et al. (2007, their Fig. 14).

As the Galaxy becomes more metal-rich over time, s-process signatures in stars

begin to increase relative to the r-process for Ba (François et al., 2007). When one

compares the [Ba/Eu] ratios from François et al. (2007) with those from Mashonkina

et al. (2003), who study the metallicity at which the s-process begins to increase relative

to the r-process for the halo and thick disk respectively, there are variations in star-to-

star compositions which lead to different r- and s-process regimes for a given metallicity.

In particular François et al. (2007) find that the s-process begins to increase relative

to the r-process at [Fe/H] & −2.6, whereas Mashonkina et al. (2003) find this to occur

at [Fe/H] & −1.5.
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One potential way of detecting r- and s-process signatures in a star is to measure the

isotopic fractions in heavy elements using the profile of their absorption lines. There

are differences between pure s- and r-process isotope ratios in most heavy elements,

which can be in principle detectable through minute changes in line asymmetry. Ba is

an attractive heavy element for which to use of this method, as the hyperfine splitting

(hfs) of its 4554 Å line from the singly-ionised stage is quite large (Rutten, 1978) and

it offers the possibility of measuring the odd fraction (fodd
1) via resolved asymmetric

lines.

The r- and s-process are responsible for five of the seven stable isotopes of Ba (the

lightest two, 130,132Ba, arise in the so-called p-process (Burbidge et al., 1957)). Whereas

the s-process can synthesise all five Ba n-capture isotopes, shielding by 134,136Xe pre-

vents the r-process from synthesising two of the even isotopes, 134,136Ba.

Using nucleosynthesis calculations (Arlandini et al., 1999), the values of fodd can be

determined for the r- and s-process. For a fully s-process regime, fodd,s = 0.11± 0.01,

and in a fully r-process regime, fodd,r = 0.46 ± 0.06. Gallagher et al. (2010) show a

linear relationship between fodd and r- and s-process contributions for Ba determined

from Arlandini et al. (1999). Values of 0.0 ≤ fodd < 0.11 or 0.46 < fodd ≤ 1.0 are

not physical in the context of the nucleosynthesis model but are achievable from more

ad hoc isotopic mixes. However, we have assumed that the theory in Arlandini et al.

(1999) is accurate and we state throughout our paper that any value of fodd which lies

outside the limits 0.11 ≤ fodd ≤ 0.46 is non-physical.

From the point of view of spectroscopy, the even Ba isotopes contribute principally

to the formation of the line centre in the Ba II 4554 Å line. The odd isotopes, which

are hyperfine split, contribute to the spectral region closer to the wings of the line (see

Fig. 4.1). The relative strength of the odd isotopes located toward the blue wing are

smaller than those located toward the red wing and are further from the line core. As

such, when the odd isotope contribution to the total line strength is increased, the

asymmetry in the absorption line’s profile is increased. When Ba is dominated by the

s-process, more of the abundance is associated with the even isotopes, which contribute

1fodd = [N(135Ba) +N(137Ba)]/N(Ba)
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to the line near its centre; the line profile has a deeper core with shallower wings and

the line’s asymmetry is reduced.

There are, however, difficulties in determining isotopic fractions in Ba, chief among

which is the high precision required in the analysis of fodd, which demands the highest

quality observations and radiative transfer models. Issues then arise when complex

astrophysical behaviours, such as convection, start to become visible in the high quality

stellar data. Basic assumptions used in conventional spectrum synthesis codes that

assume a plane-parallel geometry (1D) and local thermodynamic equilibrium (LTE)

cannot actually replicate the observed Ba II 4554 Å line profile (Gallagher et al., 2010).

The well studied metal-poor subgiant, HD 140283 illustrates the difficulties that

are encountered when determining fodd, which has been attempted several times for

this star. Gallagher et al. (2010) find [Fe/H] = −2.59 ± 0.09 and a low [Ba/Fe] ratio

= −0.87 ± 0.14, which seemingly point to an r-process origin as Ba is mainly an s-

process element in the solar system. Yet according to their isotopic analysis they find

fodd = 0.02 ± 0.06, which agrees with the result published by Magain (1995), who

finds fodd = 0.08 ± 0.06. Both isotope fractions indicate a fully s-process regime,

contradicting the Truran (1981) model. However, measurements of fodd in 1D LTE by

Lambert & Allende Prieto (2002) and (for the same spectrum) Collet et al. (2009) show

HD 140283 to be slightly r-process dominated with fodd = 0.30±0.21 and fodd = 0.33±

0.13 respectively, which contradicts Magain (1995) and Gallagher et al. (2010). When

Collet et al. (2009) reanalysed the same spectrum again using 3D hydrodynamic model

stellar atmospheres they found fodd = 0.15±0.12, indicating an s-process signature and

supporting results from Magain (1995) and Gallagher et al. (2010). If the three studies

showing HD 140283 to have an s-process signature are correct, the contradiction with

Truran’s paradigm could be explained by how s- and r-processes vary with [Fe/H], or

by the inhomogeneity of the interstellar medium (ISM) when this halo star formed, in

which case star-to-star variations of n-capture signatures would be common. The cause

of the discrepancy between the results of the various studies of HD 140283 is unclear.

Unlike Ba, Eu in the solar system has a predominantly r-process contribution,

which Arlandini et al. (1999) calculates to be 94% of the total Eu. Both stable Eu
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isotopes, 151,153Eu, show significant r-process contributions relative to the s-process

and these occur in almost equal amounts at a ratio of 0.48:0.52 for 151:153 (Arlandini

et al., 1999). High abundances of Eu in metal-poor stars indicate a strong r-process

signature (Spite & Spite, 1978; Sneden et al., 2008). Therefore it is common practice

to use the [Ba/Eu] ratio as an indicator of a star’s r- and s-process ratio (Burris et al.,

2000; Honda et al., 2006, 2007; Sneden et al., 2008).

Limits on [Ba/Eu] abundance ratios can be set for pure s- and r-processes and are

found to be +1.45 and −0.81 respectively (Burris et al., 2000), which were calculated

using solar abundances in Anders & Grevesse (1989). Using the theoretical abundances

in Arlandini et al. (1999), we find the [Ba/Eu] limits for the s- and r-processes to be

+1.13 and −0.69 respectively.

Gallagher et al. (2010) highlighted the issues that arise when fitting Fe lines assum-

ing 1D LTE, particularly in the wings of the line, and plotted the average residual for all

the Fe lines analysed. They demonstrated the asymmetries that occur in line formation;

1D LTE radiative transfer codes cannot replicate asymmetries. Gallagher et al. (2010)

speculated that a spectroscopic analysis based on 3D radiation-hydrodynamic model

stellar atmospheres may resolve these problems. In addition they found irregularities

between the observed and synthetic profiles in the Fe line’s core.

In this paper we determine the isotopic fractions of Ba in a further five metal-poor

stars under the assumption of 1D LTE. We describe the observations in §4.2, and the

1D LTE analysis of the Ba 4554 Å line in §4.3. Due to the lack of metals in metal-poor

stars, i.e. stars with [Fe/H] < −2, electron number densities are low, which drives

down opacities in the atmosphere of late-type stars. Therefore assuming LTE in line

forming regions of the stellar atmosphere is no longer valid (Mashonkina et al., 2008).

In §4.4 of the work presented here we test whether the irregularities seen in the Fe

line residuals are due to LTE departures, using a non local thermodynamic equilibrium

(NLTE) treatment for HD 140283 and HD 122563. We discuss the results in §4.5.
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4.2 Target selection and observations

The stellar spectra used in this study are almost the highest quality spectra of very

metal-poor stars obtained using the High Dispersion Spectrograph (HDS) (Noguchi

et al., 2002) at the Subaru 8.2 m Telescope. All have high resolution (R ≡ λ/∆λ =

90 000 − 95 000, calculated from the widths of several hundred ThAr lines), and high

signal-to-noise (S/N > 500 per pixel, as measured around 4500 Å). Such spectra are

essential for an accurate measurement of fodd. Specifics of the observations can be

found in Table 4.1.

Table 4.1: Details of the observations of the stellar spectra.

Star Date Exp. Time (min) S/N R
HD 140283 22/07/01 82 1100 95 000

HD 88609 20/04/04 210 750 90 000
19/10/05
20/10/05

HD 122563 30/04/04 90 850 90 000

HD 84937 22/03/03 180 630 95 000

BD+26◦ 3578 17/05/05 130 550 95 000

BD−04◦ 3208 18/05/05 180 580 95 000
19/05/05

Table 4.2 shows previous results on Ba published for four of the stars studied in this

paper. It further illustrates the difficulties in determining fodd, in that for HD 122563,

fodd and [Ba/Eu] do not support each other2, while for HD 140283 there are large

discrepancies between fodd determinations.

The two giants in our study, HD 122563 and HD 88609, and one of the turn-off

stars, HD 84937, show a strong indication that Ba should be r-process dominated based

upon [Ba/Eu] abundance ratios calculated in Honda et al. (2006), Honda et al. (2007)

and Mashonkina et al. (2008). Mashonkina et al. (2008) complement the [Ba/Eu]

determination nicely in HD 84937 calculating fodd = 0.43± 0.14, indicating an almost

2One might take the view that these results are consistent with a mixed heavy element origin.
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fully r-process regime. However they found fodd in HD 122563 to be 0.22±0.15, a mostly

s-process regime, which contradicts the [Ba/Eu] abundances found in their study and

by Honda et al. (2006), see Table 4.2. We also calculate fodd for two more turn-off stars,

BD−04◦ 3208 and BD+26◦ 3578, neither of which have previous Ba and Eu analyses.

Table 4.2: Results from previous 1D LTE studies to determine [Ba/Eu] and/or fodd for stars studied
in this work.

Star [Fe/H] [Ba/Eu] fodd Reference
HD 140283 −2.59 > −0.66 0.01± 0.04 (1)

−2.40 ∼ −1.05 0.30± 0.21 (2)
−2.50 · · · 0.33± 0.13 (3)
−2.70 · · · 0.08± 0.06 (4)

HD 122563 −2.77 −0.50 · · · (5)
−2.53 −0.41 0.22± 0.15 (6)

HD 84937 −2.15 −0.69 0.43± 0.14 (6)
HD 88609 −3.07 −0.48 · · · (7)

(1) Gallagher et al. (2010), as measured by the 4554 Å line. (2) Lambert & Allende
Prieto (2002). (3) Collet et al. (2009). (4) Magain (1995). (5) Honda et al. (2006). (6)
Mashonkina et al. (2008). (7) Honda et al. (2007).

4.3 1D LTE analysis

In this section we briefly review the method used to determine the isotopic fractions,

abundances and broadening values of the stars in our sample. All synthetic spectra

in this section were created using the ATLAS (Cottrell & Norris, 1978) radiative transfer

code with KURUCZ06 model atmospheres (http://kurucz.harvard.edu/grids.html).

For a more extensive description of the processes involved in the following procedure,

we refer the reader to Gallagher et al. (2010). Results are provided in Table 4.3.

4.3.1 Barium line lists

Line lists with all hfs components of the Ba line at 4554 Å, which is used to determine

fodd, were constructed using isotopic information from Arlandini et al. (1999) and hfs

information from Wendt et al. (1984) and Villemoes et al. (1993) for pure s- and pure

r-process mixtures (corresponding to fodd = 0.11 and 0.46 respectively). Hybrid line

http://kurucz.harvard.edu/grids.html
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lists for −0.24 ≤ fodd ≤ 0.46 were created from these by adjusting the line strengths of

the Ba isotopes. Further details on this can be found in Gallagher et al. (2010) but we

remind the reader that fodd = 0.11 is the lowest value of fodd achieved in the s-process

of Arlandini et al. (1999); fodd = 0.00 is the lowest value of fodd achievable in an

even-only isotope mix, and that values of fodd < 0.00 are non-physical, mathematical

solutions only.

Isotopic abundances presented in Arlandini et al. (1999) which we use to determine

fodd,r and fodd,s were normalised (by Arlandini et al., 1999) to the s-process-only isotope

150Sm. We explored a renormalisation to 134Ba and 136Ba, but found little to no

change in fodd,r: 0.49 (renormalised to 134Ba) and 0.46 (renormalised to 136Ba). The

renormalisation does not affect fodd,s, which remains fodd,s = 0.11. This does not

significantly alter the interpretation of the results presented here.

No attempt was made to determine fodd for the 4934 Å line because, as showed

by Gallagher et al. (2010), analysis of this line is extremely difficult and yields large

errorbars due to Fe blends found in the wings of this line. Nor do we attempt to study

higher excitation lines of Ba, as their hyperfine splitting is much smaller than that at

4554 Å.

4.3.2 Determination of the macroturbulence

To recap on Gallagher et al. (2010), we use a χ2 code (derived from that of Garćıa Pérez

et al. (2009)) to compare the observed and synthetic spectra of a number of Fe I and

Fe II lines, computed for different abundances A(Fe)3, wavelength shifts ∆λ, and line

broadening parameters. Two different broadening approaches are used, as described

below. We derive, for each Fe line analysed, the best fitting abundance, wavelength

shift and broadening. An ordinary least squares (OLS) fit is calculated through the

wavelength-dependence of broadening and A(Fe) values to determine the best values

at 4554 Å.

3A(X) = log10

(
N(X)
N(H)

)
+ 12.
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Gaussian broadening

One approach to the macroscopic broadening is to adopt a Gaussian of FWHM =

vconv, representing the convolution of a Gaussian instrumental profile with a Gaussian

macroturbulent profile. As Lambert & Allende Prieto (2002) show, fodd is extremely

sensitive to vconv. They found δfodd/δvconv = −0.51 (km s−1)−1 for HD 140283. Gal-

lagher et al. (2010) found an even larger sensitivity, −0.7 (km s−1)−1. The effects of this

large sensitivity can be reduced by increasing the number of Fe lines, N , used to con-

strain vconv, as we take the error in vconv as the standard error, σ/
√
N , where σ is the

standard deviation of vconv values. In our work, only Fe lines of comparable equivalent

widths (W ) to the Ba II line are selected, so they would have similar formation depths

to the Ba line, implying that macroturbulent effects on Ba would be well described by

Fe. We also do not analyse strong lines where uncertain pressure effects in the line

broadening become significant.

The adopted atmospheric parameters for each star are listed in Table 4.3 (rows (1)

to (5)) and the derived broadening is given in row (7).

Radial-tangential macroturbulent broadening

In Gallagher et al. (2010) we compared three different broadening techniques to find

out which of them best fit the Fe lines. We found that using a rotational broadening

mechanism, where the macroturbulent broadening of the star was represented by v sin i

only (with the instrumental broadening still represented by a Gaussian), almost always

gave a worse fit than when we employed a simple Gaussian. However we found that

using a radial-tangential macroturbulent broadening technique (ζRT) allowed us to fit

spectral lines slightly better than the Gaussian mechanism. As a result, we have

continued to employ this broadening type in the current investigation for all five stars

and again for HD 140283, as well as the simple Gaussian approach. The prescription

we adopt for ζRT assumes equal speeds in the radial and tangential flows, and equal

temperatures (Gray, 2008).

The model spectra were synthesised with ATLAS using a grid of ζRT values ranging
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from 4.00 km s−1 to 9.00 km s−1 in steps of 0.2 km s−1. The instrumental broadening,

determined from ThAr lines, and represented as a Gaussian, was also included in the

synthesis. Each line was fit using the same χ2 code that was used in §4.3.2. Results

for ζRT can be found in Table 4.3 (rows (17) to (24)), where we have also listed the

number of lines that are best fit by the ζRT approach for each star.

4.3.3 The isotopic fraction of barium

Once vconv and ζRT were obtained for the two broadening mechanisms, the Ba II 4554 Å

line was analysed using a χ2 code very similar to the one described in §4.3.2 to find

values for the free parameters ∆λ, A(Ba) and fodd that minimise χ2 for the 4554 Å line

in each star. Results for fodd for Gaussian and radial-tangential broadening techniques

can be found in Table 4.3. The best fit Ba profiles are shown in Fig. 4.1 (Gaussian)

and in Fig. 4.2 (radial-tangential). From the Gaussian results we find for HD 122563,

HD 88609, HD 84937, BD−04◦ 3208 and BD+26◦ 3578 that fodd = −0.12±0.07, −0.02±

0.09, −0.05±0.11, 0.18±0.08 and 0.08±0.08 respectively. These results would suggest

that all stars examined here show a high s-process fraction.

4.3.4 The [Ba/Eu] ratio

In our sample only the two giants had Eu line strengths adequate to conduct a Eu

abundance analysis. This was done by examining the Eu II 4129 Å line. The Eu II

4205 Å line is not used in this study as it is blended with a V II line (Honda et al., 2006;

Gallagher et al., 2010) that can affect abundance determinations. Also no attempt is

made to analyse the isotopic splitting of 151,153Eu; we assume a fixed 50:50 isotopic

split of 151:153 when constructing the hfs-affected Eu 4129 Å line list. The Eu line list

for the solar r- and s-process ratio was constructed using hfs information from Becker

et al. (1993) and Krebs & Winkler (1960) with log gf values taken from Biemont et al.

(1982). Abundances for Eu are taken as those that satisfy the χ2 minimum. From

these abundances, and those found by the Ba analysis, [Ba/Eu] was calculated and the

results for both stars can be found in Table 4.3, row (10).
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Fig. 4.1: The best fit Ba II 4554 Å lines for each star, using a Gaussian broadening technique. Each
figure displays the observed Ba profile (diamonds) and the best fit synthetic profile (solid line), which
includes the error on fodd (dashed line). We have also included a schematic of the odd and even
isotopes for reference. The lower panel of each figure shows the residuals (obs-syn) of each fit as a
percentage. For reference we have included HD 140283, which was analysed in Gallagher et al. (2010).
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Fig. 4.2: The best fit Ba II 4554 Å lines for each star, using a radial-tangential broadening technique.
Each figure displays the observed Ba profile (diamonds) and the best fit synthetic profile (solid line),
which includes the error on fodd (dashed line). We have also included a schematic of the odd and
even isotopes for reference. The lower panel of each figure shows the residuals (obs-syn) of each fit as
a percentage.
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ćı

a
P

ér
ez

et
al

.
(2

00
9)

.
(5

)
G

al
la

gh
er

et
al

.
(2

01
0)

.



4.4 1D NLTE Fe line analysis 131

4.3.5 Error analysis

In Gallagher et al. (2010) we demonstrated how altering one stellar parameter can

force other parameters, in particular vconv, to compensate for its effect on fodd. In that

paper we called this case 1. The compensation by vconv was well illustrated when one

looked at the effects of changing the microturbulence (ξ). Once vconv was recalculated

from the Fe lines, the effect ξ had on fodd was nullified. As vconv partially compensates

for other changes in the stellar parameters as well, i.e. Teff and log g, their effect on

fodd is also reduced.

To calculate the error in fodd we look at five possible sources of error: vconv, ξ, Teff ,

log g and the Unsöld approximation enhancement factor, Eγ, which enhances the effect

of γ6,vdW in the Van Der Waals calculation, γ6 = γ6,vdWEγ. In our analysis we have

used Eγ = 2.2. To test the effect it has on vconv and fodd we have decreased this to

1.5. The effect of uncertainties in [Fe/H] on fodd is negligible and as such was ignored

(Gallagher et al., 2010). It is expected that every star belonging to the same stage of

evolution, i.e. giant, sub-giant and turn-off, would reproduce comparable sensitivities

to each stellar parameter. As such we have run each test for two of the five stars: to

test the sensitivity of fodd in the giants we have used HD 88609, and for the turn-off

stars we have chosen BD−04◦ 3208. However, we have run sensitivity tests of vconv

and ζRT for all stars as these parameters have the largest effect on fodd. The results

of the sensitivity of fodd can be seen in Table 4.3, rows (12) to (16) and rows (21) to

(24). The tests confirm that the fodd determinations are essentially unaffected by the

choice of Eγ, Teff or ξ, but log g and the macroturbulent broadening effects are more

important. It has been reported by Tajitsu et al. (2010) that the EEV 42-80 CCDs

used in the HDS suffer from nonlinearity. By investigating the differences between the

corrected and non-corrected spectra, we found that its effect on fodd was negligible.

4.4 1D NLTE Fe line analysis

In Gallagher et al. (2010) we aimed to constrain the macroturbulence of HD 140283

through the use of the Fe lines. Using the same method, we have also done this for five
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further stars in §4.3. This was done under the assumptions of LTE. However, it is well

known that Fe I suffers from the effects of NLTE (Thévenin & Idiart, 1999; Shchukina

et al., 2005) in metal-poor stars. We therefore sought to quantify NLTE effects for Fe

on the preceding analysis, in particular on the determination of macroturbulence, and

therefore the value of fodd. No attempt is made to determine NLTE corrections for Ba

itself, either in fodd or the [Ba/Eu] ratio. Mashonkina et al. (2008) demonstrated that

corrections to the abundance ratio are not significant enough to change the inferred r-

and s-process regime in a star. The determination of fodd assuming NLTE goes beyond

the scope of the work presented in this section.

To compute the Fe I profiles, a version of the NLTE code MULTI (Carlsson, 1986)

was used with modifications to include the effects of line-blanketing, described in Collet

et al. (2005). The code employs MARCS model atmospheres. The model atom used

was that adopted by Hosford et al. (2010). For a longer discussion on the model atom,

processes of NLTE radiative transfer and its impact on stars of this type, see Hosford

et al. (2010). It is important, however, to mention the parameter SH, the scaling factor

for the collisions due to H as described by the approximate Drawin formula (Drawin,

1968, 1969). Due to the uncertainties in the magnitude of the H collisions, the value

of SH is still uncertain and is treated differently by different works. Collet et al. (2005)

treats it as a free parameter and tests values SH = 1 and 0.001. Korn et al. (2003)

found a higher value, SH = 3, however in more recent work (Mashonkina et al., 2010)

the same group has constrained it to 0.1 based on an improved Fe atom. Here we

adopt the values 1 and 0.001; this gives us two sets of synthetic spectra, one with the

Drawin (SH = 1) description of H collisions, and a second close to maximal NLTE

effects (SH = 0.001). We also compute line profiles in LTE using MULTI.

NLTE calculations of Fe I line profiles were performed for two stars, the subgiant

HD 140283 and the giant HD 122563. The first was analysed so a comparison could be

made between this work and the LTE analysis of Gallagher et al. (2010). The second

was analysed to understand the NLTE effects on Fe I in giants, where the atmospheres

are more tenuous and also cooler, to act as a comparison to the LTE work in this paper.

Three sets of MULTI runs were completed for each star, one in LTE, and two in
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NLTE with the SH values mentioned above. A χ2 analysis procedure similar to the one

described in §4.3 has been used. Synthetic profiles were created over the parameter

space shown in Table 4.4. The extrinsic broadening was represented by a Gaussian con-

solidating both macroturbulence and instrumental broadening, the values FWHMG

in Table 4.4 representing the FWHM of the Gaussian.

Table 4.4: Ranges of parameters used to create the synthetic profiles in MULTI.

χ2 grid parameter ranges
A(Fe) FWHMG ∆λ

Star Run (mÅ) (mÅ)
HD 140283 LTEMULTI 4.28− 5.28 73− 119 ±25

SH = 1 4.66− 5.28 73− 119 ±25
SH = 0.001 5.00− 5.70 73− 119 ±25

HD 122563 LTEMULTI 4.00− 5.58 74− 114 ±25
SH = 1 4.00− 5.58 74− 114 ±25
SH = 0.001 4.68− 5.50 74− 114 ±25

The intention was to see if the observed Fe I profiles could be better fit by spectra

computed in NLTE, in particular for the giants, where the cooler atmospheres result

in larger line strengths (at fixed [Fe/H]). Here, the synthetic LTE core is too shallow

and the wings too broad even at the minimum χ2 value of the line. In switching to

NLTE, we hoped we might model the Fe lines better, and hence obtain better values

of macroturbulent broadening and, in later works, a more reliable value of fodd for Ba.

Table 4.5 gives the results from the χ2 analysis using MULTI, and the ATLAS LTE

results for comparison. The MULTI values are the mean of 51 lines for HD 140283 and 31

lines for HD 122563; errors are the standard error. Fewer lines are used in the MULTI

analysis than in the ATLAS LTE analysis due to the incompleteness of the adopted

model atom which leads to several of the lines not being computable in MULTI. Also,

after further scrutinizing the results, three lines from HD 140283 and three lines from

HD 122563 were removed from the analysis. This was due to either a poorly defined

continuum, or blending lines very close to the line of study.

A comparison of MULTI LTE and ATLAS LTE results shows that the abundances

and extrinsic broadening value are comparable for both cases, the only exception be-
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Table 4.5: Results from the NLTE analysis and the ATLAS LTE results for comparison.

Star Run 〈A(Fe)〉 〈vconv〉 (km s−1)
HD 140283 LTEMULTI 4.96± 0.01 6.03± 0.04

SH = 1 5.28± 0.01 5.98± 0.05
SH = 0.001 5.53± 0.01 5.92± 0.04
LTEATLAS 4.92± 0.04 5.76± 0.09
(51 line subset)
LTEATLAS 4.91± 0.01 5.75± 0.02
(93 lines)

HD 122563 LTEMULTI 4.58± 0.03 7.02± 0.10
SH = 1 4.98± 0.03 6.95± 0.09
SH = 0.001 5.12± 0.03 6.91± 0.09
LTEATLAS 4.54± 0.11 7.06± 0.18
(31 line subset)
LTEATLAS 4.51± 0.04 6.99± 0.07
(54 lines)

ing the broadening values of HD 140283, which is the most important parameter as

it directly affects fodd. For HD 140283 we have larger values in NLTE than that of

Gallagher et al. (2010). Table 4.5 shows that for HD 140283, choosing the same 51 line

subset doesn’t “fix” the discrepancy. For HD 122563 the difference is much smaller and

is within the errors. One could naively ascribe this difference to be discrepancies in

the MARCS and KURUCZ model atmospheres, e.g. different temperature gradients and

density gradients. However, a comparison between the MARCS and KURUCZ model

atmospheres can be found in Hosford (2010), who found little to no effect by these

parameters. It is most likely that the differences arise from the different treatments

of the broadening itself in MULTI and ATLAS. We see comparable wavelength shifts

between the two analyses, and comparable profiles for each line. In NLTE we see an

increase of abundance with decreasing SH due to the overionisation effects becoming

more pertinent; thus a larger positive abundance is needed for neutral lines to compen-

sate. As a consistency check, NLTE abundances from the χ2 analysis were compared

to those from an equivalent width analysis and were found to be comparable at each

SH value.

An interesting thing to note here is the sensitivity of vconv to the SH value and the
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difference between LTE and NLTE values. For both stars, vconv decreases by 0.1 km s−1

in going from MULTI LTE to MULTI SH = 0.001. Naively, one might infer from Table 4.3

that this would increase fodd from an LTE analysis of Ba 4554 Å between 0.06 and

0.09. However, some of this difference may not fully apply to Ba calculated in LTE,

due to different broadening under NLTE. Nonetheless, it points to the importance of

an accurate description of the radiative transfer if one is to be able to determine fodd.

Fig. 4.3: Plots of average residuals from χ2 analysis of Fe lines in HD 140283 and HD 122563, for
SH = 1, 0.001 and LTE using MULTI. For comparison we have generated the same plot using ATLAS

output data for the same subsets of lines.

One hope of the NLTE analysis was that it may aid in fitting the stronger Fe lines

of the giant by producing more realistic line profiles, and hence reduce the residuals

in the Fe analysis (see Gallagher et al., 2010, their Fig. 10). In Fig. 4.3 we regenerate

the plot of average residuals for HD 140283 using a MULTI analysis of 51 Fe lines. We

have co-added the residuals from each Fe line to smooth out any unique line defects.

The residuals are of similar magnitude to those from Gallagher et al. (2010) and have

similar features. Most importantly, the MULTI residuals for NLTE with different SH
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values and for LTE are all very similar. There is in fact a very slight worsening of the

core fit with increased NLTE effects. It is also seen that the residuals for HD 122563

are of a similar form, albeit with a greater magnitude. The lines analysed in HD 122563

are far stronger than those in HD 140283. As the lines become stronger, they become

harder to fit precisely, but using NLTE profiles has no effect on improving this.

The fact that the MULTI NLTE analysis has led to no improvement over the MULTI

LTE analysis in the fit of the Fe lines is not entirely surprising. In fact when compared

to the ATLAS analysis for the same subset of Fe lines (seen in red) there is a considerable

worsening of the residuals, particularly for HD 140283, although NLTE effects were still

important to investigate. The effects of NLTE on Fe I in metal-poor stars are dominated

by overionisation. To a first approximation, the populations of neutral Fe energy levels

can be seen as following a Boltzmann distribution relative to one another, but with a

shift in the ionization equilibrium. The results show that this does not affect the shape

of the profiles, though for a given equivalent width the abundance needed to reproduce

the line increases. The other main NLTE effect, a change in the line and continuum

opacities with height in the atmospheres, apparently has little overall effect on the Fe I

line profiles.

In summary, NLTE effects in Fe affect vconv by up to ∼ 0.1 km s−1, and may affect

fodd for Ba up to 0.06 or 0.09, but NLTE does not result in a better fit to the Fe lines

(Fig. 4.3). Other mechanisms may come into play, e.g. as represented by 3D model

atmospheres. It would still be interesting to see, however, how a NLTE treatment of

Ba affects the inferred fodd.

4.5 Discussion

With the exception of one star, BD−04◦ 3208, all of the stars analysed in this paper and

HD 140283, which was studied in detail in Gallagher et al. (2010), show a non-physical

isotope ratio (fodd < 0.11) close to the s-process-only composition. The non-physical

results for fodd suggest that applying a 1D LTE treatment to analyse the isotopic

fraction of the Ba 4554 Å line does not appear to be very robust. There are several
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possibilities why this might be the case, and a few possible solutions to the problem,

which we now discuss.

Alternative broadening techniques

We have shown that fodd has a high sensitivity to vconv, which we have determined by

fitting synthetic 1D LTE (and in §4.4, NLTE) profiles to Fe lines. There are several

reasons why we chose to use Fe lines. Firstly they are the most abundant species in

a metal-poor spectrum and cover a considerable range in line strength. As mentioned

above, these two attributes are useful because they allow us to use lines that form at

similar depths to the Ba line. However, we revisit this argument and consider whether

Fe is a sensible atomic species to use to determine the macroturbulence of another

species.

To test this hypothesis, we analysed several Ca I lines in the star with the best qual-

ity stellar spectrum, HD 140283 (S/N = 1100), using the same techniques described

in §4.3. Only seven lines were found to be unblended and to have similar strengths to

the Ba line (10 ≤ W (mÅ) ≤ 50). This meant that the standard error in vconv was

much larger for this set of lines than was found for the 93 Fe lines we used in Gallagher

et al. (2010). We found that 〈vconv〉Ca = 5.63 ± 0.13 km s−1. This is a smaller value

than was determined using Fe lines (5.75± 0.02 km s−1) but still within the 1σ error,

and the statistics of using only seven lines meant that by using Ca we would greatly

increase the uncertainty in fodd. Nevertheless it was found that fodd, which from the

Fe analysis was found to be 0.01 ± 0.06 (in the 4554 Å line4), would move higher to

0.10 ± 0.11. We can not say whether Ca is a better atomic species to use than Fe as

the spread in vconv is too high.

To avoid using other elements to constrain the macroturbulent broadening of Ba,

we experimented by treating vconv as a free parameter whilst determining fodd, thus

deriving it from the Ba line. This was done for all six stars in this study. Results are

shown in Table 4.6. In Table 4.6 we also give the standard deviation (s.d.) of the Fe line

measurements, as an indication of the uncertainty associated with the measurement of

4Table 4.3 lists fodd as calculated by both the 4554 and 4934 Å lines for HD 140283.
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Table 4.6: Values of vconv (measured in km s−1) as determined from Fe lines and directly by the
Ba II4554 Å line. Note that we cannot calculate fodd in BD+26◦ 3578 when we employ vconv (Ba).

Star vconv s.d. fodd vconv fodd

(Fe) (Fe) (Fe) (Ba) (Ba)
HD 122563 6.99 0.54 −0.12 6.82 −0.04
HD 88609 7.03 0.45 −0.02 6.98 0.01
HD 84937 6.98 0.41 −0.05 6.92 −0.03
BD−04◦ 3208 6.62 0.32 0.18 6.88 −0.01
BD+26◦ 3578 6.41 0.34 0.02 8.85 · · ·
HD 140283 5.75 0.19 0.01 6.06 −0.23

just one line, e.g. Ba 4554 Å. As shown, vconv is little changed (within 1 s.d.) in four

stars when using just the Ba line, and within 2 s.d. in a fifth star, and therefore there

is little change to fodd. It is interesting to note that two of the turn-off stars and the

subgiant, HD 140283, are found to have higher vconv values, driving smaller fodd (more

non-physical) ratios though in all cases the differences in vconv are comparable to the

uncertainty expected for one measurement. It is therefore still unclear whether the

Fe analysis does describe the Doppler broadening for Ba well or not, but there is not

strong evidence against it.

As well as testing whether Fe was an adequate species to use, we also considered

whether a simple Gaussian adequately describes macroturbulent broadening. In Gal-

lagher et al. (2010) we showed that a ζRT macroturbulent broadening mechanism better

fit several Fe lines than a Gaussian. Therefore we employed a ζRT treatment for each

star analysed in this investigation (§4.3.2, Fig. 4.2, and Table 4.3). It was found that

for the giant stars, a radial-tangential fit the Fe lines better, with only one line in each

spectrum better fit by a Gaussian. We found that for the three turn-off stars a ζRT

technique fit 68%−86% of Fe lines better. This demonstrates a clear reason to consider

using ζRT when working in 1D LTE over a Gaussian broadening mechanism. This is

particularly clear with the giant stars, whose Fe line cores are closer to saturation caus-

ing the wings to become more significant. Examination of the residual plots in Fig. 4.4

shows further the improvement to the fits when using ζRT. However we stress to the

reader that whilst using such a technique under the assumptions of 1D LTE seems to
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improve upon fitting errors associated with using a traditional Gaussian, both are still

symmetric profiles and are unable to remedy the issue of asymmetries associated with

absorption lines in real stellar spectra.

Fe line residuals

Fig. 4.4 shows the average residuals of the Fe lines used in determining vconv and ζRT.

It illustrates the difficulties in fitting absorption lines with 1D LTE synthetic profiles.

It is seen that the turn-off and subgiant stars have quite an asymmetric residual

profile, with particular problems occurring in the red wings, 100 to 130 mÅ from line

centre for all four stars. This seems to be caused by underlying assumptions adopted

in 1D LTE radiative transfer codes; real absorption lines are not perfectly symmetric.

This investigation is an extension of the asymmetry analysis conducted in Gallagher

et al. (2010); the asymmetry seems to occur in all four stars. Severe fitting issues

occur in the giant stars, HD 122563 and HD 88609, where the Ba (and hence Fe) line

equivalent widths are ∼ 90 mÅ (Table 4.3, row (27)) and lines cores begin to saturate

so pressure broadening becomes more significant in the wings, and this may explain

the symmetric residuals seen at ±0.14 Å.

New approaches to determine isotope mixtures

It is clear that there is still uncertainty over which atomic species to use to determine

vconv. However it is more likely that the assumptions that a 1D LTE code adopts,

in particular the symmetric broadening mechanisms used in replicating macroscopic

turbulence in a star’s atmosphere, is a more likely reason for the large residuals, il-

lustrated in Fig. 4.4. In the previous paper we asked, but did not answer, whether

3D hydrodynamical codes could solve these issues. One major drawback of using 3D

techniques is the time-scales involved with the both the model atmosphere production,

which currently can take several months of computation, and the radiative transfer cal-

culations, which currently take several hours per spectral line synthesis. In addition,

3D hydrodynamics is a rather new field of analysis, and as such there has been very lit-

tle published to test the reliability of the codes currently available. However it appears
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Fig. 4.4: The average residuals of the Fe lines used to constrain vconv and ζRT.
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that 3D hydrodynamics is the next logical step to take in this field (Collet et al., 2009;

Ludwig & Kučinskas, 2005) in response to the asymmetric profiles. However, this may

not solve the problem of fodd since Collet et al. (2009) found that while the 3D model

atmosphere did seem to improve upon asymmetries associated with the Ba 4554 Å ab-

sorption line, the result for fodd increased the s-process contribution relative to the 1D

LTE result. Therefore, even if adopting a spectral line synthesis code that employs 3D

hydrodynamic model stellar atmospheres is the next step to better understanding the

problems with fitting absorption lines, it does not yet appear to be able to reduce the

high s-process fractions we have found, in fact it would appear using such a technique

would enhance the s-process fraction further.

In addition to new approaches in the analysis of isotopic fractions, perhaps a new,

more accurate observing technique is required to get the best possible data for this type

of complex analysis. Astronomers using precise radial velocities to detect extrasolar

planets via the parent star Doppler “wobble” are employing observing procedures to

attain Doppler precisions < 3 ms−1 by passing the starlight through an iodine (I2)

absorption cell. This allows them to measure very small wavelength shifts, which affect

the instrumental profile (Butler et al., 1996). This can be calculated over all wavelength

scales and in each short exposure, to determine the instrumental broadening profile at

any time.

Aoki et al. (2004) have shown that there is a very slight asymmetry in the ThAr

lines recorded with HDS, at least in the HD 140283 observing run, which were used to

calculate vinst. Using the I2 method described above, it is possible to deconvolve the

instrumental profile from the stellar spectrum, leaving only real stellar broadening in

the lines. This would remove most of the uncertainty surrounding the instrumental

profile from any subsequent analysis. Issues with this method are the requirement for

a stable I2 cell and the large amount of time that would be required to complete such

a complex reduction. In conjunction with a 3D hydrodynamical treatment this might

require a lot of time and still may not explain the r- and s-process contributions any

better than the method described in this paper. However, it is a method still favoured

by astronomers looking for radial velocity fluctuations in stars, as it yields the smallest



142
Paper 2:

The Ba isotopic mixture in five metal-poor stars

error in the spectral data. The difficulty in modelling the Fe lines, let alone Ba, may

justify the additional effort required.

4.6 Conclusions

We have carried out a careful examination of the Ba isotopic ratios for five metal-poor

stars using a 1D LTE treatment in conjunction with high resolution (R ≡ λ/∆λ ≥

90 000), high signal-to-noise (S/N ≥ 550) spectra. We found that all stars show a high

s-process signature, and only BD−04◦ 3208 had an fodd value (0.18 ± 0.08) that was

physical, 0.11 ≥ fodd ≥ 0.46 according to the isotopic abundance determinations by

Arlandini et al. (1999). According to these limits, all other stars yield a non-physical

isotopic fraction, fodd < 0.11.

Using the radiative transfer code MULTI with MARCS 1D model atmospheres, we

have also applied a 1D NLTE treatment to Fe lines in HD 122563 and HD 140283. We

found that using NLTE did not fit the Fe line cores better, rather it increased the core

residual in both stars, see Fig. 4.3. A large NLTE effect (SH = 0.001) did, however,

reduce vconv by 0.1 km s−1, and may imply an increase of fodd by ∼ 0.06− 0.09, which

would reduce the non-physicality of the results.

During the investigation we have shown how 1D LTE radiative transfer codes and

model atmospheres seem to be inadequate to determine fodd. In particular we have

shown that asymmetries in the red wings are observed in the Fe line residuals for all

four turn-off and subgiant stars, while the two giants have larger, albeit symmetric,

residuals. We speculate that spectral line synthesis with 3D hydrodynamic model

stellar atmospheres would improve residuals in both the Fe and Ba lines, but we make

no predictions as to whether it would improve upon the obvious problems with non-

physical isotopic fractions we have encountered here. In addition we have asked, but

not answered, whether taking the observations using an I2 cell, designed to improve

accuracy and quality of the data, would help to better constrain fodd. Certainly if

one compares the error estimation of fodd in HD 140283 (±0.06, S/N = 1100) with

HD 84937 (±0.11, S/N = 630), there is almost double the uncertainty in HD 84937
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than in HD 140283. We speculate that this could be due to the quality of the spectral

data used, however, we acknowledge that this could also be a result of the difference

in the number of Fe lines used to determine vconv, as we measure error by the standard

error. However, σvconv,HD 84937 = 0.06 km s−1 is fairly typical as an error estimate for

these stars, yet σfodd
is larger in HD 84937 than in all other stars.

It was found that using a radial-tangential broadening technique rather than a

traditional Gaussian improved upon fitting errors for both the Fe and Ba lines. Whilst

using such a technique does not remove asymmetries seen in absorption lines for real

stellar data, it appears that if one were to adopt a 1D LTE approach to resolve an

absorption line, a radial-tangential profile should be used to model the macroturbulence

of the star rather than a Gaussian, although a Gaussian could still be used to model

the instrumental profile.

We have also conducted a study of Eu abundances in the two giants, HD 122563

and HD 88609. This was used to determine [Ba/Eu] ratios, which are used to assess

the star’s s- and r-process content. Both stars have [Ba/Eu] ratios that indicate a

large r-process contribution, which agrees well with Honda et al. (2006) & Honda et al.

(2007), but contradicts the isotope analysis conducted in this paper. This further

justifies scepticism of the 1D LTE techniques employed in our Ba isotope analysis.

We have increased the number of stars that have undergone a Ba isotope analysis.

However it is difficult to believe that all stars analysed have a significant s-process

contribution, or s-process enhancement in contradiction of the (limited) [Ba/Eu] data

and the strengths of the Truran (1981) theory and Travaglio et al. (1999) calculations.

It is much more likely that the symmetric 1D LTE techniques used in this investigation

are inadequate and improvements to isotopic ratio analysis need to be made.
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Chapter 5: Modelling a stellar

spectrum in 3-dimensions

Developing atmospheres and radiative transfer codes that model a stellar spectrum

more accurately than classical 1-dimensional (1D) local thermodynamic equilibrium

(LTE) radiative transfer codes and atmospheres (Chapter 2) has become necessary to

attempt to explain intricate astrophysical effects, such as convection, which manifest

themselves in high quality observed stellar spectra as asymmetric line profiles. I have

shown through various methods (Chapters 3 & 4) that using 1D LTE in the face of

such effects seen in high quality data is flawed due to the basic assumptions that such

codes employ in their treatment of stellar atmospheres (§2.1).

Adam Hosford and I briefly examined the NLTE effects on the Fe lines, using his

NLTE calculations in §4.4 and demonstrated that this had little to no effect on the

overall Fe line profiles. This is not to say that such an effect should not be considered

in Ba, especially when considering line core formation or the correct abundance, but

rather it requires a detailed investigation including an equally detailed analysis of the

full hfs in the Ba II line profile. However, a 1D NLTE analysis of this line using our

approach in §4.4 would almost certainly find similar fitting errors found by the 1D

LTE analysis in §3.4 & §4.3. This is because both the NLTE and LTE investigations

were conducted assuming a 1D static atmosphere with symmetric line profiles, which

is something I do not observe in my stellar spectra. I therefore speculated, but did

not demonstrate, that these fitting problems may be removed using models that more

closely replicate the various physical processes that occur in a stellar atmosphere,

i.e. 3-dimensional (3D) convection, which through examination of two techniques and

their imperfections in Chapters 3 & 4 I suspect may be the greatest shortcoming when

determining fodd for the Ba II lines. However, Collet et al. (2009) found that while

their current 3D treatment of stellar atmospheres seems to model the Ba II line profile

in HD 140283 more accurately, it appears that the technique enhances the s-process

component for fodd, which exacerbates the disagreement with Truran’s expectation of
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an r-process origin of Ba in that star.

The issue of profile asymmetries appears to be important not only for my work on

Ba and Fe. The Li line at 6707.80 Å consists of two Li isotopes, 6Li and 7Li, which

are subject to fine and hyperfine structure splitting. However, the asymmetry caused

by the isotope ratio is easy to model (Garćıa Pérez et al., 2009). In addition it is well

known that departures from LTE exist in this absorption line (Lind et al., 2009; Osorio

et al., 2011). Efforts to better fit the asymmetries associated with the isotope ratio

of this line using 3D hydrodynamic model atmospheres as well as 3D NLTE radiative

transfer calculations have been conducted (Asplund et al., 2003; Cayrel et al., 2007),

with Cayrel et al. suggesting that part of the asymmetry associated with this line

could be caused by 3D effects. We have seen through the 1D LTE analysis that Ba II

lines suffer from similar issues, as isotope ratios are unable to correct for fitting errors

seen in the red wing of the line, as shown in Figs. 3.6 & 4.1. Lind (2012 - in prep)

has shown how very sensitive Li measurements are to assumptions about 3D/1D and

LTE/NLTE.

In an attempt to improve in the modelling of the spectrum of HD 140283, a radiative

transfer code that employs fully 3-dimensional, time-dependent model atmospheres

was employed to model a selection of the Fe lines used in my 1D LTE analysis of the

star. A list of the original 93 lines used for analysis in Chapter 3 can be found in

Appendix B.1. HD 140283’s spectrum is of the highest quality with high resolution

(R ≡= λ/∆λ = 95 000) and very high signal-to-noise (S/N = 1110 about the 4554 Å

line); it is the finest spectrum in my star sample. Therefore, random errors due to noise

effects should be reduced, relative to the rest of my star sample. As the 3D models

are very time consuming to compute, the scope of this investigation was limited and

still leaves some unanswered questions to explore as the 3D computational framework

matures, as I shall explain throughout this chapter.

In this chapter I discuss the positive and negative aspects to using a 3D LTE code

through comparisons with results found during the 1D LTE investigation. The motive

for choosing the Fe lines over the Ba line was four fold. First, weak and unblended Fe

lines should be easier to model than the Ba II 4554 Å line as there are no extra concerns
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such as hyperfine structure (hfs). Second, the fitting problems were seen in the Fe lines

as well as the Ba line (Figs. 3.10 & 4.4). Third, if the 3D code couldn’t fit the Fe

line sample better, there would be no reason to assume that it would fit the Ba line

better and improve on the current value of fodd determined from the 1D LTE analysis.

Fourth, there are many more Fe lines than Ba lines, so fitting residuals can be averaged

to greatly reduce the impact of random errors, and thus make subtle effects clearer.

5.1 Modelling a stellar atmosphere with CO5BOLD

To model a stellar atmosphere in 3-dimensions, we use the code CO5BOLD, developed

by B. Freytag and M. Steffen, which stands for “COnservative COde for the COmputa-

tion of COmpressible COnvection in a BOx of L Dimensions with L=2,3”. (For details

on CO5BOLD beyond the brief description given in this chapter see Freytag et al. 2002;

Wedemeyer 2003; Wedemeyer et al. 2004; Freytag et al. 2010.) CO5BOLD is designed

to model solar, stellar, and recently sub-stellar (e.g. brown dwarf) surface convection

through time-dependent solutions to the equations of radiative transfer and hydrody-

namics for a fully compressible, chemically homogeneous gas on a grid of Cartesian

geometry in two or three spatial dimensions (Wedemeyer, 2003). This implies that

CO5BOLD computes radiative transfer in a computational box of finite size rather than

over the entire star, as computer technology is still not advanced enough to model an

entire star with the necessary resolution used within the box.

Present limitations

The version of the code used for the present work does not include effects caused

by magnetic fields, however, such additions to the code are available (Schaffenberger

et al., 2005). The code also assumes strict LTE (i.e. Bν = Sν , Chapter 2), however,

CO5BOLD is designed so that an NLTE “module” can eventually be incorporated, but

the computational power required to run an NLTE formalism for hydrodynamic, multi-

dimensional simulations would be enormous (Wedemeyer, 2003). Nevertheless studies

that employ the NLTE formalism into the treatment of the line spectrum synthesis,
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using the LTE CO5BOLD model atmospheres, do exist (Cayrel et al., 2007). For the

moment, however, solutions of a 3D NLTE atmosphere are beyond the capabilities of

modern computing.

Stellar rotation is also ignored as the hydrodynamical time-scales of a model are

short relative to the rotation of, for example, the Sun. This means that CO5BOLD is

currently not suitable for fast rotating stars, where the opposite would be true. The

effect of rotation on line profiles is dealt with after line formation, in a similar fashion to

the 1D LTE case. This is discussed further in §5.2.2. Inhomogeneous chemical compo-

sitions in the model can be included with the addition of a further module (Wedemeyer,

2003), but in the present work is not included. Despite these limitations and assump-

tions, photosphere and convective layer simulations are believed to be realistic through

comparisons made between observed and synthetic granulation patterns (Wedemeyer,

2003). This point is further discussed later in this chapter.

Hydrodynamics and convection

In a hydrodynamic model, hydrostatic equilibrium is no longer fulfilled everywhere.

This is because of the presence of large turbulences in the atmosphere of a star (Wede-

meyer, 2003). In the hydrodynamic model, the continuity equation, the Eulerian equa-

tion of motion and the energy equation are solved. They are relations for the equations

of the conservation of mass, momentum and energy, respectively. Additional terms

which take into account the external gravity field and the change in the energy caused

by the radiation field are also included in these equations. Definitions (and their deriva-

tions) of these equations, which are solved by CO5BOLD, can be found in Wedemeyer

(2003), his §4.2.1.

If we consider the basic energy transport in a star, various processes throughout

the star transport energy from the fusing core (or shell) to the surface. Initially, this is

done radiatively in the star. As the energy is transported to the convective region of

a star, the turbulent motions contribute significantly to further transport of energy to

the surface, while the radiative processes become less important. Convective transport

of energy is an extremely important mechanism for the transport of energy in a star.
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Convection occurs in gas with density differences, often due to temperature, relative

to the surrounding gas. When the temperature of a cell of gas in a star is increased

relative to its surroundings, the gas expands until pressure equilibrium is achieved.

This causes the density of the gas to decrease and the force due to buoyancy causes it

to rise adiabatically toward the surface until the relative densities of the gas cell and

the surrounding gas are in equilibrium. When a gas cell is cooler than the surrounding

gas the opposite is true and it sinks toward the centre of the star until the density of

the gas cell is at equilibrium with its surroundings.

Line asymmetries

We have seen in §2.3.5 that the process of convection causes Doppler shifts of the

absorbers within a convection cell and that classically, their velocity distributions are

often modelled as a Gaussian. However, we know through observations of solar con-

vection cells (de Boer et al., 1992; de Boer & Kneer, 1992) that they have velocities

governed by gas interactions and convection that lead to a non Gaussian broadening

of a spectral feature. Fig. 5.1 illustrates the granulation patterns seen in the Sun.

Fig. 5.1: Observed solar granulation pattern. Image taken from Wedemeyer (2003).

If we compare the line asymmetries with granulation patterns in a star (e.g. Fig. 5.1)

we find that the brighter (hotter) granules correlate to a blue shift in a line and the

darker (cooler) granules correlate to a red shift in a line so that the brighter granules
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travel towards us and the darker granules travel away from us (Dravins et al., 1981).

However, I have previously mentioned that there is a larger depression of the flux

in the red wing of a line than in a blue wing of a line, relative to its distance from the

line’s centre. This would indicate that on average, the gas in the darker regions has

a higher velocity than the gas in the brighter parts of the granulation, which means

that the width and shape of the line asymmetry is analogous to the behaviour of the

convective motions in a star’s atmosphere. When the photons from the hotter gas on

the star’s surface escape they remove both energy and entropy from the gas. This

produces an over dense gas (relative to the hot gas), which is rapidly pulled down by

gravity (Nordlund et al., 2009). As the hotter, less dense gas rises adiabatically to the

surface its velocity will slow down as pressure equilibrium is almost fulfilled, whereas

the cooler, denser gas will accelerate to a higher velocity and slow down deeper in

the star when pressure equilibrium is achieved. The resultant difference in the two

velocities leads to greater red shifts than blue shifts, which leads to asymmetries in a

spectral line.

Fig. 5.2: A comparison of a CO5BOLD model atmosphere’s granulation pattern with the observed
granulation pattern for the Sun. a) The model granulation pattern at 5500 Å. b) The observed
granulation pattern centred at 5576 Å. Image taken from Wedemeyer (2003).
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It is therefore important that a 3D hydrodynamical model atmosphere can properly

model the granulation patterns in a star’s atmosphere so that asymmetries can be

accurately replicated. When one compares a CO5BOLD model atmosphere’s granulation

pattern with an observed granulation pattern, e.g. the solar granulation patterns seen

in Fig. 5.2, one can see that the CO5BOLD atmosphere models the granulation patterns

very well.

Details of the model atmospheres

The model atmospheres used for this work were calculated for a star with Teff =

5750 K, log g = 3.7 and for two metallicities [Fe/H] = −2.0 and [Fe/H] = −3.0. I

later interpolate between the two models to [Fe/H] = −2.5 after the line synthesis is

completed (see §5.2.2). It should be noted that the CO5BOLD model atmosphere snap-

shots used in the work presented here were computed by H.-G. Ludwig. The models

were calculated in a computational box of geometrical dimensions 36.7×36.7×22.2 Mm,

with spatial sampling of 140× 140× 150 voxels in x, y and z dimensions respectively,

where z represents the dimension into the star.

A total of 20 snap-shots of the atmosphere are taken so that time variations can

be traced. The time intervals between snap-shots are determined based on the sound

speed of the gas. This depends on the densities in the box; the higher the density,

the faster the sound speed and the less time between snap-shots. Choosing the time

interval based on the sound speed allows for mixing of materials within the grid which

means that pressures and densities, which affect line shapes, have had sufficient time

to change. To show how the time-dependence affects the model atmosphere, Fig. 5.3

shows the temperature and average optical depth relationships for all 20 snap-shots and

the time-averaged optical depth, which is calculated by taking the average temperature

value for a given optical depth.

CO5BOLD was written in Fortran90 and can be run using multiple CPUs in parallel

using the OpenMP1 directives for fast, efficient run times (Freytag et al., 2010).

1OpenMP is an application programming interface that supports shared memory multiprocessing
in several languages including Fortran. Using such a directive allows the code to be run on a cluster
machine. I refer the reader to the website www.openmp.org, for further information about OpenMP.

http://www.openmp.org
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Fig. 5.3: The temperature profile as a function of the Rosseland mean optical depth in logarithmic
space. The time-averaged result represents the average temperature profile over all 20 snap-shots.
The average temperature profile for each snap-shot has been included to show the time-dependence.
The red dash-dot line shows the temperature at which τROSS = 2

3 (T = 5786 K).

5.2 Synthesis of a stellar spectrum with LINFOR3D

Once H.-G. Ludwig provided me with the two CO5BOLD model atmospheres, I used the

new radiative transfer code LINFOR3D, which is still under development, to calculate

synthetic spectra. The code is being developed by M. Steffen, H.-G. Ludwig and S.

Wedemeyer. It is a modified version of the LINFOR radiative transfer code, created by

the Kiel group (Steffen et al., 1981). Every subroutine of the code has been written in

IDL so that run time issues and bugs can be easily identified and resolved, although

this means that the code runs very slowly. Once a subroutine has been fully tested it

will then be rewritten in Fortran90 for better execution efficiency (Steffen et al., 2010).

Eventually, the code will be parallelised with the OpenMP directives like CO5BOLD.

As yet, there has been no effort to improve execution speed or remove redundant

subroutines. This results in very long run times for each spectrum synthesis, in fact
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computing a single absorption line (of 401 wavelength points) for a single abundance

takes over 21
2

hours to complete on a single CPU2. An added disadvantage of the current

version of LINFOR3D is that each synthesis run uses its own IDL license and these are

usually limited on a particular system. The grid of lines used for this work, discussed

in more detail below, took over two weeks to complete, because of the limited number

of IDL licenses available. In this section I review the procedures followed to compute

the Fe line grid used for analysis in §5.3.

5.2.1 The Fe line sample

To synthesise the Fe lines using LINFOR3D, line lists must first be created. These line

lists contain all the relevant information relating to each Fe line. Several parameters,

required by LINFOR3D, must be present in the line list (see Appendix A.4) including

the central wavelength, λC, tabulated as “alam”, the atomic or ionic species, tabulated

as “namj”, χ in eV, tabulated as “ei” and log gf tabulated as “gflg”. These were

also required in the 1D LTE synthesis (Chapters 3-4) and as such were set to the same

values.

In addition to these basic line parameters, LINFOR3D requires details on the spec-

trum sample size or wavelength range, ∆λ, tabulated as “dlam” and the wavelength

spacing, δλ, tabulated as “ddlam”. Both δλ and ∆λ are measured in Ångstroms. Every

line was calculated over the same wavelength range, ∆λ = ±0.4 Å from the line’s cen-

tre. Similarly, every line was calculated using the same wavelength spacing, δλ = 2 mÅ.

Therefore every line was calculated over 401 wavelength points. The typical value of

δλ in the observed spectrum was 0.02 Å; this equates to just 60 wavelength points over

the same ∆λ range.

LINFOR3D also requires details on the pressure broadening constants, in this case

the van der Waals broadening, which is specified as the difference between mean square

electron orbital radii of the upper and lower levels of each transition, ∆r2/a2
0, calculated

2The timing example given here was computed on a cluster machine using Intel R© Xeon R© proces-
sors with individual core speeds of 2.53 GHz. The time for completion of the synthesis will depend on
the CPU clock speed.
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as

log
(

∆r2/a2
0

)
= logC6 + 32.3867 (5.1)

(Steffen et al., 2010), where a0 is the Bohr radius and the constant, 32.3867, is the

determined value of the constants in Eq. (2.17) when T is taken to be 104 K. This is

tabulated as “drrca1” in the line lists. Also, there is an option to enhance the C6

constant determined using the Unsöld/van der Waals approximation (C6,vdW) by in-

cluding a ∆ logC6 term, tabulated as “dlgC6”, where logC6 = logC6,vdW + ∆ logC6.

For consistency throughout my research, I calculated C6 using the Unsöld approxima-

tion in Eq. (2.15) and included the γ6 enhancement factor of 2.2, as in the 1D LTE

work (Chapters 3 & 4), when calculating C6 using the relationship in Eq. (2.17). In

summary then, the C6 terms in the LINFOR3D line lists include all the enhancement I

required so that the pressure terms are dealt with in exactly the same way as they were

in ATLAS. This meant that any differences in the comparisons made between the 1D

and the 3D fits would not be due to differences in the pressure broadening calculations.

Other alternatives to the Unsöld approximation of the van der Waals damping for col-

lisional broadening in metal lines, such as the Anstee, Barklem and O’Mara (ABO)

theory (Barklem et al., 1998) can be applied to the line synthesis. For other parameters

that can be included in the line lists for synthesis, I refer the reader to Steffen et al.

(2010).

A total of 90 individual Fe lines, taken from the 93 lines used for analysis in Chap-

ter 3, were reproduced using LINFOR3D. Only 17 of the 90 lines synthesised were used

for the analysis in §5.3; the reason for this is also discussed in §5.3. Each Fe line was

synthesised for nine different values of A(Fe).

Unlike for the 1D calculations with ATLAS, the user cannot simply change the

chemical abundance of the CO5BOLD atmosphere so that more or fewer absorbers are

synthesised within LINFOR3D for a particular species. Instead, one must manipulate

the line strength through other means. The opacity associated with a particular ab-

sorption line can be doubled either by doubling the number of absorbers, N(X), or by
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doubling their oscillator strength, f , or equivalently increasing gf . In LINFOR3D, an

increase in abundance is simulated by increasing the gf , such that δlog gf = δA(X).

Appendix A.4 shows that for the Fe I 4282 Å line, nine values of δlog gf were used,

so that the abundance range is given by −0.8 ≤ δA(Fe) ≤ +0.8, calculated at inter-

vals ∆A(Fe) = 0.2. (For a more detailed interpretation of the relationship between

log gf , A(X) and equivalent width, see Gray (2008), his Eq. (16.4).) The chemical

abundances used in the CO5BOLD model atmospheres are calculated as solar, scaled to

the metallicity of the model, as in the Kurucz 1D LTE model atmospheres.

A final parameter that is not modelled by LINFOR3D, and hence needs attention

before the line synthesis, is the microturbulence. Although this parameter is not essen-

tial to the 3D models, which was true for the 1D approach, at present this parameter

is recommended.

Ideally, the microturbulence should have been replaced by the self-consistent hydro-

dynamical velocity field of the 3D simulations (Freytag et al., 2012). However, several

parameters are key to the accuracy of these models (e.g. spacial resolution of the grid,

formulation of boundary conditions, etc.), which are currently very time consuming to

compute at high resolutions. Higher spacial resolutions coupled with improvements to

other parameters that characterise the simulations should eliminate the need for this

fudge factor. At present however, the microturbulence is required to compensate for

the limitations in computing power that lower the accuracy of these parameters. The

ultimate aim is to essentially eliminate the dependency the simulations have on these

parameters so that low resolution models, like those presented in the present work, no

longer require a fudge factor such as microturbulence (Freytag et al., 2012).

The microturbulence for HD 140283 was set to 1.50 km s−1, which is almost the

identical value that was used in the 1D LTE analysis (1.40 km s−1). This is not set in

the line list but rather in the script used to run LINFOR3D when the command program

used by IDL is created. An example of a run script can be found in Steffen et al. (2010).
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5.2.2 Details of the LINFOR3D calculations

To minimise LINFOR3D run times, individual lines were synthesised over the width of

±0.4 Å, rather than a complete spectrum. This meant the synthesis for several lines

could be run in parallel and completed quicker. As previously stated, the code requires

at least 21
2

hours of run time to complete a single line with one abundance. In order to

run the synthesis for nine different abundances, which are completed in series, requires

at least 221
2

hours. In fact, on average the run time was longer than this and took

roughly 28 hours to compute. Up to 18 lines were completed in parallel by assigning

each line synthesis to a separate CPU on a cluster. I originally synthesised 90 lines, but

as each line requires a separate IDL license, which are limited, lines were submitted

in five groups, each line to a different CPU. Once a group of 18 lines had completed

for all 9 abundances, the next 18 lines were submitted and so on. This meant that to

compute all 90 lines required 140 hours to complete, i.e. about one week.

As foreshadowed, the CO5BOLD atmospheres cannot yet model stars with metallic-

ities of −2.5 (the metallicity of HD 140283) because the grids are incomplete. Instead,

two model atmospheres with metallicities [Fe/H] = −3.0 and [Fe/H] = −2.0 were run

with LINFOR3D independently for every line. Both outputs are combined and interpo-

lated to [Fe/H] = −2.5 at a later stage. This meant that the run time was doubled to

two weeks, as each line had to be synthesised twice, once for each atmosphere.

5.2.3 LINFOR3D outputs

LINFOR3D outputs an IDL data file made up of several structures containing various

aspects of line information, rather than a simple ASCII file containing wavelength

points with the corresponding flux calibrated data points, as in the case of ATLAS

output. I wrote a simple IDL code to extract the line information. This can be found

in Appendix A.5.

There are several things the code does to process the LINFOR3D outputs so that

each line is ready to be analysed. At this point, the LINFOR3D outputs contain no

excess stellar broadening (which is modelled as rotational broadening) or instrumental
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broadening and most importantly, each line consists of two synthesis outputs using

two metallicities. After reading in both outputs for a specific line, the code calculates

the time-averaged profile. As fully 3-dimensional, time-dependent atmospheres should

be able to mimic the convective Doppler broadening in a star, it is assumed that any

excess in the observed line broadening would be caused by the star’s rotation, modelled

as a v sin i profile, which is convolved with the line profile at this point. Stellar rotation

is explained in §2.3.5.

The code then calculates the wavelength points of the profile from information

submitted in the line list (λC, δλ and ∆λ), which is stored in the LINFOR3D output.

Next, the code interpolates the flux between the two metallicities to [Fe/H] = −2.5

(the metallicity of HD 140283), and finally it convolves the instrumental profile, which

is modelled as a Gaussian, with the line profiles. Once this process is complete, it

formats the new output into a simple ASCII file comprised of wavelength and flux

calibrated data points. This process took roughly two minutes to compute the output

for a single line, or roughly three hours for the entire line sample.

5.3 Fe line analysis through χ2 fitting

The Fe lines analysed in this chapter were fit using the same χ2 routine used throughout

the present work with the exception that in the 3D analysis a separate instrumental

profile (Gaussian of FWHM = 3.31 km s−1), as measured from 993 ThAr lines in

Chapter 3, is adopted, and instead of fitting for the macroturbulence I fit for v sin i.

The code has a GUI interface for easy use and is designed to calculate the values of

v sin i, the wavelength shift3 (∆λ) and A(Fe) that give the χ2 minimum, and hence the

best fit. This is achieved over several stages.

Firstly, the code calculates the value of ∆λ for the first value of A(Fe) in the grid

at a given v sin i. This is done by calculating χ2 over a wavelength range of ±0.25 Å

for 11 values of ∆λ, set by the user (see Fig. 5.4, lower-right panel) and is unique for

each line included for χ2 analysis. The χ2 minimum is calculated by fitting a spline

3Note that this is a different ∆λ to dlam in §5.2, but it is clear from the content which is which.
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interpolation to the differential d(χ2)
d(∆λ)

and finding where d(χ2)
d(∆λ)

= 0. Both the preferred

∆λ value and the corresponding χ2 value are recorded. This shall be known as stage

one, which is illustrated in Fig. 5.4.
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The code loops over all nine values of A(Fe) (see §5.2.1) and re-runs stage one for

every A(Fe) value, for the first v sin i value. The spacing ∆A(Fe) is 0.2 dex. Once this

is complete, the code then calculates the value of A(Fe) that corresponds to the χ2

minimum, this time by calculating a spline interpolation of the differential d(χ2)
d(A(Fe))

and

finding where this equals zero. This shall be known as stage two and is illustrated by

Fig. 5.5. The values of A(Fe) and χ2 at the minimum are recorded.

Fig. 5.5: A screen-shot of the χ2 code plotting the χ2 vs A(Fe) curve for a single value of v sin i. Each
point on the curve is the minimum χ2 calculated at stage 1, and the red diamond represents the result
of stage 2, i.e. the value of the spline interpolation that represents the minimum χ2 for the adopted
value of v sin i. Stage two is repeated for each of the 11 values of v sin i.

The code then loops over 11 values of v sin i, and repeats stage one (11 times) and

stage two each time. Once complete, the code calculates the v sin i value that corre-

sponds to the χ2 minimum. As above, this is calculated by fitting a spline interpolation

to the differential d(χ2)
d(v sin i)

and finding where the spline is equal to zero. We shall call

this stage three, which is illustrated in Fig. 5.6. Finally, the code returns the values

of v sin i, A(Fe) and ∆λ that satisfy the χ2 minimum. In total, a grid comprising

11× 9× 11 χ2 values (in ∆λ, A(Fe) and v sin i) has been computed.

The code then loops stages one, two and three for all 90 Fe lines for which synthetic

spectra were calculated.

Each stage of χ2 minimisation is completed using a spline interpolation routine,
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Fig. 5.6: A screen-shot of the χ2 code plotting χ2 vs v sin i. The red diamond represents the χ2

minimum calculated by the spline interpolation. The curve is asymmetric and illustrates that, in this
case, the turbulence determined by the time-dependent 3D models almost completely accounts for the
turbulent motions in HD 140283, i.e. v sin i is not significantly different from 0 km s−1 for this set of
parameters and this spectral line.

which is found in the IDL routine library. By interpolating where the gradient of

the χ2 curve equals zero, the routine provides values of ∆λ, A(Fe) and v sin i where

their gradient, not the points within the grid sample, equal zero. For example, the

interpolation may return a value for v sin i = 2.32 km s−1 even if the grid is defined

discretely as v sin i = 0.0 + ∆v sin i × j where the integer j = 0 to 10 and ∆v sin i =

0.5 km s−1. This can be seen in Figs. 5.4, 5.5 & 5.6. However, the accuracy with

which the spline interpolation determines these values diminishes as the grid spacing

increases.

The 3D grid used for the work presented here included 11 values of v sin i in the

range 0.0 ≤ v sin i (km s−1) ≤ 5.0, where ∆v sin i = 0.5 km s−1, nine abundances with a

range 4.20 ≤ A(Fe) ≤ 5.80, where ∆A(Fe) = 0.2, and 11 values of ∆λ, unique to each

line. When this is compared to the grids used in the 1D analysis (4.9 ≤ vconv (km s−1) ≤

6.9 in steps ∆vconv = 0.1; 4.09 ≤ A(Fe) ≤ 5.45 in steps ∆A(Fe) = 0.04) it is apparent

that the 1D grid has a finer grid sampling than the 3D grid. This is because of the

large time requirement in computing 3D synthetic spectra. Therefore the coarse grid

spacing used for the analysis here for both A(Fe) and v sin i implies a larger uncertainty
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than was found in the 1D analysis4.

A direct consequence of this large uncertainty was the influence of numerical errors

that propagated throughout the χ2 code’s various stages of calculations. Originally,

90 lines from the original Fe line list of 93 were synthesised. Three lines were dropped

during the synthesis due to suspected blends with other Fe lines which contributed to

the overall profile. When the remaining lines were processed using the χ2 code, simple

numerical interpolation errors in one of the three stages, which propagate through the

remaining calculations, caused large deviations between the actual (visually inferred)

best fit synthetic profile and the values calculated. This problem was discovered during

the 1D investigations conducted in Chapters 3 & 4 and a simple fix was found.

The interpolation routine in IDL, which is employed to find the point at which

the gradient of the χ2 curve reaches zero, cannot accurately achieve this with large

gradients, which can arise as a consequence of the grid size I use here (∆A(Fe) = 0.2),

unless the curve is either almost completely symmetric or has several more points with

which it can determine an accurate polynomial. For the 1D analysis, using a finer grid

sample (∆A(Fe) = 0.02) fixed this issue. Also, creating extensive, finely sampled grids

meant that I could change the abundances used by the χ2 code to fit each individual

spectral line to practically eliminate any asymmetry that arose. Therefore the spline

interpolation could better determine where the gradient of the χ2 curve equated to

zero. However, to resolve this problem in the same way in the 3D analysis, with the

same number of abundances for each line as used in 1D, would have meant many more

hours of synthesis with LINFOR3D. As noted in §5.2.2, calculating the spectra at 0.2

dex spacing required over two weeks; switching to the 1D sampling of 0.02 dex over

the same A(Fe) range would require five months. As time was limited at this part of

my analysis, I elected to remove problem lines from my analysis, rather than compute

a more finely sampled grid, so that only 17 lines remained in the analysis. Although I

limit the scope of this first foray into 3D analyses, I intend to extend this analysis in

future work (see §5.5).

4In fact, the grid spacing in the 1D analysis for both A(Fe) and v sin i was small enough that no
uncertainty from the spline interpolation was detected.
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The results of the χ2 analysis for the remaining Fe lines can be seen in Table 5.1. If

one compares the results of the 3D paradigm with the 1D (also tabulated in Table 5.1),

it is shown that in general, the 3D fits produce smaller χ2 values, despite the 3D grid

having a much coarser abundance and broadening grid sampling.

Table 5.1: The Fe I line results found through analysis of 3D models calculated for HD 140283. For the
reader’s convenience, the corresponding χ2

r and A(Fe) values found through the 1D analysis conducted
in Chapter 3 have been included.

3D analysis 1D analysis

Wavelength (Å) χ2
r v sin i (km s−1) A(Fe) ∆λ (mÅ) χ2

r A(Fe)
4134.68 0.62 1.75 4.73 −14.56 1.61 4.91
4137.00 0.79 2.15 4.53 −12.98 0.88 4.79
4147.67 1.28 2.69 4.50 −15.82 1.88 4.92
4156.80 3.96 2.60 4.77 −16.84 5.27 4.98
4175.64 0.61 2.33 4.75 −12.63 4.40 4.97
4219.36 1.29 2.55 4.79 −17.65 2.35 4.92
4238.81 0.61 2.71 4.75 −17.86 6.52 4.91
4466.55 1.12 2.18 4.74 −24.32 2.98 4.88
4494.56 2.38 2.26 4.70 −22.79 4.27 4.94
4531.15 0.10 2.70 4.44 −14.68 0.66 4.90
4872.14 0.23 2.57 4.66 −17.26 10.91 4.87
4918.99 4.71 2.24 4.74 −22.93 15.34 4.88
5051.64 5.02 2.28 4.32 −11.82 5.42 4.97
5192.34 3.63 2.24 4.63 −28.88 29.32 4.84
5216.27 3.54 2.30 4.37 −25.56 4.69 4.89
5393.17 3.03 2.78 4.59 −20.87 4.10 4.88
5569.62 3.20 2.59 4.56 −22.06 4.20 4.84

In Fig. 5.7, the best fits to the 17 surviving Fe I lines are plotted for both the

3D and 1D analyses, complete with the corresponding residuals with respect to the

observed data. Note that there are large systematic deviations between the 3D and

1D abundances. This is discussed in §5.4. The overall fit by the 3D profiles appears

to be an improvement to the fit produced by the 1D profiles. In particular the red-

wing residual asymmetries seen throughout the present work have been substantially

reduced, or removed completely in all 17 Fe lines in the 3D analysis. In other words

the 3D profiles are reproducing the observed asymmetries. However, it does appear

that the 1D synthetic profiles better replicate the depth in the line cores. This could

be due to the errors associated with the coarse grid sampling when fitting the 3D line

profiles. This is discussed further in §5.4.
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Fig. 5.7: The best fits to the 17 Fe lines using the 3D analysis and the corresponding best 1D fit.
Diamonds: The observed Fe I line profile. Solid black line: The 3D synthetic profile. Red dashed line:
The 1D synthetic profile. The lower portion in each panel shows the residuals, in the sense obs-syn.
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Fig. 5.7: continued from previous page...
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Fig. 5.7: continued from previous page...
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To illustrate the improvements to the red-wing asymmetries, a reduced-noise aver-

age residual plot has been constructed by averaging all 17 Fe line residuals from Fig. 5.7

as was done for the 1D analysis in Chapter 3 (Fig. 3.10). This is shown in Fig. 5.8.

Averaging the residual plots highlights fitting issues and improvements. We can see

from Fig. 5.8 that the residual asymmetries in the red wing (at ∆λ ∼ +0.1 Å) have

substantially diminished in 3D, but a worsening of the fit is seen in the line core when

the 1D and 3D fits are compared.

Fig. 5.8: The reduced noise average residual plot for all 17 Fe lines. The black line shows the 3D
result and the red line shows the 1D result for this subset of Fe lines. A significant improvement to
the red wing (at ∆λ ∼ 0.1 mÅ) is seen in the 3D treatment. However, the 1D synthesis better fits the
line cores.

At ∆λ ∼ −0.15 Å, Fig. 5.8 shows the residual fit in the continuum. A slight

improvement can be seen in the 1D residual over the 3D residual profile and hence, is

fitting the observed continuum slightly better than the 3D. However, this is most likely

because the 1D synthesis of the 4134.68 Å line includes another Fe line forming at a

bluer wavelength. This is well illustrated by its best fit shown in Fig. 5.7. I remind

the reader that the 1D synthesis was calculated over the entire observed spectrum,

which has a wavelength range 4118 − 6253 Å, as the computation of such a synthetic

spectrum was extremely fast and more convenient than synthesising a single line. The

3D synthesis does not include any other line information other than the line of interest.

Also the line synthesis was computed over a limited range (±0.4 Å relative to line

centre). LINFOR3D does have the capability of including blends, but they were not
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included in the present investigation.

The positive result here means that further testing and analysis of the Fe lines with

a larger line sample and smaller v sin i and A(Fe) grid sampling is fully justified.

Through this fitting process I am able to give an estimate to the rotational velocity

of HD 140283. The mean v sin i value of the 17 lines is found to be 2.41± 0.07 km s−1

where the error is taken as the standard error (σ/
√
N). This value agrees well with

the upper limit set in Chapter 3, which was v sin i < 3.9 km s−1, and at the 1σ level

with the v sin i value inferred by Collet et al. (2009) during their 3D investigation of

fodd: v sin i = 2.58 km s−1. There was no uncertainty stated by Collet et al..

5.4 Discussion and conclusions

In this chapter I began the first stages of a much larger investigation. The goal at

this stage was to ascertain whether 3D synthetic profiles better fit their counterpart

observed line profiles than the traditional 1D LTE approach. For this I chose the rel-

atively uncomplicated Fe lines, used to determine the macroturbulence for HD 140283

in Chapter 3, rather than the much more complicated Ba II 4554 Å line. This was done

by modelling 90 Fe lines from the original 93 lines, of which 17 were modelled success-

fully, and comparing their fits with the ones found during the 1D analysis. It would

appear that pursuing a 3D analysis of HD 140283 is indeed warranted, as red-wing

fitting problems found during the 1D analysis have been all but eliminated. However,

several other issues arose during the 3D analysis. From Fig. 5.7, it is clear that there

are inconsistencies in the best fit Fe abundances between the 1D and 3D synthesis,

and, from Fig. 5.8, that the 1D analysis is, on average, better fitting the line cores.

Exploring the poor fit in the line cores by the 3D synthetic profiles would require

further synthesis to create synthetic spectra with finer abundance sampling. This

would improve the accuracy of the spline interpolation done during the χ2 analysis and

may fix this problem. This might slightly decrease the abundance differences between

the 1D and 3D best fits, but probably not by as much as has been found since the

lines’ equivalent widths are well reproduced both in 1D and 3D. (Note that the χ2
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fitting does not force the equivalent widths of the observed and synthesised profiles to

be identical.) However, the 3D profiles require a smaller Fe abundance. This could

contribute partially to the worsening of the fits found in the line cores but the average

abundance difference, 〈A(Fe)3D−1D〉 = −0.22, would certainly not be explained by

slight deviations between the best fit equivalent widths.

Rather, differences between the 1D and 3D atmospheres may explain the abundance

differences. Fig. 5.9 shows the temperature and optical depth relationships for both

atmospheres, as well as the temperature differences between them. There is clearly

little consistency in the temperatures through the various layers in the two atmospheres.

Asplund & Garćıa Pérez (2001) state that cooler temperatures associated with metal-

poor 3D model atmospheres are the result of no longer fulfilling radiative equilibrium

and instead solving the time-dependent energy equation, but they caution that the

effect of radiative heating in 3D model atmospheres may currently be underestimated.

Frebel et al. (2008) and Collet et al. (2006) find 〈A(Fe)3D−1D〉 = −0.30 and −0.24,

respectively during their 3D investigations of the ultra metal-poor star HE 1327−2326,

similar to the result found here for HD 140283. The deviation in 3D and 1D abundances

is explained in Frebel et al. (2008) as the result of two things:

1. The cooler temperatures in the outer atmosphere of the 3D atmosphere allows

for a significant fraction of Fe I opacity and hence lines to form in this region.

This leads to much stronger line profiles in the 3D model than in 1D. This in

turn leads to much smaller abundances being inferred in 3D than in 1D for the

same equivalent widths. Fig. 5.9 shows almost identical temperature structures

for HD 140283’s 3D atmosphere as for HE 1327−2326 (Frebel et al. Fig. 1). Also,

Frebel et al. illustrate the fraction of neutral Fe as a function of optical depth,

which again shows an enhancement in the 3D Fe fraction at smaller values of

optical depth.

2. Any given Fe I line forms at different depths in 1D than in 3D. This is illustrated

by a contribution function diagram as a function of optical depth (their Fig. 5) for
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Fig. 5.9: Variations between the 1D KURUCZ06 (blue dashed line) and 3D CO5BOLD (solid black line)
model atmospheres for Teff = 5750, log g = 3.70 and [Fe/H] = −2.50. Top: The two atmospheres
over-plotted. The red dash-dot and black dashed lines show the temperature at which the 3D and
1D atmospheres reach τROSS = 2

3 respectively. In the Kurucz atmosphere this is found to be 5703 K
and for the CO5BOLD atmosphere the temperature is found to be 5786 K. Bottom: The residual
temperature variation between the 3D and 1D atmospheres over the same optical depth range. The
two atmospheres show large deviations in temperature for certain optical depths. The black dash-dot
line shows that at τROSS = 2

3 the temperature residual is 83 K.

the Fe I 3859.9 Å line5. By comparing this with the temperature stratifications

of the 1D and 3D models it shows that the majority of the absorption of the

outgoing intensity of the Fe lines is found in higher layers of the atmosphere

under 3D, where the temperature differences between the two models are larger.

5The contribution function in this particular instance is defined as the outgoing contribution inten-
sity, following Magain (1986), rather than dFν/d log τ0 (Gray, 2008, his Fig. 13.2), where τ0 is defined
as the optical depth at a specific wavelength. The former is used, as calculating dFν/d log τ0 for the
3D synthetic line is highly non-trivial (Collet, 2012).
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Similar departures in the Fe I abundance were found in Collet et al. (2006). It

would appear likely that the abundance departures presented in this thesis are a result

of the differences between the temperature profiles of the 1D and 3D LTE atmospheres.

However, it would be naive to assume just that because similar results are found, they

should have the same cause. Further investigation into this matter is required before

this result is verified.

Fig. 5.10 shows how A(Fe) behaves as a function of equivalent width (left panel)

and excitation potential (right panel). Looking at the left panel first, it is shown that

both the 1D and 3D case have high levels of scatter as shown by the errors in the

gradients associated with both ordinary least squares (OLS) plots, and their appears

to be a trend on A(Fe) with equivalent width for both paradigms, more so in 3D.

This could show a poor choice in microturbulence for the 3D synthesis, although the

trend could equally be due to random scatter, which could be removed with a larger

sample of Fe lines. Similarly the right panel seems to indicate that the four outliers,

with the largest abundance departure, in the OLS (from the left panel) have the lowest

excitation potentials. It appears that a large trend on A(Fe) exists with χ in 3D,

indicating that larger departures in A(Fe) are expected in Fe lines with lower χ. This

may signal problems with the temperatures. It could also be due to random scatter

though it is a 4σ effect. A larger number of Fe lines is required to confirm this.

It would be difficult at this stage to predict how the differences in the 1D and 3D

models would affect Ba. To assume that abundance determinations would yield similar

departures as seen in Fe I would be naive. Unfortunately, Collet et al. (2009) did not

report the Ba abundances found during their analysis of the Ba II 4554 Å line isotope

configuration. They did, however, report that the application of 3D model atmospheres

enhanced the s-process contribution to the line. When the 3D and 1D abundance limits

for Ba are compared for HE 1327− 2326 in Frebel et al. (2008), the 4554 Å abundance

limits are A(Ba)3D < −2.39 and A(Ba)1D < −2.14. For the 4934 Å line they are

A(Ba)3D < −2.23 and A(Ba)1D < −2.04. Therefore both lines show a decrease in their

upper abundance limit, consistent with the observed behaviour of Fe I line abundances.

The same values for the 4934 Å line abundance limits were also reported by Collet
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Fig. 5.10: Left panel : A(Fe) as a function of equivalent width for both the 1D (crosses) and 3D
(diamonds) case. Equations of the best fit OLS are included for each case. It is shown that a slight
trend exists in both cases, but particularly in the 3D. This could be an indication of a poorly chosen
microturbulence. However, it is more likely that a bias caused by the small selection of lines exists
when one considers the error estimate associated with the gradient of the OLS. Right panel : A(Fe) as
a function of excitation potential (χ). It would appear that larger deviations in the 3D-1D abundances
occur in lines with smaller values of χ. However, without a larger sample, this is difficult to determine.

et al. (2006). If one were to use the results shown in Fig. 5.10 (right panel), indicating

that departures between the 1D and 3D abundances increase as excitation potential

decreases, the Ba abundance would be expected to decrease given that the excitation

potential of the line is 0 eV. I remind the reader that inferring this with the small Fe

line sample presented here would be naive as such a trend maybe the result of scatter,

which could be removed with a larger Fe line sample.

5.5 Future work

The project presented here represents the first stage in a much larger, much more

detailed investigation. It was designed to test whether pursuing such a complex and

time consuming analysis would improve on obvious shortcomings of the older, more

traditional method of 1D LTE line synthesis. As it appears that using 3D models to

fit absorption lines from high quality data does improve upon the traditional 1D LTE

approach, there is cause to proceed with such an undertaking. A first step will be to

resolve the fitting problems described in §5.3 by computing at finer grid spacings.

My intention is to complete a like-for-like re-investigation of Chapter 3, employing
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3D hydrodynamic model atmospheres. Completion of the Fe line analysis will allow

me to further understand CO5BOLD and LINFOR3D, as work with them thus far has

been limited.

Fully understanding and exploring the reasons behind the abundance departures

seen in Fig. 5.7 would be useful. By completing that analysis for all 90 lines, I will also

be able to assign a robust value to the rotational broadening of HD 140283. From the

1D analysis in Chapter 3, I can assume this to be < 3.9 km s−1 and from the follow-

up work on 17 Fe lines used in this chapter I have found this value to be v sin i =

2.41 ± 0.07 km s−1, which agrees well with the limit set during the 1D investigation

and also agrees at the 1σ level with the v sin i value used in the 3D Ba II synthesis by

Collet et al. (2009). The final stage to this project will include the analysis of the Ba II

4554 Å line in 3D.

The new observational technique that passes the starlight through an I2 absorption

cell was mentioned in §4.5. The purpose was to improve upon errors in wavelength

shifts, which affect the instrumental profile, thereby allowing calculation of the shape

of the instrumental profile at any time (Butler et al., 1996). For the work presented in

this chapter, I have used the traditional method of modelling the instrumental profile

as a Gaussian (Aoki et al., 2004). This was to remove any avoidable inconsistencies

between the 1D (Chapters 3 & 4) and 3D (Chapter 5) synthetic profiles so that any

remaining deviations would be attributed to the synthesis. Astronomers working with

the I2 observational technique are able to achieve Doppler precisions < 3 ms−1. We

have already seen that even with the quality of spectroscopic data used in the present

work, 1D models cannot replicate many of the astrophysical features that appear in

line profiles. The same astrophysical effects, plus ones undetectable by traditional

observations, would become even more dominant as systematic uncertainties such as

instrumental effects are removed. Therefore the implementation of such a technique

would be of little value if one continues to employ 1D spectrum synthesis to analyse this

data. However, it seems from this initial investigation that the 3D technique employed

here appears to improve upon these fitting issues. Perhaps then using 3D models in

the future in conjunction with high quality spectra observed using the I2 cell technique
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will improve on errors currently associated with profile replication, and push current

understanding of Galactic chemical evolution even further.

My research after this major project may take a slightly different direction to the one

I have spent the last three years on. There are still many unexplored areas of spectrum

synthesis yet to pursue with 3D model atmospheres, e.g. comparing them to high

resolution data which have been obtained using the I2 technique, so that improvements

on instrumental and hence stellar line shape could be sought. Currently, the exploration

and adoption of 3D atmospheres is still in its infancy and requires further development.

In particular, I found the execution of LINFOR3D complex because it is still in its

testing phase. Improvements to the interface would be useful, e.g. the addition of

another module that calculates the relevant pressure broadening terms during the line

synthesis so that the user can process new synthetic spectra quicker than is currently

possible.
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Chapter 6: Conclusions and

further work

The Ba isotope ratios have been measured in six metal-poor stars with the aim of

determining the nucleosynthetic origin of the element in the early phases of the Galaxy.

Currently prescribed theory (Truran, 1981) based on observations of metal-poor stars

in the Galaxy (Spite & Spite, 1978) and observationally-constrained nucleosynthetic

models (Arlandini et al., 1999) suggest that in the early phases of Galactic evolution,

elements synthesised via the r-process would be more abundant than those synthesised

via the s-process. When Magain (1995) attempted to measure the isotope ratios directly

(in HD 140283) he found, contrary to expectations, that the s-process dominated. It

could be argued that this conclusion is the result of the quality of the spectrum used

for the analysis, which limits the accuracy with which the isotopes in the observed Ba II

4554 Å line can be measured, as the isotopic splitting of the line is barely resolvable due

to the finite natural, thermal and pressure broadening of stellar spectral lines, made

worse by additional turbulent and instrumental broadening.

For this reason, I embarked on a study of six metal-poor stars, one of which was

HD 140283, using high resolution (R ≡ λ/∆λ = 90 000 − 95 000), very high signal-to-

noise (S/N = 500 − 1100) stellar spectra obtained with the High Dispersion Spectro-

graph (HDS) on the Subaru 8.2 m telescope.

6.1 Conclusions

I have found that the six metal-poor stars (−3.17 ≤ [Fe/H] ≤ −2.24) analysed show

a high s-process signature. This was found by fitting fully resolved synthetic 1D LTE

line profiles (using a χ2 routine) to observed Ba II 4554 Å lines in high resolution

(R = 90 000− 95 000), very high signal-to-noise (S/N = 550− 1100) stellar spectra to

determine the Ba isotope ratio, fodd, where fodd = [N (135Ba) +N (137Ba)] /N (Ba). It

was found that only one star, BD−04◦ 3208, had a physical fodd value, as determined by
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its χ2 minimum, fodd = 0.18± 0.08, which still indicates a high s-process contribution

of 80±23%. A further two stars, HD 140283 and BD+26◦ 3578, had values of fodd that

lie beyond physical fodd limits (as set in Arlandini et al., 1999) of fodd = 0.02 ± 0.06

and fodd = 0.08 ± 0.08, respectively. The last three stars in the sample, HD 122563,

HD 88609 and HD 84937, were found to have purely mathematical solutions, as the

Ba isotope ratios found are physically impossible, fodd = −0.12 ± 0.07, −0.02 ± 0.09

and −0.05 ± 0.11, respectively. To confirm the isotope ratio in one star, HD 140283,

the isotope ratio in the Ba II 4934 Å line was also measured. Fe line blends found in

the blue wing of the Ba 4934 Å line made this line difficult to measure; if the blends

were synthesised with inaccurate line information, they would affect the determina-

tion of fodd. Nevertheless, it was found that fodd = 0.11 ± 0.19, which agrees well

with fodd = 0.01 ± 0.06 as measured from the 4554 Å line, although the 4934 Å result

has a high level of inaccuracy (σfodd
= ±54%) caused by the Fe blends’ uncertain

line strengths. Results from both these lines were combined using inverse-variance-

weighting which gave the overall Ba isotope ratio to be fodd = 0.02 ± 0.06 (as listed

above). No other stars in the sample were analysed using the 4934 Å line because

of these uncertainties. The high s-process signatures found in these metal-poor stars

conflict with current theory which states that the r-process should become dominant

over the s-process as the Galaxy becomes more metal-poor (Truran, 1981).

The isotopic results are especially troubling when they are compared to their coun-

terpart [Ba/Eu] detections. Such a ratio is often used to describe the ratio of the r-

and s-process in a star. A low ratio (∼ −0.69) would suggest an r-process origin and

a high ratio (∼ +1.13) would suggest an s-process origin (Arlandini et al., 1999). The

Eu II 4129 Å line could only be measured for three stars in my sample. For HD 140283

I assigned a lower limit of [Ba/Eu] > −0.66. For HD 122563 and HD 88609 I found

this ratio to be [Ba/Eu] = −0.20± 0.15 and −0.47± 0.15, respectively. Therefore each

measurement of [Ba/Eu] for these two stars show a strong r-process regime, not the

high s-process contribution, as the isotope ratios found in the Ba lines would suggest,

whereas the limit found in HD 140283 would be consistent with everything. This would

seem to indicate that there is a problem with the isotope ratio technique.
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Lambert & Allende Prieto (2002) found that fodd is extremely sensitive to the

macroturbulent broadening of a star. Using a Gaussian to model the macroturbulence

in HD 140283 it was found (in Chapter 3) that δfodd/δFWHM = −0.7 (km s−1)−1.

Therefore, it was important to fully constrain macroturbulence with a high level of

accuracy. The star’s macroturbulence was found by fitting synthetic Fe lines, con-

structed using a 1D LTE radiative transfer code and 1D model atmospheres, to several

dozen observed Fe line profiles for each star. Initially macroturbulent broadening was

modelled using a Gaussian profile. Two other types of symmetric profile were also used

to model HD 140283’s macroturbulence; a radial-tangential and a v sin i profile. It was

found that the v sin i profiles, which are used to model the effect of rotation on line

broadening, fit the Fe lines poorly, relative to when they were fit with a Gaussian. This

was not surprising as HD 140283 is a subgiant star, which should have at most a small

rotational speed (Gray, 1989). Nevertheless, through this analysis an upper limit to the

star’s rotation was set at v sin i < 3.9 km s−1. It was found that the radial-tangential

profiles better fit the majority of the Fe lines than the alternative Gaussian profiles.

Therefore, the macroturbulence and fodd values were determined for all six stars using

both the radial-tangential and the Gaussian broadening profiles. It was found for all

six stars that, while using a radial-tangential broadening profile fit the majority of the

Fe lines and every Ba II line better, there was almost no difference in the fodd value

found using either profile.

An alternative conclusion

If the results found in the present study were confirmed in subsequent studies, and

studies of other stars were found to further complement those results, they would have

a severe impact on the Truran (1981) model of heavy-element production in the early

universe. A possible alternative conclusion that could explain those results without

dismissing the Truran scenario is discussed here by qualitatively addressing how s- and

r-process material is distributed into the interstellar medium (ISM), by considering the

effects their sites have on their surroundings.

It is fairly well established that the main s-process occurs in low- to intermediate-
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mass asymptotic giant branch (AGB) stars while they evolve through a stage of periodic

thermal pulses (TP-AGB). The r-process site(s) is only theoretical as it has never

been directly observed. However, the most agreed upon location for the r-process is a

supernova (SN) explosion. These sites are discussed at length in Chapter 1.

A SN has the following effects on the ISM. It quickly distributes stellar matter and

it heats it up. The death of a low- to intermediate-mass star is far less energetic and

distributes stellar matter slowly, which does not heat up the ISM to the same degree

as the SN explosion. Nevertheless, there will be sporadic pockets of ISM that have

been polluted with r-process material, and later other pockets of ISM that have been

polluted with s-process material. These pockets of ISM will eventually become part

of new star forming regions. The scenario suggested here questions the time-scales

involved between heavy-element contamination of these two different ISM regions and

the subsequent birth of new stars forming from the polluted gas.

The effect of heating the surrounding ISM by a SN temporarily prohibits further

star formation until the temperature is reduced. Details on how star forming gas

clouds lower their temperature by radiative cooling can be found in §1.1 and §1.2. As

the heated ISM and potential star forming regions cool, the distribution of s-process

material will increase through the deaths of evolved low- to intermediate-mass stars.

The impact of their deaths is less severe on the surrounding ISM and subsequent

star forming regions, polluted with s-process material, will continue to form without

major hindrance to the time-scale of their collapse. Therefore future generations of

stars containing s-process materials can form much sooner after the death of a low- to

intermediate-mass star than stars that form following a SN event, which will contain

r-process material.

A consequence of the s-process requires that Fe seed nuclei be present in the forma-

tion of the star, whereas Fe is not required in for a star that will r-process. Therefore

this scenario would not affect the earliest generations of star formation, which would

follow the violent deaths of super-massive, metal-free population III stars. Heating

of the surrounding ISM will still halt new star formation but up until this point only

the r-process will have been able to occur, as there were no Fe seed nuclei present in
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the formation of any of the first stars for the s-process to occur. This means that for

the first few generations of stars the r-process would most certainly dominate over the

s-process.

However, this scenario might occur in later generations of stars that contain material

from several generations of stars, such as those analysed in the present work and would

explain why they seem to have a higher s-process fraction, relative to the r-process.

A modification to the Truran scenario would be required if the s-process enhancement

over the r-process is found observationally in the most metal-poor stars. However, this

scenario is highly speculative at the present time. Also, other heavy-element studies of

metal-poor stars that analyse their abundance patterns, particularly the [Ba/Eu] ratio

(e.g. Sneden et al., 1996; Mashonkina & Zhao, 2006; Frebel et al., 2007; Mashonkina

et al., 2010; Sitnova & Mashonkina, 2011, and references therein) seem to support the

Truran scenario as they replicate metallicity scaled solar system r-process abundance

distributions.

Further testing

In an attempt to better fit the Fe lines in HD 140283 and HD 122563, NLTE profiles

were fit to a selection of lines used in the LTE investigations. The NLTE profiles

were broadened using Gaussian profiles. A comparison with the LTE paradigm showed

no improvement to the poor fits found using Gaussian profiles under LTE. Both these

approaches use atmospheres that assume a 1D geometry and employ symmetric profiles

to model line broadening. The high quality spectra used in this work show absorption

line profiles with subtle asymmetries, particularly a depression of the flux ∼ 100 mÅ

redward of the line centre. Therefore it was not surprising that the NLTE profiles

showed no improvement over the LTE profiles to the fits of asymmetric observed lines.

However, as I discuss in §6.2, using alternative approaches to determine the isotope

ratio of Ba under NLTE are available.

By process of elimination, it seemed that the implementation of time-dependent

3D atmospheres to model real stellar dynamics, thought to be responsible for stellar

absorption line asymmetries, was the next logical step to solve line profile fitting prob-
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lems. Through fitting 3D synthetic Fe lines to 17 observed profiles in HD 140283, a

clear improvement over the 1D LTE and NLTE fits was found. It would appear then

that 1D/3D is a larger issue than LTE/NLTE. Lines synthesised under 3D LTE were

able to completely model or at least partially compensate for line asymmetries found

in the observed spectra of the 17 Fe I lines. However, the 3D synthetic spectra did not

fit the line cores as well as the 1D spectra.

It was expected that 3D atmospheres would fully model complex motions in stellar

atmospheres, partially responsible for the Doppler broadening of an absorption line.

As such, any excess broadening seen between the observed and 3D synthetic profiles

was assumed to be due to the star’s rotation. The rotational broadening of HD 140283,

set from the analysis of the 17 Fe lines, was found to be v sin i = 2.41 ± 0.07 km s−1.

This value agrees well with the upper limit, v sin i < 3.9 km s−1, set during the 1D LTE

investigation and agrees at the 1σ level with the value inferred by Collet et al. (2009),

v sin i = 2.58 km s−1, during their 3D analysis of the Ba isotopes for the same star.

Large abundance differences, 〈A(Fe)3D−1D〉 = −0.22, were found between the 3D

and equivalent 1D best fits. Frebel et al. (2008) found a similar result for HE 1327−2326

and explain that this is an effect of the lower temperatures in the outer atmospheres

of 3D synthetic models, relative to their 1D counterparts, which Asplund & Garćıa

Pérez (2001) state is an expected result when no longer fulfilling radiative equilibrium

and instead solving the energy equation for time-dependent 3D models. By comparing

the Fe abundances to the lines’ equivalent widths (W ) and excitation potentials (χ) I

found a weak dependence of A(Fe) on W and a stronger dependence on χ. The small

dependence on W could indicate a poorly chosen microturbulence, whereas the larger

dependence on χ could be the result of problems with the 3D model’s temperatures.

However, these dependencies could be the result of scatter, which is exacerbated by the

limited number of lines analysed. I also find that the 3D synthetic profiles under-fit

the observed Fe line cores in all 17 lines. This could also indicate an issue with the 3D

synthesis, or could simply be a result of fitting errors caused by the use of coarse A(Fe)

grids synthesised under 3D LTE. Further investigation is required to confirm/disprove

these suspicions.
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6.2 An alternative approach to determine fodd

While I have cited the works of Magain (1995) and Lambert & Allende Prieto (2002)

several times when comparing my results in Chapters 3 & 4 to other studies conducted

in the same manor, I have neglected to mention any other studies that try to calculate

the odd-to-even isotope ratio of Ba using methods other than the ones I use in the

present work. In this section I will discuss some other methods for obtaining the

isotope ratio of Ba conducted by other groups.

Most notably, Mashonkina & Zhao (2006) conducted an analysis of the Ba even-

to-odd isotope ratios for 25 stars in the thin and thick disks using an intriguing NLTE

technique first discussed in Mashonkina et al. (1999). The procedure relies on an NLTE

analysis as very accurate abundance determinations need to be made that cannot be

replicated under the assumption of LTE. This is especially evident in the subordinate

Ba II lines, which are very sensitive to NLTE effects.

Mashonkina & Zhao used subordinate Ba II lines (the 5853 and 6496 Å lines) to

determine the Ba abundance of each star. The difficulty here is accurately identifying

and distinguishing between the Ba profiles and the well known blends that affect the

5853 and 6141 Å lines. As I found in Chapter 3 when I analysed the 4934 Å line, this can

alter abundances, and for my work, severely change the isotope ratio. In fact the 6141 Å

line was too strongly blended with the Fe I 6141.7 Å line to allow for accurate abundance

determinations and was subsequently dropped from further analysis. However, they

make no intention to calculate the isotope ratio at this stage.

Their method for determining the isotope ratio in the Ba II 4554 Å resonance line

relies on the assumption that the larger the r-process fraction is, the larger the fraction

of odd isotopes is, and hence the greater the total energy absorbed by the line, while the

subordinate lines remain unchanged (Mashonkina et al., 1999). Therefore by forcing

the abundances of all the Ba lines analysed to be the same, altering the isotope ratios

of the 4554 Å line with constant abundance leads to stronger (r-process dominated) or

weaker (s-process dominated) profiles. This has a notable advantage over the method

used in the present work as one does not require extremely high resolution and signal-
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to-noise spectra to determine the isotope fraction by measuring the change in line

shape. All that is required is a measurement of the equivalent widths of each line.

However, there are a few disadvantages to using such a method, as I shall now

discuss. Firstly to work with any atomic species under the assumption of NLTE re-

quires the use of a model atom, the accuracy of which increases the more complete the

level populations are, which should ideally include the transitions in both the previous

and subsequent ionisation states. This is very time consuming. Improvements to the

model atom complete with further transitions are constantly being published, e.g. the

model atom used in Mashonkina & Zhao (2006) was greatly improved and closer to

completion over the one used in Mashonkina et al. (1999). Another problem when

using this method to analyse extremely metal-poor stars is that the subordinate 6496

and 5853 Å lines disappear from observed spectra at [Fe/H] < −2.3 and < −1.9 respec-

tively (Mashonkina et al., 1999). This means that of the six stars in my sample, with

−3.17 ≤ [Fe/H] ≤ −2.24, only one, HD 84937, could be analysed using this method.

Finally, this method requires that the 4554 Å resonance line is saturated so that when

one increases the fraction of the odd isotopes in the line, it works to cancel the satura-

tion of the line and drive the line formation depth downwards. This means that small

changes in abundance from the subordinate lines do not lead to large compensations of

the fractional abundance of the odd isotopes so that the model and observed equivalent

widths are equal (Mashonkina & Zhao, 2006). Therefore the types of stars that can be

studied using this method are limited.

Overall, however, this is an interesting alternative approach, which has advantages

and disadvantages compared to the line profile method applied in the present work.

Both still require a correct treatment of the velocity field; the Mashonkina & Zhao

method requires that the microturbulence is correctly established to avoid over or under

saturation of the Ba lines and the technique presented in the current work requires a

carefully calculated macroturbulence when fitting the Ba line(s) so that the broadening

of the star does not affect the isotope ratio.
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6.3 Future work

From the work conducted in this thesis, it would appear that radiative transfer codes

that assume LTE and employ 1D atmospheres fail to produce trustworthy results when

one is attempting to reproduce accurately the behaviours of absorption lines obtained

with the latest high resolution, high signal-to-noise spectra. This was shown through

their failure to model subtle asymmetric behaviours visible in high quality stellar spec-

tra. The asymmetry is caused by complex motions of particles in dynamic stellar atmo-

spheres, but is absent from the models because of the relatively simplistic assumptions

made in their construction, as listed in §2.1.

It would seem that where these codes fail, codes that employ time-dependent, 3D

hydrodynamics appear to be capable of modelling the intricate behaviours of a stellar

atmosphere, and therefore could be considered more useful than the 1D LTE alterna-

tive when fitting synthetic profiles to high quality observed spectra. In fact, abundance

calculations using such codes are becoming more frequent (Asplund, 2005) and are grad-

ually replacing classical approaches that employ 1D atmospheres (Freytag et al., 2012).

For example, new solar abundances calculated using such codes are available (Grevesse

et al., 2007) and show deviations in the solar abundances previously determined using

classical 1D atmospheres (Grevesse & Sauval, 1998).

However, the complexities of modelling 3D atmospheres and computing the radia-

tive transfer for absorption lines is currently extremely computer intensive as these

codes are still under development, as explained in §5.2. As such, modelling only a

handful of lines, like those presented in this work, is extremely time consuming. How-

ever, the positive results found justify the extra time needed for a much more detailed

investigation. Current 3D analyses of the Ba isotopes, however, indicate an enhance-

ment of the s-process, relative to the equivalent 1D LTE analysis (Collet et al., 2009).

If this was replicated in the present work, every star in the sample would show ex-

tremely high s-process enhancements, further exacerbating differences in observation

and current theory (Truran, 1981).

I intend to conduct an investigation which will fully replicate all avenues considered
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in Chapter 3 during the modelling of both the Fe lines, used to determine the star’s

macroturbulence under 1D, and the Ba II 4554 Å line to determine the isotope ratios

and the s- and r-process fractions under 3D LTE. Such an undertaking will require time

consuming computations of the synthetic Fe profiles for the large A(Fe) and v sin i grid

parameters, discussed in §5.3. Also, the Ba II line will require many hours, weeks or

months of construction to produce a similar grid of isotope ratios to that used during

the 1D LTE work. Through analysis of the 90 Fe lines, a more precise value of v sin i

can be set, which will be used to model the rotational broadening in the Ba II line, just

like the macroturbulence found in the Fe lines during the 1D LTE work was used to

model the broadening of the Ba II line. Also, the problems discovered in the present

work, namely the 3D Fe abundance departures, must be fully investigated to elimi-

nate any potential synthesis errors such as incorrect microturbulence or temperature

determinations, which based on Fig. 5.10 and Frebel et al. (2008), appear to have some

small contribution to the current abundance departures found.

To build a better understanding of neutron-capture nucleosynthesis at early times

several more heavy elements, and indeed, other metal-poor stars should be examined.

This would also test the modifications to the Truran scenario, proposed in §6.1, by

increasing the number of metal-poor stars that either seem to confirm or disprove it.

As discussed in §2.5, such an analysis is complex but it is hoped that with the use of new

observational techniques, discussed in §4.5 & §5.5, which should improve the quality

of stellar spectra, combined with a fully 3D treatment of their atmospheres, a more

detailed analysis should be possible. As a precursor to such work, I intend to carry

out this investigation using the highest quality spectrum currently available to me (i.e.

HD 140283’s spectrum). The results found with this spectrum should indicate whether

the lengthy and complex process of obtaining new observed stellar spectra using the I2

observational technique would help attain isotope fractions of other heavy elements to

high enough degrees of accuracy, or whether determining such values produce spurious

results, even with high quality observed spectra. It would also be useful to examine at

least one star using the methods described in §6.2 and compare it with the results from

an analysis conducted using the methods employed in the present work as a consistency
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check between both methods.

The application of such codes is not limited to just abundance and isotope fraction

determinations. As was mentioned in §5.5, other avenues of interest, such as stellar

radial velocity measurements used to find extrasolar planets, could be explored using

a fully 3D treatment of the synthetic profiles, as granulation and atmospheric turbu-

lences, which 3D codes appear to model well (Freytag et al., 2012), plague accurate

radial velocity measurements (Desort et al., 2009) and can lead to erroneous radial

velocity measurements (Saar et al., 1998).

With the emergence of 3D codes, such as those discussed in this thesis, and their

continued improvement, new avenues of investigation are emerging that should test cur-

rent theories on Galactic chemical evolution (discussed in Chapter 1) to a higher level

than previously seen. Coupled with new technologies that boast faster computational

speeds, they will no doubt surface with greater frequency in the future.
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A.1 A KURUCZ06 model atmosphere

An example of a KURUCZ06 model atmosphere with parameters Teff/log g/[Fe/H] =
5750 K/3.70 dex/ − 2.50, the same parameters used for modelling HD 140283’s atmo-
sphere.

TEFF 5750. GRAVITY 3.70 LTE
TITLE K93 CDROM13 SDSC GRID, INTERPOLATED AND HEADER FUDGED
OPACITY IFOP 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1
CONVECTION OFF 1.00 TURBULENCE OFF 2.00
CORRECTION OFF
PRESSURE OFF
MOLECULES ON
ITERATION 1
PUNCH 5
SURFACE FLUX
ABUNDANCE SCALE 0.00316 ABUNDANCE CHANGE 1 0.911 2 0.089
ABUNDANCE CHANGE 3 -11.45 4 -10.88 5 -9.25 6 -3.36 7 -4.04 8 -3.11
ABUNDANCE CHANGE 9 -7.49 10 -4.60 11 -5.71 12 -4.41 13 -5.54 14 -4.40
ABUNDANCE CHANGE 15 -6.58 16 -4.80 17 -6.40 18 -5.40 19 -6.91 20 -5.67
ABUNDANCE CHANGE 21 -9.04 22 -7.04 23 -7.95 24 -6.36 25 -6.58 26 -4.53
ABUNDANCE CHANGE 27 -7.11 28 -5.78 29 -7.60 30 -7.63 31 -9.21 32 -8.73
ABUNDANCE CHANGE 33 -9.70 34 -8.80 35 -9.40 36 -8.80 37 -9.10 38 -9.10
ABUNDANCE CHANGE 39 -9.79 40 -9.63 41 -9.75 42 -10.15 43 -20.00 44 -10.48
ABUNDANCE CHANGE 45 -10.50 46 -10.48 47 -11.38 48 -10.08 49 -10.34 50 -10.34
ABUNDANCE CHANGE 51 -10.40 52 -10.00 53 -10.60 54 -10.00 55 -10.90 56 -9.85
ABUNDANCE CHANGE 57 -10.95 58 -10.39 59 -11.21 60 -10.55 61 -20.00 62 -11.06
ABUNDANCE CHANGE 63 -11.52 64 -10.88 65 -11.60 66 -10.88 67 -11.50 68 -11.29
ABUNDANCE CHANGE 69 -11.62 70 -11.24 71 -11.21 72 -11.40 73 -11.70 74 -9.48
ABUNDANCE CHANGE 75 -11.40 76 -11.30 77 -9.84 78 -10.40 79 -11.73 80 -9.05
ABUNDANCE CHANGE 81 -11.85 82 -10.18 83 -11.25 84 -20.00 85 -20.00 86 -20.00
ABUNDANCE CHANGE 87 -20.00 88 -20.00 89 -20.00 90 -11.23 91 -20.00 92 -11.45
ABUNDANCE CHANGE 93 -20.00 94 -20.00 95 -20.00 96 -20.00 97 -20.00 98 -20.00
ABUNDANCE CHANGE 99 -20.00
READ DECK 35 RHOX,T,P,XNE,ABROSS,PRAD,RHO
2.0434533E-03 4125.3 1.024E+01 5.147E+08 6.526E-05 6.718E-06 3.974E-11
1.9555026E-01 4499.6 9.800E+02 2.547E+10 8.883E-04 8.050E-04 3.487E-09
2.5616658E-01 4524.8 1.284E+03 3.221E+10 1.089E-03 1.119E-03 4.542E-09
3.3081833E-01 4548.3 1.658E+03 4.013E+10 1.319E-03 1.540E-03 5.836E-09
4.3298262E-01 4572.4 2.170E+03 5.041E+10 1.613E-03 2.175E-03 7.598E-09
5.6164247E-01 4595.6 2.815E+03 6.277E+10 1.957E-03 3.059E-03 9.804E-09
7.3234397E-01 4617.4 3.670E+03 7.792E+10 2.371E-03 4.364E-03 1.272E-08
9.5428640E-01 4636.8 4.783E+03 9.573E+10 2.850E-03 6.264E-03 1.651E-08
1.2502046E+00 4654.9 6.266E+03 1.174E+11 3.424E-03 9.123E-03 2.155E-08
1.6398417E+00 4672.4 8.219E+03 1.437E+11 4.110E-03 1.341E-02 2.816E-08
2.1536152E+00 4690.8 1.079E+04 1.764E+11 4.952E-03 1.991E-02 3.683E-08
2.8270702E+00 4711.6 1.417E+04 2.182E+11 6.008E-03 2.983E-02 4.813E-08
3.6990998E+00 4738.5 1.854E+04 2.751E+11 7.408E-03 4.501E-02 6.264E-08
4.8104167E+00 4773.4 2.411E+04 3.549E+11 9.316E-03 6.835E-02 8.084E-08
6.1913037E+00 4820.7 3.103E+04 4.738E+11 1.205E-02 1.042E-01 1.030E-07
7.8485451E+00 4885.8 3.934E+04 6.634E+11 1.622E-02 1.595E-01 1.289E-07
9.7691631E+00 4973.2 4.896E+04 9.823E+11 2.282E-02 2.451E-01 1.576E-07
1.1839594E+01 5095.9 5.934E+04 1.584E+12 3.434E-02 3.757E-01 1.864E-07
1.3969381E+01 5259.9 7.000E+04 2.794E+12 5.534E-02 5.805E-01 2.130E-07
1.5012367E+01 5360.5 7.523E+04 3.850E+12 7.224E-02 7.231E-01 2.247E-07
1.5975389E+01 5481.6 8.007E+04 5.512E+12 9.711E-02 8.959E-01 2.338E-07
1.6872589E+01 5623.7 8.456E+04 8.181E+12 1.342E-01 1.114E+00 2.407E-07
1.7689190E+01 5787.5 8.865E+04 1.253E+13 1.899E-01 1.390E+00 2.452E-07
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1.8415186E+01 5973.6 9.230E+04 1.970E+13 2.749E-01 1.738E+00 2.473E-07
1.9046143E+01 6183.2 9.546E+04 3.166E+13 4.054E-01 2.175E+00 2.471E-07
1.9550453E+01 6423.8 9.798E+04 5.210E+13 6.138E-01 2.685E+00 2.440E-07
1.9978403E+01 6673.2 1.001E+05 8.406E+13 9.225E-01 3.303E+00 2.400E-07
2.0348253E+01 6910.7 1.020E+05 1.286E+14 1.337E+00 4.013E+00 2.359E-07
2.0677786E+01 7125.8 1.036E+05 1.845E+14 1.849E+00 4.778E+00 2.324E-07
2.0983185E+01 7319.9 1.052E+05 2.511E+14 2.457E+00 5.563E+00 2.294E-07
2.1275919E+01 7488.6 1.066E+05 3.238E+14 3.131E+00 6.332E+00 2.272E-07
2.1568996E+01 7648.1 1.081E+05 4.080E+14 3.919E+00 7.087E+00 2.253E-07
2.1866426E+01 7798.7 1.096E+05 5.036E+14 4.828E+00 7.828E+00 2.238E-07
2.2171928E+01 7941.5 1.111E+05 6.107E+14 5.868E+00 8.559E+00 2.226E-07
2.2489462E+01 8079.1 1.127E+05 7.311E+14 7.065E+00 9.288E+00 2.217E-07
WAVELENGTH FL BY DL TO LL
BEGIN 1 COMPLETED
END
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A.2 A tc-shell script used to run ATLAS

An example of a tc-shell script used to automate the procedure of running ATLAS for
many different parameters in order to create grids of stellar spectra for a single star.

#!/bin/csh
#-----------------Compile as runatlas_agFe_com filename.bmod-----------------------
#
#---------------$1 is model identifier, e.g. hd140283.cool.k89-------------------
if ( $#argv != 1) then # $#argv = # of arguments on command line
echo ^G # leaves a line space
echo Give model name on command line as e.g. hd140283.cool.bmod
exit
endif
set star = $1:r # Strips off trailing filename

#-------------------------Setting user input parameters----------------------------
#
#--------------Gaussian microturbulence--------------
set TURB = 1.40
#--------------Gaussian macroturbulence--------------
foreach broad (5.00 5.20 5.40 5.60 5.80 6.00) # Inc. instrumental profile
#---------Radial-tangential macroturbulence----------
#foreach zeta (4.00 4.20 4.40 4.60 4.80 5.00) # Exc. instrumental profile
set zeta = 0.00
#------------If zeta not=0 then use this-------------
#set broad = 3.31 # The instrumental profile
#----AFE----
foreach AFe (-3.06 -3.16 -3.26 -3.36 -3.46 -3.56)
#----------------------------------------------------------------------------------
if (-w model.dat) mv model.dat model.dat.old
#-----------------------Manipulating the atmosphere file---------------------------
sed \
-e ’4s/TURBULENCE OFF 2.00/TURBULENCE OFF ’$TURB’/’ \ # microturbulence
-e ’s/26 -4.53/26 ’$AFe’/’ \ # AFe
-e ’s/FL BY DL TO LL/411.5 BY 0.001 TO 412.5/’ \ # wavelength coverage
$1 > model.dat # moving atmosphere into correct file
#----------------------------------------------------------------------------------
set num = "n_"$star"a"$AFe"M"$broad".out"
set flux = "syn."$star"a"$AFe"M"$broad".mdat.hdr" # setting filename
\cp kurmol.ch mol.dat # INPUT ATOMIC DATA
\cp linesnew2.dat lines.dat # Input lines
echo Starting atlas_main ...
atlas_main.e # Starting the main ATLAS program
#-----------------------------checking the output----------------------------------
if ($status != 0) then
echo ^G
echo atlas_main.e failed!
exit
endif
\mv flux.out fort.11 # OUTPUT WAVELENGTH,FLUX FILE
\mv numbers.out $num # OUTPUT NUMBER DENSITIES ETC
if (-w fort.12) rm fort.12
echo Starting atlas_velbroaden ...
#--------------------Start the broadening of the synthesis-------------------------
atlas_velbroaden.e <<end_of_input # Input to "end_of_input"
$zeta ! zeta km/s
$vsini ! vsini km/s
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$broad ! Gaussian FWHM km/s
0.0 ! slope per A
end_of_input
if ($status != 0) then

echo ^G
echo atlas_velbroaden.e failed!
exit

endif
\mv fort.12 $flux # transfer final broadened output to filename
#------------------Strips header for compatibility with IDL-----------------------
set fluxtrim = $flux:r
if (-e $fluxtrim) \rm $fluxtrim
tail --lines=+4 $flux > $fluxtrim
#------------Housekeeping-move some files around to tidy work area up-------------
#
#-------------Note each file is over 15M check space to store them----------------
\mv $fluxtrim /data/agallagher/Project1/IDLwork/synthesis
\rm $num
\rm $flux
echo ^G
#--------------------------End of the Fe abundance loop---------------------------
end
#------------------------End of the radial-tangential loop------------------------
#end
#--------------------------End the Gaussian macro loop----------------------------
end
exit
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A.3 The Ba line lists

The 100% s- and 100% r-process line lists created using the procedures described in
§2.5 that constructed the hybrid line lists of varying s- and r-process contribution used
for the analysis in Chapters 3 & 4.

100% s-process:

4553.9980 56.01 137 0.00 0.021024 2.2
4553.9985 56.01 137 0.00 0.021024 2.2
4553.9985 56.01 137 0.00 0.008426 2.2
4554.0010 56.01 135 0.00 0.004852 2.2
4554.0015 56.01 135 0.00 0.004852 2.2
4554.0020 56.01 135 0.00 0.001944 2.2
4554.0316 56.01 134 0.00 0.042894 2.2
4554.0319 56.01 136 0.00 0.144952 2.2
4554.0332 56.01 138 0.00 1.125595 2.2
4554.0474 56.01 135 0.00 0.013592 2.2
4554.0498 56.01 137 0.00 0.058900 2.2
4554.0503 56.01 135 0.00 0.004852 2.2
4554.0513 56.01 135 0.00 0.000966 2.2
4554.0537 56.01 137 0.00 0.021024 2.2
4554.0542 56.01 137 0.00 0.004186 2.2

4934.0469 56.01 137 0.00 0.020754 2.2
4934.0503 56.01 135 0.00 0.003027 2.2
4934.0591 56.01 137 0.00 0.004151 2.2
4934.0610 56.01 135 0.00 0.000605 2.2
4934.0928 56.01 134 0.00 0.019370 2.2
4934.0930 56.01 136 0.00 0.058803 2.2
4934.0950 56.01 138 0.00 0.537529 2.2
4934.1104 56.01 135 0.00 0.003027 2.2
4934.1133 56.01 137 0.00 0.020754 2.2
4934.1211 56.01 135 0.00 0.003027 2.2
4934.1250 56.01 137 0.00 0.020754 2.2

100% r-process:

4553.9980 56.01 137 0.00 0.047131 2.2
4553.9985 56.01 137 0.00 0.047131 2.2
4553.9985 56.01 137 0.00 0.018889 2.2
4554.0010 56.01 135 0.00 0.059376 2.2
4554.0015 56.01 135 0.00 0.059376 2.2
4554.0020 56.01 135 0.00 0.023796 2.2
4554.0316 56.01 134 0.00 0.000000 2.2
4554.0319 56.01 136 0.00 0.000000 2.2
4554.0332 56.01 138 0.00 0.797235 2.2
4554.0474 56.01 135 0.00 0.166344 2.2
4554.0498 56.01 137 0.00 0.132040 2.2
4554.0503 56.01 135 0.00 0.059376 2.2
4554.0513 56.01 135 0.00 0.011822 2.2
4554.0537 56.01 137 0.00 0.047131 2.2
4554.0542 56.01 137 0.00 0.009384 2.2

4934.0469 56.01 137 0.00 0.025943 2.2
4934.0503 56.01 135 0.00 0.086907 2.2
4934.0591 56.01 137 0.00 0.005189 2.2
4934.0610 56.01 135 0.00 0.017381 2.2
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4934.0928 56.01 134 0.00 0.000000 2.2
4934.0930 56.01 136 0.00 0.000000 2.2
4934.0950 56.01 138 0.00 0.330680 2.2
4934.1104 56.01 135 0.00 0.086907 2.2
4934.1133 56.01 137 0.00 0.025943 2.2
4934.1211 56.01 135 0.00 0.086907 2.2
4934.1250 56.01 137 0.00 0.025943 2.2
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A.4 A LINFOR3D Fe line list

An example of the line list formatting that is used as the input into LINFOR3D.

Mult namj ei alam gflg dlgC6 drrca1 dlam ddlam
9 9
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg -0.8
1 0
00 2600 2.176 4282.400 -1.579 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg -0.6
1 0
00 2600 2.176 4282.400 -1.379 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg -0.4
1 0
00 2600 2.176 4282.400 -1.179 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg -0.2
1 0
00 2600 2.176 4282.400 -0.979 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg 0.0
1 0
00 2600 2.176 4282.400 -0.779 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg 0.2
1 0
00 2600 2.176 4282.400 -0.579 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg 0.4
1 0
00 2600 2.176 4282.400 -0.379 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg 0.6
1 0
00 2600 2.176 4282.400 -0.179 0.0 49.466 4.D-1 2.D-3
Fe I, 4282.400 A, 2.176 eV, -0.779 gflg 0.8
1 0
00 2600 2.176 4282.400 0.021 0.0 49.466 4.D-1 2.D-3
clam gfscale
4282.400 1.0
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A.5 The linfor grid.pro IDL code

This code was used in Chapter 5 to extract the relevant data from the LINFOR3D output
so that the 3D synthetic spectra could be compared to the HD 140283 stellar spectrum.

PRO linfor_grid

;----------------------------Asking for the user’s input----------------------------
press=’’
whichmet=’’
type=’’
read,prompt=’Enter which van der Waals approximation to use (VALD/Unsold): ’,press
read,prompt=’Enter desired metallicity to interpolate to (e.g. -2.1): ’,whichmet
read,prompt=’Enter which synthetic run to use (m2m3 or mm25): ’,type
;----------------------------------User input end-----------------------------------

;--------------------------Defining variables and constants-------------------------
AFe=[4.20,4.40,4.60,4.80,5.00,5.20,5.40,5.60,5.80] ;A(Fe)_sol values scaled to
;[Fe/H]=-2.5
wav=read_table(’/data/agallagher/linfor/wrk/analysis/linelist_’+press,ncol=2)
ion=reform(wav(1,*))
wav=reform(wav(0,*))
swav=strcompress(string((wav),format=’(I4)’),/remove_all)
npts=n_elements(swav)
met=[’20’,’30’]
vsini=(findgen(11))/2. ;vsini ranging from 0 to 5 km/s in steps of 0.5
flux=dblarr(n_elements(met),401,(size(AFe))(1),n_elements(vsini))
intflux=dblarr(n_elements(swav),401,(size(AFe))(1),n_elements(vsini))
convflux=dblarr(n_elements(swav),401,(size(AFe))(1),n_elements(vsini))
percent=(whichmet-(-3.0))/((-2.0)-(-3.0))*100 ;calculates the percentage of
;[Fe/H]=-3.0 to -2.0 for required [Fe/H] (default value=-2.5)
lambda=dblarr(npts,401)
band=dblarr(n_elements(swav))
c=2.9979D5 ;speed of light in km/s
v=3.31 ;velocity-spaced instrumental broadening from ThAr lines
;---------------------End of variable and constant definitions----------------------

obs=read_table(’/data/agallagher/Project1/IDLwork/synthesis/obs.HD140283.dat’$
,ncol=2)

;---------------------------------line loop-----------------------------------------
for i=0,npts-1 do begin

;---------------------------------vsini loop----------------------------------------
for m=0,n_elements(vsini)-1 do begin

;---------------------------------A(Fe) loop----------------------------------------
for l=0,(size(AFe))(1)-1 do begin

;-----------------------metallicity interpolation loop------------------------------
for j=0,(size(met))(1)-1 do begin

if ion(i) eq 2601 then fei=’FeII’ else fei=’FeI’
restore,’/data/agallagher/linfor/wrk/’+press+’/’+type+’/d3t57g37mm’+$
met(j)+’n01.20ss-’+fei+swav(i)+’.idlsave’

flux(j,*,l,m)=linfor_rotate(imuphi,-1,l,vsini(m),/normalize)
endfor

;---------------------metallicity interpolation loop end----------------------------
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band(i)=v*line.clam/c
band(i)=band(i)/2*sqrt(2*alog(2)) ;converting FWHM to sigma
lambda(i,*)=(line.clam-line.dlam(0))+dindgen(1+2*line.dlam(0)/$
line.ddlam(0))*line.ddlam(0) ;calculates lambda points for given line
for k=0,400 do intflux(i,k,l,m)=flux(1,k,l,m)+(((flux(0,k,l,m)-$
flux(1,k,l,m))/100)*percent) ;interpolates between [Fe/H]=-3.0 to -2.0
f=reform(intflux(i,*,l,m)) ;1D array required for next routine
linfor_convol,lambda(i,*),f,cf,band(i) ;convolution routine
convflux(i,*,l,m)=cf

endfor
;--------------------------------A(Fe) loop end-------------------------------------

print,’Extracting flux data for the ’+swav(i)+’ line for vsini=’$
+strcompress(string(vsini(m),format=’(F3.1)’),/remove_all)+’ km/s...’

endfor
;--------------------------------vsini loop end-------------------------------------

endfor
;--------------------------------line loop end--------------------------------------

print,’saving data in 3D_grid.idlsave...’

save,convflux,lambda,vsini,AFe,wav,obs,file=$
’/data/agallagher/Project2/linfor_grids/3D_grid_’+press+’-’+type+’.idlsave’

end
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Paper I: Online material

B.1

The following table contains data calculated by the analysis of 93 Fe I and Fe II lines

used to determine vconv for HD 140283, and was published online for use with Gallagher

et al. (2010) (i.e. Chapter 3). For a select number of lines, measured equivalent widths

from Hosford et al. (2009) & Lambert & Allende Prieto (2002) are tabulated in column

3. Wavelengths with asterisks denote lines that were excluded from the lower panel of

Fig. 3.10.



202 Paper I:

T
ab

le
B

.1
:

Fe
lin

e
ob

se
rv

at
io

ns
an

d
re

su
lt

s
us

ed
to

co
ns

tr
ai

n
m

ac
ro

tu
rb

ul
en

ce
fo

r
H

D
14

02
83

.

M
ea

su
re

d
d
at

a
fr

om
ob

se
rv

ed
sp

ec
tr

u
m

R
es

u
lt

s
fr

om
χ

2
co

d
e

W
av

el
en

gt
h
a

(Å
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Å

)
χ

2 r

49
18

.9
9

38
.8

..
.

7.
11

F
e

I
5.

85
4.

88
-1

1.
0

15
.3

49
38

.8
1

12
.1

..
.

6.
80

F
e

I
5.

59
4.

89
-1

5.
0

2.
3

49
94

.1
3

13
.1

14
.0

6.
50

F
e

I
5.

58
4.

88
-1

2.
4

0.
8

50
01

.8
6

13
.3

..
.

7.
01

F
e

I
5.

91
4.

87
-1

1.
1

2.
2

50
06

.1
2

27
.5

..
.

6.
98

F
e

I
5.

68
4.

84
-1

3.
1

1.
4

50
12

.0
7

32
.8

32
.0

6.
78

F
e

I
5.

58
4.

98
-1

7.
9

8.
8

50
41

.0
7

13
.2

..
.

6.
89

F
e

I
6.

15
5.

07
-1

2.
5

19
.1

50
49

.8
2

22
.6

..
.

6.
90

F
e

I
5.

80
4.

92
-1

5.
6

3.
6

50
51

.6
4

22
.8

..
.

6.
61

F
e

I
5.

60
4.

97
-1

5.
6

5.
4

50
68

.7
7

11
.2

..
.

6.
76

F
e

I
5.

33
4.

85
-1

7.
4

0.
7

50
83

.3
4

15
.3

16
.0

6.
46

F
e

I
5.

56
4.

88
-1

4.
6

3.
8

50
98

.7
0

10
.2

..
.

7.
34

F
e

I
5.

52
5.

03
-1

5.
9

0.
6

51
07

.4
5*

11
.6

12
.0

6.
44

F
e

I
5.

51
5.

01
-2

0.
3

5.
1

51
10

.4
1

24
.1

25
.0

6.
61

F
e

I
5.

54
5.

06
-1

8.
8

4.
3

51
23

.7
2

11
.0

12
.0

6.
40

F
e

I
5.

61
4.

99
-1

5.
1

2.
7

51
42

.9
3*

11
.8

..
.

7.
25

F
e

I
6.

20
4.

95
-1

4.
5

46
.7

51
62

.2
7

12
.6

..
.

7.
25

F
e

I
5.

76
5.

06
-1

0.
3

0.
6

51
66

.2
8

10
.3

..
.

6.
33

F
e

I
5.

41
4.

97
-1

5.
4

0.
9

51
71

.6
0

41
.2

..
.

6.
86

F
e

I
5.

44
4.

67
0.

3
18

.0
51

91
.4

6
21

.9
..
.

6.
86

F
e

I
5.

81
4.

86
-1

6.
5

10
.5

51
92

.3
4

28
.4

..
.

6.
85

F
e

I
5.

78
4.

84
-1

6.
9

29
.3

51
94

.9
4

24
.4

26
.0

6.
67

F
e

I
5.

79
4.

93
-1

9.
2

7.
2

52
16

.2
7

19
.6

..
.

6.
65

F
e

I
5.

60
4.

89
-1

4.
9

4.
7

52
34

.6
4

12
.9

13
.0

6.
57

F
e

II
5.

60
4.

89
-1

5.
8

1.
9

52
66

.5
6

32
.9

..
.

7.
09

F
e

I
5.

87
4.

85
-1

4.
0

8.
6

52
81

.7
9

13
.5

..
.

6.
81

F
e

I
5.

77
4.

86
-1

7.
4

5.
1

52
83

.6
2

19
.5

..
.

7.
02

F
e

I
5.

89
4.

94
-1

7.
1

12
.1



B.1 Online material 205

co
n
ti

n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e.
..

M
ea

su
re

d
d
at

a
fr

om
ob

se
rv

ed
sp

ec
tr

u
m

R
es

u
lt

s
fr

om
χ

2
co

d
e

W
av

el
en

gt
h
a

(Å
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Å

)
W

c
(m

Å
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C.1 Re-examination of the χ2
r results

The χ2
r analysis conducted in Chapter 3 to determine which broadening mechanism

best describes the Fe line’s broadening has been extended. The individual χ2
r results

for a given broadening profile can be co-added so that the best overall result can

be determined as judged by the total χ2
r value. In this section I conduct such an

analysis for the three broadening types used to describe the broadening profiles of the

Fe lines. In Chapter 3 I found that the best broadening profile was a radial-tangential

(ζRT) profile, with most Fe lines better fit by the mechanism, followed closely by the

Gaussian technique. Finally the v sin i profile, which is used to approximate the effect

a star’s rotation has on line broadening, was the poorest broadening approximation

with fewest lines better fit by the profile.

In Chapter 3, the same 93 Fe lines were used to determine the macroturbulent

broadening of HD 140283 for each broadening mechanism. The table below tabulates

the results of the total χ2
r value for each broadening mechanism.

Table C.1: Total χ2
r values for the three types of broadening profile used in Chapter 3

Broadening Mechanism Σχ2
r

ζRT 584.91
Gaussian 598.94
v sin i 912.16

As one can see, the above result nicely confirms the result found in Chapter 3,

which showed that the best broadening mechanism approximation to use in HD 140283

is a ζRT profile. However, the co-addition of the χ2
r values for each broadening type

have shown that there is not a large statistical significance to separate the ζRT and

Gaussian profiles, meaning that use of either would have little effect in improving the

overall best fit. It also shows that using the v sin i profiles are still statistically unsound

when compared to the other two broadening techniques. However, further work can

be done to compare the ζRT and Gaussian profiles. One can still change the ratios

of the radial and tangential broadening as a comparison with the Gaussian profiles to

determine whether the resultant profiles better fit the Fe lines or worsen the total χ2
r

value when compared to the Gaussian and current ζRT results.
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