Light, Alpha, and Fe-Peak Element Abundances in the Galactic Bulge

Johnson, Christian I., Rich, R. Michael, Kobayashi, Chiaki, Kunder, Andrea and Koch, Andreas (2014) Light, Alpha, and Fe-Peak Element Abundances in the Galactic Bulge. ISSN 0004-6256
Copy

We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l,b)=(+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high resolution (R~20,000), high signal-to-noise (S/N>70) FLAMES-GIRAFFE spectra obtained through the ESO archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. The present work extends previous analyses of this data set beyond Fe and the alpha-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H]>-0.5. In particular, the bulge [alpha/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high velocity population. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae are required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 solar masses are ruled out, in particular because of disagreement with the Fe-peak abundance data. [abridged]

picture_as_pdf

picture_as_pdf
Published_Version.pdf
Available under Creative Commons: 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads