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Kepler-424 b: A “Lonely” Hot Jupiter That Found A Companion.
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ABSTRACT

Hot Jupiter systems provide unique observational constraints for migration

models in multiple systems and binaries. We report on the discovery of the

Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot

Jupiter (Kepler-424b) in a 3.31-d orbit accompanied by a more massive outer

companion in an eccentric (e = 0.3) 223-d orbit. The outer giant planet, Kepler-

424c, is not detected to transit the host star. The masses of both planets and

the orbital parameters for the second planet were determined using precise radial

velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its

High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot

Jupiters are predominantly found to be lacking any nearby additional planets,

the appear to be “lonely” (e.g. Steffen et al. 2012). This might be a consequence
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of a highly dynamical past of these systems. The Kepler-424 planetary system is

a system with a hot Jupiter in a multiple system, similar to υ Andromedae. We

also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127; Gandolfi et

al. 2013), Kepler-43 (KOI-135; Bonomo et al. 2012), and Kepler-423 (KOI-183).

These results are based on spectroscopic data collected with the Nordic Optical

Telescope (NOT), the Keck 1 telescope and HET. For all systems we rule out

false positives based on various follow-up observations, confirming the planetary

nature of these companions. We performed a comparison with planetary evolu-

tionary models which indicate that these five hot Jupiters have a heavy elements

content between 20 and 120 M⊕.

Subject headings: planetary system — stars: individual (Kepler-43, Kepler-77,

Kepler-422, Kepler-423, Kepler-424, KOI-22, KOI-127, KOI-135, KOI-183, KOI-

214) — techniques: radial velocities — techniques: photometry

1. Introduction

The Kepler mission (Borucki et al. 2010) was designed to determine, for the first time,

the frequency of Earth-sized planets in the classical habitable zone of Sun-like stars. By

combining quasi-continuous photometric monitoring of ∼ 160, 000 stars in the Kepler search

field with the high level of photometric precision obtained by Kepler, it also allows us an un-

precedented statistical overview of the size-distribution of exoplanets. It has been shown by

Borucki et al. (2011) and Batalha et al. (2012) that the vast majority of planets that Kepler

finds are small planets in the radius range from 1 to 4 R⊕ and that the hot Jupiters, gas

giant planets with radii similar to Jupiter and with orbital periods of a few days, are a very

small minority of the overall planet population in the Kepler field. Howard et al. (2012) esti-

mate the frequency of hot Jupiter candidates in the the Kepler search volume as 0.5±0.1%.

Interestingly, this is only about half the occurrence rate of this type of planets derived from

precise radial velocity (RV) surveys of the solar neighborhood. Wright et al. (2012) estimate

a local hot Jupiter frequency of 1.2±0.38% based on the Lick and Keck RV survey results.

An interesting aspect of the class of hot Jupiter planets is their apparent lack of addi-

tional, nearby planetary companions. These Jupiters are “lonely” in the sense that searches

1Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the Uni-

versity of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-

Universität München, and Georg-August-Universität Göttingen.
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in the Kepler photometry and using Transit-Timing-Variations (TTVs) do not find any other

nearby planets in these systems (Steffen et al. 2012). This is in stark contrast to smaller

and lower mass planets which are very often found in multi-planet systems (e.g. Latham et

al. 2011, Rowe et al. 2014), sometimes in mean-motion resonances.

One hypothesis for the formation of such systems is that the migration of the inner

planet is caused by planet-planet scattering (e.g. Rasio & Ford 1996) rather than by disk-

driven tidal migration (e.g. Goldreich & Tremaine 1980). The large eccentricity of the inner

planet’s orbit, pumped up by a close encounter with a massive second giant planet in the

system, is subsequently circularized by tidal forces at small separations to the host star

and establishes the hot Jupiter orbit. The outer planet’s orbit remains eccentric since tidal

interactions are too weak at these separations. However, the planet-planet scattering process

might be quite violent and potentially could lead more often to the loss of the inner planet

by falling into the star than by forming a hot Jupiter. Conversely, the strong planet-planet

interactions could also lead to the ejection of the outer planet, leaving behind a single hot

Jupiter planet. Observational footprints of planet-planet interactions include moderate to

high eccentricities of the outer planet (if one exists), an inclined orbital plane of the inner

planet with respect to the stellar spin axis, and significant non-zero mutual inclinations.

Interestingly, McArthur et al. (2010) measured a mutual inclination of ∼ 30◦ of the orbits

of υ And c (P = 241 d) and d (P = 1282 d). While the inclination of υ And b (P = 4.6 d)

remains unknown, this could indicate a very dynamical past of this system.

Moreover, hot Jupiter planets appeared to rarely have outer giant planets at longer

periods found by RVs (e.g. discussion in Bryan et al. 2012). This paucity of additional

planets in hot Jupiter systems was usually interpreted as evidence for a significant dynamical

evolution in the past, that cleared out all or most of the other (detectable) planets. Systems

where a hot Jupiter is found in a multi-planet system (e.g. the υ Andromedae system) are

therefore ideal testbeds to search for evidence for dynamical evolution of the system.

Knutson et al. (2014) presented first results of their RV survey of hot Jupiter systems

to detect additional massive companions that could dynamically effect the close-in giant

planets. They estimate a frequency of 51 ± 10% for high-mass companions (from giant

planets to brown dwarfs) at larger orbital separations. They also did not find a difference

in the occurrence rates of systems with misaligned or eccentric orbits and well-aligned and

circular orbits.

In this paper we present the data and their analysis performed by members of the Kepler

team and follow-up observers at McDonald Observatory (HET & 2.7 m telescope), La Palma

(NOT), Mauna Kea (Keck I) and Kitt Peak (WIYN) for five Kepler-Object-of-Interest (KOI):

KOI-22, KOI-127, KOI-135, KOI-183, and KOI-214. We highlight the Kepler-424 (= KOI-
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214) system, a new 2-planet system, where we have found a second (outer) giant planet in

this system using precise RV measurements.

2. Kepler Photometry and Transit Signatures

We analyzed 16 quarters (Q1-Q16) of highly precise Kepler photometry to determine

the transit parameters. The long cadence data, with 30 minute sampling, was processed

using the standard Kepler pipeline (Jenkins et al. 2010). The Kepler photometry is publicly

available at the Mikulski Archive for Space Telescopes (MAST2) at the Space Telescope

Science Institute.

These five targets were flagged early on in the Kepler mission as Kepler-Object-of-

Interest with transit periods of 7.89 days (KOI-22), 3.58 days (KOI-127), 3.02 days (KOI-

135), 2.68 days (KOI-183), and 3.31 days (KOI-214). All transit signals were deep (5, 000−

18, 000 ppm), high signal-to-noise (S/N) events typical of transits of giant planets.

The data validation (DV) reports for each KOI include an analysis of the centroid fit

to the pixel response function (PRF) and compare the centroids of in-transit to the out-

of-transit images. A detailed description of the overall method can be found in Bryson et

al. (2013). A significant shift of the centroids in the difference images can indicate a false

positive, in particular a false positive caused by unresolved background eclipsing binaries.

But this is not the only reason for a centroid shift, also crowding of the field can produce a

significant offset during transit, as in the case of Kepler-15 (KOI-128) that has a measured

centroid offset of 0.1 arcsec with a significance of 6.5σ (see discussion in Endl et al. 2011).

For all five targets we have DV reports that cover multiple quarters (Q1-Q12). Three

of them have non-significant mean centroid offsets: KOI-127 (0.16σ), KOI-135 (0.24σ) and

KOI-214 (0.85σ). KOI-183 has a low significant centroid offset of 2.3σ and KOI-22 just

reaches the warning threshold of 3σ by showing a multi-quarter offset of 0.0223 arcsec at a

significance of 3.09σ. KOI-22 is therefore a possible false positive that required additional

high-angular resolution imaging for validation (see section 3.2). We note that KOI-22 also

has the highest false positive probability (FPP) of 3% of these five KOIs as estimated in

Morton & Johnson (2011), with the remaining four all have an FPP of 1%. However, this

is still below the 6% mean FPP of the 1235 KOIs considered in Morton & Johnson (2011).

Santerne et al. (2012) estimated a relatively high general false positive rate of 35% for hot

Jupiter KOIs, which means that in a sample of five we could expect one false positive. Extra

2http://archive.stsci.edu/kepler/data search/search.php
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care has to be taken to obtain all required follow-up observations to rule out a false positive

scenario.

3. Follow-up Observations

3.1. Reconnaissance Spectroscopy

One of the first steps in the Kepler Follow-up Observing Program (FOP) for KOIs is the

acquisition of reconnaissance spectra, which allow a first spectroscopic determination of Teff ,

log g, and v sin i of the host star. We usually take two spectra at opposite quadratures of

the expected RV orbit (based on the transit ephemeris) to quickly rule out grazing eclipsing

binaries as a source of false positives.

Reconnaissance spectra of the five KOIs were obtained with the Tull Cóude Spectrograph

(Tull et al. 1995) at the Harlan J. Smith 2.7 m Telescope at McDonald Observatory and with

the FIbre–fed Échelle Spectrograph (FIES) at the 2.5m Nordic Optical Telescope (NOT) at

La Palma, Spain (Djupvik & Andersen 2010) and with the Hamilton Spectrograph at Lick

Observatory. For all five KOIs, the result of this initial reconnaissance showed that these

objects are slowly rotating, single, solar-type stars, that are suitable for continued follow-up

observations with the goal to confirm the planet and determine its mass and density.

3.2. Imaging

Figure 1 shows the UKIRT J band images of these five targets taken in July 2009 as

part of the UKIRT survey of the Kepler field3. The images have full-width-half-maxima of

0.75 to 1.0 arcsec. Sources down to J = 19 mag (Vega system) are detected with near 100%

completeness. The ring seen to the south of KOI-127 is a an electronic cross-talk artifact

caused by a very bright star located 2 arcminutes to the west. Inspection of all images

reveal a single star with no nearby bright contaminating stars.

For KOI-22, the possible false positive candidate from the DV report, we obtained

speckle observations at the WIYN 3.5m telescope on Kitt Peak using the same procedures

as described in Howell et al. (2011). No companion (or background) star was revealed by

these 2.76 × 2.76 arcsec images down to a magnitude limit below the target star of 4.0

magnitudes in R and 4.0 magnitudes in V . KOI-22 was also observed by Robo-AO (Law et

3http://keplergo.arc.nasa.gov/ToolsUKIRT.shtml
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al. 2013) and no new companions were detected within 2.5 arcsec. We also obtained J-band

images for this KOI with the Palomar 200-inch telescope and its adaptive optics system.

These images have a FWHM resolution of 0.1 arcsec and also do not show any additional

star within 1 arcsec down to a level of 5 delta magnitudes and down to 7.5 delta magnitudes

at 2 arcsec radial distance. Given that the KOI-22 transits are deep (11.29 mmag) and that

both AO and speckle did not detect any nearby stars, we regard this target as a viable planet

candidate.

3.3. Precise Radial Velocity Measurements

We obtained precise RV follow-up measurements for KOI-214 with the Hobby-Eberly-

Telescope (HET) and its HRS spectrograph (Tull 1998) at McDonald Observatory. We

employed the same instrumental setup (R = 30, 000) and data reduction pipeline as for

Kepler-15 (Endl et al. 2011). From July 2010 to April 2013 we observed KOI-214 30 times

with the iodine cell for the RV determination and once without the cell to acquire a stellar

“template” spectrum. Exposure times range from 20 to 40 minutes per spectrum. It became

quickly obvious that the expected 3.31-d RV signal is modulated by a second, longer-period

signal. Owing to continued monitoring with the HET, we were able to characterize the

second signal as due to a more massive, outer planet.

Radial velocity data for KOI-22 were taken with Keck/HIRES with a resolving power

of R = 60, 000, using an instrumental setup similar to the California Planet Search (e.g.

Howard et al. 2010). The iodine cell setup was utilized to monitor real time instrumental

variations relevant to measuring precise radial velocities. Exposures taken in 2010 and 2011

utilize a sky subtraction technique that improves RV precision by removing contaminating

moonlight from the spectra. Exposures taken in 2009 do not have sky subtraction, and are

less precise that those taken in spring 2010 onward. The HIRES data were reduced using

the same methods as described in Batalha et al. (2011).

Spectroscopic observations of KOI-127 and for KOI-135 were obtained using the fiber-

fed Echelle Spectrograph (FIES) on the 2.5m Nordic Optical Telescope (NOT). We acquired

10 spectra of KOI-127 between 2 July and 16 October 2010 and 14 FIES spectra of KOI-135

between 5 July and 20 October 2010. We used the medium and the high–resolution fibers

(1.′′3 projected diameter) with resolving powers of λ/∆λ ≈ 46,000 and 67,000, respectively,

giving a wavelength coverage of ∼ 3600 − 7400 Å. We used the wavelength range from

approximately ∼ 3900 − 5800 Å to determine the radial velocities. The exposure time was

between 45 and 60 minutes yielding an average S/N per resolution element of 32 and 36,

respectively, near the MgB-triplet. The procedures used to reduce the FIES spectra and
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extract the radial velocities are described in Buchhave et al. (2010).

We also obtained additional precise RV measurements with HET/HRS for KOI-127 and

KOI-183. From August 2010 to April 2011 we collected 9 spectra for KOI-127 with exposure

times ranging from 20 to 30 minutes. KOI-183 was observed 16 times from July 2010 to

June 2012 with exposure times between 20 and 40 minutes.

Tables 1 to 5 list all precise RV data for the five KOIs acquired with the three different

telescopes and spectrographs. These measurements are purely differential, and not absolute

RV measurements. The data for KOI-22, KOI-127, KOI-135 and KOI-183 all show Keplerian

motion consistent in phase with a single transiting giant planet. This further strengthens

the case that KOI-22, with a centroid offset of 3.09σ, is not a false positive. Nevertheless,

we also performed a line bisector analysis for KOI-22 using the HIRES spectra and searched

for a correlation of the bisectors with the RV data (Figure 6). The linear correlation coef-

ficient is -0.014 and the probability of zero-correlation is 96.5%. The total evidence that

the deep transit signal seen for KOI-22 is due to a planet includes now (1) a lack of nearby

stars detected by AO and speckle imaging, (2) the precise RV data in amplitude and phase

consistent with a planetary signal, and (3) the lack of gross line bisector variability or cor-

relation with the photometric phase. We therefore conclude that KOI-22.01 is confirmed as

a transiting hot Jupiter, Kepler-422b, and KOI-183.01 is confirmed as Kepler-423 b. KOI-

127.01 and KOI-135.01 were previously confirmed as Kepler-77b and Kepler-43b by Gandolfi

et al. (2013) and Bonomo et al. (2012).

For the KOI-214 RV data we used a genetic algorithm to explore the parameter space

for a 2-planet system. We fixed the period of the inner planet to the transit period & phase

and assumed zero eccentricity for the hot Jupiter, while letting all orbital parameters vary

freely for the second companion. We performed 80,000 iterations of the genetic algorithm.

In each iteration, the starting parameters of the model are randomly selected (except the

parameters that are fixed for planet b) and then allowed to “evolve” until a local χ2 minimum

is reached. By using a large number of iterations we can map the χ2 surface for any given

system without being trapped in local minima. Figure 2 displays the results in the χ2-period

plane for all solutions with χ2
red ≤ 10 and Pplanet c ≤ 1000 days. We find a clear global χ2

minimum around a period of 220 days for the second planet. All solutions close to this χ2

minimum have a moderate eccentricity of 0.3 − 0.35. We confirm these results later with a

simultaneous Markov Chain Monte Carlo (MCMC) analysis of the KOI-214 photometry and

RV measurements (see section 4). KOI-214.01 is now confirmed as Kepler-424b. A search in

the Kepler photometry for transits of the second planet, Kepler-424c, was unsuccessful.
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3.4. Host Star Characterization

Precise stellar parameters for the five KOI host stars were derived using either SME

(Valenti & Piskunov 1996), SPC (Buchhave et al. 2012) or MOOG (Sneden 1973) on high

S/N spectra that do not contain any iodine lines (in the case of HRS and HIRES). Table 7

summarizes the parameters we determined for the five KOI host stars. For KOI-214 we

used all three tools on a Keck/HIRES and a HET/HRS spectrum. The reported values

for KOI-214 represent the mean and standard deviation from these 3 different approaches.

All five KOIs are solar-type stars with near solar temperatures and surface gravities, and

super-solar metallicities ranging from [Fe/H]=+0.23 to +0.44 dex, as expected from giant-

planet/metallicity relationships from Fischer & Valenti (2005) and Santos et al. (2005).

4. Modeling of Photometry and RV data

We modeled the light curve and RV measurements simultaneously with a full Keplerian

model (Rowe et al. 2014). The transit shapes were described by a an analytic limb darkened

transit using a quadratic limb darkening law. The parameters used in the fit were the

mean stellar density, two limb darkening parameters, the orbital period of the planet, the

mid-point time of the transit, the impact parameter of the planet at mid-transit, the planet-

to-star radius ratio, two parameters controlling the eccentricity, e sinω and e cosω where e is

the eccentricity and ω is the argument of periastron, and the radial velocity semi-amplitude

(K). Two additional noise parameters (one for the photometry and one “jitter” parameter

for the RVs) were included that were added in quadrature with the formal uncertainty to

account for the limitation in the model such as additional stellar variability. Finally, we

also included two nuisance parameters to account for photometric and RV offset from zero

(the RV parameter is often known as γ). In the case of Kepler-424, for the non-transiting

planet we set the planet radius to zero and the impact parameter to zero which enabled us

to simultaneous model both planets in the RV model but have only the transiting planet

impact the light curve model.

The likelihood of the data was calculated assuming a Gaussian function and we included

priors on the limb darkening and stellar density based on the spectroscopically derived stellar

parameters. We additionally included a prior on the eccentricity of e−1 which accounts for

a bias induced by parameterizing in terms of the eccentricity vectors (Eastman et al. 2013).

The probability of each realization of the model is the product of the likelihood and the

priors.

We integrated the probability space using the emcee (Foreman-Mackey et al. 2013)
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implementation of an affine invariant sampler (Goodman & Weare 2010) which we ran with

500 chains and 20,000 steps of each chain (the procedure is similar to that described in

Barclay et al. 2013). The chains were all well mixed and converged upon a consistent

distribution in each model parameter.

Host star radii and masses were determined by fitting the spectroscopic temperatures

and metallicities (Table 7) combined with the stellar density derived from the transit model

to stellar interior models. We used two sets of models: evolutionary tracks from the BaSTI

database (Pietrinferni et al. 2004) interpolated to a step-size of 0.01 M⊙ in mass and 0.02 dex

in [Fe/H], and isochrones from the Dartmouth database (Dotter et al. 2008) interpolated to

a step-size of 0.5Gyr in age and 0.02 dex in [Fe/H]. For BaSTI we used canonical models (no

convective-core overshooting), and for both BaSTI and Dartmouth solar-scaled α abundances

were adopted. For both sets of models, the best-fit parameters and uncertainties were derived

through Monte-Carlo simulations as described in Huber et al. (2013). The resulting radii

and masses agreed within the formal 1σ uncertainties in all cases. Since the Dartmouth grid

extended to higher metallicities (+0.56 dex), we adopted the Dartmouth stellar properties

as our final values, and added in quadrature the difference to the BaSTI solutions to the

formal uncertainties of the Dartmouth solutions.

The resulting planetary, orbital and host star parameters and their uncertainties are

summarized in Table 8 (for the Kepler-424 two-planet system), Table 9 (Kepler-422), Table 10

(Kepler-77), Table 11 (Kepler-43), and Table 12 (Kepler-423). The phase-folded Kepler pho-

tometry with the best-fit transit model and the RV data along with the best-fit Keplerian

orbital solutions are displayed in Figure 3 (Kepler-424), Figure 4 (Kepler-422 & Kepler-77)

and Figure 5 (Kepler-43 & Kepler-423). Except in the case of Kepler-424 we did not find any

indication for additional companions in the RV residuals, primarily owing to the small data

quantities. We performed a period search in the RV residuals from the 2-planet model for

Kepler-424 (where we have 30 measurements), and did not find any significant periodicities.

Figure 7 displays the time series of the RV data along with the 2-planet solution and the

residuals from this orbit.

5. Planetary evolution models

With masses between 0.43MJup and 3.03MJup, and equilibrium temperature above

1100K but less than 1600K (time-averaged over the orbit), these planets are irradiated

giant planets. We used CEPAM (Guillot & Morel 1995, Guillot 2010) to build a proper

grid of planetary evolution models for each planet (based on their mass, age, equilibrium

temperature, and unknown heavy elements content). For consistency with previous studies
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(e.g. Miller & Fortney 2011, Almenara et al. 2013, Deleuil et al. 2014) models have been

calculated in two cases: (i) a “standard” case, for which the planet is assumed to be made of

a central rocky core surrounded by a solar-composition envelope ; (ii) a “dissipated-energy”

model in which, in addition to the standard case, a fraction (1%) of the incoming stellar

flux is assumed to be dissipated in the deep layers of the planet (for detailed discussions on

possible physical mechanisms, see e.g. Guillot & Showman 2002, Spiegel & Burrows 2013,

Batygin, Stevenson & Bodenheimer 2011, Leconte & Chabrier 2012). In every case, we do

not know wether the heavy elements are concentrated in a core, dispersed in the envelope, or

a mix of both. However, as Baraffe, Chabrier & Barman (2008) have shown, dispersing heavy

elements in the envelope will tend to produce, at a given age, a smaller planet compared

to a core-only model. Hence our models should provide a lower-limit for the total mass of

elements heavier than helium. Since the absolute planetary parameters fully depend on that

of the parent star, and both are model-dependent, we combined stellar (PARSEC; Bressan

et al. 2012) and planetary evolution models using SET4 (Guillot & Havel 2011, Havel et

al. 2011). Through the use of SET’s statistical algorithm and using the observed values only,

we thus obtain posterior probability distributions of the bulk composition of the planet (i.e.

its core mass), as well as independent results for the fundamental parameters of both the

star and planet, the latter being entirely consistent with those presented in Section 4 and

Tables 8 to 12. The results are presented in terms of planetary radii as a function of age

in Figure 8 to Figure 12 : the 68.3, 95.5 and 99.7% confidence regions from the modeling of

the star and transit are shown as black, dark grey and light grey area respectively, while the

lines show a subset of planetary models for the nominal mass and equilibrium temperature

of the planet at different compositions as labeled. With a radius of 1.15RJup and a mass

of 0.43MJup, Kepler-422b is a slightly inflated Saturn-like planet for which the core mass

is estimated to be 19+20
−19M⊕

5, or said otherwise has a heavy elements mass fraction, Z, of

0.14+0.15
−0.14. As Figure 8 shows, models without dissipation only cover the lower half of the

68.3% confidence region. Although coreless models are possible solutions, Kepler-422b more

likely has a significant amount of heavy elements because of the high metallicity of the parent

star (e.g. Guillot et al. 2006, Guillot 2008, Miller & Fortney 2011). Kepler-77b, with a mass

of 0.70MJup and a radius of 0.96RJup, is a Jupiter-like planet on a slightly eccentric orbit

(e ∼ 0.23). Its analysis results in a core mass of 48+32
−44M⊕, or equivalently Z = 0.22+0.14

−0.20.

Given the age of the system (2.4+2.4
−1.6 Ga) and the short period (3.6 days), it is surprising that

this planet’s orbit was able to maintain such a moderate non-zero eccentricity. Interestingly,

Kepler-423b, despite being a planet of similar mass (0.72MJup) around an almost twin star

4Stars & Exoplanets modeling Tools

5results from independent 1-D posterior distributions
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(although much less metallic than Kepler-77b), is the most inflated planet among these five

objects: 1.198RJup. This is due to the fact the planet is orbiting closer to its host star (2.7

days vs. 3.6 days), and therefore has a higher equilibrium temperature (1400K vs. 1260K).

Thus, this is with no surprise that Figure 11 shows that standard models cannot explain all

probable radii solutions (within the 68.3% confidence region): the planet does have a sig-

nificant positive radius anomaly (see e.g. Laughlin, Crismani & Adams 2011). Its inferred

core mass is 25+15
−10M⊕ (Z = 0.11+0.06

−0.07), although a planet with no core is still possible (but

unlikely due to the metallicity correlation between host stars and giant planet companions).

Then, there is Kepler-424b, a hot Jupiter of mass 1.03MJup and radius 0.886RJup. Its de-

rived core mass is 119+35
−27M⊕ (Z = 0.36+0.11

−0.08). The system has also a second giant planet,

which is not transiting, and therefore we cannot have refined estimates on the bulk compo-

sition of Kepler-424b like in the case of Kepler-9 (Havel et al. 2011). Anyway, Kepler-424b

appears to require a large fraction of heavy elements (as compared to Jupiter) in order to

explain its observed radius. And finally, the most massive planet of the sample, Kepler-43b

(3.03MJup and 1.124RJup) has a core mass of 74+83
−32M⊕ (Z = 0.08+0.08

−0.04). Compared to the

other planets of this paper, Kepler-43b really is the most inflated planet (not in absolute

size, but relative to its mass). In fact it has the highest equilibrium temperature of the five

planets (1600K), and more notably has the best age constraint (due to a more precise stellar

density measurement from the transit). Therefore, the five transiting planets presented in

this paper have heavy elements content ranging from 20 to 120 M⊕. At least three of them

may be coreless (Kepler-422b, Kepler-43b, Kepler-423b ; Kepler-77b is on the edge), and

only one definitely requires a non-zero metallicity (Kepler-424b, part of a multiple system).

Lastly, errors on the given core masses may be larger due to non-considered uncertainties in

the physics of the planetary models (equation of state, opacities, dissipation, ... ; see e.g.

Vazan et al. 2013, Militzer & Hubbard 2013, Spiegel & Burrows 2013), which could increase

the modeled radii by up to ∼ 50%, and therefore would result in larger (heavier) cores.

6. Discussion

Two of the hot Jupiters presented here, KOI-127.01 and KOI-135.01, have been con-

firmed previously by other groups in the astronomical community.

KOI-127.01 was confirmed as Kepler-77b by Gandolfi et al. (2013). Their spectroscopic

data were obtained with the Sandiford spectrograph at the Otto Struve 2.1m telescope

at McDonald Observatory and with FIES at the Nordic Optical Telescope on La Palma.

In general, their results are in good agreement with our work. One discrepancy is the

host star metallicity, where we find [Fe/H]= 0.43 ± 0.1 while Gandolfi et al. determined
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an [M/H] of 0.20 ± 0.05. They also estimated a somewhat cooler effective temperature of

5520±60K, which is almost consistent with our value of 5668±77K. The largest difference is

the planetary mass (and thus also planet density): they obtain 0.43± 0.032 MJup compared

to our value of 0.7 ± 0.1 MJup. This discrepancy is due to a smaller RV semi-amplitude of

K = 59.2± 4.3m s−1 measured from the Sandiford and FIES RVs. In contrast, the K value

that we have determined from our HRS and FIES RVs is K = 89± 11m s−1.

KOI-135.01 was confirmed as Kepler-43b by Bonomo et al. (2012) using spectroscopic

observations with the SOPHIE spectrograph on the 1.93m telescope at the Observatoire de

Haute Provence. In this case, the results from both of our studies are fully consistent within

the quoted uncertainties.

Of these five systems, the Kepler-424 system stands out as a multi-planet system that

also contains a hot Jupiter. The second companion resides on a moderately eccentric orbit

and is many times more massive than the inner planet (mass ratio of ∼ 7 : 1). Given the

large separation between the two planets in the Kepler-424 system, intuition suggests their

orbits should be dynamically stable over long timescales. However, as evidenced by the υ

And system (McArthur et al. 2010), giant planets with mutually inclined orbital planes may

exhibit important dynamical interactions, even when the orbits are well separated. To test

whether this is the case for Kepler-424, we have performed some very simple dynamical

simulations of the system using the SYSTEMIC console (Meschiari et al. 2009).

In our simulations, the planets are initially configured with the orbital solution given

in Table 8. We left the inclination of planet b fixed, while setting c to a range of mutual

inclinations in steps of 5 degrees. At each mutual inclination we simulated the orbits over

100,000 years, or until a collision occurred. The simulations were computed using a Gragg-

Burlisch-Stöer integrator with a time step of 1 day.

The effect of planet c’s inclination on the system stability can best be visualized by its

impact on the eccentricity of planet b. In Figure 13, we show the planets’ eccentricities as

a function of simulation time for a representative set of mutual inclination values. Even for

coplanar orbits, the eccentricity of b undergoes low-amplitude periodic oscillations, but the

amplitude of the oscillations increases greatly for higher mutual inclinations. Most notably,

when the mutual inclination reaches 45 degrees, eb abruptly increases to levels inconsistent

with our orbital solution. This sudden increase of planet b’s eccentricity is caused by the

Lidov-Kozai mechanism (Lidov 1962, Kozai 1962). While it is conceivable that the system

is highly mutually inclined and we are observing it during a period of low eccentricity,

this possibility becomes less likely as the inclination of planet c decreases and the mean

eccentricity of planet b increases. We therefore conclude that the inclination of planet c is

most likely greater than 45 degrees.
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The results of our dynamical analysis are particularly useful because they allow us to

place an upper limit on the mass of planet c. If we require ic ≥ 45◦, then the actual mass of

planet c is Mc ≤ 9.6MJup. This limit places planet c comfortably within the planetary mass

regime, ruling out the possibility that it is a stellar or brown dwarf companion in a face-on

configuration. A more sophisticated dynamical study of this system, that also includes tidal

dissipation, could lead to a more robust upper mass limit for planet c.

Observing the Rossiter-McLaughlin effect for Kepler-424b will be an interesting test.

If planet-planet scattering is the physical mechanism that caused the inward migration, it

could also lead to a high inclination of the planet’s orbit with respect to the stellar equator.

It is a challenging observation for a V = 14.5 magnitude star, that we plan to carry out with

the newly upgraded and high-efficiency HRS at the HET, once it will become available in

early 2015.
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Fig. 1.— UKIRT 1× 1 arcminute J band images of the fields around the five systems. The

KOI is at the center of each image. North is up and East is left. None of the KOIs has a

nearby contaminating star.
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Fig. 2.— Genetic algorithm results for the Kepler-424 RV data using a 2-planet model. The

χ2
red values of 80,000 different 2-planet models are shown as a function of orbital period.

There is a clear minimum at a period of P ∼ 220 days for the second planet. Period values

for the second planet are displayed as blue circles, while the hot Jupiter is shown as small,

red boxes (fixed at the 3.31-d transit period).
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Fig. 3.— Phase-folded Kepler photometry of Kepler-424 (KOI-214) along with the best-fit

transit model from the MCMC analysis (top panel). The HET RV data and the best-fit

Keplerian orbital solution is shown for planet b in the middle panel, and for planet c in

the bottom panel (in both cases the orbit due to the other planet is subtracted). The RV

uncertainties include an additional RVjitter of 6.6m s−1 from the highest probability model

from the MCMC analysis.
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Fig. 4.— Phase-folded Kepler photometry of Kepler-422 (KOI-22, left) and Kepler-77 (KOI-

127, right) along with the best-fit transit model from the MCMC analysis (top panels).

The RV data and the best-fit Keplerian orbital solutions are shown in the bottom panels.

The RV uncertainties include an additional RVjitter of 22.8m s−1 (Kepler-422) and 14.8m s−1

(Kepler-77) from the highest probability models from the MCMC analysis.
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Fig. 5.— Phase-folded Kepler photometry of Kepler-43 (KOI-135, left) and Kepler-423 (KOI-

183, right) along with the best-fit transit model from the MCMC analysis (top panels). The

RV data and the best-fit Keplerian orbital solutions are shown in the bottom panels. The RV

uncertainties include an additional RVjitter of 32.7m s−1 (Kepler-43) and 25.1m s−1 (Kepler-

423) from the highest probability models from the MCMC analysis.



– 23 –

Fig. 6.— Correlation of line bisector velocity span (BVS) measurements and RV results for

Kepler-422 (KOI-22), based on the Keck/HIRES spectra. The probability that these two

quantities are uncorrelated is 96.5%.
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Fig. 7.— Top panel: time series of our HET/HRS RV measurements (red points) compared

to the 2-planet orbital solution (solid line). Lower panel: RV residuals after subtraction of

the orbit, showing no apparent variability indicative of additional companions.
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Fig. 8.— Evolution of Kepler-422b’s radius as a function of the age. The 68.3%, 95.5% and

99.7% confidence regions are denoted by black, dark grey, and light grey areas respectively.

The curves represent the thermal evolution of a 0.43MJup planet with a time-averaged equi-

librium temperature of 1120K. Text labels indicate the amount of heavy elements in the

planet (its core mass, in Earth masses). Dashed lines represent planetary evolution models

for which 0.25% of the incoming stellar flux (ǫ̇) is dissipated into the core of the planet,

whereas plain lines do not account for this dissipation (standard models).
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Fig. 9.— Same as Fig. 8, but for Kepler-77b (0.70MJup and 1260K)
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Fig. 10.— Same as Fig. 8, but for Kepler-43b (3.03MJup and 1600K)
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Fig. 11.— Same as Fig. 8, but for Kepler-423b (0.72MJup and 1400K)
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Fig. 12.— Same as Fig. 8, but for Kepler-424b (1.03MJup and 1220K)
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Fig. 13.— Dynamical simulations of the Kepler-424 two-planet system showing eccentricity

as a function of time. Each panel shows the evolution of the planets’ eccentricities for a

different mutual inclination imut of the planetary orbits. The high eccentricities of the orbit

of planet b induced by imut ≥ 45◦ are inconsistent with the observed low or zero eccentricity

of the hot Jupiter orbit. This would correspond to an estimated upper mass limit for planet

c of Mc ≤ 9.6 MJup.
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Table 1. Precise radial velocity measurements of Kepler-424 (KOI-214)

BJD [days] dRV [m s−1] error [m s−1] instrument

2455390.7061 -11651.2 46.0 HRS/HET

2455398.6922 -11817.6 22.2 HRS/HET

2455399.6872 -11941.0 24.2 HRS/HET

2455400.8879 -11678.4 24.0 HRS/HET

2455405.6585 -11965.6 50.5 HRS/HET

2455408.9012 -12021.4 25.1 HRS/HET

2455409.8791 -12013.0 29.3 HRS/HET

2455476.7011 -11925.9 39.7 HRS/HET

2455502.6109 -11960.1 51.3 HRS/HET

2455515.5966 -11965.6 29.4 HRS/HET

2455518.5628 -11992.1 51.2 HRS/HET

2455674.9104 -12097.2 80.0 HRS/HET

2455677.9101 -12183.7 74.5 HRS/HET

2455689.8917 -11948.8 38.5 HRS/HET

2455710.8406 -12120.4 44.0 HRS/HET

2455718.8050 -11820.5 30.6 HRS/HET

2455729.7733 -11903.3 26.8 HRS/HET

2455734.7532 -11877.7 19.5 HRS/HET

2455739.7648 -11902.4 24.0 HRS/HET

2455745.7485 -11704.1 23.7 HRS/HET

2455883.5846 -12142.2 49.3 HRS/HET

2455884.5760 -11959.3 25.8 HRS/HET

2455886.5792 -12240.8 25.3 HRS/HET

2455887.5533 -12004.1 26.5 HRS/HET

2455889.5618 -12230.1 30.4 HRS/HET

2456033.9355 -11507.4 30.8 HRS/HET

2456043.9233 -11456.5 36.4 HRS/HET
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Table 2. Precise radial velocity measurements of Kepler-422 (KOI-22)

BJD [days] dRV [m s−1] error [m s−1] instrument

2455014.9026 13.9 17.7 Keck/HIRES

2455017.0576 15.8 17.7 Keck/HIRES

2455041.9829 -22.4 18.2 Keck/HIRES

2455042.8107 -30.7 18.0 Keck/HIRES

2455044.0113 -54.7 18.2 Keck/HIRES

2455045.0133 -27.9 18.0 Keck/HIRES

2455048.8795 85.8 18.8 Keck/HIRES

2455074.8224 -20.0 17.4 Keck/HIRES

2455075.8558 -6.9 17.4 Keck/HIRES

2455078.8808 108.6 17.6 Keck/HIRES

2455084.8208 -34.0 17.4 Keck/HIRES

2455437.8116 -28.2 4.0 Keck/HIRES

2455465.8030 18.6 4.0 Keck/HIRES

2455789.8189 20.2 3.6 Keck/HIRES

2455792.9381 -37.2 3.8 Keck/HIRES
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Table 3. Precise radial velocity measurements of Kepler-77 (KOI-127)

BJD [days] dRV [m s−1] error [m s−1] instrument

2455432.7847 -43.2 20.8 HET/HRS

2455442.7527 27.5 6.4 HET/HRS

2455476.6646 -86.6 35.3 HET/HRS

2455481.6440 74.9 19.0 HET/HRS

2455483.6388 -73.9 26.7 HET/HRS

2455507.5791 -41.9 31.1 HET/HRS

2455508.5783 -69.6 21.7 HET/HRS

2455512.5673 -17.6 22.7 HET/HRS

2455674.8853 102.3 35.5 HET/HRS

2455379.6416 -44.9 15.1 NOT/FIES

2455380.5392 105.6 24.6 NOT/FIES

2455382.5104 -8.0 18.0 NOT/FIES

2455383.6729 -22.4 18.4 NOT/FIES

2455384.5210 118.3 17.5 NOT/FIES

2455428.3972 91.8 16.6 NOT/FIES

2455429.4562 -24.6 24.7 NOT/FIES

2455431.3953 119.5 17.2 NOT/FIES

2455480.4322 21.0 21.4 NOT/FIES

2455486.4220 0.0 15.1 NOT/FIES
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Table 4. Precise radial velocity measurements of Kepler-43 (KOI-135)

BJD [days] dRV [m s−1] error [m s−1] instrument

2455382.6432 -3.3 14.7 NOT/FIES

2455383.6244 -493.3 13.0 NOT/FIES

2455384.6123 97.8 12.9 NOT/FIES

2455424.5139 223.4 15.8 NOT/FIES

2455425.6033 -502.4 14.9 NOT/FIES

2455426.4740 -221.5 13.3 NOT/FIES

2455427.4796 185.7 18.9 NOT/FIES

2455428.4842 -417.0 19.3 NOT/FIES

2455430.4280 165.6 21.7 NOT/FIES

2455480.4818 -471.4 23.0 NOT/FIES

2455482.3520 0.4 14.5 NOT/FIES

2455486.4697 -522.0 15.8 NOT/FIES

2455488.4282 -37.7 27.1 NOT/FIES

2455490.3694 79.6 20.8 NOT/FIES
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Table 5. Precise radial velocity measurements of Kepler-423 (KOI-183)

BJD [days] dRV [m s−1] error [m s−1] instrument

2455398.6748 30.5 43.5 HET/HRS

2455400.8711 146.0 16.4 HET/HRS

2455405.8708 83.0 26.6 HET/HRS

2455448.7528 100.9 15.6 HET/HRS

2455451.7393 47.4 46.5 HET/HRS

2455452.7287 -60.7 11.7 HET/HRS

2455476.6827 -67.6 34.8 HET/HRS

2455487.6378 -106.9 13.2 HET/HRS

2455511.5646 -66.3 26.5 HET/HRS

2455513.5558 52.1 20.0 HET/HRS

2455515.5707 121.7 21.5 HET/HRS

2455520.5452 -40.2 14.4 HET/HRS

2455521.5509 98.6 29.8 HET/HRS

2456088.7878 -71.9 29.2 HET/HRS

2456104.7149 0.8 18.9 HET/HRS

2456219.6414 80.0 9.1 HET/HRS

Table 6. Basic parameters of the target stars: Kepler, KOI, and KeplerID numbers are

given, along with Kepler magnitude Kp, V band magnitude and coordinates.

KOI KepID Kp[mag] V [mag] RA [2000] DEC [2000]

22 9631995 13.435 13.642 18:50:31.11 46:19:24.10

127 8359498 13.938 14.197 19:18:25.92 44:20:43.52

135 9818381 13.958 14.082 19:00:57.78 46:40:05.70

183 9651668 14.290 14.499 19:31:25.36 46:23:28.24

214 11046458 14.256 14.497 19:54:29.99 48:34:38.82
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Table 7. Spectroscopic stellar parameters of the five target stars. Note that, following

Torres et al. (2012), we added in quadrature additional uncertainties of 59 K in Teff , 0.062

dex in [Fe/H] and 0.85 km s−1 in v sini to account for systematic uncertainties.

KOI Teff [K] log g v sini [km/s] [Fe/H] [M/H] notes

22 5972±84 4.50±0.1 2.2±1.3 0.23±0.09 ... SME

127 5668±77 4.53±0.1 1.8±1.0 ... 0.43±0.1 SPC

135 6019±82 4.54±0.1 4.9±1.0 ... 0.43±0.1 SPC

183 5790±116 4.57±0.12 ... 0.26±0.12 ... MOOG

214 5460±81 4.49±0.05 0.5±1.0 0.44±0.14 ... MOOG/SPC/SME
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Table 8. Parameters of the Kepler-424 (KOI-214) planetary system

Parameter [unit] median +1σ -1σ notes

M⋆ [M⊙] 1.01 +0.054 -0.054 isochrone fit

R⋆ [R⊙] 0.94 +0.056 -0.056 isochrone fit

log(g) 4.50 +0.05 -0.05 isochrone fit

L⋆ [L⊙] 0.71 +0.11 -0.11 isochrone fit

ρ⋆ [g cm−3] 1.73 +0.29 -0.29 isochrone fit

ρ⋆ [g cm−3] 1.74 +0.44 -0.34 transit model

Planet b:

P [days] 3.3118644 3.9× 10−7 -3.9×10−7

T0 [BJD] 2454964.7427 +0.00023 -0.00017

b 0.934 +0.065 -0.053

Rplanet/R⋆ 0.0961 +0.0065 -0.0033

R [RJup] 0.89 +0.08 -0.06

K [m s−1] 140.0 +12.0 -13.0

e cosω 0.001 +0.043 -0.029

e sinω 0.002 +0.061 -0.066

M [MJup] 1.03 +0.13 -0.13

a [AU] 0.044 +0.005 -0.004

ρ [g cm−3] 1.94 +0.25 -0.25

Planet c:

P [days] 223.3 +2.1 -2.1

T0 [BJD] 2455403.4 +2.1 -2.0

K [m s−1] 246.0 +17.0 -17.0

e cosω 0.018 +0.052 -0.052

e sinω 0.318 +0.057 -0.061

M sin i [MJup] 6.97 +0.62 -0.62

a [AU] 0.73 +0.08 -0.07

RVjitter [m s−1] 8.0 +13.0 -6.0
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Table 9. Parameters of the Kepler-422 (KOI-22) transiting system

Parameter [unit] median +1σ -1σ notes

M⋆ [M⊙] 1.15 +0.06 -0.06 isochrone fit

R⋆ [R⊙] 1.24 +0.12 -0.12 isochrone fit

log(g) 4.31 +0.073 -0.073 isochrone fit

L⋆ [L⊙] 1.75 +0.37 -0.37 isochrone fit

ρ⋆ [g cm−3] 0.86 +0.22 -0.22 isochrone fit

ρ⋆ [g cm−3] 0.87 +0.22 -0.22 transit model

Planet :

P [days] 7.8914483 +5.0×10−7 -5.1×10−7

T0 [BJD] 2455010.25005 +0.00011 -9.4×10−5

b 0.416 +0.045 -0.045

Rplanet/R⋆ 0.0957 +0.00048 -0.00055

R [RJup] 1.15 +0.11 -0.11

K [m s−1] 40.0 +11.0 -10.0

e cosω 0.013 +0.096 -0.063

e sinω -0.009 +0.07 -0.096

M [MJup] 0.43 +0.13 -0.13

a [AU] 0.082 +0.011 -0.010

ρ [g cm−3] 0.38 +0.11 -0.11

RVjitter [m s−1] 26.8 +9.4 -7.0
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Table 10. Parameters of the Kepler-77 (KOI-127) transiting system

Parameter [unit] median +1σ -1σ notes

M⋆ [M⊙] 1.08 +0.034 -0.034 isochrone fit

R⋆ [R⊙] 0.99 +0.053 -0.053 isochrone fit

log(g) 4.48 +0.036 -0.036 isochrone fit

L⋆ [L⊙] 0.90 +0.13 -0.13 isochrone fit

ρ⋆ [g cm−3] 1.6 +0.22 -0.22 isochrone fit

ρ⋆ [g cm−3] 2.7 +1.05 -1.05 transit model

Planet :

P [days] 3.5787806 +1.6×10−7 -1.6×10−7

T0 [BJD] 2454967.0304 +4.4×10−5 -4.3×10−5

b 0.291 +0.05 -0.05

Rplanet/R⋆ 0.0997 +0.00069 -0.00075

R [RJup] 0.96 +0.05 -0.05

K [m s−1] 89.0 +11.0 -10.0

e cosω -0.030 +0.034 -0.027

e sinω 0.23 +0.15 -0.10

M [MJup] 0.71 +0.10 -0.10

a [AU] 0.047 +0.007 -0.008

ρ [g cm−3] 1.07 +0.15 -0.15

RVjitter [m s−1] 17.6 +8.0 -6.1



– 42 –

Table 11. Parameters of the Kepler-43 (KOI-135) transiting system

Parameter [unit] median +1σ -1σ notes

M⋆ [M⊙] 1.23 +0.04 -0.04 isochrone fit

R⋆ [R⊙] 1.34 +0.055 -0.055 isochrone fit

log(g) 4.27 +0.029 -0.029 isochrone fit

L⋆ [L⊙] 2.12 +0.22 -0.22 isochrone fit

ρ⋆ [g cm−3] 0.71 +0.078 -0.078 isochrone fit

ρ⋆ [g cm−3] 0.74 +0.067 -0.067 transit model

Planet :

P [days] 3.0240922 +1.6×10−7 -1.6×10−7

T0 [BJD] 2454965.4169 +6.7×10−5 -7.5×10−5

b 0.631 +0.025 -0.027

Rplanet/R⋆ 0.0862 +0.00048 -0.00058

R [RJup] 1.12 +0.047 -0.047

K [m s−1] 372.0 +12.0 -13.0

e cosω -0.005 +0.011 -0.017

e sinω 0.005 +0.033 -0.017

M [MJup] 3.03 +0.18 -0.18

a [AU] 0.044 +0.002 -0.002

ρ [g cm−3] 2.87 +0.17 -0.17

RVjitter [m s−1] 30.0 +11.0 -8.0
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Table 12. Parameters of the Kepler-423 (KOI-183) transiting system

Parameter [unit] median +1σ -1σ notes

M⋆ [M⊙] 1.07 +0.05 -0.05 isochrone fit

R⋆ [R⊙] 0.99 +0.054 -0.054 isochrone fit

log(g) 4.48 +0.04 -0.04 isochrone fit

L⋆ [L⊙] 0.96 +0.16 -0.16 isochrone fit

ρ⋆ [g cm−3] 1.58 +0.22 -0.22 isochrone fit

ρ⋆ [g cm−3] 1.65 +0.36 -0.21 transit model

Planet :

P [days] 2.68432848 +8.2×10−8 -8.2×10−8

T0 [BJD] 2454966.3548 +2.6×10−5 -2.7×10−5

b 0.11 +0.10 -0.08

Rplanet/R⋆ 0.1242 +0.00089 -0.00037

R [RJup] 1.20 +0.065 -0.065

K [m s−1] 101.0 +13.0 -14.0

e cosω -0.002 +0.039 -0.048

e sinω -0.010 +0.043 -0.068

M [MJup] 0.72 +0.12 -0.12

a [AU] 0.0396 +0.003 -0.003

ρ [g cm−3] 0.55 +0.09 -0.09

RVjitter [m s−1] 30.0 +11.0 -8.0
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