
A cellulose-based bioassay for the colorimetric 
detection of pathogen DNA 
Deepika Saikrishnan, Madhu Goyal, Sharon Rossiter, Andreas Kukol* 
 
School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, 
United Kingdom 
 
* Corresponding author, e-mail: a.kukol@herts.ac.uk 
 
 
 
Running title: Cellulose-based bioassay for DNA detection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract     
Cellulose-paper based colorimetric biosensors may be used at the point of sampling without 

sophisticated equipment. This study reports the development of a colorimetric bioassay based 

on cellulose that can detect pathogen DNA.  The detection was based on covalently attached 

single-stranded DNA probes and visual analysis. A cellulose surface functionalised with 

tosyl-groups was prepared by the dimethylacetamide/lithium chloride method. Tosylation of 

cellulose was confirmed by scanning electron microscopy, FTIR and elemental analysis. 

Sulfhydryl-group modified oligonucleotide probes complementary to a segment of the DNA 

sequence IS6110 of Mycobacterium tuberculosis were covelently immobilised on the 

tosylated cellulose. Upon hybridization of biotin labelled DNA oligonucleotides with these 

probes, a colorimetric signal was obtained with streptavidin conjugated horseradish 

peroxidase catalysing the oxidation of tetramethylbenzamidine (TMB) by H2O2. The colour 

intensity was significantly reduced when the biosensor was subjected to DNA 

oligonucleotide of randomised base composition. Initial experiments have shown a sensitivity 

of 0.1µM. A high probe immobilization efficiency (>90%) was observed with a detection 

limit of 0.1 μM corresponding to an absolute amount of 10 pmol. In addition detection of M. 

tuberculosis DNA was demonstrated. This work shows the potential use of tosylated 

cellulose as the basis for point-of-sampling bioassays.  
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Introduction 

Biosensors and bioassays play an important role in clinical diagnosis, food processing safety 

applications, environmental monitoring, and forensic science [1,2]. Biosensor technology 

growth in the last couple of decades was primarily due to development of various advanced 

bio-recognition, transduction and signal processing elements. The biorecognition elements 

used in biosensors are enzymes [3,4], ion channels [5], antibodies [6-8], micro-organisms [9] 

and nucleic acids such as deoxyribonucleic acid (DNA) [10], peptide nucleic acid (PNA) 

[11], ribonucleic acid (RNA) [12], microRNA and locked nucleic acids (LNA) [13]. The use 

of single stranded DNA has increased due to its stability, sensitivity and high specificity 

arising from the ability of complementary strands to form a duplex [14] as well as due to the 

commercial availability of custom oligonucleotides with chemical modifications. Various 



transduction methods have been applied, for example electrochemical [15,16] and optical 

methods [17], leading to numerous kinds of signal processing. In electrochemical 

transduction of DNA hybridization, detection is based on electrical current signal changes of 

redox molecule labels or on changes in parameters of the biomolecular layer, such as 

capacitance and conductivity [13]. The majority of electrochemical DNA  biosensors make  

use of  differential pulse voltammetry, cyclic voltammetry, impedance, amperometric,  

potentiometric, surface plasmon resonance and piezoelectricity techniques [18-20]. A 

differential pulse voltammetry based DNA biosensor  to detect Enterobacteriaceae DNA 

including  a target DNA recycling system was recently developed with sensitivity of 8.7 fM 

[21]. Impedimetric sensors constructed with gold nanoparticles and graphene oxide 

modifications to a carbon electrodes have been reported as high sensitivity DNA biosensors 

with detection limits around 11 fM  [22]. An anodic aluminium oxide  microfluidic 3D 

channel was utilized as an electrode for DNA probe immobilization and target detection 

using cyclic voltammetry to measure electrochemical response using redox indicators, 

[Fe(CN)6]4+ and/or [Ru(NH3)6]3+  [23]. Although electrochemical biosensors are one of the 

important contributors to biosensing, a potential disadvantage is that they are very difficult to 

manufacture in large scale, may not be available as portable devices in many cases and 

require expensive materials for their manufacture [18].  

DNA hybridization can also be optically detected using fluorescence, surface plasmon 

resonance (SPR), chemiluminescence, colorimetry, interferometry, or surface-enhanced 

Raman scattering (SERS) spectroscopy [reviewed in 24]. Fluorophore labelled DNA targets 

are easily detectable with an imaging fluorescence apparatus and this method has been 

exploited extensively for DNA biosensors as well as in DNA microarrays. Sensitivities down 

to 10 pM were achieved with fluorescein labelled targets [25]. In addition to fluorophores, 

molecular beacons (stem-loop structured oligonucleotides with fluorophore and quencher on 

each end) and quantum dots (QDs) have also been used as efficient labels that use 

fluorescence resonance energy transfer (FRET) to produce intense signals [reviewed in 24]. 

Some molecular beacons have been used to effectively detect single nucleotide 

polymorphisms [26] and mutations in rpoB gene of Mycobacterium tuberculosis [27]. QDs 

have many advantages over organic fluorophores, for example a brighter emission and 

enhanced stability [28]. Single QD nanosensors were designed for  multiple detection of 

genes HIV-1 and HIV-2 [29]  and in another case a silica-QD for  pathogenic bacteria was 

able to detect  up to 0.8 fM DNA and  single base mismatches [30]. SERS does not require 



fluorescent labels and has a higher spectral specificity owing to narrower bandwidths 

compared to dyes used in fluorescence [31]. Surface Plasmon resonance (SPR) explores 

changes in the refractive index at a surface due to the binding of biomolecules, which makes 

SPR  a unique optical method because it does not require DNA labelling and has been 

exploited for DNA detection with sensitivities around pM with gold nanoparticles [32-34]. 

Although these methods yield very good results their usage is limited by the high cost of 

equipment, instability, manufacturing issues and non-portability [reviewed in 24]. 

Of all the optical methods colorimetric assays are preferred for initial diagnostic tests as they 

give visual readouts, have stability, and often reagents are less expensive thus suitable for low 

resourced areas [35,36]. Enzyme labels such as horseradish peroxidise [37,20] and metal 

nanoparticles, especially gold nanoparticles have been widely used for colorimetric nucleic 

acid assays in solution and on solid surfaces [38-40]. Various materials have been routinely 

employed as a basic surface to construct the biosensors that range from glass supports [41], 

polysterene [42], gold nanoparticles [43,44], to cellulose in its various forms including paper 

[45,46]. Paper as a biosensing surface has many advantages over other materials – it is a very 

good filter and barrier medium, cost effective, can be easily coated or impregnated, is 

biodegradable, has high porosity, is conducive to lateral flow and has a low non-specific 

absorption of biomolecules [47]. These properties of paper have led to its use in a number of 

microfluidic devices for many applications in diagnostics [10,35,36,48-50,44]. Another 

important property that contributes to the wide use of cellulose for immobilization of 

biomolecules is the presence of hydroxyl groups which can be  subjected to many chemical 

reactions such as oxidation [51], esterification [52], acylation and tosylation [53] among 

others [54] that allow chemical groups of a biomolecule to covalently bind to the cellulose. 

Adsorption of biomolecules on cellulose has also developed in the last two decades and the 

adsorbed surface has been used as a very effective biosensing platform [10,55,38,56,9]. 

Although there is a surge in the number of colorimetric biosensors that use paper 

microfluidics, there are few simple assays that address the issue of pathogen diagnostics that 

could be used in high burden low resourced areas; most biosensors are primarily targeted at 

food borne bacteria [57-59]. In this work, we demonstrate the use of tosylated cellulose strips 

for the immobilization of sulphhydryl-modified oligonucleotide probes and visual detection 

of target DNA. The sequences correspond to the IS6110 transposable element present in 

Mycobacterium tuberculosis and colorimetric detection is carried out with streptavidin-

conjugated horseradish peroxidase (HRP) and chromogenic tetramethylbenzidine substrate. 



The sensitivity and specificity of the system is evaluated with synthetic DNA and isolated 

DNA from the pathogen. 

Materials and Methods 

Tosylation of Cellulose  

Tosylated cellulose was prepared by down-scaling and modifying a method described by 

Rahn et al. [60]. 2.0 g microcrystalline cellulose (Avicel® PH-101, Sigma Aldrich UK) was 

heated in 40 mL of N,N-dimethylacetamide at 160◦C for one hour with stirring. 4.0 g of 

anhydrous lithium chloride was added after cooling down the solution to 100◦C and then  the 

reaction mixture was further cooled to room temperature. 5 mL of triethylamine was added to 

the highly viscous solution. This viscous solution was then cooled in an ice bath to 8-10◦C. 

4.0 g of p-toluene-sulphonyl chloride dissolved in 6 mL of N, N-dimethylacetamide was 

added to the solution. After 24 h the reaction mixture was poured into glass petridishes, 

immersed in ice cold water and allowed to precipitate for 2 h. As a modification of the 

original method [60] the precipitated sheets were washed in ice cold water and allowed to dry 

between sheets of strong tissue paper for 24 h. A control cellulose film was prepared in a 

similar procedure without addition of tosyl chloride. The tosylated and control cellulose strips 

were then subjected to Attenuated Total Reflection (ATR) Fourier-transform infrared (FT-IR) 

spectroscopy, scanning electron microscopy (SEM) and Elemental Analysis.  

FTIR Analysis 

A Nicolet 6700 FTIR instrument (Thermo Scientific, UK) with a diamond attenuated total 

reflection accessory was used to analyse the samples. The ATR-FTIR spectra of cellulose 

powder, control cellulose film and tosylated cellulose were recorded with 30 scans per 

spectrum and a resolution of 4 cm-1 using the DTGS detector. The spectrum was processed 

with level 2 zero filling and the Norton-Beer apodization. 

SEM Analysis  

Tosylated cellulose, control cellulose film, Whatman filter paper and cellulose powder were 

analysed with the SEM.A JEOL JCM-7500 scanning electron microscope in the SEI 

(secondary electron) mode.  All the specimens were coated with a layer of gold 

approximately 30 nm thick. Low accelerating voltages of 5 or 10 kV were used for the 



measurement.  The measurements were carried out with spot sizes (diameter of electron 

beam) of 31 and 35 and at working distances (from the lens) of 15 mm and 28 mm 

Elemental Analysis 

Elemental analysis was performed by Medac Ltd. to find percentage composition of sulphur 

and chlorine in the samples and this was used for determining the degree of substitution. The 

degree of substitution (DSS) is defined as the number of tosylated hydroxyl groups per 

glucose unit and it was calculated from the percentage of sulphur S% obtained from elemental 

analysis using the formula DSs = (S% x MG) / (MS    x 100 – MTos x S%) [60]. Whereby the 

molecular mass of a glucose unit was MG = 180.16 g/mol, the molecular mass of sulphur was 

MS = 32.06 g/mol and the molecular mass of a tosyl group was MTos = 155.19 g/mol . 

Immobilization of oligonucleotide probes 

All synthetic oligonucleotides were obtained from Eurogentec Ltd, Belgium. 100 µL of a  2.5 

µM solution of the 5’-end hexanethiol (SH) and hexaethyleneglycol (HEG) spacer modified 

oligonucleotide (29 nt), 5’-SH-HEG-GGCGAACCCTGCCCAGGTCGACACATAGG-3’ 

(IS6110 element of Mycobacterium tuberculosis) containing dithiothrietol (300 µM) and 

phosphate buffer solution (92 mM, pH 7.2) was pipetted onto the tosylated cellulose surface 

placed in a closed petri dish and allowed to react for 16 – 18 h in dark at room temperature. 

Synthetic target Hybridization 

5’-Biotinylated target (complementary to the probe) oligonucleotides, 5’-biotin- 

CCTATGTGTCGACCTGG GCAGGGTTCGCC-3’ and a randomised (non-complementary),  

oligonucleotide of the same base composition, 5’-biotin-GTGTGCCCCATCGTACGCG 

AGTCGTGCGT -3’ were prepared to a final concentration of 1 µM with hybridization buffer 

(270 mM NaCl, 4.5 mM MgCl2∙6H2O and 22.5 mM Tris, pH 8.3) and 100 µL of each 

solution was pipetted on individual tosylated cellulose strips with immobilized probes and 

incubated for 1 hour at 60◦ C. After incubation the samples were washed three times in sterile 

distilled water for 15, 5 and 5 minutes respectively to remove any unbound probe and 

target/random oligonucleotides. 100 µl of hybridization buffer was pipetted onto probe 

immobilized tosylated cellulose strips and these were used as negative controls. The 

experiment was performed in triplicates. 

Detection 



After hybridization the cellulose strips were washed with freshly distilled water three times 

for 15, 5 and 5 minutes at room temperature. The strips were then blocked with 5 mL of 10% 

blocking solution containing non-fat milk powder (ECL blocking agent, GE Healthcare Ltd) 

and 0.1% PBS Tween-20 for 1 h at room temperature. After the blocking step the samples 

were washed in PBS Tween-20 three times for 15, 5 and 5 min. 50 µL of Streptavidin-

Horseradish Peroxidase (HRP) conjugate in 0.1% PBS-tween (1:1000) was added to each 

sample and incubated for 1 h and washed in PBS-Tween-20 three times for 15, 5 and 5 

minutes. The HRP substrate 3, 5, 3’,5’ –tetramethylbenzidine at a concentration of 0.55 

mg/ml was prepared with  1 mL of dimethyl-sulphoxide (DMSO), 20 µM   H2O2 (30% w/v)  

and buffer (4.5 mM CaCl2.2H2O, 22.5 mM citric acid, 45 mM NaH2PO4.H2O). 75 µL of this 

solution was added onto each cellulose sample and observed for colour change. Once the 

colour developed the sample was scanned with a flatbed scanner and quantified with ImageJ 

software [9]. 

Image Analysis  

ImageJ 1.47v [61] was used to measure the signal intensity from images of assay samples 

produced by a scanner. Each image was split into three channels, red, blue and green. The red 

channel image provided the highest contrast and was used for analysis. The image was 

inverted, so lighter grey areas (higher pixel intensities) corresponded to a detection signal. 

The mean pixel intensity of an area was measured by using the oval tool for keeping a 

constant area measurement.  

Quantification of probe immobilization 

The amount of a fluorescent probe immobilised on cellulose was estimated by subtracting the 

cummulative amount of probe removed in successive washing steps from the total amount of 

probe added onto cellulose. 5’ hexanethiol - HEG- 

GGCGAACCCTGCCCAGGTCGACACATAGG-fluorescein-3’ oligonucleotide probes 

(HPLC-RP purified) were purchased (Eurogentec Ltd, Belgium). 100 µL oligonucleotide 

probe solutions at concentrations between 0.5 and 5 µM were prepared with dithiothrietol 

(300 µM) and PBS (92 mM, pH 7.2). The samples were diluted to 1 mL with PBS and the 

initial fluorescence intensity was measured in a fluorimeter with an excitation wavelength of 

490 nm and an emission wavelength of 520 nm. The solutions were pippetted on individual 

tosylated strips and allowed to react for 18 h and washed three times in 5 mL fresh PBS. Each 

set of washing was individually collected and measured in a fluorimeter. The third wash did 



not yield any fluorescence signal and hence further washing of the samples was not required.  

The difference between the integrated peak area value of the solutions and cumulative peak 

area values of the three washings were calculated to measure the amount of probe 

immobilized. 

Sensitivity  

A series of solutions of target and random oligonucleotides of various concentrations (1, 0.5, 

0.1, 0.05 and 0.01 µM) were prepared with hybridization buffer (270 mM NaCl, 4.5 mM 

MgCl2∙6H2O and 22.5 mM Tris, pH 8.3) and 100 µL of each solution was pipetted onto the 

tosylated cellulose strips and hybridized for 1 h at 60◦C. Detection was  performed using the 

method described above. 

Specificity 

For analysing the specificity of the method  1 µM solutions of  5’- biotin labelled target, 

single base mismatch, double base mismatch, triple base mismatch and randomised 

oligonucleotide sequences with respect to the probe sequence were prepared with 

dithiothreitol (300 µM) and and PBS (92 mM, pH 7.2). 100 µL of each  solution was pipetted 

onto probe immobilized tosylated cellulose strips. The strips were hybridized for 1 h at 60◦C 

and detected as mentioned above. 

 Hybridization time 

1 µM solutions of target and random oligonucleotide sequences were prepared with 

hybridization buffer (270 mM NaCl, 4.5 mM MgCl2.6H2O and 22.5 mM Tris, pH 8.3) and 

100µL of each solution was pipetted on probe immobilized tosylated cellulose strips and 

hybridized for .5, 1, 1.5 and 2 h at 60◦C and detected as before. This experiment was 

performed in duplicates. 

PCR 

PCR was performed on H37Rv Mycobacterium tuberculosis DNA (provided by Brian 

Robertson, Imperial College, London, UK) to amplify the specific regions and also to 

incorporate biotin labels in the sample. Primers were chosen from IS6110 transposable 

element. Two sets of primers with biotin labels were obtained from Invitrogen. One set was 

used to amplify a region containing the complementary region with respect to the probe. The 

primers for complementary sequence amplification was from Mycobacterium tuberculosis 



transposable insertion element, IS6110 at position 791(forward primer) 5’-TAA CCG GCT 

GTG GGT AGC A-3’; and at  position 864 (reverse), 5’-CGG TGA CAA AGG CCA CGTA-

3’ and the other set was used to amplify the region non-specific to the probe, also from 

IS6110 at position 1062 (forward primer), 5’-CCGAGGCAGGCATCCA-3’ and at position 

1132 (reverse primer), 5’-GATCGTCTCGGCTAGTGCATT-3’. The PCR was performed in 

50 µL volume containing taq polymerase (1 U/µL), forward  and reverse primers (25.6 

nmol/L), 1x reaction buffer,  MgCl2 (3 mM) dNTPs (1µM), template DNA (7.2 ng/µL) and 

sterile distilled water. The amplification parameters were as follows: 94◦C for 5 minutes 

followed by 40 cycles at 94◦C for 1 minute, 58◦C (complementary region) and 60◦C (non- 

complementary region) for 1 minute, at 72◦C for 1 minute. After the 40 cycles the samples 

were heated at 72◦C for 10 minutes. The samples were then subject to gel electrophoresis in 

2% agarose gel.  

Assay with PCR product 

The PCR products were used without further purification. The obtained products were heated 

to 95◦C to denature the helical duplex and then rapidly cooled in ice. 10 µL of the PCR 

product was added to 90 µL of hybridization buffer and added on to probe immobilized 

tosylated strips and hybridized at 59◦C for 1 h.  The samples were washed 3 times with fresh 

distilled water each time for 15, 5 and 5 minutes respectively. PCR controls without template 

DNA were used as controls for the assay. The experiment was carried out in triplicates. The 

detection was carried out as mentioned above. 

Results and Discussion 

Tosylation of Cellulose 

Cellulose was tosylated successfully with modifications to the method described by Rahn et 

al. [60]. The infrared (IR) absorption spectrum of tosylated cellulose in figure 1a shows 

characteristic peaks at 814 cm-1 (aromatic C-H bend vibration), 1177 cm-1 (symmetric SO2 

stretch vibration), 1364 cm-1 and 1598 cm-1 (aromatic C-C bend vibrations), which are not 

present in the spectra of control cellulose films and cellulose powder (figure 1b & c). These 

results show that cellulose was successfully tosylated and the modifications that were made 

to the reported tosylation method did not impact the formation of the tosylated cellulose 

product. The scanning electron microscope images show the difference in the structural 

appearance of the tosylated cellulose, control cellulose film, Whatman filter paper and 

cellulose powder (Figure 2a-d). The Scanning Eelectron Microscopy (SEM) image of 



tosylated cellulose in figure 2a had a very porous and uneven surface. On the contrary in 

figure 2b the control cellulose film had smooth surface with bigger sized lumps of material 

appearing at random locations possibly caused by undissolved lithium chloride. Tosyl 

chloride disrupts the formation of dimethyl acetamide Li+ and forms the tosyl derivative of 

cellulose which does not occur in the control cellulose film and this may attribute to the 

difference in the surface appearance. SEM images in figures 2c and 2d show that Whatman 

filter paper consists of a network of fibres, while cellulose powder has an uneven surface with 

thicker lumps of material..  

Elemental analysis of tosylated cellulose and control cellulose films was carried out. The 

elemental analysis showed the expected high sulphur content relative to the chlorine content. 

However the chlorine content is higher than reported previously [60]. This may be a 

consequence of not subjecting the sample to washing in ethanol and re-precipitation in 

acetone. This step was avoided to retain the samples as rigid materials to enable a paper like 

surface for biomolecule immobilization. The degrees of substitution of hydroxyl groups with 

sulphur (DSs) in tosylated cellulose are shown with elemental analysis results in table 1. An 

absolute maximum value for DSs obtainable for tosylated cellulose is 3.0, since there are 

three hydroxyl groups per glucose unit.  The DSs of 0.28 (9.6%) and 0.3 (10%) are much 

smaller  than the value of 1.36 (45.6%) obtained previously for a similar cellulose starting 

material [64]. The degree of substitution has a direct impact on the sensitivity of the system 

because it determines the number of sites available for biomolecule immobilization. 

However, as demonstrated in this work the use of this material for biosensing applications 

was  possible. 

Quantification of Probe immobilization 

In order to estimate the amount of probe oligonucleotides that immobilise covalently on the 

tosylated cellulose surface fluorescein labelled oligonucleotides were used for immobilization 

at various concentrations. The amount of probe covalently bound to tosylated cellulose was 

calculated indirectly by determining the amount of probe that did not bind to cellulose, but 

could be washed off. The results show that there was an increase in covalent attachment with 

increasing amount of probes added (Figure 3). The linear increase is observed only until 0.25 

 nmol  after which there was a fluctuating amount of covalent attachment of the probe. It is 

possible >0.25 nmol probe added leads to non-specific adsorption of probe including 

entrapment in the cellulose fibre network. The fluctuations in the amount of probe 



immobilisation is then caused by variation in the cellulose sample. Producing tosylated 

cellulose paper in an automated paper manufacturing process would eliminate these 

fluctuations. For the present study, in order to ensure a reproducible quantity of probe for 

immobilization, a final quantity of 0.25 nmol was used corresponding to a concentration of 

2.5 µM in 100 μL solution. Higher probe concentrations would also incur a higher cost in 

manufacturing of the biosensor. The fraction of covalent probe immobilization was higher 

than 90% of the total amount of probe added (Table 2). This immobilization efficiency is 

much higher than previously reported covalent oligonucleotide immobilization methods 

[62,63]. Despite achieving these high immobilization efficiencies, the total amount of probe 

molecules that can bind to tosylated cellulose remains low because of the observed low 

degree of substitution to a maximum of 10% of the available hydroxyl groups.  

DNA detection 

The bioassay used for DNA detection exploiting the specific hybridisation of a biotin-labelled 

oligonucleotide with a cellulose attached oligonucleotide probe is shown schematically in 

figure 4a. The streptavidin-HRP conjugate functions as a transducer that provides the visual 

readout of hybridisation as the biorecognition event. As the signal processing element, the 

human eye or a scanner, is not an integral part of the system, it must be termed a ‘bioassay’ 

instead of a ‘biosensor’. The results in figure 4b show the successful detection of target DNA 

complementary to the probe. Intense blue coloured spots characteristic of TMB oxidation via 

HRP/H2O2 were obtained with target DNA, while a DNA oligonucleotide with randomized 

sequence showed blue coloured spots of lower intensity and no blue coloured spots were 

obtained in a negative control experiment without DNA olgonucleotide. The results show 

clearly that specific hybridization of target-probe sequences was achieved and provide an 

indirect confirmation of successful tosylation and probe immobilization. Covalent 

immobilization of oligonucleotides has been successfully used for electrochemical, optical 

and colorimetric DNA biosensor assays. Some of these include polypyrrole-polyvinyl 

sulphonate coated platinum electrodes covalently linked with 25 bp polydeoxycytidine (dc) 

using avidin-biotin binding and carbodiimide coupling [64], amide formation using amine 

functionalised  probes and oxidised cellulose [9], thiol or amine modified oligonucleotides 

attached to a photoactive polystyrene surface [37] and thiol functionalised oligonucleotides 

covalently linked to gold nanoparticles [65]. In the present work the specific detection of 

DNA using tosylated cellulose-linked oligonucleotide probes was demonstrated for the first 

time. The paper strip has the potential to be developed into an array type sensor by 



immobilization of oligonucleotides of different sequences at various spots, thus allowing for 

multiplexed detection of specific various characteristics of pathogens. Within the current set-

up the spots are of irregular size, which could be circumvented by micropatterning the paper 

using wax printing [66]. 

 

 

Limit of detection 

The detection limit of the cellulose-strip biosensor was determined by using a range of 

oligonucleotide concentrations from 0.01 µM to 1.0 µM (see figure 5a for examples). The 

quantitative analysis shown in figure 5b reveals a clear difference between target and random 

oligonucleotide samples up to a concentration of 0.05 µM, which corresponds to a total 

amount of 5 pmol in 100 μL volume. This detection limit is higher, but within a similar range 

of other similar DNA hybridization based biosensors developed using oligonucleotides 

immobilized onto polystyrene plates or streptavidin coated microtitre plates. These two 

systems also exploit H2O2 oxidation with streptavidin-hrp conjugate systems and have a limit 

of detection of 4 nM and within the µM ranges respectively [37,67]. The assay sensitivity is 

far less than gold nanoparticle based DNA biosensors which have detection limits of 200 pM 

and 1.1 fM [38,17]. Although such high sensitivities are achieved these methods involve 

either processes such as vacuum filtering for allowing adsorption of gold nanoparticle 

labelled oligonucleotides on cellulose acetate membranes or chemiluminescent detection of 

the signal which make them unsuitable for achieving results at the point of sampling. 

Electrochemical methods based on voltammetry and impedimetry are able to reach high 

sensitivity in the pM and fM ranges [64,68-70], however these methods require expensive 

electrodes, coating of glass electrodes  carbon nanotubes for immobilization and 

hybridization which is not desirable [71]. Optical methods using FRET based on quantum 

dots and SERS for DNA detection have also demonstrated sensitivities of < 10nM and  

2.5 pM respectively but require high cost fluorimeters and spectrometers for analysis which 

are not portable and cumbersome to use [72,73]. The use of cost effective modified cellulose 

strips with visual detection up to 0.1 µM (0.1 pmol/µL) could be advantageous over other 

methods once further optimised. It is possibly that the sensitivity can be improved, for 

example, by enhancing the degree of tosylation of cellulose. 



Specificity 

The specificity test was carried out to ascertain what level of base-pair mismatches could be 

tolerated. The biosensor was treated with oligonucleotide solution at 1 µM, while the 

oligonucleotide had zero, one, two and three base pair mismatches to the surface-attached 

probe (figure 6a). The averages of the signal intensity over various experiments are shown in 

figure 6b and  are compared with the negative control randomised oligonucleotide sequence. 

The results show an increase in signal fluctuation with base pair mismatches, while there is 

an overal tendency to lower signal intensities with an increasing number of base mismatches. 

However, even at three base mismatches, the signal is above the level obtained by the 

negative control. This shows that the biosensor on the one hand is able to detect 

oligonucleotides of similar but variable sequences, but on the other hand the specificity is not 

very high. In a similar method based on DNA-oligonucleotides attached to a polystyrene 

surface and HRP detection, up to two base-pair mismatches between a biotinylated probe and 

target lead to a detectable signal, while three base-pair mismatches were undistinguishable 

from a random target [37]. Most likely the specificity depends on the combination of probe 

and target sequences (in particular the GC-content) and could be increased by choosing 

different probes, raising the hybridisation temperature and/or by adding denaturants such as 

formaldehyde or dimethylsulphoxide. The melting temperature of the probe-target pair used 

in the current study was 68°C.  

Hybridization time 

From a practical point of view, the time required for the assay should be as short as possible. 

Towards that goal the dependence of signal intensity on the hybridisation time was 

investigated between 30 minutes to 120 minutes (figure 7).  Interestingly, shorter 

hybridisation times between 30 and 60 minutes produce the highest signal. It is possible that 

longer hybridisation times lead to irreversible non-specific attachment that cannot be 

removed be subsequent washing steps. A 30 minutes hybridisation time would be advantages 

in a clinical or point-of-care setting, as results could be provided to the end user in a short 

time frame. These hybridization times are much more preferable to those reported earlier 

which range from 5 h in a colorimetric detection method [74] to 18 h in electrochemical 

methods [75]. Some gold nanoparticle based assays can yield results in minutes, however the 

colour change in such cases are likely to be highly unstable making them less reliable [17]. 

PCR Assay 



In order to test the cellulose-based biosensor with pathogen DNA, DNA from Mycobacterium 

tuberculosis was amplified by the polymerase chain reaction (PCR). 

A short region from the transposable element IS6110 was chosen, because it is a multiple 

copy element which is spread over the entire genome, and the location of IS6110 can be used 

for the identification of a particular strain. IS6110 based PCR is viable for routine use in 

clinical laboratories for M. tuberculosis in sputum samples [76]. The PCR was designed to 

amplify a small 74bp-sequence including the sequence complementary to the immobilized 

probe. Another 71bp-sequence non complementary to probe was amplified as well and used 

as negative control. The PCR products had the expected size as shown by agarose gel 

electrophoresis (figure 8a). Bands were obtained for both complementary and non-

complementary products at a migration distance corresponding to 74bp and 71bp. The PCR 

products were used directly for detection without purification after denaturing at 95○C for 10 

minutes and rapidly cooling in ice. 

The results of the bioassay in figure 8b showed that the PCR products corresponding to the 

complementary region of the probe yielded an expected blue colour, and the non-

complementary PCR products and controls did not yield any colour indicating that the assay 

was successful for the samples obtained from bacterial DNA isolates. While the PCR reaction 

is required to introduce biotin lables, even in combination with PCR the reported method has 

two advantages. Firstly, the method has the potential for array-type assays or biosensors on 

cellulose surface with multiple probes that may be used distinguish between various 

pathogens in one step or determine the specific genomic type of the pathogen and secondly 

that it has potential to provide same day results in the field using portable PCR systems 

[reviewed in 77]  

In summary, we have demonstrated the successful use of tosylated cellulose strips for the 

immobilization of oligonucleotides, and the development of a colorimetric assay for 

pathogenic DNA. The method has a number of advantages – it is highly cost effective as the 

tosylated cellulose strips themselves could be produced easily in large scale possibly during 

the process of paper manufacturing. Multiplexed detection systems could be produced by 

attaching oligonucleotide probes to different spots on the surface of micropatterned paper 

[66]. Once the biosensor has been produced the detection method eliminates the requirement 

of sophisticated instruments, except a portable PCR, and the strips can be disposed after use. 

The reagents and probes are used in low concentrations and can be used for many assays 

hence avoiding recurring expenditure. 
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Substance  Elemental Analysis  Degree of 
substitution 
(Sulphur)  Sulphur (%)  Chlorine 

(%)  
cellulose 
(control)  

<0.10  2.70  0.00565  

                
Replicate  

<0.10  2.68  0.00565  

Tosylated 
cellulose  

4.05  2.72  0.283  

                
Replicate 

4.33  2.84  0.308  

Amount of Probe 
added (nmoles) 

Amount of probe 
immobilized 

covalently(nmoles) 

Percentage immobilization(%) 

0.05 0.045 90.08 
0.1 0.091 91.088 
0.15 0.124 82.59 
0.2 0.195 97.44 
0.25 0.232 93.16 
0.3 0.192 63.95 
0.35 0.165 47.21 
0.4 0.370 92.70 
0.45 0.340 75.73 
0.5 0.478 95.76 

Table 1: Elemental analysis of control films and 
tosylated cellulose and degree of substitution in these 
samples calculated based on sulphur content 

 

Table 2: Efficiency of oligonucleotide probe immobilization on tosylated cellulose  



 

Figure legends 

Figure 1: FTIR spectra of (a) tosylated cellulose, (b) cellulose film, (c) cellulose powder 

Figure 2: Scanning electron microscope images of (a) tosylated cellulose, (b) cellulose film, 
(c) whatman grade 40 filter paper, (d) cellulose powder      
 
Figure 3: Immobilization quantities of fluorescein labelled  oligonucleotide probes on 
tosylated cellulose derived from area under the curve of fluorescence intensity measurements. 
  

Figure 4: (i) Schematic representation of biosensor method. (ii) Colour development on thiol  
probe immobilized tosylated cellulose strips after hybridization with (a) complementary 
(target),  (b) non-complementary (random) and (c) control 
 
Figure 5: (i) Sensitivity analysis of the assay with target and random sequences at 
concentrations (a) 1µM (b) 0.5µM (c) 0.1 µM (d) 0.05 µM (e) 0.001µM (f) control. (ii) Mean 
gray area pixel intensity of scanned images analysed with  ImageJ software. 
 
Figure 6: (i)Specificity analysis of the assay with (a) 100% complementary target, (b) single 
base mismatch, (c) double base mismatch, (d) triple base mismatch, (e) non-complementary 
(randomised probe) and (f) negative control without addition of oligonucleotides. (ii) Assay 
specificity quantification with mean gray area analysis of pixel intensity of scanned samples. 
 
Figure 7: Hybridization time analysis for assay with mean gray area analysis of scanned 
samples.   
 
Figure 8: (i) ~74bp PCR products in 2% agarose gel. (1) 25bp ladder; (2 & 3) bands from a 
PCR product complementary to the probe; (5 & 6) bands from a non-complementary PCR 
product; (4 & 7) controls without template DNA; (8) 50bp ladder. (ii) Assay (colour 
development)  performed with PCR products corresponding to (a) region complementary to 
probe (b) non complementary region (c) negative control (without DNA). 
 

 

 

 

 

 

 

 


