Citation for published version:

A. M. Madden, H. M. Mulrooney, and S. Shan, 'Estimation of energy expenditure using prediction equations in overweight and obese adults: a systematic review', *Journal of Human Nutrition and Dietetics*, Vol. 29 (4): 458-476, August 2016.

DOI:

https://doi.org/10.1111/jhn.12355

Document Version:

This is the Accepted Manuscript version.

The version in the University of Hertfordshire Research Archive may differ from the final published version.

Copyright and Reuse:

This article may be used for non-commercial purposes in accordance with <u>Wiley Terms and Conditions for Self-Archiving</u>

Enquiries

If you believe this document infringes copyright, please contact the Research & Scholarly Communications Team at rsc@herts.ac.uk

Estimation of energy expenditure using prediction equations in overweight and obese adults – systematic review

Suggested running headline: Predicting energy expenditure in obesity

Authors: Angela M. Madden¹, Hilda M. Mulrooney², Selina Shah¹

Work undertaken in: School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB and School of Life Sciences, Kingston University, London KT1 2EE

Present addresses:

¹School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK ²School of Life Sciences, Faculty of Science, Engineering and Computing, University of Kingston, Kingston-upon-Thames, KT1 2EE

Corresponding author: Dr Angela Madden, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB; telephone 01707 281385; email a.madden@herts.ac.uk

Role of authors:

Angela Madden designed the systematic review, undertook literature searches, reviewed and summarized evidence and co-wrote the manuscript.

Hilda Mulrooney undertook literature searches, reviewed and summarized evidence and co-wrote the manuscript.

Selina Shah undertook literature searches and reviewed evidence.

Conflicts of interests: The authors declare that they have no conflict of interests

Funding: British Dietetic Association Obesity Specialist Group (formerly Dietitians in Obesity Management UK, DOMUK) provided funding for the initial literature review

Acknowledgements: The authors are grateful to the British Dietetic Association Obesity Specialist Group (formerly Dietitians in Obesity Management UK, DOMUK) for initial funding and to Amanda Avery for her role in co-ordinating this; Linda Knowles for reviewing early drafts; David Frankenfield, Alessandro Sartorio, Mario Siervo and Peter Weijs for responding to requests for additional data.

Abstract

Background

Estimates of energy requirements are needed in weight management and are usually determined using prediction equations. The objective of these two systematic reviews was to identify which equations based on simple anthropometric and demographic variables provide the most accurate and precise estimates of (1) resting energy expenditure (REE) and (2) total energy expenditure (TEE) in healthy obese adults.

Methodology

Systematic searches for relevant studies in healthy adults with body mass index (BMI) ≥25 kg/m² and published in English were undertaken using Cinahl, Cochrane Library, OpenGrey, PubMed and Web of Science (completed March 2014). Search terms included *metabolism, calorimetry, obesity* and *prediction equations*. Data extraction, study appraisal and synthesis followed guidelines from PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses).

Results

From 243 REE papers and 254 TEE papers identified, 21 and 4 studies respectively met the inclusion criteria. (1) The most accurate REE predictions varied with BMI subgroup: WHO (weight and height) ≥25 and ≥30 kg/m²; Mifflin 30-39.9 kg/m²; Henry ≥40 kg/m². The most precise REE predictions were obtained using Mifflin in BMI 30-39.9 and ≥40 kg/m² where approximately 75% of predictions were within 10% of measured REE. (2) No accurate or precise predictions of TEE were identified.

Conclusion

No single prediction equation provides accurate and precise REE estimates in all obese adults. Mifflin equations are recommended in this population although errors exceed 10% in 25% of those assessed. There is no evidence to support the use of prediction equations in estimating TEE in obesity.

Introduction

Obesity is a serious global public health concern; more than 50% of adults in Europe and 65% of men and 58% of women in the UK are currently overweight or obese with body mass index (BMI) ≥25 kg/m² (1,2). The benefits of moderate weight loss are clear (3,4), but require an energy deficit (5). Clinical guidelines advise that weight loss management is individually tailored (3,4,6) and this requires an evaluation of individual energy requirements based on total energy expenditure (7,8).

Total energy expenditure (TEE) is the sum of basal metabolic rate (BMR), diet-induced thermogenesis and the cost of physical activity (9). The contribution of BMR is usually 60-80% of TEE in free-living individuals (10). The contribution of physical activity is variable; in active individuals it can represent 25-50% of TEE and exceptionally up to 75% (11), but in sedentary individuals it will be much less (12). BMR that is truly 'basal' is hard to measure so the term 'resting energy expenditure' (REE) is used throughout this review to indicate measured basal or resting values.

The doubly-labelled water technique is considered the gold standard for measurement of TEE (13-15), but is expensive and impractical in clinical practice (16). TEE can be estimated from measured or predicted REE using the factorial method (11) and, for practicality, predictive equations are most commonly used to determine REE (17). However, estimating TEE and REE in overweight and obese individuals raises questions about accuracy. Firstly, most commonly used TEE and REE equations have been developed in study populations that included few obese individuals (18-20). Secondly, and of particular relevance to REE, the main variable used in most equations, e.g. body weight, does not adequately reflect the changes in body composition that accompany weight gain due to excess fat (21).

Body composition is the major determinant of REE and accounts for 65-90% of interindividual variation (22,23). Two-compartment models of body composition comprise fat mass (i.e. all body lipid which is predominantly located in adipose tissue) and fat-free mass (FFM, i.e. including non-lipid components of skeletal muscle and vital organs). Adipose tissue is considerably less metabolically active than FFM (24, 25) although it is not metabolically inert. FFM is metabolically heterogeneous and some tissues within this compartment are more active than others (26). For example, brain and visceral organs comprise 5% of body weight but account for 70-80% of REE, while skeletal muscle

comprises 35% of body weight but accounts for only 20% of REE (26). In obesity, weight gained is mainly adipose tissue (27-29), and although this is metabolically less active than other tissues, it still contributes to an overall increase in energy expenditure (22,30-32). FFM also increases with weight gain in obesity and thus also contributes to increased energy requirements (33). However, as adipose tissue increases to a greater extent than FFM, the relative contributions of highly metabolically active organs, e.g. brain and liver, and moderately metabolically active muscle are reduced (34,35). This results in a curvilinear increase in REE as body weight rises due to increased fatness (33,36,37). Thus, absolute REE is higher in obese compared with lean individuals (38-40) and rises with increasing BMI (17). However, REE is lower when expressed per kg body weight (41) thus impacting on the accuracy of REE prediction equations based on body weight.

Obesity also influences TEE through two opposing mechanisms which make accurate predictions difficult. Firstly, the additional energy costs associated with moving excess adipose tissue may contribute to an increase in TEE although this is relatively small compared to the associated increase in REE (38). Secondly, TEE may be reduced due to lower levels of physical activity resulting from the practical difficulties of moving a heavy body weight when BMI exceeds ≥35 kg/m² (16,40,42,43).

In spite of these factors which confound the estimation of energy expenditure in obesity, energy prediction equations are widely used in clinical and public health practice and there is little consensus on which equation is most appropriate for use with people who are obese (11,44-46). This raises concern in relatively healthy obese individuals who are trying to lose weight since inaccurate predictions may underestimate energy requirements leading to excessively low energy intake which is hard to sustain. This may lead to overly rapid weight loss associated with lean tissue depletion, or to poor compliance increasing the risk that individuals will feel they have failed. Conversely, overestimations may result in no energy deficit and thus weight stasis or even increase in body weight. These concerns are heightened in acutely ill patients who are obese where accurate estimations are required to avoid both hypocaloric feeding that may induce malnutrition and overfeeding with associated increased risk of death (46,47).

To address this challenge, Sabounchi *et al.*, (48) devised meta-equations for predicting REE in 20 populations based on systematically reviewed data from 47 studies. Some of these require quantification of fat free mass and / or fat mass which are not readily

measured in clinical practice or, if available, may be derived using methods which have not been validated in an obese population (49). Prediction of TEE in obesity has not been systematically reviewed. As a result, there is a need to evaluate equations which predict REE and TEE based on variables that are easily measured in clinical or public health practice. The aim of this two-part systematic review was to address the question of which prediction equations based on simple anthropometric and demographic variables provide the most accurate (closeness to measured energy expenditure) and precise (proportion of participants with predicted values within 10% of measured) estimates of resting and total energy expenditure in healthy overweight and obese adults.

Method

Two systematic literature reviews of current evidence were undertaken in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

Statement (50). The review protocols were not previously published.

Search strategies

Published studies in English were searched using the electronic databases Cinahl, Cochrane Library, OpenGrey, PubMed and Web of Science for all available dates until 1 March 2014. The first search strategy (REE) was undertaken using the key words (*basal metabolism* OR *calorimetry*) AND (*obesity* OR *overweight*) AND (*prediction equation* OR *predictive equation*) whilst the second search strategy (TEE) used key words (*energy metabolism* OR *calorimetry* OR deuterium) AND (*obesity* OR *overweight*) AND (*prediction equation* OR *predictive equation*). Within the PubMed searches, MESH terms were used for all key words except *prediction equation* and *predictive equation*. The limits for both searches included data from participants aged ≥18 years and data from men and women reported separately. The type of study design for both searches included methodological studies, cross-sectional observational studies and experimental studies, e.g. randomised controlled trials. Reviews and meta-analyses were used to identify primary studies.

Screening and identification of data

The abstracts and papers identified by both searches were screened independently using a different pre-prepared spreadsheet for each of the two reviews (Table 1). Full papers that were identified by screening as potentially suitable were examined by two researchers. Those providing original research data which compared energy expenditure calculated using a prediction equation with measured energy expenditure were extracted. To maximise utility, studies were included if they examined prediction equations based on variables easily measured in clinical or public health practice, e.g. height, weight, waist circumference, age, gender; equations based on more complex variables, e.g. fat-free mass, organ weight, were excluded. Obesity and overweight were defined as body mass index (BMI) ≥30 and ≥25 kg/m² respectively (51) and studies were included if results were stated using these categories but excluded if alternative definitions were used or if data were presented only for mixed populations that included normal weight individuals or where the number of participants in obese sub-groups was not presented. Studies were included if participants were stated to be in good health or free from illness and disease but excluded if they were described as being acutely ill, having a chronic condition that

might influence metabolic rate or taking medication that might have this effect. To minimise bias, the validity of the method of measuring energy expenditure was considered. Measurement of energy expenditure was considered valid if the method was fully described and met the following criteria: (1) REE measured in the fasting state while awake using indirect calorimetry, e.g. metabolic cart or other measurement of oxygen uptake and carbon dioxide production using externally calibrated equipment; studies using predictive methods of estimating energy expenditure, e.g. calculated from accelerometry, heart rate monitoring, or using equipment that had not been externally calibrated, e.g. hand-held devices, were excluded due to the limited accuracy of data (52,53); (2) TEE measured isotopically, e.g. using doubly labelled water, or by direct or indirect calorimetry, e.g. using ventilated chamber or heat exchange calorimeter. The papers identified as reviews or meta-analysis studies were examined without using the spreadsheets and their reference lists examined for additional sources which were then screened using the approach described above. On the basis of the screening, studies were identified as either 'excluded' or 'full text assessed for eligibility'. Studies that developed a new equation were only included if this was tested separately in a different population.

Extraction of data

Papers included in the qualitative synthesis were then critically evaluated using the following primary summary measures for each of the prediction equations reported: (1) accuracy, i.e. predicted energy expenditure expressed as a percentage of the measured energy expenditure or in a format where this could be calculated; (2) precision, i.e. percentage of participants with predicted energy expenditure within 10% of measured values. This evaluation was undertaken separately for REE and TEE and the principal summary measures used for each prediction equation were accuracy and precision. The results were synthesised manually and data extracted to allow for analysis by participant as well as by study. Data were analysed for all participants with BMI ≥25, ≥30, 30-39.9 and ≥40 kg/m². Due to the large number of equations evaluated in BMI subgroups ≥25 and ≥30 kg/m², accuracy and precision were evaluated in equations assessed by at least three studies, i.e. equations assessed by only one or two studies were excluded. In BMI subgroups 30-39.9 and ≥40 kg/m², accuracy and precision were evaluated in all equations. One of the REE studies (54) included substantially more participants than all other studies combined, i.e. 78% of all adults studied, and the potential influence of this was explored by repeating analyses with and without including its results. The present systematic reviews evaluated prediction equations rather than an intervention or diagnostic tool and, therefore, the use of standard tools for assessing risk of bias, e.g. the Cochrane Collaboration tools, was considered to be mostly not applicable (55,56). As a result, the authors evaluated risk of bias by considering time lapse between measurement of energy expenditure and variables used in prediction calculations and reporting classification (i.e. by pre-defined or study determined body mass index groups) using a narrative approach (57). Authors of original papers that met inclusion criteria were contacted for clarification about published data where this was needed to determine inclusion; additional analysis of subgroups was only undertaken if subgroups were described in the original publication.

Results

Resting energy expenditure

The searches for REE identified 243 publications and after removal of duplicates and examination for eligibility according to the search strategy these yielded 50 research papers which were evaluated in full. Twenty-one studies met the criteria for inclusion in the systematic review of prediction of REE (Fig.1); these evaluated a total of 28 individual or groups of equations (Tables 2 & 3).

Accuracy of the predictions varied with both BMI subgroup and method of analysis (whether analysed by participants or by study subgroup) (Table 4). In BMI subgroups ≥25 and ≥30 kg/m², predictions using WHO (93) (weight and height) equations were most accurate showing consistently low levels of bias ranging from a mean underestimate of 0.4% to a mean overestimate of 0.5% in ≥25 kg/m² and a mean overestimate of 0.5% in ≥30 kg/m². In subgroup 30-39.9 kg/m², Mifflin (88) equations demonstrated least bias with a mean underestimate of 0.5%. In the subgroup ≥40 kg/m², equations of Henry (82) (weight and height) and Lazzer (female) (68) were most accurate with negligible mean bias. The evaluation of the equations of Mifflin, Henry and Lazzer (female) in BMI subgroups 30-39.9 and ≥40 kg/m² was based on data from between 81-182 participants compared to >8000 participants in the evaluation of WHO in subgroups ≥25 and ≥30 kg/m².

Precision of predicted values also varied with BMI subgroup and analysis by participants or by study sub-group (Table 5). The Mifflin equations gave the most precise estimates in BMI subgroups ≥ 25 , ≥ 30 and ≥ 40 kg/m² and the second most precise after Livingston (87) in the subgroup 30-39.9 kg/m² with predictions within 10% of measured REE in between 65.8% and 76.3% of participants when data were analysed by study subgroup, i.e. the mean proportion of predictions that were < 90% or > 110% of measured REE were between 23.7% and 34.2%. However, when analysis was undertaken by participant, Mifflin predictions were most precise (76.2% within 10% of measured) only in those with BMI ≥ 40 kg/m² whilst the equations providing the most precise predictions were Müller (89) (63.8% predicted within 10% of measured) in BMI ≥ 25 kg/m², Harris & Benedict (62.7% within 10%) in ≥ 30 kg/m² and Livingston (75% within 10%) in 30-39.9 kg/m². The influence of the results from the very large study by Lazzer *et al.* (54) was the main reason for the poor precision by the Mifflin equations in BMI subgroups ≥ 25 and ≥ 30 kg/m² when analysed by participants but otherwise appeared to have little other impact on the overall results (data

not shown). Precise estimates, i.e. predicted values within 10% of measured REE, derived using the Henry equations, which were used to determine UK Dietary Reference Values (11), were determined in 61.3%, 67.9% 73.0% and 63.1% participants in the \geq 25, \geq 30, 30-39.9 and \geq 40 kg/m² BMI categories respectively and these results were obtained from either one or two studies.

Total energy expenditure

The searches for TEE identified 254 publications and after removal of duplicates and examination for eligibility according to the search strategy these yielded 22 research papers which were examined in full. Four studies (42,58,94,95) met the criteria for inclusion in the systematic review of prediction of TEE (Fig. 2) (Table 6). These predicted TEE using equations of the FAO/WHO/UN (96) or USA Dietary Reference Intakes (44) or using physical activity questionnaires (20,97-99).

The presentation of data comparing predicted with measured TEE values was less comprehensive than for studies evaluating REE with some results described in narrative rather than numerical form (Table 7). Although accuracy of predicted TEE was not systematically reported, predicted values differed significantly from measured in at least one subgroup in all four studies (42,58,94,95). Where bias was reported or could be calculated, mean values varied from underestimates of 34% (i.e. Ainsworth (98) prediction in overweight women (95)) to overestimates of 89% (i.e. Paffenbarger (97) prediction in obese women (95)). Only predictions using the questionnaire of Whitt *et al.*, (99) gave estimates with a mean bias of <10% and this was in overweight women (-3%) whilst the mean bias in obese women was +32%. No studies presented precision data for prediction of TEE.

Discussion

Prediction of REE

Although many studies have investigated the prediction of REE in overweight and obese adults, the findings of this review do not support the use of a single prediction equation. On a population level, WHO equations based on weight and height offer the most accurate prediction for groups with mixed BMI ≥25 kg/m², whilst Mifflin equations are most accurate for groups with BMI 30-39.9 and Henry (weight and height) or Lazzer (women only) for those ≥40 kg/m². It should be noted that the accuracy of the equation of Lazzer et al., (68) has only been tested in women with BMI >40 kg/2 by the authors themselves using a randomly selected population comparable to the participants in which the equation was derived and, therefore, the more widely tested equations of Henry are preferred in this BMI category. However, accuracy data allow under- and overestimates to cancel each other out and so are not useful when a predicted value is required for an individual where precision is needed to assess the chance of the prediction being within 10% of measured values. The values reported in Table 5 indicate that even with the most precise equations, approximately one quarter of predictions will be either <90% or >110% of measured values and for others, more than half the predictions will be imprecise and therefore likely to be of limited value in practice. This illustrates the difficulty of identifying a single prediction equation which will be equally accurate and precise in all populations and this is clearly shown where data have been presented graphically, for example by O'Riordan et al., (45) and Wilms et al., (29). Many of the studies evaluated conclude that their results do not support the use of prediction equations in overweight or obese populations (29,66,73,74,76) and whilst this review concurs with this view, it is recognised that practitioners need some guidance about how to estimate values. The Mifflin equations provide precise estimates of REE in most individuals with BMI 30-39.9 and ≥40 kg/m² compared with other equations although these predictions will be imprecise (<90% or >110% of measured REE) in approximately 25% of individuals. However, the Mifflin equations did not provide precise estimates in all studies and the analysis undertaken by participants, rather than by study subgroup, was highly influenced by the large population studied by Lazzer et al., (54). This is probably due to differences between the two populations; the Mifflin participants were recruited from Nevada in West of USA, and included 45% of women and 49% of men weighing >120% of ideal body weight, whilst the Lazzer participants were recruited from Northern Italy and all had BMI >30 kg/m²: the Mifflin men and women were a mean of 8 and 4 cm taller respectively and 36 kg lighter than those in the Lazzer study; all of the Lazzer participants are described as White and

although the ethnicity of the Mifflin population is not described, approximately 77% of the population of Nevada were White in 2013 (100). Whilst the Mifflin equations predict REE precisely in more individuals with BMI 30-39.9 and ≥40 kg/m² than other equations, clearly they are not suitable for this Italian population.

Prediction of TEE

The four studies included in the evaluation of TEE predictions provide no good evidence that meaningful estimates of TEE can be obtained in individuals or groups who are overweight or obese. These predictions, based on both equations and physical activity questionnaires, were mostly inaccurate and precision was not reported. The measurement of TEE is considerably more difficult and expensive than measurement of REE which may explain the limited research in this area. However, it could be argued that the need for useable predictions is more important for TEE than REE because it is TEE which must be determined to allow an energy deficit, which is required for weight management, to be determined. Examination of physical activity level (PAL) in overweight and obesity may provide a useful approach to estimating TEE using the factorial approach, i.e. TEE = REE x PAL (11). Studies by Prentice et al., (40), Gibney et al., (101), Tooze et al., (42), Moshfegh et al., (43) and Park et al., (102,103) include reliably measured TEE and examined PAL in overweight and obese participants. Whilst this is strictly outside the remit of the present systematic review, it is worth noting that most measured PAL values from obese participants in these studies fall between the 25th and 50th centiles, i.e. 1.49 and 1.63, which are recommended by Scientific Advisory Committee on Nutrition for less active and averagely active populations, including those who are overweight and obese (11). In the absence of other evidence, these recommendations rather than other predictions should be used for estimating TEE in obese and overweight populations.

Limitations

The reviews presented may be limited by publication bias and relevant studies may have been omitted from those included in the systematic evaluation. Studies were purposely excluded if prediction equations were based on more complex body composition variables (104) which may provide more useful estimates but which are unlikely to be available in clinical or public health practice. Studies were also excluded if the participants were described as being acutely ill or having a condition that might influence their metabolic rate. However, a high prevalence of co-morbidity, including glucose intolerance, dyslipidaemia and hypertension, is present in obese adults especially when BMI exceeds

40 kg/m² (105), so it is likely that study populations may have included some of these conditions. This review did not investigate the effect of ethnicity on the accuracy or precision of prediction equations due to the limited studies that have explicitly investigated this, e.g. Forman et al., (62), Blanc et al., (94). However, clearly ethnicity does influence REE, probably mediated through differences in body composition, and Weijs (76) has recommended that this is addressed. The review protocols were designed to maximise the inclusion of good quality data but the diverse study procedures and variation in reporting may have resulted in inclusion or exclusion decisions that impacted on the overall results. For example, studies were included if REE measurements were made in the fasting state but this varied in length and was not always fully described; the study by Foster et al., (63) was included even though they reported that their 6-hour fast "may not have totally removed the thermic effect of a large meal". The REE study by Shaneshin et al., (106) was excluded as the number of overweight and obese participants was not reported but from a global perspective, these data are important as most other studies were from American or European populations. The limited reporting of precision data for REE predictions and absence for TEE means that the conclusions are based on only a proportion of the participants studied and this is a concern. It is possible that prediction equations that were published earlier have been evaluated by more studies and this may lead to an apparent improvement in accuracy which is based on mean values. The Henry equations were amongst those published in the last ten years and have only been evaluated by two studies but those based on weight and height still showed good accuracy.

Recommendations for future research

To facilitate future reviews, it is recommended that all studies investigating energy expenditure predictions should analyse and present data for accuracy and precision based on ±10% of measured values (87). Further evaluations of REE prediction would be useful in populations outside the Americas and Europe as this is relatively under-explored. Investigating the inclusion of simple measures of body composition, for example waist circumference, in prediction equations may be useful and has been little explored to date (107). However, more useful estimates of REE might be obtained by investigating new technology rather than searching for elusive accurate and precise prediction equations (52). The estimation of TEE in obese and overweight individuals using prediction equations or physical activity questionnaires is currently very limited and needs detailed exploration. Again, new technology using accelerometers or heart rate monitors might

provide more useful estimates (108). This review has focussed on predicting energy expenditure at a single time point whereas in practice, information is required about dynamic changes that accompany weight change and these are difficult to assess using static prediction equations. Estimates from energy balance studies undertaken over periods of weight loss indicate that far greater deficits in energy intake than previously thought may be needed to bring about weight loss (109,110), and that current assumptions, i.e. that a deficit of 3500 kcal will result in a loss of 1 kg of body weight, may overestimate anticipated weight loss (109-111). This is important so that the expectations of patients, healthcare providers and commissions can be met (112-114).

Conclusions

The prediction equations based on simple anthropometric and demographic variables which provide the most *accurate* estimates of resting energy expenditure in healthy overweight and obese adults differ with body mass index as follows:

• BMI ≥25 and ≥30 kg/m²: WHO (93) based on weight and height;

• BMI 30-39.9 kg/m²: Mifflin *et al.*, (88) based on weight and height;

BMI ≥40 kg/m²: Henry (82) based on weight and height.

More *precise* estimates of REE are provided by the equations of Mifflin *et al.* (88) in participants with BMI 30-39.9 and ≥40 kg/m² than other equations. As precision is considered more important in practice and because it is more convenient to use a single equation rather than different ones depending on BMI, it is recommended that the equations of Miffin *et al.* (88) are used to estimate resting energy expenditure in all overweight and obese adults. No accurate or precise predictions of total energy expenditure were identified in healthy overweight and obese adults.

References

- 1) Health and Social Care Information Centre (2014) Statistics on obesity, physical activity and diet, England: 2014. http://www.hscic.gov.uk/catalogue/PUB13648/Obes-phys-acti-diet-eng-2014-rep.pdf (accessed 1 August 2015).
- 2) World Health Organization (2013) Country profiles on nutrition, physical activity and obesity in the 53 WHO European Region Member States. http://www.euro.who.int/ data/assets/pdf file/0004/243337/Summary-document-53-MS-country-profile.pdf (accessed 1 August 2015).
- 3) National Institute of Health and Clinical Excellece (2006) Obesity: the prevention, identification, assessment and management of overweight and obesity in adults and children. http://www.nice.org.uk/guidance/cg43/evidence/cg43-obesity-full-guideline-section-1-introduction-methods-and-recommendations2 (accessed 1 August 2015).
- 4) Scottish Intercollegiate Guidelines Network (2010) Management of obesity. A national clinical guideline 115. http://www.sign.ac.uk/pdf/sign115.pdf (accessed 1 August 2015).
- 5) Butland, B., Jebb, S., Kopelman, P. *et al.* (2007) Tackling Obesities: Future Choices Project Report, 2nd edition. London: Foresight.
- 6) American Dietetic Association (2009) Position of the American Dietetic Association: Weight Management. *J. Am. Diet. Assoc.* **109**, 330-346.
- 7) National Heart Lung and Blood Institute (1991) Clinical guidelines on the identification, evaluation, treatment of overweight and obesity in adults, the evidence report. USA: NHLBI.
- 8) Barlow, S. & Dietz, W. (1998) Obesity evaluation and treatment: Expert Committee recommendations. *Pediatrics* **102**, E29.
- 9) Hall, K.D. (2010) Predictimg metabolic adaptation, body weight change, and energy intake in humans. *Am. J. Physiol. Endocrinol. Metab.* **298**, E449-E466.
- 10) Psota, T. & Chen, K.Y. (2013) Measuring energy expenditure in clinical populations: rewards and challenges. *Eur. J. Clin. Nutr.* **67**, 436-42.
- 12) Levine, J.A., Lanningham-Foster, L.M., McCrady, S.K *et al.* (2005) Interindividual variation in posture allocation: possible role in human obesity. *Science* **307**, 584-586.
- 13) Schoeller, D.A., Ravussin, E., Schutz, Y *et al.* (1986) Energy expenditure by doubly-labelled water: validation in humans and proposed calculation. *Am. J. Physiol.* **250**, R823-30.
- 14) Lichtman, S.W., Pisarska, K., Berman, E.R. *et al.* (1992) Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. *N. Engl. J. Med.* **327**, 1893-1898.
- 15) Schoeller, D.A. (1999) Recent advances from application of doubly labelled water to measurement of human energy expenditure. *J. Nutr.* **129**, 1765-8.
- 16) Heymsfield, S.B., Harp, J.B., Rowell, P.N. *et al.* (2006) How much may I eat? Calorie estimates based upon energy expenditure prediction equations. *Obes. Rev.* **7**, 361-370.

- 17) Kee, A-L., Isenring, E., Hickman, I. *et al.* (2012) Resting energy expenditure of morbidly obese patients using indirect calorimetry: a systematic review. *Obes. Rev.* **13**, 753-765.
- 18) Harris, J.A. & Benedict, T.G. (1919) *Biometric studies of basal metabolism in man*. Washington DC: Carnegie Institute of Washington.
- 19) Schofield, W.N. (1985) Predicting basal metabolic rate, new standards and review of previous work. *Hum. Nutr. Clin. Nutr.* **39**, Suppl.1, 5-41.
- 20) Sallis, J.F., Haskell, W.L., Wood, P.D. *et al.* (1985) Physical activity assessment methodology in the Five-City Project. *Am. J. Epidemiol.* **121**, 91-106.
- 21) Heymsfield, S.B., Thomas, D., Bosy-Westphal, A *et al.* (2012) Evolving concepts on adjusting human resting energy expenditure measurements for body size. *Obes Rev.* **13**, 1001-14.
- 22) Garby L., Garrow J.S., Jorgensen B. *et al.* (1988) Relation between energy expenditure and body composition in man: specific energy expenditure in vivo of fat and fat-free tissue. *Eur. J. Clin. Nutr.* **42**, 301-305.
- 23) Nelson, K.M., Weinsier, R.L., Long, C.L. *et al.* (1992) Prediction of resting energy expenditure from fat-free mass and fat mass. *Am. J. Clin. Nutr.* **56**, 848-856.
- 24) Elia, M. (1992) Body-composition analysis. An evaluation of 2 component models, multicomponent models and bedside techniques. *Clin. Nutr.* **11**, 114-127.
- 25) Gallagher, D., Albu, J, He, Q. *et al.* (2006) Small organs with a high metabolic rate explain lower resting energy expenditure in African-American than in white adults. *Am. J. Clin. Nutr.* **83**, 1062-1067.
- 26) Müller, M.J., Bosy-Westphal, A., Kutzner, D. *et al.* (2002) Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. *Obes. Rev.* **3**, 113-122.
- 27) Forbes, G.B. (1987) Lean body mass-body fat interrelationships in humans. *Nutr. Rev.* **45**, 225-231.
- 28) Hall, K.D. (2007) Body fat and fat-free mass inter-relationships: Forbes's theory revisited. *Br. J. Nutr.* **97**, 1059-1063.
- 29) Wilms, B., Schmid, S.M., Ernst, B. *et al.* (2010) Poor prediction of resting energy expenditure in obese women by established equations. *Metabolism* **59**, 1181-9.
- 30) Cunningham, J.J. (1980) A reanalysis of the factors influencing basal metabolic rate in normal adults. *Am. J. Clin. Nutr.* **33**, 2372-2374.
- 31) Das, S.K., Roberts, S.B., McCrory, M.A. *et al.* (2003) Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. *Am. J. Clin. Nutr.* **78**, 22-30.
- 32) Kaiyala, K.J., Morton, G.J., Leroux, B.G. *et al.* (2010) Toward a more complete and less controversial understanding of energy expenditure and its role in obesity pathogenesis. *Diabetes* **60**, 17-23.
- 33) Horgan, G.W. & Stubbs, J. (2003) Predicting basal metabolic rate in the obese is difficult. *Eur. J. Clin. Nutr.* **57**, 335-340.
- 34) Kvist, H., Chowdhury, B., Sjostrom, L. *et al.* (1988) Adipose tissue volume determination in males by computed tomography and ⁴⁰K. *Int. J. Obes.* **12**, 249-266.

- 35) Wang, Z., Heshka, S., Gallagher, D. *et al.* (2000) Resting energy expenditure-fat-free mass relationship: new insights provided by body composition modeling. *Am. J. Physiol. Endocrinol. Metab.* **279**, E539-45.
- 36) Forbes, G.B., Brown, M.R., Welle, S.L. *et al.* (1986) Deliberate overfeeding in women and men: energy cost and composition of the weight gain. *Br. J. Nutr.* **56**, 1-9.
- 37) Bosy-Westphal, A., Eichhorn, C., Kutzner, D. *et al.* (2003) The age-related decline in resting energy expenditure in humans is due to the loss of fat-free mass and to alterations in its metabolically active components. *J. Nutr.* **133**, 2356-2362.
- 38) Ravussin, E., Burnand, B., Schutz, Y. *et al.* (1982) Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. *Am. J. Clin. Nutr.* **35**, 566-573.
- 39) Prentice, A.M., Black, A.E., Coward, W.A. *et al.* (1986) High levels of energy expenditure in obese women. *B.M.J.* **292**, 983-987.
- 40) Prentice, A.M., Black, A.E., Coward, W.A. *et al.* (1996) Energy expenditure in overweight and obese adults in affluent societies: an analysis of 319 doubly-labelled water measurements. *Eur. J. Clin. Nutr.* **50**, 93-7.
- 41) Holliday, M.A., Potter, D., Jarrah, A. *et al.* (1967) The relation of metabolic rate to body weight and organ size. *Pediatr. Res.* **1**, 185-195.
- 42) Tooze, J.A., Schoeller, D.A., Subar, A.F. *et al.* (2007) Total daily energy expenditure among middle-aged men and women: the OPEN Study. *Am. J. Clin. Nutr.* **86**, 382-7.
- 43) Moshfegh, A.J., Rhodes, D.G., Baer, D.J. *et al.* (2008) The US Department of Agriculture automated multiple-pass method reduces bias in the collection of energy intakes. *Am. J. Clin. Nutr.* **88**, 324-32.
- 44) Food and Nutrition Board, Institute of Medicine (2002) Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, D.C.: The National Academies Press. http://www.iom.edu/Reports/2002/Dietary-Reference-Intakes-for-Energy-Carbohydrate-Fiber-Fat-Fatty-Acids-Cholesterol-Protein-and-Amino-Acids.aspx (accessed 1 August 2015).
- 45) O'Riordan, C.F., Metcalf, B.S., Perkins, J.M. *et al.* (2010) Reliability of energy expenditure prediction equations in the weight management clinic. *J. Hum. Nutr. Diet.* **23**, 169-75.
- 46) Kushner, R.F. & Drover, J.W. (2011) Current Strategies of Critical Care Assessment and Therapy of the Obese Patient (Hypocaloric Feeding): What are We Doing and What Do We Need to Do? *J. Parent. Enteral Nutr.* **35**, 36S-43S.
- 47) Weijs, P.M., Looijaard, W.G., Beishuizen, A. *et al.* (2014) Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. *Crit. Care* **18**, 701 doi: 10.1186/s13054-014-0701-z.
- 48) Sabounchi, N.S., Rahmandad, H., Ammerman, A. (2013) Best-fitting prediction equations for basal metabolic rate: informing obesity interventions in diverse populations. *Int. J. Obes.* **37**, 1364-70.
- 49) Das, S.K. (2005) Body composition measurement in severe obesity. *Curr. Opin. Clin. Nutr. Metab. Care* **8,** 602-6.

- 50) Moher, D., Liberati, A., Tetzlaff, J. *et al.* (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *B.M.J.* **339**, b2535.
- 51) World Health Organization (2015) BMI classification. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed 1 August 2015).
- 52) Madden, A.M., Parker, L.J.F. & Amirabdollahian, F. (2013) Accuracy and preference of measuring resting energy expenditure using a handheld calorimeter in healthy adults. *J. Hum. Nutr. Diet.* **26**, 587-95.
- 53) Plasqui, G., Bonomi, A.G. & Westerterp, K.R. (2013) Daily physical activity assessment with accelerometers: new insights and validation studies. *Obes. Rev.* **14**, 451-62.
- 54) Lazzer, S., Bedogni, G., Lafortuna, C.L. *et al.* (2010) Relationship between basal metabolic rate, gender, age and body composition in 8,780 white obese subjects. *Obesity* **18**, 71-8.
- 55) Reitsma, J.B., Rutjes, A.W.S., Whiting, P. *et al.* (2009) Assessing methodological quality. In: Deeks, J.J., Bossuyt, P.M. & Gatsonis, C. (eds.). *Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy* Version 1.0.0. The Cochrane Collaboration, 2009. http://srdta.cochrane.org/handbook-dta-reviews (accessed 1 August 2015).
- 56) Higgins, J.P., Altman, D.G., Gøtzsche, P.C. *et al.* (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *B.M.J.* **343**, d5928.
- 57) Hayden, J.A., van der Windt, D.A., Cartwright, J.L *et al.* (2013) Assessing bias in studies of prognostic factors. *Ann. Intern. Med.* **158**, 280-6.
- 58) Das, S.K., Saltzman, E., McCrory, M.A. *et al.* (2004) Energy expenditure is very high in extremely obese women. *J. Nutr.* **134**, 1412-6.
- 59) De Oliveira, F.C., Alves, R.D.M., Zuconi, C.P. *et al.* (2012) Agreement between different methods and predictive equations for resting energy expenditure in overweight and obese Brazilian men. *J. Acad. Nutr. Diet.* **112**, 1415-20.
- 60) Dobratz, J.R., Sibley, S.D., Beckman, T.R. et al. (2007) Predicting energy expenditure in extremely obese women. *J. Parenter. Enteral Nutr.* **31**, 217-27.
- 61) Faria, S.L., Faria, O.P. Menezes, C.S. *et al.* (2012) Metabolic profile of clinically severe obesity patients. *Obes. Surg.* **22**, 1257-62.
- 62) Forman, J.N., Miller, W.C., Szymanski, L.M. *et al.* (1998) Differences in resting metabolic rates of inactive obese African-American and Caucasian women. *Int. J. Obes.* **22**, 215-21.
- 63) Foster, G.D., Wadden, T.A., Mullen, J.L. *et al.* (1988) Resting energy expenditure, body composition and excess weight in the obese. *Metabolism* **37**, 467-72.
- 64) Frankenfield, D.C. (2013) Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. *Clin. Nutr.* **32**, 976-82.
- 65) Frankenfield, D.C., Rowe, W.A., Smith, J.S. *et al.* (2003) Validation of several established equations for resting metabolic rate in obese and nonobese people. *J. Am. Diet. Assoc.* **103**, 1152-9.
- 66) Horie, L.M., Gonzalez, M.C., Torrinhas, R.S. *et al.* (2011) New specific equation to estimate resting energy expenditure in severely obese patients. *Obesity* **19**, 1090-4.
- 67) Lazzer, S., Agosti, F., Resnik, M. *et al.* (2007) Prediction of resting energy expenditure in severely obese Italian males. *J. Endocrinol. Invest.* **30**, 754-61.

- 68) Lazzer, S., Agosti, F., Silvestri, P. *et al.* (2007) Prediction of resting energy expenditure in severely obese Italian women. *J. Endocrinol. Invest.* **30**, 20-7.
- 69) Miyake, R., Ohkawara, K., Ishikawa-Takata, K. *et al.* (2011) Obese Japanese adults with type 2 diabetes have higher basal metabolic rates thannon-diabetic adults. *J. Nutr. Sci. Vitaminol.* **57**, 348-54.
- 70) Owen, O.E., Kavle, E.C., Owen, R.S. *et al.* (1986) A reappraisal of the caloric requirements of healthy women. *Am. J. Clin. Nutr.* **44**, 1-19.
- 71) Owen, O.E., Holup, J.L., D'Alessio, D.A. *et al.* (1987) A reappraisal of the caloric requirements of men. *Am. J. Clin. Nutr.* **46**, 875-85.
- 72) Ruiz, J.R., Ortega, F.B., Rodrigues, G. *et al.* (2011) Validity of resting energy expenditure predictive equations before and after an energy=restricted diet intervention in obese women. *PLoS One* **6**, e23759.
- 73) Scalfi, L., Coltorti, C., Sapio, G. *et al.* (1993) Predicted and measured resting energy expenditure in healthy young women. *Clin. Nutr.* **12**, 1-7.
- 74) Siervo, M., Boschi, V. & Falconi, C. (2003) Which REE prediction equation should we use in normal-weight, overweight and obese women? *Clin. Nutr.* **22**, 193-204.
- 75) Siervo, M., Labanca, F. & Colantuoni, A. (2008) Valdity of some prediction equations to assess resting energy expenditure (REE) in 29 elderly obese subjects (>60 years). *Eating Weight Disord.* **13**, e14-9.
- 76) Weijs, P.J. (2008) Validity of predictive equations for resting energy expenditure in US and Dutch overweight and obese class I and II adults aged 18-65 y. *Am. J. Clin. Nutr.* **88**, 959-70.
- 77) Bernstein, R.S., Thornton, J.C., Yang, M.U. *et al.* (1983) Prediction of the resting metabolic rate in obese patients. *Am. J. Clin. Nutr.* **37**, 595-602.
- 78) De Lorenzo, A., Tagliabue, A., Andreoli, A. *et al.* (2001) Measured and predicted resting metabolic rate in Italian males and females aged 18-59 y. *Eur. J. Clin. Nutr.* **55**, 208-14.
- 79) De Luis, D.A., Aller, R., Izaola, O. *et al.* (2006) Prediction equation of resting energy expenditure in an adult Spanish population of obese adult population. *Ann. Nutr.Metab.* **50**, 193-6.
- 80) Fredrix, E.W., Soeters, P.B., Deerenberg, *et al.* (1990) Resting and sleeping energy expenditure in the elderly. *Eur. J. Clin. Nutr.* **44**, 741-7.
- 81) Ganpule, A.A., Tanaka, S., Ishikawa-Takata, K. *et al.* (2007) Interindividual variability in sleeping metabolic rate in Japanese subjects. *Eur. J. Clin. Nutr.* **61**, 1256-61.
- 82) Henry, C.J.K. (2005) Basal metabolic rate studies in humans: measurement and development of new equations. *Public Health Nutr.* **8**, 1133-52.
- 83) Huang, K.C., Kormas, N., Steinbeck, K. *et al.* (2004) Resting metabolic rate in severely obese diabetic and nondiabetic subjects. *Obes Res.* **12**, 840-5.
- 84) Ireton-Jones, C.S. (1989) Evaluation of energy expenditures in obese patients. *Nutr. Clin. Pract.* **4**, 127-9.
- 85) Kleiber, M. (1932) Body size and metabolism. Hilgardia 11, 315-53.
- 86) Korth, O., Bosy-Westphal, A., Zschoche, P. *et al.* (2007) Influence of methods used in body composition analysis on the prediction of resting energy expenditure. *Eur. J. Clin. Nutr.* **61**, 582-9.

- 87) Livingston, E.H. & Kohlstadt, I. (2005) Simplified resting metabolic rate-predicting formulas for normal-sized and obese individuals. *Obes. Res.* **13**. 1255-62.
- 88) Mifflin, M.D., St Jeor, S.T., Hill, L.A. *et al.* (1990) A new predictive equation for resting energy expenditure in healthy individuals. *Am. J. Clin. Nutr.* **51**, 241-7.
- 89) Müller, M.J., Bosy-Westphal, A., Klaus, S. *et al.* (2004) World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. *Am. J. Clin. Nutr.* **80**, 1379-90.
- 90) Roza, A.M. & Shizgal, H.M. (1984). The Harris Benedict equation re-evaluated: resting energy requirements and the body cell mass. *Am. J. Clin. Nutr.* **40**, 168-82.
- 91) Tabata, I., Ebine, N., Kawashima, Y *et al.* (2013) Dietary reference intakes for Japanese 2010 energy. *J. Nutr. Sci. Vitaminol.* **59**, S26-35.
- 92) Weijs, P.J.M. & Vansant, G.A.A.M. (2010) Validity of predictive equations for resting energy expenditure in Belgian normal weight to morbid obese women. *Clin. Nutr.* **29**, 347-51.
- 93) World Health Organization (1985) Energy and protein requirements. Report pof a Joint FAO/WHO/UNU Expert Consultation. World Health Organization Technical Report Series 724. http://www.fao.org/docrep/003/aa040e/AA040E00.htm#TOC (accessed 1 August 2015).
- 94) Blanc, S., Schoeller, D.A., Bauer, D. *et al.* (2004) Energy requirements in the eighth decade of life. *Am. J. Clin. Nutr.* **79**, 303-10.
- 95) Mahabir, S., Baer, D.J., Giffen, C. *et al.* (2006) Comparison of energy expenditure estimates from 4 physical activity questionnaires with doubly labeled water estimates in postmenopausal women. *Am. J. Clin. Nutr.* **84**, 230-6.
- 96) James, W.P.T. & Schofield, E.C. (1990) Human energy requirements. A manual for planners and nutritionists. Oxford: Oxford Medical Publications under arrangements with FAO.
- 97) Paffenbarger, R.S.Jr., Wing, A.L. & Hyde, R.T. (1978) Physical activity as an index of heart attack risk in college alumni. *Am. J. Epidemiol.* **108**, 161-75.
- 98) Ainsworth, B.E., Irwin, M.L., Addy, C.L. *et al.* (1999) Moderate physical activity patterns of minority women: the Cross-Cultural Activity Participation Study. *J. Womens Health Gender. Based Med.* **8**, 805-13.
- 99) Whitt, M.C., Levin, S., Ainsworth, B.E. *et al.* (2003) Evaluation of a two-part survey item to assess moderate physical activity: the Cross-Cultural Activity Participation Study. *J. Womens Health* **12**, 203-12.
- 100) USA Census Bureau (2015) State and County Quick Facts. http://quickfacts.census.gov/qfd/states/32000.html (accessed 1 August 2015).
- 101) Gibney, E.R., Murgatroyd, P., Wright, A. *et al.* (2003) Measurement of total energy expenditure in grossly obese women: comparison of the bicarbonate-urea method with whole-body calorimetry and free-living doubly labelled water. *Int. J. Obes. Relat. Metab. Disord.* **27**, 641-7.
- 102) Park, J., Ishikawa-Takata, K., Tanaka, S. *et al.* (2011) Relation of body composition to daily physical activity in free-living Japanese adult women. *Br. J. Nutr.* **106**, 1117-27.
- 103) Park, J., Ishikawa-Takata, K., Tanaka, S. *et al.* (2014) The relationship of body composition to daily physical activity in free-living Japanese adult men. *Br. J. Nutr.* **111**, 182-8.

- 104) Bosy-Westphal, A., Braun, W., Schautz, B. *et al.* (2013) Issues in characterising resting energy expenditure in obesity and after weight loss. *Front. Physiol.* **4**, doi: 10.3389/fphys.2013.00047.
- 105) Martin-Rodriguez, E., Guillen-Grima, F., Martí, A. *et al.* (2015) Comorbidity associated with obesity in a large population: The APNA study. *Obes. Res. Clin. Pract.* **12**, pii: S1871-403X(15)00057-5.
- 106) Shaneshin, M., Rezazadeh, A., Jessri, M. *et al.* (2011) Validity of predictive equations for resting energy expenditure among Iranian women. *Asia Pac. J. Clin. Nutr.* **20**, 646-53.
- 107) Hedayati, K.K. & Dittmar, M. (2011) Body circumferences are predictors of weight adjusted resting energy expenditure in older people. *J. Nutr. Health Aging* **15**, 803-8.
- 108) Rousset, S., Fardet, A., Lacomme, P. et al. (2015) Comparison of total energy expenditure assessed by two devices in controlled and free-living conditions. *Eur. J. Sport. Sci.* **15**, 391-9.
- 109) Hall, K.D., Sacks, G., Chandramohan, D. *et al.* (2011) Quantification of the effect of energy imbalance on bodyweight. *Lancet* **378**, 826-837.
- 110) Hall, K.D., Heymsfield, S.B., Kemnitz, J.W. *et al.* (2012) Energy balance and its components: implications for body weight regulation. *Am. J. Clin. Nutr.* **95**, 989-994.
- 111) Thomas, D.M., Martin, C.K., Redman, L.M. *et al.* (2014) Effect of dietary adherence on the body weight plateau: a mathematical model incorporating intermittent compliance with energy intake prescription. *Am. J. Clin. Nutr.* **100**, 787-795.
- 112) Foster, G.D., Wadden, T.A., Voqt, R.A. *et al.* (1997) What is a reasonable weight loss? Patients' expectations and evaluations of obesity treatment outcomes. *J. Consult. Clin. Psychol.* **65**, 79-85.
- 113) Dalle Grave, R., Calugi, S., Molinari, E. *et al.* (2005) Weight loss expectations in obese patients and treatment attrition: an observational multicentre study. *Obes. Res.* **13**, 1961-1969.
- 114) Dutton, G.R., Perri, M.G., Dancer-Brown, M. *et al.* (2010) Weight loss goals of patients in a weight maintenance organisation. *Eat. Behav.* **11**, 74-78.

Figure 1

Flow and identification of studies to include in review of estimation of resting energy expenditure in obese and overweight adults using prediction equations

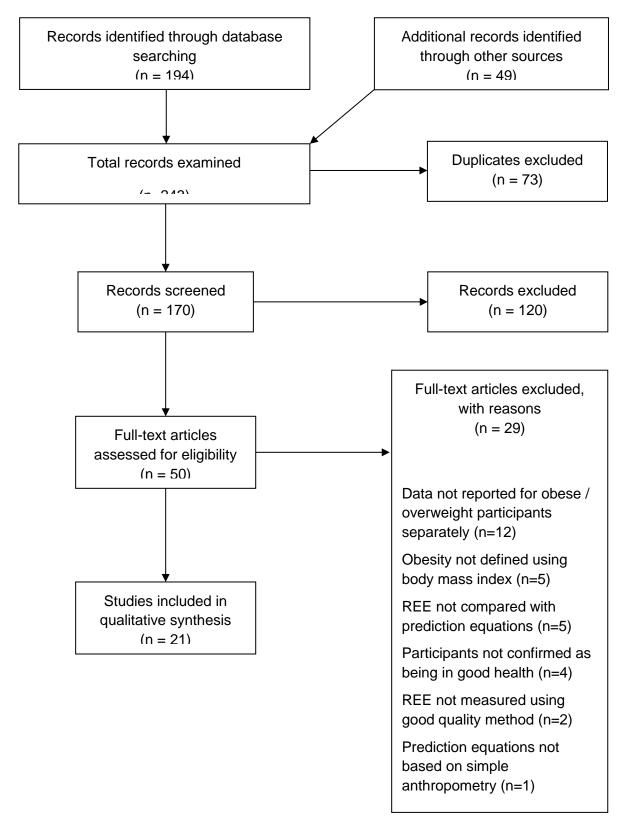


Figure 2

Flow and identification of studies to include in review of estimation of total energy expenditure in obese and overweight adults using prediction equations

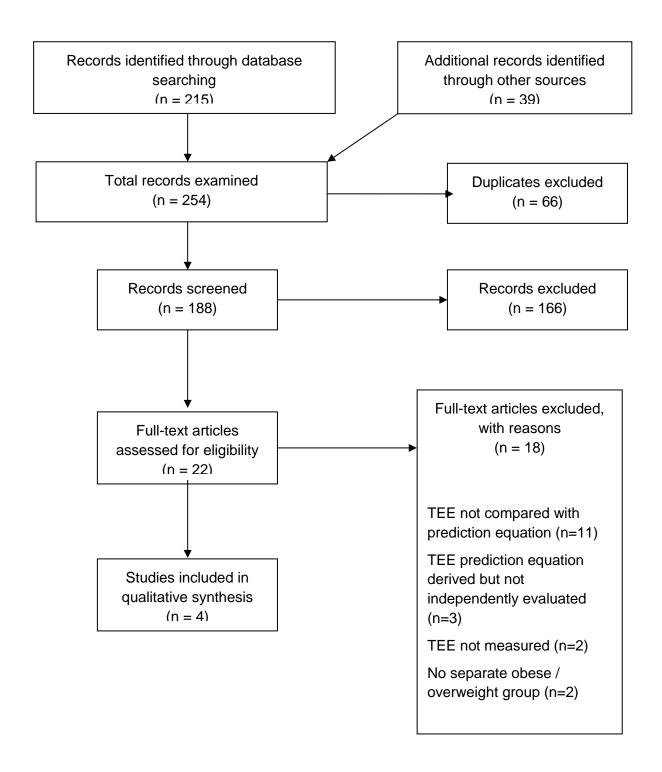


Table 1
Variables extracted during the first screening stage

Search 1	Search 2
Resting energy expenditure (REE)	Total energy expenditure (TEE)
Author Year Study type Aim Population, i.e. nationality / ethnicity Number of participants Healthy Sick, i.e. diagnosis Age Men Women Normal weight Overweight Obese REE measured Method of REE measurement Type of calorimeter REE prediction equations used	Author Year Study type Aim Population, i.e. nationality / ethnicity Number of participants Healthy Sick, i.e. diagnosis Age Men Women Normal weight Overweight Obese TEE measured Method of TEE measurement TEE prediction equations used Findings
Findings	

Table 2
Studies evaluating REE in healthy overweight or obese adults included in systematic review. Data expressed as range (mean ±standard deviation) unless otherwise specified

Authors	Country and context of study	Participants (number; gender; BMI; age) ^{a,b}	REE measurement (fast; rest; equipment; measurement time) ^c
Das et al., (58)	USA, Massachusetts: participants recruited from patients waiting for gastric bypass surgery	12 women; BMI 37.5-45.0 kg/m ² ; age 36±0.5 years 10 women; BMI 45.1-52.0 kg/m ² ; age 40±0.5 years 8 women; BMI 52.1-77.0 kg/m ² ; age 35±0.9 years	Overnight fast; rest not specified; Deltatrac Portable Metabolic cart
De Oliveira et al., (59)	Brazil, Viçosa: participants recruited from local community	48 men; BMI 26.4-35.2 (29.3±2.6) kg/m²; age 26±5 years	Overnight 12 hour fast; minimum physical effort; Deltatrac-R3D metabolic cart; 10-15 minute measurement
Dobratz et al., (60)	USA, Minnesota: participants recruited from patients waiting for gastric bypass surgery	14 women; BMI 41.3-65.3 (49.8±6.2) kg/m ² ; age 49±10 years	Overnight 12 hour fast; 30 minute rest; Deltatrac metabolic cart; 15 minute measurement
Faria <i>et al.,</i> (61)	Brazil, Brasilia: participants recruited from patients waiting for bariatric surgery	108 women and 22 men; BMI 35-58 (41.9±4.8) kg/m²; age 18-63 (35±10) years	12 hour fast; rest not specified; Fitmate-Cosmed; 15 minute measurement
Forman et al., (62)	USA, Washington DC: participants recruited from pre-menopausal	25 African-American women; BMI 36.1±6.5 kg/m²; age 34±1 years 22 Caucasian women; BMI 33.2±5.2 kg/m²; age	Overnight 12 hour fast; 30 minute rest; Sensormedics Vmax System; 30 minute measurement
Foster et al., (63)	women USA, Pennsylvania: participants in intervention study	36±2 years 80 women; BMI 38.9±7.0 kg/m ² ; age 42±10 years	6 hour fast with measurements between early morning and early afternoon; rest not specified; MMC Horizon System; 5 minute steady-state measurement

Frankenfield (64)	USA, Pennsylvania: participants recruited	71 adults; BMI 25.1-29.9 (27.2±1.4) kg/m²; age 45±13 years	Overnight fast; 30 minute rest; indirect using Deltatrac MB-100; 15 or 25 minute
	from local weight management centres	75 adults; BMI 30.0-39.9 (34.4±3.0) kg/m ² ; age 46±13 years	measurement
	and doctors offices	53 adults; BMI 40.0-49.9 (43.7±2.9) kg/m ² : age 46±12 years	
		28 adults; BMI >50.0 (62.4±13.3) kg/m²; age 40±10 years	
Frankenfield et al., (65)	USA, Pennsylvania: participants recruited	8 men; BMI 30-40 kg/m ² ; age 39±4years 12 women; BMI 30-40 kg/m ² : age 44±4 years	Overnight 12 hour fast; rested but time not specified; Deltatrac Metabolic Monitor; 5 or 25
ct al., (00)	from hospital, clinics and community	14 men; BMI >40 kg/m ² ; age 41±3 years 13 women; BMI >40 kg/m ² : age 37±2 years	minute steady state measurement
Horie et al., (66)	Brazil, Sâo Paulo: participants recruited	120 adults; BMI 46.9±6.2 kg/m ² ; age 41.6±11.6 years	Overnight 12 hour fast; 30 minute rest; Deltatrac Monitor II MBM-200; 30 minute measurement
	from patients waiting for gastric bypass surgery	37 men; BMI 49.9±6.7 kg/m²; age 38.5±11.7 years	
		83 women; BMI 45.5±5.5 kg/m ² ; age 43.0±11.3 years	
Lazzer	Italy, Verbania: participants recruited	47 men; BMI 35-39.9 kg/m²; age 45.5±2.2 years	Overnight fast; 20 minute rest; Vmax 29, SensorMedics; 30 minute measurement
et al., (67)	from hospital	43 men; BMI 40-44.9 kg/m ² ; age 51.6±2.4 years 38 men; BMI 45-49.9 kg/m ² ; age 44.8±4.3 years 36 men; BMI >50 kg/m ² ; age 40.7±3.8 years	Sensonvieules, 30 minute measurement
Lazzer et al., (68)	Italy, Verbania: participants recruited	107 women; BMI 40-45 kg/m ² ; age 44.2±1.1 years	Overnight fast; 20 minute rest; Vmax 29, SensorMedics; 30 minute measurement
from hospital		43 women; BMI 45-50 kg/m²; age 43.1±1.7 years 32 women; BMI ≥50 kg/m²; age 45.8±2.0 years	
et al., (54) part	Italy, Verbania: participants recruited	2000 men; BMI ≥30 (41.6±6.8) kg/m²; age 46.3±13.8 years	Overnight fast; 10 minute rest; Vmax 29, SensorMedics; >35 minute measurement
	from hospital	5368 women; BMI ≥30 (41.9±6.5) kg/m²; age 47.8.3±13.9 years	

Miyake et al. (69)	Japan, Nagano: participants recruited from obesity programme	5 men and 5 women; BMI 27.7-33.2 (29.7±1.7) kg/m²; age 54±3 years	Overnight 12 hour fast; 30 minute rest; Douglas bag; 2 x 10 minute measurement
Owen et al., (70)	USA, Pennsylvania	4 women; BMI 25-30 (28.0±1.5) kg/m²; age 45.0±16.4 years 16 women; BMI ≥30 (37.7±5.7) kg/m²; age 40.5±13.3 years	Overnight 12 hour fast; 30 minute rest; Beckman Metabolic Cart; ~10 minute measurement
Owen et al., (71)	USA, Pennsylvania	20 men; BMI 25-30 (27.0±1.6) kg/m²; age 40.2±16.4 years 16 men; BMI ≥30 (38.1±8.0) kg/m²; age 35.6±10.3 years	Overnight 12-13 hour fast; 30 minute rest; Beckman Metabolic Cart; ~10 minute measurement
Ruiz et al., (72)	Spain, Vitoria	86 women; BMI 30-39.9 (33.9±2.8) kg/m²; age 36.6±7.2 years	Overnight 12 hour fast; 30 minute rest; Vmax, SensorMedics; 20 minute measurement
Scalfi et al., (73)	Italy, Naples: participants recruited from medical school staff and students	30 women; BMI ≥30 (33.7±3.3) kg/m²; age 22.3±3.9 years	Overnight 12 hour fast; 30 minute rest; Beckman Metabolic Cart; 60 minute measurement
Siervo et al., (74)	Italy, Naples: participants recruited from patients attending hospital	58 women; BMI 25-29.9 (27.4±1.4) kg/m²; age 25.4±5.4 years 58 women; BMI ≥30 (34.9±3.6) kg/m²; age 23.8±5.5 years	Overnight ≥12 hour fast; ≥20 minute rest; Vmax 29, SensorMedics; 25-45 minute measurement
Siervo et al., (75)	Italy, Naples: participants recruited from patients attending outpatient clinic	8 men and 21 women; BMI >30 (36.8±5.3) kg/m ² ; age 65.9±4.8 years	Overnight ≥12 hour fast; ≥20 minute rest; Vmax 29, SensorMedics; 25-45 minute measurement
Weijs (76)	Netherlands, Amsterdam: participants recruited from weight loss studies ^d	25 men; BMI 25-30 (28.1±1.4) kg/m²; age 43.2±12.6 years 29 men; BMI 30-40 (33.3±2.4) kg/m²; age 41.2±12.4 years 80 women; BMI 25-30 (27.9±1.4) kg/m²; age 40.2±11.5 years 74 women; BMI 30-40 (34.0±2.6) kg/m²; age 40.5±11.5 years	Overnight fast or ≥4 hour fast if measured after noon; rest not specified but not physically active; Vmax Encore n29, Viasys Healthcare; 25 minute measurement

Wilms <i>et al., (</i> 29)	Switzerland, St Gallen: participants recruited from weight loss programmes	273 women; BMI >30 (42.8±7.0) kg/m ² ; age 41.7±13.2 years	Overnight >10 hours fast; rest not specified; Deltatrac II MBM 200; 20-30 minute measurement
	Germany, Kiel: participants recruited from weight loss study	33 women; BMI >30 (37.2±4.6) kg/m ² ; age 40.4±8.0 years	Overnight >10 hours fast; rest not specified; Vmax 29n, SensorMedics; 20-30 minute measurement

BMI – body mass index; IC – indirect calorimetry; REE – resting energy expenditure; ^adata presented as in original paper, i.e. range and / or mean ± standard deviation; ^bdescriptions of sub-groups presented in separate cells if accuracy and precision data available for each sub-group; ^clength of REE measurement used in calculation after discarding equilibration period where stated; ^donly data from Dutch participants included following correspondence with author.

Table 3

Equations predicting resting energy expenditure (REE) evaluated in included studies

Author	Reference of evaluating studies	Equation	
Bernstein <i>et al.</i> , (77)	29,58,60,67,68,72, 74,76	Men REE (kcal) = 11.02 weight + 10.23 height (cm) – 5.8 age – 1032 Women REE (kcal) = 7.48 weight – 0.42 height (cm) – 3.0 age + 844	
De Lorenzo <i>et al.,</i> (78)	76	Men REE (KJ) = 46.322 weight + 15.744 height (cm) – 16.66 age + 944 Women REE (KJ) = 53.284 weight + 20.957 height (cm) – 23.859 age + 487	
De Luis <i>et al.,</i> (79)	29	REE (kcal) = 1272.5 + 9.8 weight – 61.6 height (m) – 8.2 age	
Fredrix et al., (80)	75	REE (kcal) = 1641 + 10.7 weight – 9.0 age – 203 sex (male=1; female=2)	
Ganpule et al., (81)	69	REE (MJ) = 0.1238 + 0.0481 weight + 0.0234 height (cm) - 0.0138 age - 0.5473 sex (male=0; female=1) Equations cited by Miyake <i>et al.</i> (69): Men REE (kcal) = (0.0481weight + 0.0234 height (cm) - 0.138 age - 0.4235) x 1000/4.186 Women REE (kcal) = (0.0481weight + 0.0234 height (cm) - 0.0138 age - 0.9708) x 1000/4.186	
Harris & Benedict, (18)	29,58,60-76	Men REE (kcal) = 66.4730 + 13.7516 weight + 5.0033 height (cm) - 6.7550 age Women REE = 655.0955 + 9.5634 weight + 1.8496 height (cm) - 4.6756 age	
Henry, (82) (weight)	64,76	Age 18-30 y Men REE (MJ) = 0.0669 weight + 2.28 Women REE (MJ) = 0.0546 weight + 2.33 Age 30-60 y Men REE (MJ) = 0.0592 weight + 2.48 Women REE (MJ) = 0.0407 weight + 2.90 Age \geq 60 y Men REE (MJ) = 0.0563 weight + 2.15 Women REE (MJ) = 0.0424 weight + 2.38	
Henry, (82) (weight & height)	64,76	Age 18-30 y Men REE (MJ) = 0.0600 weight + 1.31 height (m) + 0.473 Women REE (MJ) = 0.0433 weight + 2.57 height (m) – 1.18 Age 30-60 y Men REE (MJ) = 0.0476 weight + 2.26 height (m) – 0.574 Women REE (MJ) = 0.0342 weight + 2.10 height (m) - 0.0486 Age \geq 60 y Men REE (MJ) = 0.0478 weight + 2.26 height (m) – 1.07 Women REE (MJ) = 0.0356 weight + 1.76 height (m) + 0.0448	
Huang et al., (83)	67,68	REE (kcal) = 71.767 – 2.337 age + 257.293 sex + 9.996 weight + 4.231 height (cm)	
	76	REE (kcal) = 60.655 - 1.440 age + 273.821 sex + 10.158 weight + 3.933 height (cm) (male=1; female=0)	
Ireton-Jones, (84)	58,66	REE (kcal) = 629 – 11 age + 25 weight – 609 obesity (obesity present =1; obesity absent =0)	
Kleiber, (85)	63,73	Women REE (kcal) = 65.8 weight ^{0.75} x (1 + 0.004 x [30 – age] + 0.018 x [height (cm)/weight ^{0.33} – 42.1])	

Korth et al., (86)	76	REE (kJ) = 41.5 weight - 19.1 age
		(y) + 35.0 height (cm) + 1107.4 sex - 1731.2
		(male=1; female=0)
Lazzer et al., (67)	67,76	REE (MJ) = 0.048 weight + 4.655 height (m) - 0.020 age -
(male)	20.00.70	3.605
Lazzer et al., (68)	29,68,76	REE (MJ) = 0.042 weight + 3.619 height (m) - 2.678
(female)	C4 C7 C0 7F 7C	Men REE (kcal) = 239 weight ^{0.4330} – 5.92 age
Livingston & Kohlstadt, (87)	64,67,68,75,76	Women REE (kcal) = 239 weight -3.92 age Women REE (kcal) = 248 weight -3.92 age
Mifflin <i>et al.</i> , (88)	29,54,59-61,64-	REE (kcal) = 9.99 weight + 6.25 height (cm) – 4.92 age +
wiiiiiii <i>et al.</i> , (00)	69,72-76	166 sex – 161
	05,72.70	(male=1; female=0)
Müller et al. (89)	29,64,76	REE (MJ/d) = 0.047 weight + 1.009 sex - 0.01452 age +
manor or an (oo)	20,01,70	3.21
		(male=1; female=0)
Müller et al., (89)	76	BMI 25-30 kg/m ²
(body mass index)		REE (MJ/d) = 0.04507 weight + 1.006 sex - 0.01553 age +
(111)		3.407
		$BMI > 30 \text{ kg/m}^2$
		REE (MJ/d) = 0.05 weight + 1.103 sex - 0.01586 age +
		2.924
		(male=1; female=0)
Owen et al., (70)	29,60,65,66,68-	REE (kcal) = 795 + 7.18 weight
(female)	70,72-76	
Owen <i>et al.,</i> (71)	65-67,69,71,75,76	REE (kcal) = 879 + 10.2 weight
(male) Roza <i>et al.</i> , (90)	76	Men REE (kcal) = 88.362 + 4.799 height (cm) + 13.397
1102a et al., (30)	70	weight - 5.677 age
		Women REE (kcal) = 447.593 + 3.098 height (cm) + 9.247
		weight - 4.330 age
Schofield, (19)	69,73,76	Age 18-30 y
(weight)		Men REE (MJ) = 0.063 weight + 2.896
· • • • • • • • • • • • • • • • • • • •		Women REE (MJ) = 0.062 weight + 2.036
		Age 30-60 y
		Men REE (MJ) = 0.048 weight + 3.653
		Women REE (MJ) = 0.034 weight + 3.538
		<i>Age</i> ≥60 <i>y</i>
		Men REE (MJ) = 0.049 weight + 2.459
		Women REE (MJ) = 0.038 weight + 2.755
Schofield, (19)	73,76	Age 18-30 y
(weight & height)		Men REE (MJ) = 0.063 weight - 0.042 height (m) + 2.953
		Women REE (MJ) = 0.057 weight + 1.84 height (m) + 0.411
		Age 30-60 y Men REE (MJ) = 0.048 weight – 0.011 height (m) + 3.670
		Women REE (MJ) = 0.046 weight - 0.011 fleight (m) + 3.670
		3.530
		Age ≥60 y
		Men REE (MJ) = 0.038 weight + 4.068 height (m) – 3.491
		Women REE (MJ) = 0.033 weight + 1.917 height (m) +
		0.074
Siervo et al., (74)	29,68	REE = 11.5 wt + 542.2
		DEE (haal) Of Empire (ha) and (fine)
Tabata <i>et al.,</i> (91)	69	REE (kcal) = 21.5 weight (kg) specific to age of Miyake
	72	subjects DEE = 14,039 yet + 4,409 height (cm) + 127,566 cov = 0,077
Weijs & Vansant, (92)	72	REE = 14.038 wt + 4.498 height (cm) + 137.566 sex - 0.977 age (yr) - 221.631
(34)		age (yr) = 221.631 (male=1; female=0)
		(111aib-1, 1511iaib-0)

Madden, Mulrooney & Shah: Predicting EE in obesity - manuscript as accepted for JHND publication

WHO, (93)	58-60,64,67,68,72,	Age 18-30 y
(weight)	73,76	Men REE (MJ) = 0.0640 weight + 2.84
		Women REE (MJ) = 0.0615 weight + 2.08
		Age 30-60 y
		Men REE (MJ) = 0.0485 weight + 3.67
		Women REE (MJ) = 0.0364 weight + 3.47
		Age ≥60 y
		Men REE (MJ) = 0.0565 weight + 2.04
		Women REE (MJ) = 0.0439 weight + 2.49
WHO, (93)	29,54,64,67,68,72-	Age 18-30 y
(weight & height)	76	Men REE (KJ) = 64.4 weight – 113.0 height (m) + 3000
		Women REE (KJ) = 55.6 weight + 1397.4 height (m) + 146
		Age 30-60 y
		Men REE (KJ) = 47.2 weight + 66.9 height (m) + 3769
		Women REE (KJ) = 36.4 weight – 104.6 height (m) + 3619
		<i>Age</i> ≥60 <i>y</i>
		Men REE (KJ) = 36.8 weight + 4719.5 height (m) – 4481
		Women REE (KJ) = 38.5 weight + 2665 height (m) – 1264

Units: REE – see table; weight – kg; height – see table; age – years.

Table 4Accuracy of equations predicting resting energy expenditure (REE). Bias presented as difference between mean predicted and mean measured REE expressed as percentage of mean measured REE.

BMI subgroup (kg/m²)	subgroup Analysis by participants		Analysis by study sub-group			
,	Equation	Participants	Bias	Equation	Sub-groups	Bias
		(n)	(%)	•	(n)	(%)
≥25	WHO wt	941	1.9	Schofield wt	3	5.7
	Harris & Benedict	1882	0.8	WHO wt	11	3.6
	WHO wt & ht	8716	0.4	Harris & Benedict	29	2.8
	Müller	741	-1.7	WHO wt & ht	16	1.1
	Owen M	222	-3.8	Müller	7	-0.4
	Schofield wt	312	-3.9	Owen M	4	-1.5
	Mifflin	9038	-6.4	Mifflin	21	-2.1
	Huang	554	-6.5	Huang	3	-6.3
	Livingston	810	-7.5	Livingston	8	-6.6
	Owen F	779	-12.7	Owen M&F	4	-7.7
	Owen M&F	367	-13.7	Owen F	11	-9.8
	Bernstein	1106	-18.5	Bernstein	10	-15.9
≥30	WHO wt	662	3.6	WHO wt	9	4.3
	Harris & Benedict	1511	0.9	Harris & Benedict	23	2.3
	WHO wt & ht	8379	0.5	WHO wt & ht	13	0.5
	Owen M	202	-4.3	Owen M	3	-2.3
	Mifflin	8643	-6.6	Mifflin	16	-2.6
	Livingston	531	-7.3	Livingston	6	-7.2
	Owen F	717	-13.4	Owen F	9	-11.2
	Bernstein	840	-18.5	Bernstein	8	-17.1
30-39.9	Weijs & Vansant	86	10.0	Weijs & Vansant	1	10.0
	WHO wt	161	5.1	WHO wt	2	5.0
	Harris & Benedict	161	5.0	Harris & Benedict	2	5.0
	Henry wt	75	4.0	Henry wt	1	4.0
	Müller	75	3.0	Müller	1	3.0
	Henry wt & ht	75	2.0	Henry wt & ht	1	2.0
	Mifflin	161	-0.5	Mifflin	2	-0.5
	Livingston	75	-2.0	Livingston	1	-2.0
	WHO wt & ht	161	-5.1	WHO wt & ht	1	-4.5
	Owen F	86	-8.0	Owen F	1	-8.0
	Bernstein	86	-15.0	Bernstein	1	-15.0
≥40	Henry wt	81	6.0	Henry wt	2	6.5
	Müller	81	3.7	Harris & Benedict	4	3.8
	WHO wt & ht	263	2.8	Müller	2	3.5
	WHO wt	277	1.8	WHO wt	4	2.8
	Harris & Benedict	277	0.6	WHO wt & ht	3	2.7
	Henry wt & ht	81	0.0	Henry wt & ht	2	0.0
	Lazzer F	182	0.0	Lazzer F	1	0.0
	Siervo	182	-1.0	Siervo	1	-1.0
	Mifflin	277	-4.1	Mifflin	4	-1.7
	Huang	182	-6.0	Huang	1	-6.0
	Livingston	263	-7.5	Livingston	3	-7.7
	Owen F	196	-11.6	Owen F	2	-11.5
	Bernstein	196	-19.6	Bernstein	2	-17.5

Equation with highest accuracy indicated by least bias, i.e. equation shaded for each BMI subgroup; positive values indicate tendency to overestimate measured REE; negative values indicate tendency to underestimate measured REE. In BMI subgroups \geq 25 and \geq 30 kg/m², data only presented for equations that have been evaluated by at least three studies. F = female; M = male; ht = height; wt = weight.

Table 5Precision of equations predicting resting energy expenditure (REE). Data presented as percentage of predicted REE values within 10% of measured REE.

BMI subgroup (kg/m²)	Analysis by participants		Analysis by study sub-group			
	Equation	Participants	Precision	Equation	Sub-groups	Precision
		(n)	(%)		(n)	(%)
≥25	Müller	741	63.8	Mifflin	15	65.9
	Harris & Benedict	1173	62.5	Livingston	6	63.7
	WHO wt	535	60.1	Müller	7	62.3
	Livingston	464	59.2	Harris & Benedict	18	60.4
	WHO wt & ht	8224	51.5	WHO wt	7	59.0
	Mifflin	8405	50.1	WHO wt & ht	11	54.5
	Owen M&F	866	33.4	Owen M&F	13	51.2
	Bernstein	614	10.3	Bernstein	5	14.4
≥30	Harris & Benedict	790	62.7	Mifflin	13	65.8
	WHO wt	256	59.4	Harris & Benedict	13	58.3
	WHO wt & ht	7945	51.1	WHO wt	5	58.0
	Mifflin	8126	49.9	WHO wt & ht	9	52.9
	Owen M&F	634	34.5	Owen M&F	10	48.9
	Bernstein	406	11.0	Bernstein	4	15.8
30-39.9	Livingston	75	75.0	Livingston	1	75.0
	Mifflin	181	74.0	Mifflin	3	73.0
	Henry wt & ht	75	73.0	Henry wt & ht	1	73.0
	Harris & Benedict	181	62.6	Owen M&F	2	64.0
	Henry wt	75	60.0	Henry wt	1	60.0
	Müller	75	59.0	Harris & Benedict	3	59.3
	WHO wt	161	58.5	Müller	1	59.0
	Owen M&F	106	57.2	WHO wt	2	58.5
	Weijs & Vansant	86	52.0	Weijs & Vansant	1	52.0
	WHO wt & ht	161	36.5	WHO wt & ht	2	38.0
	Bernstein	86	24.0	Bernstein	1	24.0
≥40	Mifflin	122	76.2	Mifflin	4	76.3
	Harris & Benedict	122	68.9	Harris & Benedict	4	68.5
	Livingston	81	64.2	Livingston	2	62.5
	Henry wt & ht	81	63.1	Henry wt & ht	2	60.0
	Müller	81	61.9	Müller	2	60.0
	WHO wt	95	61.0	Henry wt	2	58.0
	Henry wt	81	60.5	WHO wt	3	57.7
	WHO wt & ht	81	60.4	WHO wt & ht	2	57.0
	Owen M&F	41	38.8	Owen M&F	2	41.5
	Bernstein	14	29.0	Bernstein	1	29.0

Best precision for each BMI group indicated by highest %, i.e. shaded equation. In BMI subgroups \geq 25 and \geq 30 kg/m², data only shown for equations that have been evaluated by at least three studies. F = female; M = male; ht = height; wt = weight.

Table 6
Studies evaluating TEE in healthy overweight or obese adults included in systematic review

Authors	Country and context of study	Obese / overweight participants (number, gender, age)	How TEE measured
Blanc <i>et al.</i> , (94)	USA, Pennsylvania and Tennessee: Participants recruited from the community	36 men with BMI ≥30 kg/m²; aged 70-79 years 37 women with BMI ≥30 kg/m²; aged 70-79 years	Doubly labelled water at two time points over 15 days
Das et al., (58)	USA, Massachusetts: Participants recruited from patients waiting for gastric bypass surgery	12 women with BMI 37.5-45 kg/m ² ; aged 36.2 \pm 0.5 years 10 women with BMI 45-52 kg/m ² ; aged 40.1 \pm 0.5 years 8 women with BMI 52-77 kg/m ² ; aged	Doubly labelled water at two points over 15 days
Mahabir et al., (95)	USA, Maryland: Participants recruited from the community	35.4 ± 0.9 years 26 women with BMI 25-30 kg/m²; aged ≥50 years 18 women with BMI >30 kg.m²; aged ≥50 years	Doubly labelled water at multiple points over variable days
Tooze et al., (42)	USA, Maryland: Participants recruited randomly from the community	115 men with BMI 25-29.9 kg/m ² ; aged 40-69 years 67 women with BMI 25-29.9 kg/m ² ; aged 40-69 years 69 men with BMI >29.9 kg/m ² ; aged 40-69 years 60 women with BMI >29.9 kg/m ² ; aged 40-69 years	Doubly labelled water at five points over about 14 days

BMI – body mass index; TEE – total energy expenditure.

Table 7

Comparison of measured and predicted TEE in healthy overweight or obese adults (mean values unless otherwise stated)

Authors	Measured TEE (MJ/d)	Prediction equations	Findings including predicted TEE (MJ/d) if available
Blanc <i>et al.</i> , (94)	Values not reported for obese participants separately	James & Schofield (96)	TEE _p overestimated TEE _m by 8% in obese participants (men and women combined) compared to 2% in normal weight men and women (P<0.0001).
			Mean and standard error of mean presented graphically for obese subgroups by gender and race in original paper.
		Food and Nutrition Board, Institute of Medicine (44)	TEE $_p$ did not differ significantly from TEE $_m$ with BMI (P=0.4) when data from men and women combined; TEE $_p$ significantly overestimated TEE $_m$ by 12% in obese black men (n=18, P value not stated).
			Mean and standard error of mean presented graphically for obese subgroups by gender and race in original paper.
Das <i>et al.,</i> (58)	Mean values ± SEM where reported :	Food and Nutrition Board, Institute of	TEE _p significantly underestimated TEE _m in all participants using three prediction equations based on weight:
	All participants = 14.3	Medicine (44)	Equation for normal weight: 11.69 (P<0.001)
	BMI 37.5-45 = 12.8±0.5		Equation for combined normal, overweight & obese: 12.42 (P<0.001)
	BMI 45-52 = 14.7±0.5		Equation for overweight and obese: 12.77 (P<0.001)
	BMI 52-77 = 16.1±0.9		

Mahabir et al., (95)	Median (interquartile range) BMI 25-30 = 11.15 (2.64) BMI >30 = 11.42 (4.96)	Paffenbarger et al., (97)	TEE _p overestimated TEE _m in overweight (18.45 [4.25], P<0.05; mean bias +65%) and obese participants (21.58 [8,28], P<0.05; mean bias +89%).
		Sallis et al., (20)	TEE _p overestimated TEE _m in overweight (12.39 [3.62], P<0.05; mean bias +11%) and obese participants (16.81 [6.17], P<0.05; mean bias +47%).
		Ainsworth et al., (98)	TEE _p underestimated TEE _m in overweight (7.31 [4.80], P<0.05; mean bias -34%) and obese participants (10.02 [7.27]; mean bias -12%).
		Whitt <i>et al.,</i> (99)	TEE $_p$ underestimated TEE $_m$ in overweight (10.84 [6.17]; mean bias - 3%) and overestimated TEE $_m$ obese participants (15.12 [14.40], P<0.05; mean bias +32%).
Tooze <i>et al.</i> , (42)	Mean values ± SEM BMI 25-29.9: men = 11.81±0.18; women = 9.56±0.16 BMI 30-34.9: men = 13.19±0.25; women = 10.48±0.26 BMI >34.9: men = 14.96±0.82; women = 11.41±0.38	Food and Nutrition Board, Institute of Medicine (44)	TEE $_p$ overestimated TEE $_m$ in the whole study population (participants of all BMI values including <25). Difference between TEE $_p$ and TEE $_m$ in men was comparable between BMI subgroups (P=0.83). TEE $_p$ overestimated TEE $_m$ most in women with BMI >34.9 (mean bias +10.8±1.7%, P=0.02).

 $BMI-body\ mass\ index\ (kg/m^2);\ TEE_m-measured\ total\ energy\ expenditure;\ TEE_p-predicted\ total\ energy\ expenditure.$