Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

Fishlock, C. K., Yong, D., Karakas, A. I., Alves-Brito, A., Melendez, J., Nissen, P. E., Kobayashi, C. and Casey, A. R. (2017) Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars. 4672–4682. ISSN 0035-8711
Copy

We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with −1.5 < [Fe/H] < −0.8. We also measure the iron-peak element Sc. These stars separate into three populations (low- and high-α halo and thick-disc stars) based on the [α/Fe] abundance ratio and their kinematics as discovered by Nissen & Schuster. We find differences between the low- and high-α groups in the abundance ratios of [Sc/Fe], [Zr/Fe], [La/Zr], [Y/Eu] and [Ba/Eu] when including Y and Ba from Nissen & Schuster. For all ratios except [La/Zr], the low-α stars have a lower abundance compared to the high-α stars. The low-α stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-α stars. These distinct chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-α population. By comparing the low-α population with AGB stellar models, we place constraints on the mass range of the AGB stars.

picture_as_pdf

picture_as_pdf
1701.02423.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads