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Abstract  

The diversity of pore-forming subunits of KV1 channels (KV1.1-KV1.8) affords their 

physiological versatility and predicts a range of functional impairments resulting from 

genetic aberrations. Curiously, identified so far human neurological conditions associated 

with dysfunctions of KV1 channels have been linked exclusively to mutations in the 

KCNA1 gene encoding for the KV1.1 subunit. The absence of phenotypes related to 

irregularities in other subunits, including the prevalent KV1.2 subunit of neurons is highly 

perplexing given that deletions of corresponding kcna2 gene in mouse models precipitate 

symptoms reminiscent to those of KV1.1 knockouts. Herein, we critically evaluate the 

molecular and biophysical characteristics of the KV1.1 protein in comparison with others 

and discuss their role in the greater penetrance of KCNA1 mutations in humans leading to 

the neurological signs of episodic ataxia type 1 (EA1). Future research and interpretation 

of emerging data should afford new insight towards a better understanding of the role of 

KV1.1 in integrative mechanisms of neurons and synaptic functions under normal and 

disease conditions.     

 

Keywords: KCNA1, low-threshold potassium channel, hetero-tetramer, dendrotoxin – K, 

synaptic integration, episodic ataxia 1 (EA1)  
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Abbreviations: AA – amino acid; -DTX – alpha dendrotoxin; DTXK – dendrotoxin K; 

EA-1 – episodic ataxia type -1; ER – endoplasmic reticulum; ERR – endoplasmic 

reticular retention; FTS – forward trafficking signal; HGNC – HUGO Genetic 

Nomenclature Committee; IS – initial segment; IUPHAR – International Union of Basic 

and Clinical Pharmacology; JXP – juxta-paranode; KCNA1 – human gene encoding 

KV1.1 subunit of potassium channel; kcna2 – mouse gene encoding KV1.2 subunit of 

potassium channel; kcna4 – mouse gene encoding KV1.4 subunit of potassium channel; 

KV – voltage-gated potassium channels; KV - beta subunit of voltage-gated potassium 

channels; MBP – myelin basic protein; N – node of Ranvier; PAUP – phylogenetic 

analysis using parsimony; S – soma; SD – somato-dendritic; T-domain; TM – trans-

membrane; V1/2 – half activation voltage.  
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1. Introduction 

KV1 voltage-gated potassium channels are integral membrane proteins, which are of 

major importance in adjusting the bio-electrical activity of neurons. Through an ion 

conductive pore, they mediate the outflow of K+ across the lipid bilayer of the surface 

membrane in response to depolarization, regulating the resting membrane potential and 

excitability, timing and frequency of action potentials during repetitive spike trains, and 

the release of neurotransmitters at axon terminals (Clark, Goldberg, & Rudy, 2009; Hille, 

2001; Kuba, Yamada, Ishiguro, & Adachi, 2015; Yellen, 2002). The functional versatility 

of KV1 channels arises to a large extent from their molecular diversity and fine 

regulation. The conductive pore of the channel complex is formed through 

oligomerization of four  subunits, which are multi-domain proteins composed of six 

membrane spanning segments (S1-S6) linked via hydrophilic intra- and extra-cellular 

loops. Since cloning of the first KV1 channel gene in Drosophila affected by Shaker 

mutations (Papazian, Schwarz, Tempel, Jan, & Jan, 1987), eight members of the family 

(KV1.1-KV1.8) encoded by corresponding KCNA1-KCNA8 genes have been identified 

and functionally characterized (Gutman, et al., 2005; Jan & Jan, 2012; Kamb, Tseng-

Crank, & Tanouye, 1988; Pongs, et al., 1988; Tempel, Jan, & Jan, 1988) (FIG. 1). In 

neurons, typically different KV1  subunits co-assemble to form hetero-tetramers, with 

channels made of four identical subunits (homo-tetramers) also described (Coleman, 

Newcombe, Pryke, & Dolly, 1999; Dolly & Parcej, 1996; Parcej, Scott, & Dolly, 1992; 

Stuhmer, et al., 1989; Wang, Kunkel, Martin, Schwartzkroin, & Tempel, 1993). Studies 

of KV1 homo-tetramers in expression systems, in addition to commonalities have 

revealed differences in the biophysical and pharmacological properties, which in hetero-
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tetramers equilibrate between contributing subunits (Akhtar, Shamotienko, Papakosta, 

Ali, & Dolly, 2002; Bagchi, et al., 2014; Sokolov, Shamotienko, Dhochartaigh, Sack, & 

Dolly, 2007). In addition to electrophysiological properties, the molecular composition of 

KV1 channels is known to control their mobility and targeting to specific neuronal 

compartments with surface expression (Heusser & Schwappach, 2005; Manganas & 

Trimmer, 2000; Manganas, Wang, et al., 2001; Vacher, Mohapatra, Misonou, & 

Trimmer, 2007; Vacher, Mohapatra, & Trimmer, 2008).  

Although in heterologous systems all combinations of KV1 subunits yield K+ 

currents, native channels from crude forebrain extracts and synaptosomes have revealed a 

predominance of certain subunits and their combinations over others (Coleman, et al., 

1999; Koch, et al., 1997; Shamotienko, Parcej, & Dolly, 1997; Wang, Parcej, & Dolly, 

1999). These data suggests that the assembly of KV1 channels within intact neurons is not 

promiscuous but is tightly regulated, and predict a greater role for molecular aberrations 

in prevalent subunits in the generation of neurological phenotypes associated with KCNA 

mutations. Surprisingly and notwithstanding of the similar distribution with comparable 

expression levels of KV1.2, KV1.4, KV1.6 and KV1.1 throughout the mammalian nervous 

system, linkage studies of human KV1 channelopathies, which are characterized by bouts 

of cerebellar ataxia with motor deficits, vertigo and occasions of sporadic seizures (fits of 

epilepsy), and defined clinically as episodic ataxia type 1 (EA1) have mapped all related 

mutations to the KCNA1 gene (12p13) encoding for KV1.1 subunit (Imbrici, D'Adamo, 

Kullmann, & Pessia, 2006; Kullmann, 2002; Kullmann, Rea, Spauschus, & Jouvenceau, 

2001; Rajakulendran, Schorge, Kullmann, & Hanna, 2007). The absence of KV1.1 homo-

tetramers in the mammalian brain along with distinct neurological signs in kcna2 and 
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kcna4 null mice (Brew, et al., 2007; Brew, Hallows, & Tempel, 2003; London, Wang, 

Hill, & Bennett, 1998; Smart, et al., 1998) raises the possibility of special traits of KV1.1 

subunit, which afford the greater penetrance of KCNA1 mutations. Because EA1 is a 

dominantly inherited disease and KV1.1 co-assembles with others to produce channels, it 

is expected that a defective KV1.1 will interfere with the functions of KV1 channels to 

which they contribute. Reports from expression systems showed that co-expression of 

mutant KV1.1 with wild type yield currents with intermediate biophysical characteristics 

(D'Adamo, Imbrici, Sponcichetti, & Pessia, 1999; Eunson, et al., 2000; Spauschus, 

Eunson, Hanna, & Kullmann, 1999; Zerr, Adelman, & Maylie, 1998b; Zuberi, et al., 

1999), an observation which confirms not only the ability of the faulty KV1.1 to form 

channels but also yield anomalous integral membrane currents. Below, we overview the 

molecular and biophysical properties of the KV1.1 subunit in comparison with others, and 

the possible mechanistic grounds for the disruptive effects of EA1 mutations on KV1 

channel functions and integrative mechanisms of the brain.   

 

2. Molecular partners of the KV1.1 subunit in native K+ channels  

In neurons, KV1 channels are produced by oligomerization of four pore-forming  and an 

equal amount of cytoplasmic KV (KVand ) subunits. Although in expression 

systems KV1 subunits co-assemble randomly to yield K+ currents, native channels from 

mammalian brain tissue are known to prefer certain combinations of  subunits over 

others (Isacoff, Jan, & Jan, 1990; Koch, et al., 1997; Rettig, et al., 1994; Rhodes, et al., 

1997; Ruppersberg, et al., 1990; Shamotienko, et al., 1997). Analysis of native KV1 

channels isolated from the total cerebral extracts as well as from various brain structures 
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with -dendrotoxin -DTX, KV1.2 specific mamba snake toxin) demonstrated that the 

predominant fraction of KV1 channels are represented as hetero-tetramers (Dolly & 

Parcej, 1996; Parcej, et al., 1992; Scott, et al., 1994). Accordingly, over 85% of the 

material bound to -DTX was precipitated by an anti-KV1.2 antibody, with lesser 

amounts removed by anti-KV1.1, -KV1.6 and -KV1.4 antibodies (47%, 16% and 8%, 

respectively) (Dolly & Parcej, 1996; Muniz, Parcej, & Dolly, 1992; Scott, et al., 1994). 

These data demonstrate that almost half of -DTX-sensitive KV1 channels also contained 

a KV1.1 subunit and that the vast majority of KV1.1, KV1.4 and KV1.6 proteins 

oligomerize with KV1.2 to form functional channels (Dolly & Parcej, 1996; Trimmer & 

Rhodes, 2004; Vacher, et al., 2008). Importantly, anti-KV1.1 IgG failed to sequester 

oligomers from the material not precipitated by anti-KV1.2 antisera, a finding which 

infers that in the brain, KV1.1 always occurs in association with a KV1.2 subunit. On the 

other hand, a small fraction of Kv1.4 and Kv1.2 subunits have been shown to form homo-

tetramers in central neurons, while on non-myelinated axons at the periphery, KV1.1 has 

been occasionally found to form hetero-tetramers with KV1.4 in the absence of Kv1.2 

(Rasband, et al., 2001; Trimmer & Rhodes, 2004). Results of these biochemical and 

immuno-histochemical studies are in line with the evidence from pharmacological 

experiments, using specific peptide blockers of KV1 currents, which showed that in the 

vast majority of cases, different KV1 subunits co-assemble to produce functional channels 

(Bagchi, et al., 2014; Devaux, Gola, Jacquet, & Crest, 2002; Dodson, Barker, & Forsythe, 

2002; Dodson, et al., 2003; Johnston, Forsythe, & Kopp-Scheinpflug, 2010; Norris, 

Foeger, & Nerbonne, 2010; Ovsepian, et al., 2013). Overall, in central neurons, neither 

KV1.1, the second most abundant Kv1  subunit, nor KV1.6 or the least abundant KV1.3 
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form homo-tetramers but always co-assemble with others (mainly KV1.2) to form 

functional channels, while KV1.2 and KV1.4 in addition to forming hetero-tetramers also 

occasionally produces homomers (Trimmer & Rhodes, 2004). As noted, the expression of 

the KV1.1 protein in the absence of other Shaker related family members has been 

documented in a small fraction of thin peripheral axons, but their functionality remains to 

be shown (Rasband & Shrager, 2000; Rasband, et al., 1998). We have demonstrated 

recently that in demyelinating axons of the optic nerve in a cuprizone mouse model, the 

expression of KV1.1 at juxta-paranodes (JPNs) and nodal regions is selectively enhanced, 

an observation that suggests enrichment of denuded axons with this protein, and perhaps 

formation of a population of KV1.1 homo-tetramers, functioning alongside with the 

KV1.1/KV1.2 hetero-tetramers (Bagchi, et al., 2014).  

Thus, from the brief overview of selected reports it emerges that in central 

neurons the majority of KV1.1 co-assemble with other members of the family to produce 

functional hetero-tetramers, with most containing KV1.2 and KV1.4 subunits. As such, it 

is expected that the microscopic KV1 currents in neurons are subject to influence by the 

functional characteristics of the KV1.1 subunit. Such arrangement, as shown below, is of 

key importance not only for defining the biophysical profile of integral KV1 currents, but 

plays a decisive role in neurological phenotypes associated with EA1 mutations.   

 

3. KV1.1 subunit regulates the mobility and surface expression of KV1 channels 

One of the major insights gained from studies of the biology of KV1 channels in 

heterologous systems is that the composition of hetero-tetramers can be biased by the 

expression levels of individual subunits. Equally important and perhaps more revealing 
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are the data which suggest that the subunit composition of KV1 channels determines their 

intracellular mobility and surface expression competence (Heusser & Schwappach, 2005; 

Jensen, Rasmussen, & Misonou, 2011; Manganas & Trimmer, 2000; Manganas, Wang, et 

al., 2001; Vacher, Misonou, & Trimmer, 2007; Vacher, Mohapatra, et al., 2007). It 

emerges that the assembly and export of functional KV1 tetramers from the endoplasmic 

reticulum (ER) and trafficking to the cell surface are controlled by complex and 

hierarchical mechanisms. Similar to other membrane proteins, the export competence of 

nascent KV1 channels is a major rate limiting factor for their surface expression, with the 

ER retention (ERR) signal encoded in the amino acid residues of the external face (turret 

region) of the pore region playing an essential role (Lodish & Kong, 1983; Manganas, 

Wang, et al., 2001; Nagaya & Papazian, 1997; Vacher, Misonou, et al., 2007; Zhu, 

Watanabe, Gomez, & Thornhill, 2001). Interestingly, the residues in the P-loop, which 

encode the ERR signal also determine the high affinity binding of KV1.1 to the mamba 

snake toxin, DTXK. Thus, KV1 family members capable of high affinity binding to DTXK 

(KV1.1 > KV1.2 > KV1.6) exhibit conforming ER retention, unlike those lacking this 

signal (KV1.3, KV1.4 and KV1.5) and are prone to inherently strong surface expression 

(Dolly & Parcej, 1996; Hurst, et al., 1991; Imredy & MacKinnon, 2000; Manganas & 

Trimmer, 2000; Manganas, Wang, et al., 2001; Tytgat, Debont, Carmeliet, & Daenens, 

1995). The notion of the strong ER retention of the KV1.1 subunit is in line with the poor 

surface expression of KV1.1 homo-tetramers as well as with inhibitory effects of KV1.1 

on the expression of hetero-tetramers containing other KV1 subunits.  

Although the export code of KV1  subunits can be shared among different family 

members, it is not transferable to non-Shaker-related channels (Trimmer, 2015; Vacher, 



 11 

Misonou, et al., 2007; Zhu, Gomez, Watanabe, & Thornhill, 2005). Analysis of the 

molecular determinants of the ERR through the use of chimeric KV1  subunits showed 

that swapping of the turret region (P-domain) of KV1.1 with KV1.4 greatly reduces the 

mobility and surface expression of the KV1.4 subunit, with its retention to the ER. 

Conversely, the transfer of the turret region of KV1.4 onto KV1.1 promotes the surface 

expression of the latter (Manganas, Akhtar, et al., 2001; Vacher, Misonou, et al., 2007). 

Amongst other key regulators of the mobility and surface expression of KV1 channels, 

cytoplasmic C-terminal VXXSL forward trafficking signal (FTS) and KV auxiliary 

subunit have been widely discussed (Li, Takimoto, & Levitan, 2000; Shi, et al., 1996). It 

is important to note that ERR of KV1.1 is dominant over these additional regulatory 

signals and is capable of overriding their effects. Indeed, the cytoplasmic FTS motif has 

been shown to be recessive to the turret ERR signal, as evident from studies of KV1.4 

chimeras containing the turret region of KV1.1 subunit, which show strongly reduced 

surface expression and retention in the ER (Li, et al., 2000; Zhu, Watanabe, Gomez, & 

Thornhill, 2003). On the other hand, possession of FTS by KV1.4 lacking the ERR signal 

renders its surface expression highly efficient. Finally, KV1.1 appears to be capable of 

neutralizing the augmenting effects of KV on surface expression of KV1 channels. 

While promoting the expression of KV1.2 homo-tetramers, KV falls short in its similar 

effects on channels containing KV1.1 or KV1.4 proteins (Shi, et al., 1996; Vacher, 

Misonou, et al., 2007). Interestingly, the failure of KV to facilitate surface expression 

of KV1.4 has been viewed as proof of the maximal inherent propensity of the latter for 

surface expression, while the lack of effects on the KV1.1 subunit infers the dominance of 

the ERR signal (Vacher, Misonou, et al., 2007). Thus, it emerges that KV1.1 plays a key 
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role in controlling the intracellular mobility and surface expression of KV1 channels with 

important implications for the biology and functions of neurons.   

 

4. Distribution of KV1.1 subunit throughout the mammalian brain  

In central neurons, KV1 channels are located on the soma, axons, synaptic terminals and 

dendrites (FIG. 2). Differential expression of KV1 subunits with their precise targeting to 

various neuronal compartments and fine regulation renders KV1 channels particularly 

important in governing an array of neuronal processes and functions (Rasband & Shrager, 

2000; Robbins & Tempel, 2012; Trimmer, 2015; Trimmer & Rhodes, 2004; Wang, et al., 

1993). Pull-down experiments with biochemical analysis of native KV1 channels with -

DTX (KV1.2 > KV1.1-selective) from bovine cerebellum, hippocampus, cerebral cortex, 

corpus striatum and brainstem revealed their strong enrichment with the KV1.2 protein 

(Dolly & Parcej, 1996; Scott, et al., 1994). Importantly, considerable variability in the 

relative expression levels of different subunits throughout the mammalian nervous system 

have also been shown using quantitative biochemistry, with levels of KV1.1 being highest 

in brainstem nuclei and white matter and lowest in the cerebellum and hippocampus, 

while KV1.4 > KV1.2 represent the main KV1 subunits in the hippocampus (Scott, et al., 

1994). Of note, the expression of KV1.6 or KV1.2 throughout various compartments of the 

brain is maintained fairly evenly. The relatively low levels of KV1.1 in the cerebellum 

and hippocampus reflect the low copy number of this protein in hetero-tetramers within 

these structures. As a result, both neuronal activity and synaptic transmission are likely to 

be more susceptible to the molecular aberrations in the KV1.1 subunit. The results of 

immuno-fluorescence reports are consistent with biochemical data, and show that 
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throughout the brain KV1.1 is expressed predominantly in two channel populations: (1) 

together with KV1.2 or KV1.4 in the hippocampus and with KV1.4 in striatal efferents of 

pallidial neurons as well as in neurons of pars reticulata of the substantia nigra, and (2) in 

association with KV1.2 (without KV1.4 and KV1.6) at the pinceau of cerebellar basket 

neurons, somata of deep cerebellar nuclear neurons, brainstem nuclei including the 

octopus cells of ventral cochlear nucleus, medial nucleus of the trapezoid body as well as 

JPNs of myelinated axons within the white matter of the brain (McNamara, Averill, 

Wilkin, Dolly, & Priestley, 1996; McNamara, Muniz, Wilkin, & Dolly, 1993; Ovsepian, 

et al., 2013; Rasband, Trimmer, Peles, Levinson, & Shrager, 1999; Rhodes, et al., 1996; 

Rhodes, et al., 1997; Sheng, Tsaur, Jan, & Jan, 1992; Trimmer & Rhodes, 2004; H. 

Wang, et al., 1993; H. Wang, Kunkel, Schwartzkroin, & Tempel, 1994). Considerable 

variability in the expression of KV1 subunits within various brain regions has also been 

reported. In the hippocampus for instance, Kv1.1, Kv1.2 and Kv1.4 expression reaches 

the highest levels in the axon terminals of perforant projections, in hilar interneurons as 

well as in terminals of mossy fibers and Schaffer collaterals within the CA3 and CA1 

subfields, respectively (Monaghan, Trimmer, & Rhodes, 2001; Rhodes, Keilbaugh, 

Barrezueta, Lopez, & Trimmer, 1995; Sheng, et al., 1992; Sheng, Tsaur, Jan, & Jan, 

1994; Veh, et al., 1995; Wang, et al., 1993; Wang, et al., 1994). Within the middle third 

of the molecular layer of the dentate gyrus, KV1.1 subunits co-localizes with KV1.2 and 

KV1.4 in presynaptic terminals of perforante pathway axons. Similar results have been 

reported in CA1 Schaffer collaterals, whereas within the CA3 subfield KV1.1 is expressed 

in mossy fibers together with KV1.4 in the absence of the Kv1.2 subunit (Cooper, Milroy, 

Jan, Jan, & Lowenstein, 1998; Rasband, et al., 1999; Sheng, et al., 1992, 1994; Veh, et 
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al., 1995; Wang, et al., 1993; Wang, et al., 1994). It should be noted that the data 

demonstrating co-localization of KV1 subunits obtained through immuno-histochemistry 

and light microscopy should be taken with a great deal of caution even when the data 

highlights strong overlap of the labelling. Veh and colleagues (Veh, et al., 1995) for 

instance, in their light microscopic study concluded that the majority of KV1 immuno-

reactivity in the dentate gyrus and CA subfields is associated with the dendrites of 

granule and pyramidal cells, while Sheng and others (Sheng, et al., 1994) assigned 

intense KV1.2 immunoreactivity to the apical dendritic arbors of hippocampal pyramidal 

neurons. As demonstrated by subsequent lesion studies, in the hippocampus, channels 

enriched with the KV1.2 subunit are largely concentrated at axon terminals (Cooper, et 

al., 1998; Monaghan, et al., 2001). Of note, ablation of entorhinal projections had distinct 

effects on the distribution of KV1.2 and KV1.4 subunits, an observation which suggests 

that these two proteins may co-localize on different subsets of axon terminals despite 

their apparent overlap at light microscopic levels (Monaghan, et al., 2001).  

Overall, the results from immuno-fluorescence and biochemical studies indicate that 

although the prevalent KV1 subunits are ubiquitously present throughout the mammalian 

nervous system, both the density and the topography of their distribution varies widely 

between different brain regions. The latter is likely to reflect the functional significance 

of individual subunits and, possibly also the level of their redundancy. Relatively low 

levels of KV1.1 in the hippocampus and cerebellum infer its lower copy number in 

functional channels. Such an arrangement, as discussed below, would most likely 

contribute towards the special vulnerability of these two brain regions to mutations in the 

KCNA1 gene.  
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5. KV1.1 defines the activation threshold and kinetics of the KV1 current   

In the absence of the KV1.1 subunit, most of the KV1 homo-tetramers (KV1.1, KV1.2, 

KV1.5 and KV1.6 subunits) mediate delayed rectifier (non-inactivating) outward currents, 

with others showing inactivation (KV1.3, KV1.4 and KV1.7). Detailed analysis of the 

biophysical profiles of KV1 homo-tetramers, in addition to differences in their 

inactivation types and kinetics (N-, C-type inactivation and non-inactivating delayed 

rectifier currents) (Ashcroft, 2000; Hoshi & Armstrong, 2013; Hoshi, Zagotta, & Aldrich, 

1990), also revealed subtle but important variations in their activation threshold and 

kinetics (TABLE 1). Although the physiological significance of these variations between 

homo-tetramers remain to be established, under certain conditions they are likely to play 

a decisive role in regulating neuronal activity and synaptic transmission, given that co-

assembly of KV1 subunits in hetero-tetramers yields integral currents with functional 

characteristics that are somewhat intermediate from there contributing subunits (Akhtar, 

et al., 2002; Christie, North, Osborne, Douglass, & Adelman, 1990; Grissmer, et al., 

1994; Gutman, et al., 2005; Hopkins, Allen, Houamed, & Tempel, 1994; O. 

Shamotienko, et al., 1999; Stuhmer, et al., 1989) (FIG. 3). Importantly, features of KV1.1 

such as the especially low activation threshold (KV1.1 V1/2= -35 mV < KV1.6 V1/2= -20 

mV < KV1.2 V1/2= 5-27 mV < KV1.4 V1/2= 22-34 mV) and fastest activation kinetics 

(KV1.1 = 5 ms < KV1.2 = 6 ms < KV1.6 = 6-8 ms < KV1.4 = 16.5 ms) (Cox, 2005; 

Grissmer, et al., 1994; Gutman, et al., 2005; Sokolov, et al., 2007) would be of critical 

importance in regulating neuronal excitability and responsiveness to fast depolarizing 

inputs. Indeed, the hierarchy of activation threshold and kinetics entails that during 
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depolarization, channels enriched with the KV1.1 subunit would be the first to switch on 

stabilizing outward currents counterbalancing depolarizing inputs and preventing their 

excessive excitation. It is worth noting that considerable variability in the major 

functional parameters of KV1 subunits have been reported, depending on the 

experimental conditions and expression system, possibly reflective of their differential 

regulation (Grissmer, et al., 1994; Grupe, et al., 1990; Hatton, et al., 2001; Hulme, 

Coppock, Felipe, Martens, & Tamkun, 1999; Jeong, Yoon, & Hahn, 2012; Sprunger, 

Stewig, & O'Grady, 1996; Stuhmer, et al., 1989; Swanson, et al., 1990). Complementary 

observations were also made with concatenated dimers or tetramers, with the presence of 

the KV1.1 subunit defining both the activation threshold and kinetics of macroscopic 

currents (Bagchi, et al., 2014; Sokolov, et al., 2007). Analysis of currents mediated by 

concatenated KV1.1 / KV1.2 hetero-dimers or hetero-tetramers showed that an increase in 

the number of KV1.1 subunits in tetramers dose-dependently accelerated the activation 

kinetics of macroscopic currents and shifted the V1/2 towards more negative potentials 

(Bagchi, et al., 2014; Sokolov, et al., 2007). To define how these rate-limiting traits of 

KV1.1 could influence the profiles of KV1 currents and membrane voltage dynamics of 

myelinated axons and hippocampal pyramidal cells, we used multi-compartmental 

models (SUPPL. FIG. 1). As illustrated, the enrichment of KV1 channels with KV1.1 

alters the activation threshold and kinetics of K+ currents in favor of reduced electro-

responsiveness of the soma and myelinated axons. Interestingly, along with well-known 

regulation of excitability and conductivity, the KV1.1 subunit also appears to adjust the 

coupling of the axon initial segment to the soma of neurons, with DTXK (KV1.1 selective) 

promoting the invasion of antidromic spikes from the axon initial segment to the somato-
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dendritc compartment of the cerebellar projection neurons (Ovsepian, et al., 2013). Thus, 

in addition to major effects on intracellular mobility and surface expression of KV1 

channels, recruitment of the KV1.1 protein into hetero-tetramers appears to tune their 

major biophysical characteristics, lowering the activation threshold and accelerating the 

onset rate of integral K+ currents.  

 

6. Molecular aberrations in the KV1.1 subunit and related neurological disorders  

EA1 is a broad clinical term defining a dominantly inherited multi-faceted neurological 

disease manifested through a range of disorders, including attacks of cerebellar ataxia 

triggered by stress, startle or exertion, tremor or cramps of motor groups, vertigo, 

nystagmus with diplopia and episodes of sporadic seizures. Since the pioneering work by 

Browne and colleagues that led to the discovery of four KCNA1 mutations in four 

different families affected by EA1 (Browne, et al., 1994), more than a dozen mutations in 

this gene have been reported (D'Adamo, et al., 1999; Herson, et al., 2003; Klein, Lennon, 

Aston, McKeon, & Pittock, 2012; Poujois, Antoine, Combes, & Touraine, 2006; 

Rajakulendran, et al., 2007; Schaffer, et al., 1998; Shook, Mamsa, Jen, Baloh, & Zhou, 

2008; Spauschus, et al., 1999; Tomlinson, et al., 2010; Zerr, Adelman, & Maylie, 1998a; 

Zerr, et al., 1998b; Zuberi, et al., 1999). The majority of these are point mutations of 

conserved residues of the KV1.1 subunit (FIG. 4), with a range of effects on macroscopic 

KV1 currents (Adelman, Bond, Pessia, & Maylie, 1995; Boland, Price, & Jackson, 1999; 

D'Adamo, et al., 1999; Eunson, et al., 2000; Spauschus, et al., 1999; Zerr, et al., 1998a, 

1998b; Zuberi, et al., 1999). It is noteworthy that changes of the KV1 current amplitude 

do not seem to be the sole cause of neurological deficits in EA1, with rising evidence 
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pinpointing also the possible role for other biophysical parameters, including activation 

threshold, gating properties or alterations of the activation and deactivation kinetics 

(Adelman, et al., 1995; Boland, et al., 1999; D'Adamo, et al., 1999; Eunson, et al., 2000; 

Spauschus, et al., 1999; Zerr, et al., 1998a, 1998b; Zuberi, et al., 1999). Moreover, 

electrophysiological studies in heterologous expression systems showed that for some 

EA1 mutations, the extent of changes in certain characteristics of macroscopic KV1 

currents correlate better with the severity of the neurological phenotypes, implying a 

possible direct mechanistic link between the alteration of the specific parameters of KV1 

currents and neurological signs (Eunson, et al., 2000; Kullmann, et al., 2001; Rea, 

Spauschus, Eunson, Hanna, & Kullmann, 2002). Given the importance of KV1 currents in 

shaping the bioelectrical activity of neurons and rate-limiting characteristics of the KV1.1 

subunit, molecular aberrations associated with EA1 mutations are likely to exert 

disruptive effects on several important neuronal functions, including their excitability and 

transmission of electro-chemical signals. In addition to changes of biophysical properties 

of KV1 currents, impairments of intracellular mobility and surface expression the KV1.1 

protein may also contribute towards the development of EA1 signs (Eunson, et al., 2000; 

Manganas, Akhtar, et al., 2001; Rea, et al., 2002; Zhu, Alsaber, Zhao, Ribeiro-Hurley, & 

Thornhill, 2012). It is important to note that despite the considerable overlap in the 

biophysical profiles between various KV1 subunits and well-recognized cross-

compensation and plasticity formation of tetramers (Kirchheim, Tinnes, Haas, Stegen, & 

Wolfart, 2013; Wolfart & Laker, 2015), the unique traits of the KV1.1 subunit such as the 

exceptionally low activation threshold and fast onset rate render the compensation of 

their functional loss by others problematic. Because no homo-tetrameric KV1.1 channel 
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has been found in the mammalian nervous system and its expression throughout the brain 

closely replicates the distribution of the KV1.4 and especially the KV1.2 subunit, 

neurological signs of EA1 associated with KCNA1 mutations cannot be attributed to the 

deficit of KV1.1 homo-tetramers, but imply the disruptive effects of faulty KV1.1 on 

hetero-tetramers to which they contribute. This notion is in line with the greater 

vulnerability of cerebellar and hippocampal functions to EA1 mutations, two brain 

regions with the lowest relative expression of KV1.1 protein. Conceivably, sparse 

representation of KV1.1 in hetero-tetramers curbs the chances of compensation of the 

functional deficit of the faulty KV1.1 by the regular partner, rendering the functions of 

hippocampal and cerebellar neurons especially vulnerable to EA1 mutations. With 

hippocampal seizures proposed to originate from neurons exhibiting especially low after-

discharge threshold (Handforth & Ackermann, 1995; McIntyre & Gilby, 2008; Robbins 

& Tempel, 2012), deficits of KV1.1 at entorhinal inputs or mossy fibers would most 

certainly promote the generation of seizures and their spread over the wider limbic areas 

and other brain regions. Likewise, the pinceau of basket cell axons and soma of deep 

cerebellar nuclear neurons enriched with KV1.1 could serve as a primary locus of the 

effects of KCAN1 mutations in the cerebellum, leading to balance impairments and motor 

deficit. As proposed earlier, the relatively low levels of KV1.1 (as compared to KV1.2 and 

KV1.4) in these structures is likely to contribute towards their lower functional reserve 

and stronger contribution to the neurological phenotypes of EA1.  

 

7. Concluding remarks           
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Linkage of all human KV1 channel disorders to mutations in the KCNA1 gene is 

surprising given that other members of the Shaker-related family, including KV1.2, KV1.4 

and KV1.6, are equally or even more widely represented throughout the nervous system. 

In this review, we have discussed the molecular and biophysical properties of prevalent 

KV1 subunits in comparison with KV1.1 and presented evidence suggestive of a critical 

role for the latter in defining the functional limits of integral KV1 currents, and possibly 

contributing to the greater penetrance of KCNA1 mutations with neurological signs of 

EA1. The abundance of KV1.1 in a variety of body tissues including cardiomyocytes, 

retina, skeletal muscles, pancreatic tissue and chromaffin cells (Glasscock, et al., 2015; 

Gutman, et al., 2005), without overt non-neurological signs in EA1 patients are in line 

with disruption of neuron-specific functions of KV1.1. We propose that the higher degree 

of redundancy amongst other members of the Shaker family with a closer overlap of 

biophysical profiles affords a better functional cross-compensation and plasticity under 

taxing conditions. The situation is different in knockouts of the KV1 subunits (e.g. -/- 

kcna2), which manifest in mouse models by severe neurological signs. The latter could 

be perhaps explained (1) by complete absence of a sub-population of functional KV1.2 

homo-tetramers in -/- kcna2 mice, which are normally present throughout the nervous 

system and (2) failure of other family members to substitute the role of KV1.2 as a 

principal partner in the formation of hetero-tetramers. The evidence discussed here 

implies that the rate-limiting properties of KV1.1 with its low functional reserve, due to 

its sparse representation in hetero-tetramers in the hippocampus and cerebellum, render 

these two brain structures especially vulnerable to its functional deficits. The unique 

molecular and biophysical properties of KV1.1 not only are of major importance in 
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defining the parameters of KV1 currents, but also provide appealing targets for 

developing restorative therapies towards normalizing neuronal functions. Auspiciously, 

nature provided a valuable model for successful targeting KV1.1 with DTXK, one of the 

deadliest of all known toxins, which selectively binds and block channels containing this 

protein. Highlighted here are the facets of biology and physiology of the KV1.1 subunit 

which deserve further research, an endeavor with major potential rewards. 
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FIGURE LEGENDS 

FIGURE 1: Family of Shaker-related KV1 channels: an overview. (A) Phylogenetic tree 

of the gene family of KV1 channel subunits: amino acid sequence alignment of the human 

KV1 channel proteins were generated using CLUSTALW and analyzed by maximum 

parsimony with PAUP. The IUPHAR and HGNC names are shown together with the 

genes chromosomal localization. (B) Schematic illustration of the structure of the KV1  

subunit (top) with crystal structure of KV1.2 - 2 subunit complex: stereo-view of a ribbon 

representation from the side (bottom). Four KV1  subunits assembled into the channel 

pore (including the T-domain (T1)) and four associated cytoplasmic 2 subunits are 

presented in different color. TM corresponds to the integral membrane component of the 

complex (adapted with permission from Long et al., 2005). (C) Representative recordings 

of KV1 currents mediated via KV1.1 – KV1.8 proteins expressed in heterologous 

expression systems adapted with permission from (Finol-Urdaneta, Struver, & Terlau, 

2006; Heinemann, Rettig, Graack, & Pongs, 1996; Tian, et al., 2002). Current amplitude 

units – A.  

 

FIGURE 2: Sub-cellular distribution and functionalities of KV1 channels in central 

neurons. (A1-D1) Fluorescence micrographs illustrating the enrichment of the KV1.1 

subunit at the presynaptic terminals of a basket cell of the cerebellum (A1); juxta-

paranodes (JPN) of optic nerve axons (B1); axonal initial segment of hippocampal 

pyramidal cells (C1) and soma of the deep cerebellar nuclear neurons (D1). ML – PCL – 

and GL – molecular, Purkinje cell and granule cell layers, respectively (A1); NR – node 

of Ranvier (B1); SO – SP and SR – strata oriens, pyramidale and radiatum, respectively 
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(C1); DN – and IPN – dentate and interpositus nuclei, respectively (D1). (A2-D2) 

Schematic illustration of the localization and electrophysiological processes (traces 

below) in neurons involving prevalent subunits of KV1 channels. At the terminal segment 

of an axon (TSA), KV1 subunits regulate parameters of action potentials and release of 

transmitters from synaptic boutons (SB) onto the soma or dendrites (SD) of postsynaptic 

neurons (A2). At Ranvier nodes of myelinated axons, JPN KV1 channels control 

salutatory propagation of action potentials: PN – and NR – paranode and node of Ranvier 

(B2). At axon initial segment (AIS) or somato-dendritic (SD) compartments of neurons, 

KV1 channels control the generation of action potentials, integration of synaptic inputs 

and firing precision of neurons, respectively (C2-D2).               

 

FIGURE 3: Hetero-tetramers exhibit membrane currents with biophysical characteristics 

intermediate of contributing KV1 subunits. (A) Representative current traces elicited by 

depolarizing pulses to + 40 mV from – 80 mV; KV1.2, KV1.4 and KV1.2-KV1.4 tandem 

channels. Scale 1 A/100 ms adapted with permission from (Ishii, Nunoki, Yamagishi, 

Okada, & Taira, 2001). Representative current traces elicited by depolarizing pulses to – 

50 mV from – 80 mV; KV1.1, KV1.2 and KV1.1 - KV1.2 tandem channels. Scale 100 

pA/50 ms: adapted with permission from (Bagchi, et al., 2014).  (C, D) Conductance – 

voltage relation graphs of macroscopic currents: mean and S.E.M. values. Conductance at 

various command potentials were normalized and fitted with Boltzmann function, with 

differences of values for KV1.1 and KV1.2 homo-tetramers reaching statistical 

significance from – 55 mV onward: adapted with permission from (Bagchi, et al., 2014).  
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FIGURE 4: Human EA1 mutations in the KV1.1 subunit and brain structures with 

highest vulnerability to KCNA1 mutations. (A) Schematic illustration of the structure of 

human KV1.1, indicating the sites of identified mutations associated with EA1. All 

mutations are at highly conserved residues. With the exception of R417X that results in 

truncation of the C-terminus, which contains a consensus sequence implicated in 

anchoring channels, all others are point mutations with AA substitutions, with the 226 

position known to be affected by three mutations. (B) A drawing of the human brain 

(coronal plane), with outlined hippocampus and cerebellum, two structures with the 

highest susceptibility to EA1 mutations.    

 

TABLE 1: Major biophysical characteristics of KV1 currents mediated by the various 

subunits of the Shaker-related family. Numerical values are taken from:(Cox, 2005; 

Gutman, et al., 2005).      
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