Vertex Lie algebras and cyclotomic coinvariants
Given a vertex Lie algebra $\mathscr L$ equipped with an action by automorphisms of a cyclic group $\Gamma$, we define spaces of cyclotomic coinvariants over the Riemann sphere. These are quotients of tensor products of smooth modules over `local' Lie algebras $\mathsf L(\mathscr L)_{z_i}$ assigned to marked points $z_i$, by the action of a `global' Lie algebra ${\mathsf L}^{\Gamma}_{\{z_i \}}(\mathscr L)$ of $\Gamma$-equivariant functions. On the other hand, the universal enveloping vertex algebra $\mathbb V (\mathscr L)$ of $\mathscr L$ is itself a vertex Lie algebra with an induced action of $\Gamma$. This gives `big' analogs of the Lie algebras above. From these we construct the space of `big' cyclotomic coinvariants, i.e. coinvariants with respect to ${\mathsf L}^{\Gamma}_{\{z_i \}}(\mathbb V(\mathscr L))$. We prove that these two definitions of cyclotomic coinvariants in fact coincide, provided the origin is included as a marked point. As a corollary we prove a result on the functoriality of cyclotomic coinvariants which we require for the solution of cyclotomic Gaudin models in arXiv:1409.6937. At the origin, which is fixed by $\Gamma$, one must assign a module over the stable subalgebra $\mathsf L(\mathscr L)^{\Gamma}$ of $\mathsf L(\mathscr L)$. This module becomes a $\mathbb V(\mathscr L)$-quasi-module in the sense of Li. As a bi-product we obtain an iterate formula for such quasi-modules.
Item Type | Article |
---|---|
Additional information | Electronic version of an article published as Benoît Vicedo and Charles Young, Commun. Contemp. Math. 0, 1650015 (2016) [62 pages] DOI: http://dx.doi.org/10.1142/S0219199716500152 Vertex Lie algebras and cyclotomic coinvariants. |
Keywords | math.qa, vertex algebras, vertex lie algebras, cyclotomic coinvariants, infinite dimensional lie algebras |
Date Deposited | 15 May 2025 12:55 |
Last Modified | 04 Jun 2025 17:04 |
-
picture_as_pdf - CyclotomicCoinvariants_axiv_version.pdf
-
subject - Submitted Version
-
lock - Restricted to Repository staff only