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Abstract 

 

Mucoadhesion describes an attractive interaction between dosage form and mucosal membrane. 

The evaluation of mucoadhesive excipients often requires the use of ex vivo mucosal tissues taken 15 

from laboratory animals. These can be difficult to source, highly heterogeneous, and require the use 

of animal products. Thus, from both a user-convenience and ethical point-of-view, it is desirable to 

produce a synthetic alternative to these tissues – a mucosa-mimetic material. In this mini-review, 

the use of alternative materials to test the performance of mucoadhesives is reviewed and 

discussed. There is a surprising prevalence of the use of mucosa-mimics in the literature, which 20 

hitherto has not been compiled and compared. 
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1.  Introduction 



 

In order for drugs to be effectively absorbed by the body they will often have to pass through a 

mucosal surface in the body. These surfaces cover the eyes, GI tract, and nose, as well as parts of the 

reproductive organs. The rate of diffusion of drugs may be low across these surfaces, which can 30 

lower the bioavailability of an administered medicine. Additionally, retention on the mucosal surface 

may be very low, as in the eye, where many drugs are quickly eliminated via the lacrimal gland (Urtti, 

2006). To address this, a mucoadhesive may be used. Mucoadhesive materials have a strong affinity 

for mucosal surfaces and adhere to the surface of these tissues. Drugs may be physically or 

chemically bound to these mucoadhesives in order to increase their residence time at a specific 35 

location in the body. Retaining a drug at a mucosal surface allows for improved absorption of the 

drug at the intended site of delivery, due to the longer times over which uptake through the tissue 

may occur. Additionally, the mucoadhesive effect allows for site-specific delivery of drugs to the 

mucosa. Mucoadhesive materials may take many forms, such as: tablets for buccal delivery (Nafee et 

al., 2004), in situ gelling systems for ocular drug delivery (Ludwig, 2005), microgels for intravesicular 40 

administration (Cook et al., 2015), or nanoparticles targeting the GI tract (Sakuma et al., 1999). 

In order to assess mucoadhesion, many different techniques have been developed. The difficulty in 

the assessment of mucoadhesion is that there are various different dosage forms which require 

different experimental conditions for testing which are usually only comparative between their own 

samples, thus there appears to be a degree of heterogeneity between techniques. Solid dosage 45 

forms, such as tablets, will often have their mucoadhesive properties assessed by measurement of 

the force needed to remove the tablet from an ex vivo mucosal surface (Hall et al., 2011). This gives 

a force-displacement curve from which the maximum force of detachment and work of adhesion 

(area under curve) can be determined (Figure 1). 
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Figure 1: A probe, usually from a texture analyser, with a tablet attached is pressed against ex vivo 

mucosa and detached (a). This gives a force-displacement curve (b), from which the maximum force 

of detachment (Fdet) and work of adhesion (Wadh) can be determined. The detachment profile is also 

characteristic for each substrate (Khutoryanskaya et al., 2010). 

 Liquid dosage forms, however, are clearly not suited to this technique, and mucoadhesion can be 55 

measured by alternative techniques, such as rheology (Hassan and Gallo, 1990), or using a flow-

through system with HPLC analysis (Friedl et al., 2013) or by fluorescently labelling the 

mucoadhesive (Irmukhametova et al., 2011; Withers et al., 2013). A schematic of the flow-through 

method is shown in Figure 2. Generally, this experiment is set up with a channel, onto which ex vivo 

mucosal tissue is placed (Figure 2a). A liquid or semi-solid preparation may then be placed onto the 60 

mucosa (Figure 2b), which may or may not contain a drug. A simulated biological solution is then 

washed over the surface using a suitable pumping system (Figure 2c), which is collected and 

analysed to quantify the concentration of mucoadhesive or drug, using standard analytical 

techniques such as HPLC. Alternatively, the mucoadhesive may be dyed and images taken to show 

retention of solution on the mucosa directly.  65 



 

Figure 2. An example flow-through experiment for assessing mucoadhesion. 

 

Common throughout the methods used for assessment of mucoadhesion is the use of ex vivo 

tissues. Many of these tissues come from lab animals specifically slaughtered for their mucosa. Thus, 70 

in the interest of animal ethics and the three R’s (Hobson-West, 2009), there is a need to reduce the 

number of animals killed for this tissue. One possible approach for achieving this is the production of 

a synthetic material to simulate the ex vivo mucosal tissues used. There has recently been the 
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emergence of research in this area of ‘mucosa-mimetic’ materials, and the research conducted to 

date will be evaluated within this mini-review. 75 

In order to discuss the latest advances in mucoadhesion and mucosa-mimetic materials, it is 

important to have a good understanding of the structure of mucosal surfaces, and an understanding 

of the interactions that mediate mucoadhesion. Thus, this review will first of all discuss mucosal 

membranes, with a focus on mucins, the glycoproteins which cover mucosal surfaces. The latest 

understanding on how mucoadhesive interactions occur will then be discussed. Finally, the research 80 

conducted to date on mucosa-mimetic materials will be summarised and discussed. Previous 

reviews have described the variety of mucoadhesive materials discovered (Bernkop-Schnürch and 

Greimel, 2005; Khutoryanskiy, 2011; Sosnik et al., 2014), so this will not be covered herein. 

2. The structure of mucins and mucus layers 

 85 

In order to study mucoadhesion, it is vital to have a good knowledge of the structure of mucosal 

surfaces in the body.  Almost all of these surfaces have some mucus component, the nature and 

thickness of which depends on the location in the body. The layer of mucus plays an important role 

as a diffusion barrier for various nutrients, drugs and parasites, and binds to bacteria, slowing the 

invasion of pathogens (Moncada et al., 2003). This mucus layer is generally comprised of water (up 90 

to 95 % w/w), mucin (< 5 % w/w), salts (~ 1 % w/w), carbohydrates and lipids (Peppas and Huang, 

2004). The mucin found within this layer represents the primary organic component of the gel. 

Mucins are a group of glycoproteins coded for by MUC genes, after which the proteins are named 

(Dekker et al., 2002). It is important to note that these mucins can be either membrane-bound or 

secreted; the latter make up the viscoelastic, shear-thinning, gel on epithelial surfaces. There is a 95 

large heterogeneity within the mucin family of proteins. For instance, MUC1 is a trans-membrane 

protein expressed by epithelial cells lining reproductive tracts (Brayman et al., 2004), whereas MUC2 



is secreted by goblet cells in the colon and small intestine (Allen et al., 1998). MUC2 is the most 

abundant secreted mucin in the intestines. MUC4 is a tracheobronchial mucin (of the airways), along 

with MUC5(AC and B) (Campbell, 1999). MUC5AC and MUC7 make up the major salivary mucins 100 

(Thomsson et al., 2002), whilst the stomach is primarily lined with MUC6 (Campbell, 1999). This 

diversity in secreted mucins adds an additional complexity to the understanding of mucoadhesion. 

Structurally, mucins are a family of glycoproteins, with molecular weights from 0.2 to >50 MDa 

(Berry et al., 1996; Sigurdsson et al., 2013). These proteins contain a central region with an 

abundance of proline, threonine and serine amino acids (the ‘PTS region’), of which, threonine and 105 

serine are O-glycosylated, giving the PTS region an extended and stiff, “bottle-brush”, conformation 

(Johansson et al., 2011). Some mucins contain non-PTS regions flanking this core, some of which 

contain cysteine residues (Dekker et al., 2002), and therefore possess thiol groups. These 

unglycosylated blocks of protein, may be responsible for intermolecular association of mucins, and 

concomitant gel formation, through the formation of disulphide bonds (Ensign et al., 2012). Due to 110 

the unglycosylated regions of mucins being hydrophobic, it has been suggested that these blocks 

form segregated domains (Peppas and Huang, 2004). Transmembrane mucins contain hydrophobic 

domains to assist in their tethering to cell surfaces (Campbell, 1999). MUC2, MUC5AC, MUC5C, and 

MUC6 are the most common secreted mucins, and show significant homology in their non-PTS 

domains (Dekker et al., 2002). The O-linked oligosaccharide chains adorning the PTS region are from 115 

2-12 sugars long (Bansil et al., 1995), and are typically composed of galactose, fucose, acetyl-D-

glucosamine, acetyl-D-galactosamine, and sialic acid. These oligosaccharides dominate the structure 

of mucin, comprising 50-80 % of the dry weight (Campbell, 1999). There is also the presence of some 

N-linked oligosaccharides in the non-PTS region, though these are less abundant (Campbell, 1999). 

An overview of the structure of two mucins is shown in Figure 3. 120 



 

Figure 3. An overview of the structure of a secretory mucin (MUC2) and a transmembrane mucin 

(MUC1). These images demonstrate the structural heterogeneity between different mucins. Note 

the presence of cysteine-rich domains in MUC2, and large regions of O-glycosylation on the PTS 

region of each protein. Figure reprinted from Dekker et al. (2002) with permission from Elsevier 125 

(license number: 3683131023038) 

From a mucoadhesion standpoint, these oligosaccharides provide potential for hydrogen bonding, 

and electrostatic interaction with the carboxylic functionality of the sialic acid. Additionally, some 

sulfated sugars have been identified at the terminus of the oligosaccharides in mucins, primarily 

those mucins in the colon and respiratory tract, which provides another possible site of electrostatic 130 

interaction (Thomsson et al., 2002).  The pKa of the acidic groups in mucin is between 1 and 2.6 

(Khutoryanskiy, 2011), and as a result, mucin carries a net negative charge at pHs above this (Bansil 

and Turner, 2006). It is important to note, therefore, that the degree of ionisation of the mucin 



oligosaccharides will greatly decrease as the pH approaches pH 1, as in the stomach. This loss of 

ionisation will likely have a bearing on the interaction of materials with mucin. 135 

Across the gastrointestinal (GI) tract, there is an abundance of surfaces bearing secreted mucus 

layers. These layers have been separated into ‘firmly’ and ‘loosely’ adherent layers, the thickness of 

which varies throughout the GI tract (Ensign et al., 2012). The thickest secreted mucus layers in 

humans are found in the stomach and colon, at 40-450 μm and 110-160 μm, respectively. Depending 

on the location in the gastrointestinal tract, the pH of the digestive milieu will vary heavily, from pH 140 

1-2 in the stomach, up to around pH 7 in the colon. The pH of the digestive fluid will almost certainly 

affect the interaction of dosage forms with mucosal surfaces (Zhu et al., 2004), so should be 

accounted for when determining mucoadhesion. 

3. Why are some materials mucoadhesive? 
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Mucoadhesion is a complex phenomenon, which is governed by many types of interaction 

(Khutoryanskiy, 2011, 2014). These may be specific chemical interactions, such as hydrogen-

bonding, or rheological effects, as you may expect for any adhesive. Thus, there is some variation in 

the specificity of mucoadhesion. Several different theories have been suggested that may explain 

mucoadhesive interactions, most of which are not mutually exclusive. These have been summarised 150 

in previous reviews (Andrews et al., 2009; Khutoryanskiy, 2011; Peppas and Huang, 2004; Smart, 

2005), but are briefly outlined below. 

In terms of general adhesive interactions, there have been some key effects identified (Smart, 2005). 

Spreading of liquid dosage forms across mucosal tissue will be related to the liquids affinity to the 

tissue, which is related to its contact angle. The roughness of mucosal surfaces will affect the 155 

adhesion of liquid dosage forms after drying, due to interlocking of the tissue and material. Finally, 

for solid dosage forms it has been suggested that the movement of water from the hydrated mucus 

into the dosage form will assist in its adhesion to mucosal surfaces. 



Several chemical interactions appear to play a part in mucoadhesion.  This type of interaction will be 

important for large dosage forms, such as tablets, but be much more crucial for particulates and 160 

liquid dosage forms, as there is not the same propensity for swelling and wetting. These chemical 

interactions are proposed to occur after a period of physical entanglement of the mucus and 

polymer, which has been supported by rheological studies (Mortazavi, 1995). Peppas and Huang 

(2004) have outlined the key interactions governing the mucoadhesion at the nanoscale, which will 

hold for many liquid dosage forms based on polymers. These are: hydrogen bonding, electrostatic 165 

interactions, hydrophobic interactions, and polymer chain interdiffusion. In addition to these quite 

general interactions, there have been reports of materials which utilised specific chemical reactions 

to form covalent linkages to mucins.  

Hydrogen bonding to mucins is a well-researched area of mucoadhesion. There are various sites on 

the mucin which are potentially hydrogen-bonding active, such as the hydroxyl groups on the 170 

oligosaccharides covering the PTS region. These hydrogen-bonding sites will be associated with 

water in solution, however, the ability to hydrogen-bond will be screened unless the hydrogen-

bonding interaction with a mucoadhesive is sufficiently strong. It has been suggested that many of 

these hydrogen bonding effects are actually ion-dipole interactions between hydrogen bond donors 

and ionic species (Peppas and Huang, 2004). This is due to the greater strength of this type of 175 

interaction, relative to straightforward hydrogen-bonding (Mortazavi, 1995; Teague and Davis, 

1999). It has been found that some materials, such as poly(acrylic acid) (PAA), have pH-dependent 

mucoadhesion. This was attributed to hydrogen bonding at pHs below the pKa of poly(acrylic acid) 

(4.5), which was overcome by electrostatic repulsion as the carboxylic groups ionised at pHs higher 

than 4-5 (Park and Robinson, 1987). 180 

The presence of acidic saccharides and sulphate esters in the glycosylated regions of the mucin 

appear to have an effect on the adhesion of polymers to the surface of mucus. As previously 

mentioned, above approximately pH 2.6 the mucin carries a net negative charge, and given the 



strength of electrostatic interactions, positively charged species can interact with the mucin. One 

example is chitosan, which has shown to be mucoadhesive through a combination of effects, with 185 

electrostatics identified as an important interaction (Sogias et al., 2008).  Additionally, Bogataj et al. 

(2003) found that there was a decrease in mucoadhesion as the zeta-potential of 3 polyelectrolytes 

became increasingly negative. This result suggests that electrostatic repulsion may reduce 

mucoadhesive effects. 

Hydrophobicity plays a role in mucoadhesion. It has been shown that mucins can adsorb onto 190 

hydrophobic surfaces, indicating interaction (Peppas and Huang, 2004). The so-called ‘hydrophobic 

effect’ has been theorised to play a part in mucoadhesion. Briefly, this effect is caused by the loss of 

entropy of water molecules as they associate to a hydrophobic macromolecule in solution. 

Interaction between water molecules and the macromolecule will occur due to van der Waals forces, 

however the enthalpic gain is not sufficient to make the free energy of the process favourable. This 195 

causes nonpolar regions of macromolecules to aggregate, lowering the surface area accessible to 

water. This effect has been seen experimentally when studying the interaction of chitosan and 

mucin by isothermal titration calorimetry (Menchicchi et al., 2014). In addition to hydrophobic 

effects between mucin and mucoadhesive, the lyophilicity of mucoadhesives affects their affinity for 

aqueous solutions, so colloids with relatively poor colloidal stability may be driven onto the mucosa 200 

more readily. This effect was identified as key in the mucoadhesion of two milk proteins to ex vivo 

mucosal tissue (Withers et al., 2013). 

Polymer chain interdiffusion and subsequent entanglement can aid mucoadhesion. This was first 

introduced to the field by Peppas and coworkers (Jabbari et al., 1993; Peppas and Huang, 2004), who 

also demonstrated that the incorporation of free polymer chains into a hydrogel film can promote its 205 

mucoadhesion by movement of free polymer chains from hydrogel to mucosa (Sahlin and Peppas, 

1997). 



Specific chemical reactions on mucins may also be used to enhance mucoadhesion. Reaction with 

the thiol groups found in the cysteine residues of mucin has been utilised, due to the high reactivity 

of these groups (Bonengel and Bernkop-Schnürch, 2014; Iqbal et al., 2012). This sort of covalent 210 

attachment has been demonstrated as a very effective method of improving the retention of dosage 

forms. Most commonly polymers containing thiol groups, named ‘thiomers’ are used. The majority 

of this work has been conducted by Andreas Bernkop-Schnürch and coworkers. For instance, (Hornof 

et al., 2003) have reported that a thiolated polymer ocular insert was able to adhere to the human 

eye through the formation of disulphide linkages. This ‘thiolation’ is applicable to many polymers, 215 

using simple amide-coupling chemistry, which is possible is aqueous solvents (Bernkop-Schnürch and 

Greimel, 2005). These materials are very effective mucoadhesives, but are prone to oxidation, which 

has lead to the development of ‘preactivated’ thiomers, which usually use a labile nicotinic acid 

moiety to protect the thiol groups from oxidation (Iqbal et al., 2012). Thiomers have recently started 

to make their way onto the market, with the first thiomer product expected to reach market shortly 220 

(Bonengel and Bernkop-Schnürch, 2014). 

 

4. Mucosa-mimetic materials 

 

In order to test mucoadhesive formulations, ex vivo mucosal tissues are usually used for detachment 225 

or flow-through type testing, depending on whether the dosage form is a solid, or liquid respectively. 

For at least the last 25 years there have been reports in the literature of researchers attempting to 

use substrates other than mucosa in these experiments, and comparing the performance of this 

substrate to tissue. The nature of mucosal membranes depends highly on their type and origin, so it 

is likely that materials which mimic mucosa are specific to the tissue tested against. Sources of 230 

heterogeneity between mucosal tissues include the presence or absence of secretory mucus, the pH 

of the biological fluids present, the topology of the tissue, and the cellular nature of the tissue itself. 

Mucosa-mimetic materials validated against tissues bearing no secreted mucus will need to mimic 



the cell surfaces of the columnar epithelial lining. The sophistication of mucosa-mimetic materials 

has increased with time, so the key publications in this area are presented in approximate 235 

chronological order. 

 

4.1. Mucosa-mimics from animal and plant sources 

 

Takayama et al. (1990) used a lyophilised porcine dermis as a model of mucosa. After the dermis has 240 

been rehydrated, the adhesion of tablets to this tissue was determined and compared to rabbit 

peritoneal membrane. They found a good correlation between the dermis and peritoneal 

membrane, however this membrane is not mucosal so validation of the dermis model is not 

complete. Additionally, this mucosa-mimetic still required animal tissue, so offered only limited 

benefits over ex vivo mucosa. At a similar time, Blanco-Fuente et al. (1996) conducted a larger study 245 

of the adhesion of a carbopol tablets to tanned leather as a model for sublingual mucosa. They 

found that the force of adhesion of tablets to tanned leather had an “adequate correlation” with 

those for sublingual mucosa (Figure 4). However, the values were not directly comparable, and had a 

nonlinear relationship with each other unless tested whilst immersed in liquid. Tanned leather is an 

animal product, so whilst this study starts to demonstrate the concepts of mucosa-mimetics, and 250 

would provide an easily-accessible, homogeneous, substrate for testing adhesives, it is still an animal 

product. Nakamura et al. (1996) investigated the adhesion of inhalable polymer particles using agar 

as a mimic. Briefly, the particles were placed onto an agar plate which was inclined by 30°, and the 

distance travelled by the particles measured which gives a tribological-type measurement, more 

representative of the in vivo behaviour of particles in the nasal cavity. This method gave the same 255 

rank order of adhesiveness as measured in rabbits. Agar has also been used as a model mucosa by 

McInnes et al (2007) to conduct tribological measurements of mucoadhesive nasal formulations. The 

agar was not validated against mucosa in this study. 



 

Figure 4: Blanco-Fuente et al. (1996) demonstrating an early mucosa-mimic. The article 260 

demonstrates a correlation between the work required to remove tablets from tanned leather (a) 

and sublingual mucosa. Immersing the leather in water improved the similarity of the mimic (b), as 

indicated by a move towards a linear relationship. Figure reprinted from Blanco-Fuente et al. (1996) 

with permission from Elsevier (license number: 3683131395233). 
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4.2. Cell culture methods of mimicking mucosa 

 

Another alternative to ex vivo tissue for mucoadhesion testing is the use of cell culture. Some cell 

lines can be grown in such a way that they express mucus on their surface, which can subsequently 

be used for mucoadhesion testing. For instance, Keely et al(Keely et al., 2005) have used the HT29-270 

MTX-E12 cell line to grow a monolayer of mucus-secreting goblet cells. After the secretion of a 

mucus layer on the surface of the cells, the monolayer was exposed to a fluorescent polymer 

solution. The quantity of polymer adhering to the mucus after one hour could be calculated by 

measurement of the fluorescence intensity of the free polymer. This was compared to the polymers’ 

adhesion to rat intestinal sacs, showing a similar rank order of adhesiveness. This method also 275 

allowed mucus to be removed by mucolytic agent, which could confirm that mucoadhesion to the 

mucus layer was seen, rather than bioadhesion to the monolayer surface. A method for measuring 

a. b.



bioadhesion has also been described previously (Park and Robinson, 1984), which used cells labelled 

with pyrene to measure polymer adsorption onto a monolayer. Pyrene gives information on 

membrane viscosity, which is altered in the presence of bound polymers. 280 

 

 

4.2. Synthetic mucosa-mimics 

To our knowledge, the first description of a completely synthetic mucosa-mimic was reported by 

Mortazavi and Smart (1995), who reported the adhesion of tablets to rat intestinal mucosa and PVC 285 

strips. A correlation was found between the work of adhesion measured on mucosa and PVC, and it 

was suggested that the PVC provides a substrate on which to measure general adhesive properties, 

which appeared to dominate mucoadhesion in this case. At a similar time, Maggi et al. (1994) 

compared the adhesion of hydrated tablets on plexiglass (poly(methyl methacrylate)) to bovine 

buccal mucosa. They found that the same rank order could be found when testing against each 290 

substrate. Whilst this is a useful for their application, it is likely that the same effect is seen as in 

Mortazavi and Smart’s article, i.e. that the mucoadhesion process is a general adhesion process, 

which will not be the case for every mucoadhesive formulation.  Jacques and Buri (1997) then used 

plexiglass and reconstituted porcine gastric mucin for measurement of the mucoadhesive 

interaction of PAA hydrogels. Some correlation was seen between interfacial forces between PAA 295 

and tablet, as measured on a tensile tester, and the force of detachment of tablets from the mucin 

gel. However, rehydrated porcine gastric mucin has a different composition and rheology than 

native mucus (Boegh and Nielsen, 2015), so this substrate requires additional validation. This study 

allowed the authors to confirm that at least part of the adhesion phenomenon was a result of some 

physical processes, rather than chemical interactions. Larhed et al. (1998) compared the diffusion of 300 

drugs through porcine intestinal mucus and an artificial mucus containing porcine gastric mucin. 

They found that the artificial mucus was not able to satisfactorily mimic that taken from the pig, and 



highlighted a loss of gel-forming ability in the rehydrated mucin samples. This study exemplifies the 

importance of validation of mucosa-mimics against ex vivo mucus, rather than rehydrated mucin 

solutions. The gel-forming ability of mucin was mimicked by Hamed and Fiegel (2014) who used 305 

glutaraldehyde to cross-link porcine gastric mucin to form gels. These were able to mimic the 

rheological properties of mucus from the trachea, by validation against literature values of storage 

and loss moduli, and showed the same viscoelastic properties under various different conditions. 

Shojaei et al. (2000) compared the adhesion of a novel mucoadhesive to wet glass with ex vivo 

mucosa, finding that the glass was a poor mimic of mucosa, and demonstrating that the surface 310 

properties of a substrate are crucial in their ability to mimic mucosal tissue. Choi et al. (1999) 

investigated the adhesive properties of polyacrylic acid, complexed with PEG, on polypropylene, but 

this was not validated against mucosa. An in vitro retention test with a dialysis membrane as a 

model mucosa was used to evaluate the mucoadhesion of some self-assembling peptides by Tang et 

al (Tang et al., 2014). The ‘elastic and soft’ mechanical properties of the membrane made in mucosa-315 

like when wet. However, ex vivo mucosa was not used for comparative purposes.  

 

4.3. Novel mucosa-mimetic materials  

 

Whilst the early mucosa-mimics used readily-available substrates, recently there have been some 320 

examples of novel synthetic materials designed in a semi-rational manner to be mucosa-mimics.  For 

the evaluation of solid dosage forms, Khutoryanskaya et al. (2010) used hydrogen-bonded 

interpolymer complexes formed from poly(acrylic acid) and methylcellulose on a glass slide to test 

mucoadhesive tablets. Whilst these materials were not a perfect mimic of mucus, it was 

demonstrated that modulating the properties of the hydrogel the detachment force of the 325 

mucoadhesive tablets could be adjusted. It was also suggested that the force-displacement profile of 

the tablets should be used to confirm whether materials are mucus-like, as mucosa-mimics can show 

similar maximum detachment forces whilst having different force-displacement curves. In a 



continuation of this research, Hall et al. (2011) synthesised a library of hydrogels for use as mucosa-

mimics. The detachment of a series of mucoadhesive tablets from these hydrogels was compared to 330 

porcine buccal mucosa (Figure 5).  

 

Figure 5: A synthetic hydrogel (a) is able to mimic porcine buccal mucosa (b) by the tensile method 

of assessing mucoadhesion. 

Two hydrogels were identified as good mucosa-mimics, having comparable work of adhesion, force 335 

of detachment, and force-displacement curves (Figure 6). These two materials contained N-acryloyl 

glucosamine (AGA) and 2-hydroxyethyl methacrylate (HEMA) to form glycopolymer hydrogels. 

Glycopolymers bear pendant sugar moieties, which it was hypothesised made these materials similar 

to the oligosaccharide side-chains found in mucin glycoproteins, resulting in the comparable results 

for detachment experiments. In addition to having comparable calculated values for mucoadhesion, 340 

the tensile method used also demonstrated that the synthetic hydrogels had similar shapes to their 

force-displacement curves, described as an important factor in the design of mucosa-mimetics by 

Khutoryanskaya et al. (2010). This demonstrates that the synthetic materials showed similar 

deformation behaviour to the buccal mucosa during tablet removal. It is logical that the force-

displacement behaviour will be governed by both the strength of binding at the interface between 345 

tablet and substrate, and the deformation of the substrate itself (assuming that the tablet has far 

greater tensile strength). Thus, for future materials used as mucosa-mimetics for testing solid dosage 

a. b.



forms, it would be interesting to investigate the mechanical properties of the mucosa and mucosa-

mimic to see if they bore similarity.  

 350 

Figure 6. A synthetic glycopolymer hydrogel is able to mimic the detachment profile of 

mucoadhesive tablets to ex vivo mucosa. From a library of candidate materials, this hydrogel (17) 

shows comparable work of adhesion to buccal mucosa (red line, where x and y values are identical) 

when tested against a series of mucoadhesive tablets (c). The composition of the other hydrogels is 

provided (d). Reproduced and adapted from (Hall et al., 2011) with permission from The Royal 355 

Society of Chemistry. 

a.

Sample Co-monomer(s) HEMA/co-monomer ratio (mol%) Cross-linker concentration (MBA, mol%)

2 - 100:0 0.1

3 - 100:0 0.5

6 N-vinyl pyrrolidone (NVP) 90:10 0.01

9 2-hydroxyethyl acrylate 90:10 0.1

13 Sorbitol methacrylate 70:30 0.1

17 AGA 80:20 0.1

18 AGA 70:30 0.1

19 NVP:AGA 80:10:10 0.1

b.



 

Having already studied the mucoadhesion of a solid dosage form (tablets), this combination of 

monomers was subsequently covalently bound to glass by Cook et al. (2015) and the retention of 

liquid mucoadhesives determined. This was conducted using a flow-through method, coupled with 360 

fluorescence microscopy to determine the amount of mucoadhesive remaining on the mucosal 

tissue. These retention profiles were then compared to those on porcine gastric mucosa and bovine 

cornea. It was found that the same 1:4 molar ratio of AGA to HEMA in the feed mixture shown to be 

effective in the previous publication (Hall et al., 2011) gave glycopolymer hydrogels that were able to 

mimic the retention of three liquid formulations on porcine gastric mucosa (Figure 7). It was 365 

postulated that specific interactions with the sugar components, and the network structure of the 

gel may be important in explaining this phenomenon due to the mediation of mucoadhesion by both 

chemical interactions and physical entanglement. In total, three different polymers were tested 

against the hydrogels, in three different eluents. In all cases the 20 mol% AGA hydrogel was able to 

successfully mimic porcine gastric mucosa, however, a mimic for bovine cornea was not found. This 370 

is possibly due to the thick secretory mucus layer that coats the gastric mucosa, whilst the cornea 

only has a very thin mucus layer, making it less similar to a hydrogel. 

 

Figure 7: The retention of the liquid mucoadhesives chitosan (left) and pectin (right) on glass-bound 

hydrogels and ex vivo mucosal tissue, during washing with phosphate buffered saline. No significant 375 
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difference was seen between 20 mol% AGA and porcine gastric mucosa. (Cook et al., 2015) - 

Published by The Royal Society of Chemistry. 

Finally, Mahalingam et al. (2011) have designed copolymers of phenylboronic acid and 

salicylhydroxamic acid with 2-hydroxypropyl methacrylamide as a mucus-like material to inhibit HIV 

transmission. This material shared several properties of mucin, i.e. transient network formation at 380 

low pH, bioadhesiveness and the ability to inhibit the transport of HIV. However, this material was 

designed as a method of stopping HIV transmission, rather than to completely mimic the mucus. 

 

5. Concluding remarks 

 385 

Mucosa-mimics have gradually been gaining attention from researchers in the area of 

mucoadhesion. This is due to the inconvenience of procuring fresh mucosa, and ethical issues with 

the use of animal products in research. Whilst there are a very limited number of publications 

directly concerning mucosa-mimicry, the use of alternative substrates in the literature is surprisingly 

common. Early mimics, typically made from animal products or readily-available substrates, were 390 

able to give correct rank-order prediction of mucoadhesiveness. However, there is little evidence 

that the magnitude of mucoadhesion could be correctly predicted. Recent advances in the area have 

used fully-synthetic materials which have shown promise as correct predictors of mucoadhesives’ 

performance. These materials will certainly require validation against a great number of conditions 

before they are fully-accepted as alternatives to mucosal tissue in preliminary testing. We believe 395 

that the future of this work lies in the development of rationally designed mucosa-mimics, possibly 

from glycopolymers, which provide researchers in the area of mucoadhesion a material which is 

reliable, homogenous, and easily-available, without the need for laboratory animals.  
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