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Abstract

This thesis confronts Penelope Maddy’s Second Philosophical study of set
theory with a philosophical analysis of a part of contemporary set-theoretic
practice in order to argue for three features we should demand of our philo-
sophical programmes to study mathematics. In chapter 1, I argue that the
identification of such features is a pressing philosophical issue. Chapter 2
presents those parts of the discursive reality the set theorists are currently in
which are relevant to my philosophical investigation of set-theoretic practice.
In chapter 3, I present Maddy’s Second Philosophical programme and her
analysis of set-theoretic practice. In chapters 4 and 5, I philosophically in-
vestigate contemporary set-theoretic practice. I show that some set theorists
are having a debate about the metaphysical status of their discipline– the
pluralism/non-pluralism debate– and argue that the metaphysical views of
some set theorists stand in a reciprocal relationship with the way they prac-
tice set theory. As I will show in chapter 6, these two stories are disharmo-
nious with Maddy’s Second Philosophical account of set theory. I will use this
disharmony to argue for three features that our philosophical programmes
to study mathematics should have: they should provide an anthropology of
mathematical goals; they should account for the fact that mathematical prac-
tices can be metaphysically laden; they should provide us with the means to
study contemporary mathematical practices.
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Chapter 1

A Pressing Concern

How to philosophise about mathematics? It is a common view that the
question what role mathematical practice should play in our philosophical
investigations divides the philosophers of mathematics into two camps: the
mainstream philosophers of mathematics pay little attention to mathematical
practice, the philosophers of mathematical practice claim that mathematical
practice should not or even cannot be ignored in our philosophical investi-
gations. In this chapter, I aim to show that philosophers of mathematics
disagree about the relevance of mathematical practice to the philosophical
enterprise, the philosophical methods to interrogate mathematical practice
and the very question what ‘mathematical practice’ is supposed to mean. I
argue that in light of this heterogeneity of the philosophy of mathematics the
question which features we should demand of a philosophical programme to
study mathematical practice becomes a pressing question for the philosopher.

I conclude the chapter with a brief outline of the aims and content of this
thesis.

1.1 Rebellion

In 1988, William Aspray and Philip Kitcher wrote in their ‘Opinionated
Introduction’: ‘prevailing orthodoxy takes the history of the philosophy of
mathematics to start with Frege’; [Aspray & Kitcher, 1988], 3. Everything
before then is prehistory. Building on work of J. W. Richard Dedekind,
Karl T. W. Weierstrass and others, so Aspray and Kitcher tell us, Gottlob
Frege undertook a review of the possible ways to set arithmetic on a firm
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10 CHAPTER 1. A PRESSING CONCERN

foundation. Having argued that arithmetic is neither a posteriori, nor is
there a mathematical a priori intuition, Frege concluded that the foundation
of mathematics is logic. Frege tried to develop this foundation. Today,
this project bears the name logicism. In 1902, Bertrand Russell discovered
a logical inconsistency in Frege’s foundations, which only underscored the
importance of the foundational project, according to Aspray and Kitcher.
Around the same time two rival programmes to logicism arose: formalism,
championed by David Hilbert, and intuitionism, championed by Luitzen E.
J. Brouwer. The philosophers studying the pros and cons of these three
foundational positions form, for Aspray and Kitcher, the orthodox camp in
the philosophy of mathematics.

As Aspray and Kitcher tell us, ‘the distance between the philosophical
mainstream and the practice of mathematics seems to grow throughout the
twentieth century’; [Aspray & Kitcher, 1988], 17. Orthodox philosophy of
mathematics, which had originated from the works of the above mentioned
mathematicians, became increasingly divorced from mathematical practice
and turned instead to ‘the most general and central issues in philosophy–
issues in epistemology, metaphysics, and philosophy of language’; ibid., 17.
A minority of philosophers of mathematics drew attention to this divorce of
philosophy and mathematical practice and argued for a reunion. Aspray and
Kitcher call these philosophers the ‘mavericks’.

‘If the mainstream began with Frege, then the origin of the maverick
tradition is a series of four papers by [Imre] Lakatos, published in 1963-64
and later collected into a book [Lakatos, 1976]’; [Aspray & Kitcher, 1988],
17. Lakatos did not participate directly in the foundational debate. Instead,
Lakatos used a detailed historico-philosophical case-study of the development
of the concept of a polyhedron to discuss mathematical methodology. A
discussion of mathematical methodology was already present in [Pólya, 1973].
However, George Pólya was concerned with heuristics. Lakatos used the same
case-study as Polya– the Descartes-Euler formula– to make an argument in
epistemology. Lakatos rejected the view that mathematical knowledge is
secure because it is proven in the strong sense of the prevailing orthodoxy. For
Lakatos, mathematical knowledge is fallible. This argument is not present in
Pólya’s work.

According to Aspray and Kitcher, the maverick tradition takes the central
task of the philosophy of mathematics to be the articulation of the method-
ology of mathematics. Aspray and Kitcher name Emily Grosholz, Michael
Hallett, Mark Steiner and Kitcher himself as followers of this maverick tra-
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dition.
20 years after Aspray’s and Kitcher’s ‘Opinionated Introduction’, Paolo

Mancosu attempted to delineate the maverick tradition in his introduction
to [Mancosu, 2008]. Like Aspray and Kitcher, he presents the mavericks
in opposition to the orthodox camp. Unlike Aspray and Kitcher, Mancosu
credits Paul Benacerraf with setting the research agenda for, as Mancosu
calls it, mainstream philosophy of mathematics. In 1965 Benacerraf wrote
the paper ‘What Numbers could not be’ and in 1973 ‘Mathematical Truth’.
These papers pose the questions whether there are mathematical objects and
if so how we could have access to them. According to Mancosu, this ‘problem
of access’ has been the problem that philosophers of mathematics have been
pursuing for the last fifty years. Aspray and Kitcher had made a similar
point; [Aspray & Kitcher, 1988], 14.

Mancosu’s view on the mavericks is that they rebel against mainstream
philosophy of mathematics. According to him, they have an ‘iconoclastic
attitude’ (ibid., 5) in regards to what had been done in the foundational
project of the philosophy of mathematics, which ‘throw[s] away the baby
with the bathwater’ (ibid., 6). Mancosu individuates three claims to which,
according to him, the maverick philosophers of mathematics subscribe. In
his words:

1. anti-foundationalism, i.e. there is no certain foundation for
mathematics; mathematics is a fallible activity;

2. anti-logicism, i.e. mathematical logic cannot provide the
tools for an adequate analysis of mathematics and its devel-
opment;

3. attention to mathematical practice: only detailed analysis
and reconstruction of large and significant parts of mathe-
matical practice can provide a philosophy of mathematics
worth its name. ([Mancosu, 2008], 5)

Mancosu then distinguishes between those iconoclastic rebels of Aspray’s and
Kitcher’s maverick tradition who subscribe to the three claims above from the
not so iconoclastic philosophers of mathematical practice who, like himself,
do not commit to these three claims.

Aspray and Kitcher had described the landscape of the philosophy of
mathematics as consisting of two traditions: the ‘orthodox’ and the ‘maver-
icks’. Mancosu claims that, 20 years after [Aspray & Kitcher, 1988], there is
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a new tradition: the ‘philosophy of mathematical practice’. In this chapter,
I argue that the non-mainstream philosophy of mathematics is too heteroge-
neous to be aptly described as consisting of one or two traditions.

A word on terminology is in order. Mancosu has called the tradition
he supports the ‘philosophy of mathematical practice’. The term ‘philoso-
phy of mathematical practice’ or ‘practice-oriented approach to the philos-
ophy of mathematics’ is, however, also used more broadly to refer to all of
non-mainstream philosophy of mathematics; mavericks and Mancosu’s ‘phi-
losophy of mathematical practice’ alike. I will use the broader sense of the
word in what follows; Mancosu’s terminology will play no further part in this
thesis.

1.2 A turn to practice?

I am arguing that the philosophy of mathematics is heterogeneous in a way
that requires us as philosophers to answer the question which features we
should demand of our philosophical programmes to study mathematics. To
do this, I use the mainstream/practice-oriented distinction naively, which
will allow me to show that this naivety is inapt to describe the philosophical
landscape.

What makes a contribution to the philosophy of mathematics a contri-
bution to the philosophy of mathematical practice? We might want to say
that said contribution takes mathematical practice seriously. Lakatos studied
‘what mathematicians actually do’ – an often heard mantra, even today– and
used what he had learned from his attention to mathematical practice in his
philosophical arguments. However, this mantra will not do as a demarcation
criterion between the mainstream philosophy of mathematics and the philos-
ophy of mathematical practice. The major players in the early stages of the
foundational debate were mostly mathematicians: Frege, Russell, Brouwer,
Hilbert, Gödel and others. Their philosophical views were influenced by their
in-depth knowledge of mathematics as practised. Kurt Gödel, a platonist,
held that we might have to accept certain mathematical axioms because of
their verifiable consequences, implying that mathematical practice and re-
sults play a role for the philosophy of mathematics; cf. [Gödel, 1947]. Frege
formalised what he considered to be the mathematical reasoning at his time
and this formalism was to become Frege’s foundation for mathematics in his
logicism programme.
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Attention to practice in mainstream philosophy of mathematics continues
to this day. José Ferreirós and Jeremy Gray tell us that attention to mathe-
matical ‘practice is to a greater or lesser extent on the agenda of basically all
active philosophers of mathematics’; [Ferreirós & Gray, 2006], 12. Mark Bal-
aguer agrees with this; [Balaguer, 1998]. Like Aspray and Kitcher, Balaguer
sees the philosophy of mathematics split into two traditions or ‘projects’,
as Balaguer calls them. One is the ‘hermeneutical project’ of ‘providing an
adequate interpretation and account of mathematical theory and practice’;
ibid., 3. The other is the ‘metaphysical project’, which uses ‘mathematical
theory and practice to solve the metaphysical problem of abstract objects’;
ibid., 158. Balaguer pledges allegiance to the metaphysical project, i.e., Bal-
aguer can be considered as a mainstream philosopher of mathematics. Thus,
Balaguer is an example of a mainstream philosopher of mathematics who
agrees that ‘mathematical theory and practice’ play a role in the philosophy
of mathematics.

Attention to mathematical practice hence cannot serve as a demarcation
criterion between mainstream philosophy of mathematics and the practice-
oriented approach. At least not if, as I have done above, the term ‘mathe-
matical practice’ is understood as a primitive term. I will have more to say
on the term ‘mathematical practice’ in section 1.5. For now, I will continue
to use ‘mathematical practice’ as a primitive term.

1.3 Idealisation

Mainstream philosophers of mathematics may reasonably ask why the math-
ematical activities of mathematicians tell us anything about the ontological
and epistemological questions surrounding the foundational debate and Be-
nacerraf’s problems. What is the philosophical importance of mathematical
practice? There are proposals for answers to this question and I will explore
one of them, Penelope Maddy’s, in chapter 3. Here I wish to concentrate on
the question rather than proposals for an answer. The question implies that
the philosophy of mathematics ought to study the ontological and epistemo-
logical questions. Aspray and Kitcher write: ‘it is pertinent to ask whether
there are not also other tasks for the philosophy of mathematics, tasks that
arise either from the current practice of mathematics or from the history of
the subject’, and the proponent of a philosophy of mathematical practice
Kitcher answers ‘yes’; [Aspray & Kitcher, 1988], 17. The aim is to extend
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the scope of the philosophy of mathematics. Mancosu gives a list of topics
that could do so: ‘issues having to do with fruitfulness, evidence, visualiza-
tion, diagrammatic reasoning, understanding, explanation and other aspects
of mathematical epistemology which are orthogonal to the problem of ac-
cess to ‘abstract objects”; [Mancosu, 2008], 1-2. It is understandable that
mainstream philosophers of mathematics might regard the new questions as
missing the point– they do, they where not designed to hit it– and it is also
understandable that philosophers of mathematical practice might resent the
dismissal of their questions.

Some philosophers of mathematical practice do more than merely ex-
tending the scope of the philosophy of mathematics. They criticise the tools
the mainstream philosophers of mathematics use to answer their questions.
One of the criticisms is that mainstream philosophy of mathematics is con-
cerned with an idealised conception of mathematics which is philosophically
damaging. In what follows, I discuss this in more detail.

Ferreirós and Gray write

For centuries, the Western tradition tended to conceive of math-
ematics as an idealized collection of theories, living perhaps in
an ideal space and waiting to be pinpointed by human beings.
([Ferreirós & Gray, 2006], 12)

Later they add

Just as the working masses failed to conform to the theoretical
prescriptions of Marxist political parties and real existing social-
ism didn’t look like ‘Socialism’, real existing proofs often fell far
short of ‘proof’ and can be analysed accordingly. Not to put them
right, but to open up the question of how they (and not some ide-
alized, but non-existent object) persuaded and convinced. ([Fer-
reirós & Gray, 2006], 36)

Ferreirós and Gray have picked a striking example of philosophical idealisa-
tion of mathematics: the concept ‘proof’. A formal derivation consists of
strings of symbols. The symbols have to be arranged in a certain way (they
have to form well-formed formulae written down line by line etc.) and there
are rules that govern what may be written on each line (premisses; use of
modus ponens etc.). As the authors of [Buldt et al, 2008] tell us, formal
derivations are usually used to represent mathematical proofs in discussions
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of mathematical methodology; 310. ‘In mathematical practice, proofs are
written down in a more condensed, semi-formal style’; ibid., 310. The ‘tra-
ditional view’ (ibid.) is that in such proofs technical details are left out
for purely pragmatic reasons and the proofs could be completed to formal
derivations. Bernd Buldt, Benedikt Löwe and Thomas Müller make two
observations:

First, the completion of enthymematic, semi-formal proofs to for-
mal derivations almost never happens and hardly plays any rôle
in the justification that mathematicians give for their theorems;
second, also the production of semi-formal proofs [...] is only the
final step of the mathematical research process. This final step,
while important for the documentation of results and crucial for
the careers of researchers, is not necessary for the acceptance
of a proof by the mathematical community. For this, different
forms of proof are much more relevant: informal sketches on the
blackboard, or scribblings and drawing on napkins. ([Buldt et al,
2008], 311)

Mathematical knowledge holds a special place in philosophical thinking not
least because it is proven. With this is mind, the following question is ap-
pealingly suggestive.

Shouldn’t [the above] forms of proof replace the unrealistic notion
of formal derivation in our epistemology of mathematics? (ibid.)

This view attacks mainstream epistemology of mathematics. The authors
argue that the tools of mainstream epistemology of mathematics, idealisa-
tions of proof in this case, are inapt for what they are intended to do. The
claim is that by considering idealised proofs we idealise away the problem, re-
placing it with a new and different problem about these idealisations. These
philosophers argue that the old understanding of proof should be replaced
with their more practice-oriented understanding. This is an argument for a
change in the philosophical tools we are using and thus the authors call for
a change in how epistemology is done.

This call for change in the epistemology of mathematics is not shared
by all philosophers of mathematical practice. For example, Mancosu argues
for an extension of the scope of philosophy of mathematics in the sense de-
scribed in the beginning of this section. He disagrees with the claim that
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‘the achievements of [the mainstream] tradition should be discarded’; [Man-
cosu, 2008], 18. For him the ‘over-emphasis on ontological questions’ and the
‘single-minded focus on [Benacerraf’s] problem of ‘access’ has reduced the
epistemology of mathematics to a torso’; [Mancosu, 2008], 1. He holds that
‘the epistemology of mathematics needs to be extended’ (ibid.), not that it
needs to be changed, as Buldt, Löwe and Müller argue. In this sense, Man-
cosu’s views, unlike those of Buldt, Löwe and Müller, are continuous with
mainstream epistemology of mathematics.

We learn from the above that by 2008, twenty years after Aspray’s and
Kitcher’s ‘Opinionated Introduction’, there is dispute amongst the
non-mainstream philosophers of mathematics. The conservatives argue that
the philosophy of mathematical practice should extend the scope of, but be
continuous with, mainstream philosophy of mathematics. The radicals hold
that mainstream philosophy of mathematics uses the wrong philosophical
tools for its tasks and should be discarded in favour of a philosophy which is
discontinuous with mainstream philosophy of mathematics. Mancosu leans
towards the conservative end of the spectrum, Buldt, Löwe and Müller to-
wards the more radical end.

Aspray’s and Kitcher’s terms ‘mavericks’ and ‘rebels’ for the philosophers
of mathematical practice no longer describe the contemporary philosophical
landscape. Mancosu points out a list of new questions and areas of research,
but he proposes to address them in a manner that is continuous with main-
stream philosophy of mathematics. This does not amount to a rebellion.

I lean towards the more radical end of the above mentioned spectrum; I
hold that the kinds of idealisations discussed in this section can be harmful to
our philosophical understanding of mathematics. To give just one argument
to support this view, consider the following quotation: ‘Different mathemat-
ics gets done in different places’; [Ferreirós & Gray, 2006], 23. This point
can hardly be denied. The question is however whether these differences are
philosophically important. I argue that they are.

Consider the mathematical reasoning of the ancient Greek masters. On
the face of it, there are some very obvious differences in their mathematical
reasoning and contemporary (European) mathematical reasoning. Kenneth
Manders for example has a piece in [Mancosu, 2008] which explores the dia-
grammatic reasoning of Euclid; pp. 80-133. If proofs were formal derivations
(as explained above), Euclid would not have produced proofs. In fact, he
could not have done so. The point is simply that the formalisms needed for
such formal derivations began to take the shape they have today only in the
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20th century. But of course this is not what the idealisers mean. What they
would point out is that if the proof is a correct proof, then it could be tran-
scribed into the relevant formalisms and would thus be seen as a proof. This
implies that Euclid and his followers did not produce proofs in the proper
sense, but prototypes of such proofs. Transcribing these prototypes of proofs
into the formal derivations of the idealisers can be arduous. Hilbert for ex-
ample spend some effort transcribing Euclid’s proofs into formal derivations.
Along the way he found various ‘missing assumptions’ in Euclid’s work; cf.
[Kline, 1972], chapter 42. For example, Euclid had assumed, without stating
so explicitly, that geometric lines do not have gaps. Once these proofs were
‘tided up’, the additional assumptions stated and so on, the proofs were seen
to be correct (in a geometrical space without curvature). But notice that
‘proof’ refers to two different kinds of proof in the antecedent sentence: the
former use of ‘proof’ refers to Euclid’s proof, the latter to the formalism.
The idealisers are talking about the formalisms. Setting aside the insulting
undertone that the ancient masters did not produce proofs (and, as we have
learned from [Buldt et al, 2008], that hardly anyone else does) but only pro-
totypes of proofs, the idealisers are changing the subject matter here. But
the subject matter is important. It is what we philosophise about. To re-
place it by an idealisation is to lose grip on the discursive reality of the given
argument and hence on the claim to a philosophically satisfactory account.
The idealisers might disagree and claim that a grip on this reality is not lost,
that all that is important in a proof is translated into the formalisation as
well. Why should this be so? The idealisers owe us an argument here which,
so I argue, cannot be given. ‘All that is important’ in a proof includes why
the proof persuaded and convinced. The actual proof did the convincing and
persuading, not the idealisation, and we need to account for that.

Some philosophical idealisations of mathematics obscure the social dimen-
sions that affect the mathematicians and the way they practice mathematics.
For example, according to Eduard Glas, a common view is that the product
of mathematical endeavours is alienated from the mathematician and ‘as-
sumes a partially autonomous and timeless status’; [Van Kerkhove & Van
Bendegem, 2007], 29. This has led to a concentration on the product rather
than its producers (i.e., the mathematicians) in philosophical thinking. To-
day, there are philosophical works about mathematical practice which show
that not only the product but also the process of production of mathemati-
cal knowledge is philosophically important. One of these is the contribution
to [Löwe & Müller, 2010], 155-178, by Christian Geist, Löwe and Bart Van
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Kerkhove. The authors ask whether the certainty of mathematical knowl-
edge is higher than in other scientific disciplines. Mathematicians rely on the
work of other mathematicians without always verifying the results. Thus,
mathematical knowledge could be closer to knowledge by testimony than
commonly assumed. To guard against errors, there is a peer-review process
in place. The authors discuss the extent to which proofs are checked in this
peer-review process and how much is expected by the community standards.
The authors draw our attention here to a social factor that has influence on
mathematical knowledge.

In an idealised conception of ‘proof’, the proofs of mathematicians are
mechanically verifiable and could, theoretically, be checked by a computer–
in fact, today automatised proof-checkers are powerful indeed. However, we
have already seen that proofs as they appear in mathematical practice are
different from formal derivations. The peer-review process is not done by
(infallible?) proof-checkers but by human mathematicians. Our philosophi-
cal accounts of mathematical knowledge have to account for this. And this
introduces a social dimension into our thinking about mathematics because
at this point the mathematician, the reviewers (and probably others) require
our philosophical attention.1

Notice that agreeing to the claim that mathematics has a social dimension
does not necessarily undermine the objectivity of mathematical knowledge.
For example, Glas writes ‘humankind has used descriptive and argumenta-
tive language to create a body of objective knowledge, stored in libraries
and handed down from generation to generation, which enables us to profit
from the trials and errors of our ancestors’; [Van Kerkhove & Van Bendegem,
2007], 40. This thought, which Glas traces back to Karl Popper, allows him
to argue that whilst ‘mathematics is a social practice’ (ibid.), mathemati-
cal knowledge is nonetheless objective. Of course, philosophers are free to
disagree. The point here is that accepting that mathematics has a social
dimension does not necessarily undermine the objectivity of mathematical
knowledge.

My above argument not only supports the more radical side on the conser-
vative/radical spectrum, it also shows that mathematical practice is relevant

1An exemplary study of the social dimension of mathematical knowing is Eva Müller-
Hill’s PhD thesis [Müller-Hill, 2011], in which she conducts an agent-based analysis of
mathematical knowing, focussing explicitly on the question whether a conception of a for-
malisable proof is necessary for a philosophical understanding of mathematical knowledge
and justification. For an English version of her results, see e.g. [Müller-Hill, 2009].
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to our philosophical understanding of mathematics. Attention to mathemat-
ical practice is necessary to avoid philosophically damaging idealisations of
what mathematics is. Thus, I advocate a radical practice-oriented approach
to the philosophy of mathematics.

I am arguing that the question which features we should demand of our
philosophical programmes to study mathematics is a pressing one. In the last
section, I argued that the study of mathematical practice is on the agenda of
both the mainstream and the practice-oriented approach. In this section, I
showed that the supporters of the practice-oriented approach disagree about
the continuity of their philosophy with mainstream philosophy of mathe-
matics along the conservative/radical spectrum. I also positioned myself
on the radical side of this spectrum. In the next section, I will show that
the practice-oriented philosophers of mathematics also disagree about their
methods.

1.4 Method

Matthew Inglis and Andrew Aberdein claim that ‘a common methodological
move made by philosophers of mathematics’ is to offer an example of a piece
of mathematics, assert that this piece of mathematics has a certain property
and ‘appeal to the reader’s intuitions for agreement’; [Inglis & Aberdein, to
appear], 2. Inglis and Aberdein call such philosophers exemplar philosophers
(ibid.). According to Inglis and Aberdein, exemplar philosophers are com-
mitted to the assumption that their intuitions about the example are widely
shared.

In [Inglis & Aberdein, to appear], the authors claim that the exemplar
approach to a practice-oriented philosophy of mathematics is unsatisfying.
Their test-case is the debate about explanatory mathematical proofs. As
Inglis and Aberdein tell us, Solomon Feferman suggests that those proofs
are more explanatory that are more general; [Feferman, 1969]. Mark Steiner
presents a proof which is, according to him, more general yet not explana-
tory, relying on his readers to share his intuitions on the explanatorieness of
the proof; [Steiner, 1978]. Thus, Steiner is an exemplar philosopher in Inglis’
and Aberdein’s sense. Steiner gives his own characterisation of explanatori-
ness: an ‘explanatory proof makes reference to a characterizing property of
an entity or structure mentioned in the theorem, such that from the proof it
is evident that the result depends on the property’; ibid. 143. Steiner sup-
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ports his understanding of explanitoriness by two examples: a proof which
is, according to him, explanatory and which fits his characterisation and
a proof which is, again according to him, not explanatory and which does
not fit his characterisation. Again Steiner relies on his readers to share his
intuitions on the explanatoriness of the presented proofs. As mentioned,
exemplar philosophers assume that their intuitions about the example are
widely shared. As Inglis and Aberdein argue, it is indicative of a problem of
the exemplar approach to philosophy of mathematical practice that Michael
Resnik and David Kusher disagree with Steiner’s intuitions about the proofs
Steiner presented; [Resnik & Kusher, 1987].

Inglis and Aberdein avoid the exemplar approach and rely on statistical
methods in their work instead. The plea for the use of statistical methods
in the philosophy of mathematical practice, or a plea for an ‘empirical phi-
losophy of mathematics’ as the authors call it, is also present in [Löwe et al,
2010]. The authors argue that some claims about mathematical practice are
empirical claims. For instance, as the authors tell us, it is often claimed that
mathematicians believe in the actual existence of mathematical objects and
‘that these mathematicians interpret their own work as mental manipulation
of abstract objects or of mental representations of abstract objects’; ibid., 2.
The authors note that this is an empirical claim and can thus be empirically
tested.

Löwe, Müller and Eva Müller-Hill hold that

Philosophy of mathematics, like other areas of philosophy, relates
phenomena (in this case, mathematics) to a philosophical theory.
Whether the philosophical theory is correct/adequate or not is
not independent of the phenomena. In analytic philosophy and
in particular in philosophical logic, the analysis of phenomena is
often done by a technique that one could call conceptual mod-
elling, philosophical modelling, or logical modelling, in analogy to
the well-known applied mathematics technique of mathematical
modelling. ([Löwe et al, 2010], 2)

The authors argue that these philosophical models, just like scientific-models,
can be tested against the phenomena. The study of these is, according to
Löwe, Müller and Müller-Hill, underdeveloped. There is little available data
against which to test philosophical models. According to the authors, this
shows a poverty of our current understanding of mathematical practice. They
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‘propose to consider collecting data that allow[s] to identify stable philosoph-
ical phenomena in mathematical practice’; ibid., 3. They lead by example.
They consider the philosophical model of what they view as the ‘traditional
view on mathematical knowledge’, collect and present some relevant data,
argue that there is no good fit between the model and the data and end their
paper with the suggestion that ‘we should now develop a new understanding
of knowledge that replaces the one that [the authors] called the ‘traditional
view”; ibid., 17.

Whilst the statistical methods of empirical data-collection produce results
that can reasonably be called general features of the studied practice, it can
push philosophical work from a qualitative engagement with mathematical
thought to the quantitative statistical results about these thoughts. It might
hence be unsurprising that not all philosophers of mathematical practice rely
on statistical methods in their writings.

One philosopher whose methods for the philosophical investigation of
mathematical practice rely less on the quantitative statistical results the
above authors stress is Brendan Larvor’s ‘dialectical philosopher of math-
ematics’. In [Larvor, 2001], Larvor works out what Lakatos might have
meant by ‘dialectical philosophy of mathematics’. In a dialectical argument
the terms employed may develop and change throughout an argument; the
meaning of ‘justice’ develops in the course of Plato’s Republic. In contrast,
formal logic requires the meanings of the terms of an argument to remain
fixed throughout the argument. Lakatos has called the former ‘language
dynamics’ and the latter ‘language statics’; [Lakatos, 1976], 93. Larvor’s di-
alectical philosopher of mathematics pays due respect to the language statics
of formal logic. However, his focus is the dialectical logic of mathematical de-
velopment. ‘The dialectical philosopher of mathematics seeks rationality and
integrity in the development of mathematics’; [Larvor, 2001], 216. Thus, the
dialectical philosopher of mathematics shares with the historian an interest
in development and change.

In contrast to the historians, the dialectical philosopher insists that ‘the
general direction of a historical development [in mathematics] is best ex-
plained by an analysis of the concepts governing that development’; ibid.,
215. For this analysis, the dialectical philosopher of mathematics adopts
what Larvor calls an ‘inside-phenomenological stance’; ibid., 214. As Larvor
stresses, this is neither a study of what it feels like to do mathematics, nor
is it concerned with the individual mathematician. Rather, it is a conscious
rejection of such idealisations of mathematics as I discussed in 1.3 whilst
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simultaneously insisting that rephrasing the philosophy of mathematics in
psychological and sociological terms is to give up philosophy in favour of
the outside-observer position of a (social) scientist. Instead, the dialectical
philosopher of mathematics is ‘interested in the “point of view” belonging
to mathematics itself’; ibid, 214. This philosopher assumes the rationality
and integrity of mathematical enquiry. Changes in mathematics, so the di-
alectical philosopher assumes, are normally brought about for mathematical
reasons. Outside factors, such as environmental or historical factors, are not
ignored, but as a ‘default position’ (215) it is assumed that mathematical
rationality gives reasons that guide the change.

To learn about the mathematical reasons that govern change, the dialec-
tical philosopher of mathematics is concerned with the ‘evaluative discourse
of mathematicians’; ibid., 218. However, Larvor offers no methodology which
would order this discourse. The dialectical philosopher of mathematics has no
philosophical model through which he studies mathematical practice; notice
that this point marks a clear difference with the empirical approach proposed
by Löwe, Müller and Müller-Hill mentioned above. ‘The ambition [of the
dialectical philosopher of mathematics] is to describe the rationale of math-
ematical research as we find it, rather than to press it into some pre-formed
mould’; ibid., 218. In this sense, Larvor sees the dialectical philosopher of
mathematics as a ‘methodological anarchist’; ibid, 218.

The results of the methodological anarchist are influenced by his choices
which cases to study. This problem is not discussed in Larvor’s paper. In his
book, [Larvor, 1998], Larvor mentions this problem for the Lakatos of Proofs
and Refutations, whom Larvor calls a methodological anarchist as well; cf.
[Larvor, 1998], 106. In Lakatos’ work, so Larvor argues, this problem remains
unresolved.

The problem might not be as serious as it at first appears. Once the
dialectical philosopher of mathematics has obtained his results about the
cases he has studied, he has illuminated a part of mathematical practice. All
he needs is an argument that his study of this part of mathematical practice is
in some way philosophically valuable. However, the methodological anarchist
loses any claim to have told us something about the ‘point of view’ of some
general mathematics.2 All he has on offer at this point is a philosophically
valuable story about a part of mathematical practice. Perhaps that is enough.

2As Larvor argues, Lakatos could not accept such a loss of generality in his programme
due to his political motivations, cf. [Larvor, 1998], 105.
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I have presented three approaches to philosophically investigate mathe-
matical practice; exemplar philosophy, empirical philosophy and dialectical
philosophy. There are more. The detailed presentation of one of these,
Maddy’s ‘Second Philosophy’, is the aim of chapter 3.

We have seen in this subsection some of the many methods philosophers
interested in mathematical practice use. These methods are not necessarily
mutually exclusive; e.g. the dialectical philosopher of mathematics might
learn something from the statistical results of the empirical philosopher of
mathematics. Nonetheless, these methods are noticeably distinct and some,
such as the method of the exemplar philosopher, are criticised by proponents
of other methods; in this case by Inglis and Aberdein. This shows that what
I have naively been calling the philosophy of mathematical practice is not
homogeneous in regards to its methods. This point is further strengthened by
the fact that some conservative philosophers of mathematical practice, such
as Mancosu, deem certain mainstream methods acceptable, e.g. idealisation
of ‘proof’, which more radical philosophers of mathematical practice, such as
myself, reject.

In my ongoing argument that the individuation of features which we
should demand from our philosophical programmes to study mathematics is a
pressing philosophical issue, we now know that the practice-oriented philoso-
phers disagree about their methods and whether they are continuous with the
mainstream approach. Furthermore, both mainstream and practice-oriented
philosophers connect their philosophy in some fashion with mathematical
practice, at least when a naive understanding of ‘mathematical practice’ is
at play. It is now time to discuss the term ‘practice’.

1.5 The Term ‘Practice’

Thus far, I have used the term ‘mathematical practice’ as a primitive term.
This is not only due to ease of exposition. There has been little attention of
the philosophers of mathematical practice to investigate in more detail what
‘mathematical practice’ is supposed to mean. There is little material to fall
back on, let alone a consensus on this topic. In this section, I present three
accounts in order to draw attention to some of the dimensions of ‘mathemat-
ical practice’. This will not amount to a definition of the concept. It will
however indicate what I take ‘mathematical practice’ to mean.

The mantra mentioned in 1.1 is that philosophers of mathematical prac-
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tice study what mathematicians actually do. However, not all they do classi-
fies as belonging to mathematical practice; mathematicians ride buses, drink
water and do many of the other things that are part of ordinary life. What
we mean by ‘mathematical practice’ only connects to the mathematical work
of the mathematicians. However, as pointed out in [Van Kerkhove & Van
Bendegem, 2004], what connects to mathematical work and what does not
is not so easily differentiable. For example, as Van Kerkhove and Jean Paul
Van Bendegem point out, we may reasonably hold that the chit-chat be-
tween mathematicians before a conference does not belong to mathematical
practice. But what if this chit-chat ultimately leads to the appointment of
a mathematician to a university position? What if this appointment leads
to the formation of a relevant and respected research group? The impor-
tance of networking for mathematicians might be a worthy subject of study
for a philosopher of mathematical practice and I am reluctant to exclude
conference chit-chat from philosophical consideration due to mere intuition,
even though I would agree that generally this chit-chat does not belong to
mathematical practice.

In [Kitcher, 1984], Kitcher defines a mathematical practice as a quintu-
ple consisting of a language, a set of accepted statements, a set of accepted
reasonings, a list of important questions and a collection of philosophical
or metamathematical views. Whilst this definition of ‘mathematical prac-
tice’ is sometimes cited in introductory texts to works on practice-oriented
philosophy of mathematics, e.g. [Mancosu, 2008], 4, n.2, it has found little
application in the wider works of the philosophers of mathematical practice.
As Mancosu reminds us, ‘Kitcher’s aim was to account for the rationality
of the growth of mathematics in terms of transitions between mathemati-
cal practices’; ibid., 4. Today, philosophers of mathematical practice also
engage in other questions about mathematics; recall here Mancosu’s list:
‘epistemological issues having to do with fruitfulness, evidence, visualiza-
tion, diagrammatic reasoning, understanding, explanation’; ibid., 1. This
list can be extended by considerations about the social dimension of mathe-
matical practice, historical considerations and so on. Kitcher’s definition of
‘mathematical practice’ may have been suitable for the job he wanted it to
do, but as a general understanding for the term ‘mathematical practice’ it is
philosophically unsatisfactory because questions about mathematical expla-
nation and understanding or the various aspects of the social dimension of
mathematical practice do not fit well into Kitcher’s concept.

Kitcher’s thoughts on ‘mathematical practice’ are taken up and elabo-
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rated further in [Van Kerkhove & Van Bendegem, 2004]. The authors of this
paper notice the difficulties in giving a closed definition of the concept of
‘mathematical practice’ as Kitcher did and remark:

when wanting to study mathematical practice in its entirety, the
vast structure one would have to look at consists at least of the fol-
lowing seven elements: MathPract = 〈M,P, F, PM,C,AM,PS, ...〉.
([Van Kerkhove & Van Bendegem, 2004], 11, emphasis in original)

Hereby M is the community of mathematicians, P stands for research pro-
gramme, F is a formal language, PM are the proof methods, C the concepts,
AM the argumentative methods and PS the proof strategies. But in what
sense did Euclid have a formal language? And what about mathematical
practices that did not rely on proofs, such as ancient Chinese mathemati-
cal practices? Arguably, Van Kerkhove’s and Van Bendegem’s open-ended
definition does not fit well either.

As Van Kerkhove and Van Bendegem mention, the primary scope of their
understanding of ‘mathematical practice’ is an institutional and social one;
ibid. 13. This shows something about the development of the philosophy
of mathematical practice. Where the early work of Kitcher remained close
to a more traditional understanding of mathematical activity, the more re-
cent work of Van Kerkhove and Van Bendegem incorporates other aspects of
mathematics, such as social, institutional, individual and cognitive dimen-
sions, into the understanding of mathematical practice as well.

According to Manders, ‘at its most basic, a mathematical practice is a
structure for cooperative effort in control of self and life’; [Mancosu, 2008],
82, emphasis in original. This allows for mathematical rigour: mathematical
activity is closely controlled to avoid error. Manders gives a detailed study
of such rigour in Euclidean geometric practice.

Manders’ account of ‘mathematical practice’ is promising, but underde-
veloped; note that Manders did not intend to philosophically delineate the
term ‘mathematical practice’ in his contribution to [Mancosu, 2008]. It is
promising because Manders manages to fruitfully apply his conception of
mathematical practice to his study of diagrammatic reasoning in Euclidean
geometric practice. His account of ‘mathematical practice’ cuts across the
various elements of the concept individuated by Kitcher, Van Kerkhove and
Van Bendegem in a way which seems to allow him to account for the dif-
ficulties the other authors face; it accounts for social dimensions as well as
mathematical practices without a proving-tradition for example. However,
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we lack a clear story why, for example, the conference chit-chat mentioned
at the beginning of this section sometimes is and sometimes is not part of
mathematical practice. This does not mean that such a story cannot be
given, just that Manders’ account is thus far underdeveloped.

I argue that ‘mathematical practice’ has a philosophically relevant hu-
man dimension. Mathematics is an intellectual activity and thus part of our
human intellectual life. Inquiring into mathematics as part of our human
intellectual life connects the philosophical investigation of mathematics to
disciplines outside of philosophy proper. There are points of fruitful con-
nection with the history of mathematics and mathematics education, see
[Ferreirós & Gray, 2006] and [Van Kerkhove & Van Bendegem, 2007] respec-
tively. Furthermore, understanding the human dimensions of mathematics
may lead to further beneficial interaction between philosophy and the way
mathematics is practised. Mathematical practice is not in the business of
studying itself and thus practitioners are in general ignorant to some aspects
of their practice. Perhaps this may be in the conception of what counts as
a proof, an ignorance of an implicit use of a method by some practitioners,
what role diagrams play in mathematical reasoning, ignorance about certain
social factors, locational differences or else. Obviously, these will vary from
mathematician to mathematician. Making these aspects more clearly visi-
ble through philosophical analysis allows mathematicians to consider them
more clearly and account for them in their work. This has already happened.
Maddy, a philosopher, has made two methodological principles explicit that
(some) set theorists implicitly use in their work on theory development in set
theory; cf. 4.1. Today, these principles are (explicitly) discussed by some set
theorists; e.g. [Löwe, 2001], [Steel, 2010] and [Magidor, 2012]. I say more on
this in chapter 4.

It is hard to deny that ‘mathematical practice’ has human dimensions.
It is less difficult to argue that not all the human dimensions are relevant
to the philosophical investigation of mathematics. For example, the social
dimensions of ‘mathematical practice’ I have been stressing in this section
are missing from Kitcher’s definition of ‘mathematical practice’. There is
disagreement about which aspects of ‘mathematical practice’ are relevant
to the philosophical investigation of mathematics. Thus, philosophers of
mathematical practice are not united in questions about their subject matter.
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1.6 Aims of this thesis

In this chapter, I have argued that most philosophers of mathematics take
mathematical practice seriously, at least as long as ‘mathematical practice’ is
understood as a primitive term. I have then focussed on the practice-oriented
approach to the philosophy of mathematics. The term ‘practice-oriented ap-
proach’ remained naive because I have given no clean demarcation criterion
to distinguish between the practice-oriented and the mainstream approach. I
have shown that the community of practice-oriented philosophers of mathe-
matics is heterogeneous. They are divided on the question of the continuity of
their approach with the mainstream approach along the conservative/radical
spectrum; they use different methods to interrogate mathematical practice
philosophically; they are not united in their understanding of the term ‘math-
ematical practice’. In short, their philosophical programmes to study math-
ematics have different features.

The descriptive part of the story of this chapter is that the landscape
of the philosophy of mathematics is heterogeneous. To learn that a piece
of philosophy belongs to the practice-oriented philosophy of mathematics
neither positions it on the conservative/radical spectrum, nor does it tell
us about what ‘mathematical practice’ means to the author of the piece of
philosophy. The mainstream/practice-oriented distinction is too coarse to
account for the fine-grained differences found in the works on the philosophy
of mathematics. These differences however are philosophically important:
they lead to different, and at times conflicting, philosophical accounts of
mathematics, as I have shown in this chapter.

The story of this chapter also has a normative part. I have shown that the
landscape of the philosophy of mathematics is heterogeneous. Put differently,
I have shown that the philosophical programmes to study mathematics on
offer have different features. Indeed, some features of such programmes stand
in conflict with features of other such programmes; e.g. Mancosu accepts the
idealisations discussed in 1.3, the dialectical philosopher of mathematics does
not. Which features are philosophically damaging and which are philosoph-
ically desirable? At this point, the normative question arises which features
we should demand of our programmes to philosophically study mathematics.
This question gets at the fine-grained distinctions in the landscape of the phi-
losophy of mathematics in a way that the coarse question whether we should
be mainstream or practice-oriented philosophers does not. This shows that
the fine-grained question about features is a pressing philosophical concern.
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The distinction between mainstream and practice-oriented approach may be
a helpful first classification of a philosophical work. As a leading question of
this thesis however it is too coarse.

The development of a philosophical programme to study mathematics is
a philosophical endeavour which lies far beyond the scope of a PhD thesis.
However, I can point out some features that such a programme should have.
To do this, I first present one particularly well developed programme to
philosophically analyse mathematics: Penelope Maddy’s Second Philosophy.
Maddy concentrates her work on set theory. I follow her lead and present two
stories from set-theoretic practice: the pluralism/non-pluralism debate and
the existence of instances of reciprocal relationship between mathematics and
metaphysics. My two stories about set-theoretic practice are disharmonious
with Maddy’s Second Philosophical account of the practice. Because the
Second Philosophical programme is so well developed, my two stories amount
to more than mere criticism of Maddy’s philosophical presentation of set-
theoretic practice; in the context of the Second Philosophical programme,
the stories reveal programmatic features that, so I will argue, we should
demand of our philosophical programmes to study mathematics.

Notice here that it is not an aim of this thesis to refute Maddy’s work.
As I discuss in more detail in chapter 6, my philosophical analysis of set-
theoretic practice does not necessarily stand in conflict with Maddy’s Second
Philosophy. As argued there, Maddy might account for the disharmony of
my two stories with her philosophical analysis of set-theoretic practice by
maintaining that in these two cases the set theorists discussed do not use
proper set-theoretic methods. This raises two sorts of questions. Firstly,
do such normative claims fit into the Second Philosophical programme as
presented by Maddy? Secondly, can philosophy meaningfully offer normative
guidance to mathematical practice? Both questions are beyond the scope of
this thesis. I study Maddy’s Second Philosophical programme as a means
to access the debate about the kind of features we should demand of our
philosophical programmes to study mathematics; my critique on Maddy is
method rather than goal.

My thesis has two goals. First, I philosophically analyse set-theoretic
practice, thereby contributing to the ongoing investigation of mathematical
practices. I then confront Maddy’s Second Philosophical programme with
my philosophical analysis. Out of the misfit of my stories about set-theoretic
practice with Maddy’s story about this practice I will develop three features
we should demand of our programmes to philosophically study mathematics.
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The identification of these three features is the second goal of my thesis.
The above suggests an outline of this thesis. In this chapter, I have

argued that the individuation of features our philosophical programmes to
study mathematics should have is a pressing question. Maddy has presented
a particularly well developed such programme, which she has used to analyse
set-theoretic practice. In particular, Maddy has concentrated on what I will
call the foundational debate. As we will see in the course of this thesis, the set
theorists participating in this debate use mathematical formal results in their
arguments; these results form the discursive reality of the set-theoretic de-
bate. These arguments serve as evidence for the philosophical claims Maddy
and I make about set-theoretic practice. Thus, it is important to get a grip
on this discursive reality. The aim of chapter 2 is to present the foundational
debate and the discursive reality it is embedded in. With the groundwork
done, I present Maddy’s Second Philosophical programme in chapter 3. As
mentioned, Maddy’s programme is philosophically rich. I concentrate my
presentation on those parts that are relevant to the debate which features
philosophical programmes to study mathematics should have. In chapter 4,
I present the contributions of the set theorist Joel David Hamkins to the
foundational debate and show that his multiverse-view stands in conflict
with what Maddy has identified as proper conduct in set theory. In chapter
5, I show that this tension is part of an ongoing debate the set theorists
are having: the pluralism/non-pluralism debate. Hamkins is a pluralist. I
present the contribution of a non-pluralist, Hugh Woodin, and argue that
the metaphysical position these set theorists adopt in the pluralism/non-
pluralism debate influences and is influenced by their set-theoretic practice.
In my conclusion in chapter 6, I return to the question about programmes
to philosophically investigate mathematics and argue for three features these
programmes should have: they should provide us with an anthropology of
mathematical goals; they need to be sensitive to the influences the metaphys-
ical views of the mathematicians can have on mathematical practices; they
should provide us with the means to philosophically investigate contempo-
rary mathematical practices.
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Chapter 2

The Foundational Debate

Arguments in a debate are not merely isolated chains of premisses, logical
steps and a conclusion. There are reasons why the argument is given, goals
the argument is trying to achieve and debates in which the argument is
presented. Arguments are given from the perspective of certain positions,
and the proponents of these positions are trying to bring together into a
coherent view their convictions and the facts. Arguments are embedded in
the discursive reality of a debate.

It is part of the aim of this thesis to philosophically investigate what role
metaphysics can play in set-theoretic practice. By the end of chapter 5 I
will have argued that we need to consider the metaphysical views of some
mathematicians to fully appreciate certain mathematical arguments. Fur-
thermore, to appreciate why these mathematicians hold these metaphysical
views, we need to understand the mathematical arguments that have led the
mathematicians to their views. Thus, to make my philosophical point it is
necessary to have a grip on some parts of certain mathematical arguments
and debates. Mathematical arguments are part of the evidence for my philo-
sophical claims, which requires us to study these arguments. We can learn
about these arguments by studying mathematical publications.

The mathematical publications studied in this thesis rely heavily on math-
ematical facts. This is in particular the case for the metaphysical arguments
the set theorists present in these publications. Thus, to understand the dis-
cursive reality in which the primary evidence for my philosophical claims
about set-theoretic practice is embedded in, we need to get a philosophical
grip on the relevant mathematical facts. We need to learn about mathemat-
ics because mathematics is part of the evidence for the philosophical claims

31
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I make.

The part of mathematics we need to know about in this thesis is the
foundational debate. In this chapter, I give a presentation of this debate,
which will be incomplete in some regards. For example, I will not present
mathematical formalisms. This is because such elements add little to the
philosophical understanding of those parts of the foundational debate which
are relevant for my argument. Instead, I aim to convey a feeling for the forces
at play in this debate. What matters for this thesis is that we understand the
struggle of the set theorists studied here. And this struggle can be understood
without formal definitions and proofs.

In what follows, I assume that my reader knows about the basics of
set theory, such as ordinal and cardinal numbers. The reader interested
in technical details is referred to [Enderton, 1977] for an introduction to set
theory, [Kunen, 2006] for an introduction to independence proofs, [Jech, 2006]
for more advanced technical results and [Kanamori, 2009] for historically
motivated results in the higher reaches of set theory.

2.1 The Independence Issue

David Hilbert famously wrote ‘in der Mathematik gibt es keinen ignora-
bimus’; [Hilbert, 1900].1 If mathematics were some (recursively enumerable)
formal theory that contains arithmetic, whose underlying logic were first or-
der logic, whose proofs would be given in a certain, specified and formal
way and so on, then Hilbert would have been proven wrong by Kurt Gödel.
In 1931, Gödel presented his proofs of the two incompleteness theorems.
Because the currently accepted axiom system for set theory satisfies the as-
sumptions in Gödel’s theorems, the theorems can be used to prove the formal
incompleteness of the currently accepted axioms of Zermelo-Fraenkel set the-
ory with choice, ZFC. That is, it follows directly from Gödel’s theorems that
there is a statement S in the language of set theory such that ZFC proves
neither S nor ¬S; in this case S is said to be independent from the ZFC ax-
ioms. Hence the question ‘Does S hold?’ cannot be formally answered from
ZFC. As we will see in this thesis, this fact about formal contemporary set
theory bothers some, but not all, set theorists.

1Translated in ‘Mathematical Problems’, Bulletin of the American Mathematical Soci-
ety 8 (1902), pp. 437-479, as ‘in mathematics there is no [thing that cannot be known]’.
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In the proof of the second incompleteness theorem, Gödel constructs a
statement for a theory T (whose precise nature need not bother us here)
by formalising (in the given formal language) the statement ‘theory T is
consistent’. He then shows that if T proves this statement, then T is in-
consistent (recall that inconsistent theories formally prove every statement).
This means that if theory T is consistent, then the constructed statement
cannot be proved from T ; no theory that satisfies the conditions of Gödel’s
theorems can prove its own consistency.

Gödel holds that sets exist independently of us and that statements about
sets are either true or false.2 One common view before Gödel proved his
theorems was that all truths about mathematical entities can be found by
proof; cf. the quote from Hilbert above. Gödel’s theorems show that for
formal set theory there are statements about sets which are neither provable
nor disprovable. This divorces ‘truth’ from ‘proof’; there are true statements
which are not provable. In this sense, Gödel’s theorems are important for
the philosophical aspects of mathematics.

Whilst Gödel’s proof of his theorem gives us a constructed and hence
directly accessible independent statement, the statement is also non-natural
in the sense that the formalised statement has never appeared in any piece
of mathematics prior to Gödel’s proof and it is doubtful whether mathemati-
cians would have ever considered it in their questioning about mathematics
without Gödel’s proof. To be sure, Gödel’s statement plays an important role
for the proof of the second incompleteness theorem, but beyond its techni-
cal implications it bears little connection to ordinary mathematical thought.
We may hence reasonably wonder why the set theorists should be worried
about the incompleteness of ZFC. All that Gödel showed was that one may
construct non-natural independent statements. However, why should the set
theorists be interested in those? If we wish to understand sets, then we
wish to find answers to our questions about sets. However, the non-natural
statements Gödel constructed do not qualify; they are not ‘our questions’.

In [Cohen, 1963/4], Paul Cohen showed that there is a long-standing
question of set theory that cannot be answered from ZFC. Cohen proved
that there is a natural statement that is independent from ZFC. To do this,
Cohen relied on Gödel’s proof that the Continuum Hypothesis holds true in
the constructible universe. Cohen then introduced the method of forcing to
construct an extension of the constructible universe in which the Continuum

2See for example [Gödel, 1947]. See [Maddy, 1997], 89-94, 172-176 for a short exposition.
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Hypothesis fails. All of the mentioned concepts are of importance for what
follows because they set the stage for the two contemporary arguments in
the foundational debate I will discuss in chapter 4 and 5. Thus, to get a
philosophical grip on these arguments it is important to get a philosophical
grip on these concepts.

In 1873, Georg Cantor proved that the cardinality of the natural numbers
is strictly less than the cardinality of the the real numbers (henceforth: the
reals); cf. [Ferreirós, 2007], 180. This raises the so-called Continuum Prob-
lem: is there a set whose cardinality is strictly between the cardinality of the
natural numbers and the cardinality of the reals? There were times in which
Cantor thought this question has a positive answer and times in which he
tried to prove a negative answer. None of his proof-ideas amounted to a final
proof. Instead, today we know the negative answer as Cantor’s Continuum
Hypothesis, CH: ‘There is no set whose cardinality is strictly greater than
the cardinality of the natural numbers and strictly less than the cardinality
of the reals’.

There is still no consensus about the truth of the CH amongst set theo-
rists, and in this thesis two mutually exclusive arguments will be presented;
in particular 4.2.1 and 5.2. This disagreement hinges on the understanding
of the word ‘truth’ by the set theorists. Truth certainly does not mean prov-
ability for them, because what Cohen showed was that the CH is neither
provable nor disprovable from ZFC; the CH is independent from ZFC.

As mentioned, Cohen’s proof relies on results by Gödel. In [Gödel, 1938],
Gödel showed that if ZF is consistent, i.e. if ZFC minus the Axiom of Choice
is consistent, then ZFC + CH is consistent. The proof-idea is that, given
the consistency of ZF , one can construct a set-theoretic model in which
ZFC + CH holds. The concept of a ‘model’ has become fundamental in
set-theoretic practice, so it will be useful to elaborate on it here.

A model for a formal language L consists of a collection things, called the
domain, plus an interpretation for the non-logical symbols in L. The model
assigns the relations, predicates and functions as given by the non-logical
symbols of L to the elements (or sets thereof) of the domain. That is, in a
domain of a model the elements stand in certain relations to one another,
have certain predicates and so on. A model can hence be seen as a world full
of the entities of the domain. In this thesis, I am only interested in models
for two-valued logics; from now on by ‘model’ I mean ‘model for a two-valued
logic’. In such models, every statement (of the relevant formal language) is
either true or false. Moreover, if all the statements of some theory T are



2.1. THE INDEPENDENCE ISSUE 35

true in the model M , then we call M a model for T . Thus, M is a model
for ZFC, or simply a ZFC-model, if all the axioms of ZFC are true in
M . It has become common practice to ascribe some metaphorical agency to
set-theoretic models and say that ‘M thinks that ZFC holds’ or ‘M believes
ZFC’ in case M is a ZFC-model; cf. [Kunen, 2006], [Jech, 2006]. I adopt
this use of language in this thesis because it overcomes the clumsiness of
some more formal descriptions.

Using models we can say that statement S is independent of theory T
if and only if there are (at least) two models of T such that one is a model
of S and the other a model of ¬S. Are there always two such models? It
follows from Gödel’s theorems that if the theory is consistent (and meets
the formal requirements of Gödel’s theorems), then there is an independent
statement. Hence, there must be two such models for any consistent theory
(that meets the requirements). In addition, once we realise that, e.g., T + S
also satisfies the assumptions of Gödel’s theorems and that hence there are
independent statements even for this theory, we see that independence carries
us far and guarantees that there are not only two but infinitely many T -
models. However, it is merely a logical result that these models exist (in
some sense of the word); these considerations tell us nothing about what
these models look like. That is, if S is a set theoretic statement and M is a
ZFC-model, we are in general unable to check whether S holds in M . This
incapability is tamed in Gödel’s constructible universe.

Gödel carefully constructed a model, called the constructible universe L,
for ZF in such a way that he was then able prove that in this model the
Axiom of Choice and the Continuum Hypothesis also hold. That is, Gödel’s
model is a ZFC+CH-model. These results are due to Gödel; [Gödel, 1938].
Today we know much more about the constructible universe L. It lends itself
nicely to mathematical study and, contrary to the general case mentioned in
the last paragraph, for the model L set theorists can check for most natural
set theoretic statements S whether it holds in L or not.

In conjunction with Gödel’s completeness theorem, what has been said
about L thus far is a powerful meta-mathematical tool. The completeness
theorem states that a theory is consistent if and only if it has a model. Hence,
if L is the model for some theory T , then this theory is consistent. However,
L was built assuming the consistency of ZF . Thus, theory T is consistent
assuming that ZF is consistent. In jargon: T is consistent relative to ZF .
Thus, what Gödel showed is that ZFC + CH is consistent relative to ZF .

For the sake of readability, I will assume that ZFC is consistent and
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suppress explicit mention of this assumption from now on. Wherever this
assumption plays a crucial role I will point this out.

Gödel showed that ZFC+CH is consistent. To show the independence of
CH from ZFC Cohen hence needed to show the consistency of ZFC+¬CH.
To do this, Cohen built a model for this theory and the way he did this was
to influence set theoretic practice profoundly: Cohen introduced the method
of forcing.

Forcing is done over a so-called ground model. Cohen started with Gödel’s
constructible universe L. He now had a given model, i.e. a domain and an
interpretation of the non-logical symbols. To this domain3 he carefully added
new entities whilst simultaneously ensuring that the resulting model would
still be a ZFC-model. The latter part of that sentence is highly non-trivial.
In general, adding elements to the domain of a ZFC-model results in a
model that is no longer a ZFC-model. However, Cohen skillfully relied on
so-called generic filters to ensure that the new model he built was still a
ZFC-model. The resulting model is called a generic extension of the ground
model. However, Cohen did even more. Not only did he ensure that ZFC
would still hold in the generic extension, he carefully arranged it so that he
could show that ¬CH holds in the generic extension.

Cohen has constructed a model for ZFC + ¬CH. Gödel’s L is a model
for ZFC + CH. There are hence two ZFC-models, one in which the CH
holds and one in which it fails. Thus, CH is independent from ZFC.

In this section we saw that there are natural set-theoretic questions, such
as CH, that our current formal theory of sets cannot answer. In this thesis,
I call this issue the independence issue. Some set theorists are having a
discussion about the independence issue. However, calling this discussion
the independence debate is too limiting; the set theorists are discussing more
than just the independence issue, as will become clear in this thesis. I will
use the term foundational debate to refer to the debate these set theorists
are currently having about the fundamentals of their field.

3More precisely: Cohen used the Löwenheim-Skolem theorem to obtain a countable
model. This helps with the technical details of forcing; in particular, in countable models
the existence of a generic filter for a partial order, i.e. a set which intersects all dense
subsets of that order, is guaranteed; cf. [Kunen, 2006], 186. Today, other methods of
forcing are known, such as the Boolean valued method and the naturalised method, which
show that countability of the domain of a model is not necessary; [Hamkins, 2011], see
5.3.2 for a brief discussion.
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2.2 Fragility

In the last section, we saw that independence is an issue in set theory. Not
only are the somewhat unnatural Gödel sentences independent from our cur-
rent formal theory of sets, ZFC, but there are natural questions, such as
the Continuum Problem, which cannot be answered on the basis of the ZFC
axioms alone. In this section, I look more closely at the method of forcing
and ‘paint a picture’ as it were.

The first question we need to ask is why set theorists need forcing at
all. Here an example will serve to give an idea towards an answer to the
formal side of this question. Let us suppose that we wish to show that
the collection of all sets exceeds the constructible sets that inherit Gödel’s
constructible universe. [Kunen, 2006], 184, asks us to suppose that working
in ZFC we could define some collection of sets (a transitive proper class)
and prove that in a model with this collection as its domain, all axioms
of ZFC plus the axiom stating that there is a non-constructible set holds.
Now, Gödel’s constructible universe L is such that any model of ZFC that
contains all the ordinals also contains L as a submodel. Then our supposed
model and L must be different, as ensured by the fact that L thinks that
all sets are constructible whereas our model believes the negation of this
sentence. Hence, working in ZFC, we would have proven that there is a
proper extension of L. That is, from ZFC we would have proven that not
all sets are in L and hence that not all sets are constructible. This however
contradicts the fact that ZFC+‘every set is constructible’ is consistent, as
witnessed by Gödel’s construction of L. Hence, we cannot find a class such
as Kunen has asked us to do by purely working in ZFC. To show the
consistency of ZFC+‘not every set is constructible’ we need another method.
The current method to do so is the method of forcing.

The method of forcing always starts from a given model of set theory.
This is the so-called ground model. One then formally defines a forcing as
a partial order in the ground model.4 Furthermore, one needs a generic
filter. A filter can be seen as an ‘inverted ideal’. Ideals are downwards-
closed collections of sets: if a set is in the ideal, then all its subsets are also
in the ideal. Filters are upwards-closed collections of sets. A generic filter
is a special kind of filter which has non-empty intersection with all dense

4The Boolean-valued approach to forcing uses Boolean-valued algebras instead of par-
tial orders. I will not discuss the Boolean-valued approach here; cf. 5.3.2 for more.
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subsets of the forcing. With a generic filter given, one can define the generic
extension or forcing extension of the ground model via the given forcing
by the given generic filter. This leads to the following heuristic: choose a
statement that you wish to force over your chosen ground model. Then find
a partial order which has suitable dense subsets such that the elements of
the intersection of these dense subsets with the generic filter guarantee that
the desired statement holds in the forcing extension.

That forcing is a widely used method in set-theoretic practice also be-
comes clear when considering the great variety of different forcings set theo-
rists have studied. Examples include Cohen forcing, Easton forcing, Kunen-
Paris forcing, Silver’s forcing and Priky forcing. There is also ‘the’ trivial
forcing, which are all those partial orders such that the generic filter is an
element of the ground model. In these ‘trivial’ cases, the mathematics works
out that the forcing extension is just the ground model. Nothing happens,
hence the name ‘trivial forcing’.

Notice that there are two uses of the word ‘forcing’. One is the method,
the other is the formal understanding of the word as a partial order. I will
refer mostly to the method. When the formal understanding as a partial
order is intended, I will point this out.

A forcing extension is ‘fatter’ than its ground model. Every set that be-
longs to the ground model also belongs to the forcing extension. However, the
forcing extension contains some sets that are not part of the ground model.
For example, the generic filter, often called G, of a non-trivial forcing is an
element in the forcing extension but not in the ground model. However, the
forcing extension and the ground model agree on the height of the ordinals.
That is, the forcing extension is as ‘tall’ as the ground model. Pictures help.
Here, M is the ground model, M [G] the forcing extension and the dotted
line represents the ordinals.

M [G]M

Because M [G] is a ZFC-model, there are forcing extensions of M [G].
Of these forcing extensions there are further and further forcing extensions.
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In fact, we never run out of statements such that we can construct a forc-
ing extension of whatever model we are currently working with such that
the statement holds. The jargon for this is that we never run out of force-
able statements or that there are always statements that can be forced. In
this sense, the process of constructing forcing extensions never stops. It is
illuminating to see why this is so.

As pointed out in [Hamkins & Löwe, 2008], there are three types of set-
theoretic statements in relation to forcing.5 The ones connected to the end-
lessness of the forcing process are statements that can be made true or false
at will via forcing; they are like light-switches which can be switched on and
off at will. Then there are statements that can be made true by forcing
in such a way that they remain true in all further forcing extensions; these
statements are like buttons which, once pressed, remain pressed. The last
type of statements consists of the negations of the statements of the second
type. Whatever set-theoretic statement we consider, forcing can act on it (in
perhaps a trivial way), and this shows how very fragile and context depen-
dent some of our current formal conception of set-hood is. It is no wonder
then that the members of a discipline which, as we will see in the next chap-
ter, is regarded by some as the foundation of mathematics itself, want to rid
set theory of this fragility. And thus it might be unsurprising that ‘forcing
stability’ is a desired feature of theories; see next chapter.

Let me recapitulate where we are at the moment in my presentation.
We have learned from Gödel’s theorems that there are formally unsolvable
questions about sets. Cohen introduced the method of forcing to show that a
very natural question about sets, the question for the size of the Continuum,
is formally unsolvable from our currently accepted axioms of set theory. This
method has proven to be a fruitful and powerful tool and is nowadays widely
used amongst set theorists. The results they were able to prove show a
certain type of fragility of the set concept.

Forcing affects the girth of a model; the forcing extension is at least as
‘fat’ as its ground model. However, as I mentioned when I introduced forcing
a few pages back, the ground model and the forcing extension agree on the
height of the ordinals. This is not the case for all ZFC-models. For example,
there are so-called cut-off universes which are, nonetheless, models of ZFC.
Here is a picture.

5For a detailed proof of this, see [Rittberg, 2010].
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V
M

Hereby, M is the cut-off universe and the dotted line represents the or-
dinals. As can be seen from the picture, there are some ordinals which are
part of V but not of M . However, M is a ZFC-model and hence believes
that it contains all the ordinals. But then, who has it right, V or M? With
forcing we have considered the girths of different models. What the cut-off
universes show is that we might have to think about tallness of models as
well.

These are some of the facts. If we assume that there is one ‘true’ con-
ception of set, then there must be one ‘true’ model of set theory, one model
which captures correctly the true conception of set-hood. But then the math-
ematical facts discussed in this chapter are problematic because they reveal
that our current theory of sets is not sufficient to fully describe this true cor-
rection of set-hood. We will encounter this position throughout this thesis,
first in Maddy’s presentation of the practice of set theory in chapter 3, then
under the name ‘universist view’ in chapter 4 and finally under the banner
of ‘non-pluralism’ in chapter 5, where we will also meet Hugh Woodin, a set
theorist who holds such a non-pluralist view. Woodin is searching for this
‘true’ model of set theory or, how it is more commonly known, the ‘true
universe of sets’. What we have learned from forcing is that there are many
different models of set theory that could be the true universe of sets. But
then: which one is it? How to find out? How to convince others? These
are the questions that arise from the facts about forcing and the belief that
there is one true universe of sets, and these are some of the questions that I
will be tracking throughout this thesis.

Non-pluralism is a nice position for the exposition of the problem I am
describing here because it makes visible the struggle some set theorists face.
However, there are other set theorists who are less troubled by the mathe-
matical results described thus far. In chapter 4 I will present some thoughts
of the pluralist Joel David Hamkins on the matter, who argues that the in-
dependence issue is not a problem for but rather a feature of set theory. For
now, however, let us be non-pluralists and ‘feel the struggle’ as it were.
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2.3 Large Cardinals

Questions and problems have started to pile up. Do the formally unsolvable
questions have answers? How fat is the universe of sets? How tall is it?
There are no easy answers. The aim of this thesis is also to present the
answers some contemporary set theorists have given on these matters. There
is, however, a surprising order to the independent questions, which I aim to
illuminate in this section: the large cardinal hierarchy.

In his seminal book on large cardinals, The Higher Infinite, Akihiro
Kanamori writes about large cardinal axioms:

These hypotheses posit cardinals that prescribe their own tran-
scendence over smaller cardinals and provide a superstructure for
the analysis of strong propositions [i.e. propositions not provable
from ZFC alone]. As such, they are the rightful heirs to the two
main legacies of Georg Cantor, founder of set theory: the exten-
sion of number into the infinite and the investigation of definable
sets of reals. The investigation of large cardinal hypotheses is
indeed a mainstream of modern set theory. ([Kanamori, 2009], p.
XI)

A large cardinal axiom then is a statement, which affirms the existence of a
set, the large cardinal. These large cardinals are such that they ‘prescribe
their own transcendence over smaller cardinals’, which is why they are also
called ‘strong axioms of infinity’. For example, one can consider the Axiom
of Infinity as a large cardinal axiom because it affirms the existence of a set
(namely ω) which is transcendent over all those cardinals which can be proven
to exist without the Axiom of Infinity (in this case: over all finite cardinals).
Similarly with the Axiom of Replacement. Without this axiom, no sets of
cardinality ℵω or bigger can be proven to exist. These two axioms however
have already been accepted into our contemporary axiomatic system, whereas
other large cardinal axioms do not (yet?) hold this place of honour. The
Axiom of Infinity and the Axiom of Replacement are usually not seen as large
cardinal axioms in a formal setting. For example, Kanamori, in his ‘chart of
cardinals’, lists 28 different types of large cardinal axioms, and neither the
Axiom of Infinity nor the Axiom of Replacement is on this list; [Kanamori,
2009], p. 472. This, however, is convention. There are no generally accepted
and precise criteria that an axiom could meet to be classified as a large
cardinal axiom.
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When added to ZFC, large cardinal axioms increase the strength of the
axiom system. This means that some statements which are formally un-
decidable from the axioms of ZFC become formally decidable in the large
cardinal extension. Perhaps the easiest example of this is the case of inac-
cessible cardinals.6 Call the axiom stating ‘there is an inaccessible cardinal’
IC. ZFC+IC proves that there is a model of ZFC. Thus, by Gödel’s com-
pleteness theorem, ZFC + IC proves the consistency of ZFC, Con(ZFC).
However, by Gödel’s second incompleteness theorem, ZFC does not prove
Con(ZFC). Thus, ZFC + IC is stronger than ZFC: not only does it prove
all that ZFC proves, it also proves Con(ZFC) (and other statements not
provable from ZFC). Notice that this implies in particular that ZFC does
not prove the consistency of ZFC+IC (because otherwise ZFC could prove
its own consistency).

The large cardinal axioms have been individuated from a variety of dif-
ferent fields in mathematics, amongst them measure theory, descriptive set
theory and model theory; cf. [Kanamori, 2009]. Thus, prima facie, the dif-
ferent axioms have little in common. This makes it all the more surprising
that the large cardinals can be linearly ordered by their consistency strength.
This needs explaining.

The consistency strength of theory T is higher than that of theory S if
the consistency of T implies the consistency of S. The surprise about large
cardinals is that for any two large cardinal axioms φ and ψ it holds that
either ZFC + φ has a consistency strength at least as high as ZFC + ψ or
vice versa. Thus, the consistency strength order is a linear order of the large
cardinal axioms, which means there is a large cardinal hierarchy. As it turns
out, the axiom stating that there is an inaccessible cardinal is the weakest
large cardinal axiom in this hierarchy.

We just saw that adding large cardinal axioms to ZFC results in an axiom
system which is stronger than ZFC. Furthermore, the large cardinal axioms
can be linearly ordered. This leads to a calibration of the complexity of
the statements formally undecidable from ZFC through the large cardinal
hierarchy: the degrees of unsolvability. Say the set-theoretic statements φ
and ψ are both formally undecidable from the axioms of ZFC. Furthermore,
assume that the weakest large cardinal extension in which φ becomes formally
decided is ZFC+LCA1 and the weakest large cardinal extension in which ψ

6For ease of exposition, I suppress the difference between weakly and strongly inacces-
sible here and in what follows.
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becomes formally decided is ZFC + LCA2. One can then compare the two
large cardinal axioms LCA1 and LCA2 in the large cardinal hierarchy. Say
that LCA1 is stronger than LCA2. Thus, to formally decide φ one needs to
add a stronger large cardinal axiom to ZFC than to decide ψ. In jargon: φ
has a higher degree of unsolvability than ψ. Thus, by passing through the
large cardinal hierarchy, seemingly unrelated set-theoretic questions can be
meaningfully compared.

Large cardinal extensions solve problems formally unsolvable from ZFC
and the higher the large cardinal axiom in the consistency strength order, the
more former formally unsolvable questions become formally solvable. Thus,
there is good reason to study large cardinals: they resolve some of the prob-
lems of set theory I have been tracing in this chapter. As we have learned
from the Kanamori quotation above, the study of large cardinals has indeed
become a mainstream topic in contemporary set theory.

There are limitations to the power of large cardinals. Not all formally
unsolvable problems can be solved by large cardinal axioms. The well-known
example is the Continuum Hypothesis. [Lévy & Solovay, 1967] shows that
no addition of a large cardinal axiom to ZFC can prove or disprove the
CH. This shows that even if we assume large cardinal axioms, there remain
formally unsolvable problems in set theory. The degree of unsolvability of
these problems exceeds the large cardinal hierarchy.

Large cardinal axioms can resolve some of the undecidability issues the
set theorists face in contemporary set theory, but not all of them. Thus,
large cardinal extensions of ZFC might be helpful stepping stones towards
a solution, rather than the solution itself. The exploration of these stepping
stones faces the consistency question: are the large cardinal extensions of
ZFC consistent? As a negative result, we learned from the discussion of
inaccessible cardinals above that the consistency of ZFC does not imply
the consistency of ZFC plus the axiom stating that there is an inaccessible
cardinal. Inaccessible cardinals are the weakest of the large cardinals, which
means that since ZFC cannot prove the consistency of ‘ZFC+ ‘there is an
inaccessible cardinal’, ZFC can also not prove the consistency of any other
large cardinal extension of ZFC. But then, how to ensure, or at least have
an argument for, the consistency of the large cardinal extensions of ZFC?
This is an aim of the inner model programme.



44 CHAPTER 2. THE FOUNDATIONAL DEBATE

2.4 The Inner Model Programme

Recall that in a given model of set theory, every set-theoretic statement either
holds or fails to hold. Thus, a model of set theory decides every set-theoretic
statement. There is hence a difference in studying what can be proven from
ZFC, where there are undecidable statements, and studying what holds in
a given model, in which every statement is decided.

It is, in general, difficult to discern the truths of a given model of set
theory. When the model is an arbitrary model of set theory, the only truths
of this model we can determine are the statements which can be proven from
ZFC. If a definition of the model is given, then one can generally discern
the truths of the model in a bit more detail. In this sense, the currently best
understood model of set theory is Gödel’s L.

In [Scott, 1961], Dana Scott showed that L cannot accommodate any large
cardinals on the level of measurable cardinals or above. Measurable cardinals
are in the lower third of the large cardinal hierarchy presented in [Kanamori,
2009] and can therefore be considered as fairly weak large cardinal axioms.
Thus, L cannot be used to provide arguments for the consistency of (most)
large cardinal extensions of ZFC.

What makes L interesting is that it is so well understood. However,
L cannot accommodate large cardinals. The inner model programme seeks
L-like structures which can accommodate large cardinals.

Gödel constructed L from the assumption that ZF is consistent. This
established the consistency of ZFC relative to ZF . We already saw that
large cardinal extensions cannot be proven to be relative consistent to ZFC.
The heuristic of the inner model programme is hence slightly different from
Gödel’s: the methodology to construct an inner model which can accommo-
date a certain large cardinal is to assume the consistency of ZFC plus the
targeted large cardinal axiom. Thus, unlike Gödel’s case, the constructed
model does not serve as a proof of relative consistency for the large cardinal
extension because consistency features as a premiss.

The inner model programme has successfully constructed models for some
large cardinal extensions of ZFC. However, each such model comes with a
limiting result similar to Scott’s result mentioned above: no large cardinal
higher up in the hierarchy than the targeted large cardinal can be accommo-
dated in the model.7 Thus, the set theorists are trying to construct models

7However, compare 5.2.
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which can accommodate large cardinals higher and higher up in the large car-
dinal hierarchy. As it turns out, the higher up in this hierarchy one climbs,
the more complicated the construction of the inner model becomes.

The construction of an inner model which can accommodate a certain
large cardinal axiom serves as an argument for (but not a proof of) the
consistency of ZFC plus the relevant large cardinal axiom. The point is
that the construction of a model for the theory makes it unlikely that the
theory is inconsistent.

State of the presentation: problematic are the statements that are for-
mally undecidable from ZFC. Large cardinals can tame this problem by
deciding more and more statements the higher we climb in the hierarchy.
The inner model programme generates arguments that the given large car-
dinal extensions are consistent. However, the problem is only tamed, not
banished. The inner model programme cannot yet generate arguments for
all large cardinal extensions (but see 5.2) and the large cardinal extensions
cannot formally decide all statements. Thus, the problem is still with us, but
we now have some tools to handle it. These tools will feature prominently in
the arguments of the set theorists presented in this thesis.
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Chapter 3

Maddy

In this chapter, I present Maddy’s programme to investigate mathematics
philosophically: Second Philosophy. The chapter starts with a presentation
of Maddy’s account of why mathematical practice is relevant to the philo-
sophical study of mathematics in 3.1. I then move to a discussion of the
details of the Second Philosophical programme, its methods and aims, in
3.2. In subsection 3.2.1, I present the case studies of set-theoretic practice
Maddy has given in her books and the set-theoretic methods she has dis-
tilled from them. Subsection 3.2.2 elaborates on Maddy’s account of the
properness of these methods.

3.1 Maddy’s attention to practice

In 1997, Penelope Maddy published Naturalism in Mathematics. In this
book, Maddy introduces ‘a position on the proper relations between the
philosophy of mathematics and the practice of mathematics’; [Maddy, 1997],
161. She presents an approach to philosophy that regards the mathematics
as seen in mathematical practice as a given background for philosophical
study. This means that practice comes first and philosophy grows out of it.
Below, I will call this Maddy’s principle.

Maddy calls her position a naturalism ‘because it owes so much to Quine’;
[Maddy, 1997], 161. But by 2007, she realised that the term ‘naturalism’ is
used too broadly to describe her position. In her next book she coined a new
term: Second Philosophy. In the book, [Maddy, 2007], Maddy develops her
naturalistic approach into a philosophical programme. She seems to have
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encountered the worry that if mathematical practice comes first, there may
not be much left to do for the philosopher. In her book she hopes to show
that there is ‘plenty to do’; ibid., 411.

In 2011 Maddy rounds out her philosophical work with a Second Philo-
sophical investigation of the ontological status of mathematics in Defending
the Axioms.1

In an early publication, Maddy writes

The central problem in the philosophy of natural science is when
and why the sorts of facts the scientists cite as evidence really are
evidence. The same is true in the case of mathematics. ([Maddy,
1988], 481)

This problem has stayed with her throughout her philosophical career. 23
years later, in Defending the Axioms, Maddy phrases her question thus

what are the proper methods of set theory, and why? ([Maddy,
2011], 37)

Maddy’s proposal to answer these questions is her Second Philosophical pro-
gramme. This programme got its name only in Maddy’s 2007 book. However,
the continuity of her thoughts in the three books [Maddy, 1997], [Maddy,
2007] and [Maddy, 2011] suggests that all three books contribute to the pre-
sentation of this programme. This is not to say that Maddy’s work has not
matured. In her later works she has made some small adjustments to her
earlier contributions. Where appropriate, I will point these out in what fol-
lows. However, these adjustments are minor; there is a continuity in the
three above mentioned books. Therefore, I will treat these three books as
one body of work which presents Maddy’s Second Philosophical programme
in what follows.

We can learn about Maddy’s appreciation of the practice of mathematics
from her discussion of Willard V. O. Quine. Discussing Quine’s admiration
for and critique of Rudolf Carnap, Maddy writes

1Since then, Maddy has published the book The Logical Must: Wittgenstein on Logic
(2014). In this book, Maddy draws on and challenges Wittgenstein’s analysis of logical
necessity with a Second Philosophical analysis of her own. The nature of the logical must
has no direct bearing on my set theory focused thesis; I will not discuss Maddy’s newest
book any further.
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If it weren’t so pretentious, I might say, with similar admiration
and gratitude, that Second Philosophy [i.e. Maddy’s position]
was largely determined by problems that I felt Quine’s naturalism
presented. ([Maddy, 2007], 67, n. 6)

One of these problems stems from Quine’s well-known argument for realism
in mathematics: the indispensability argument.

(P1) We ought to have ontological commitment to all and only the
entities that are indispensable to our best scientific theories.

(P2) Mathematical entities are indispensable to our best scientific
theories.

In conclusion

(C) We ought to have ontological commitment to mathematical
entities.2

(P1) speaks of ‘best scientific theories’; what are these? Quine’s answer relies
on ‘a convergence of evidence’ ([Quine, 1976], 246), which Quine divides into
five virtues:

One is simplicity: empirical laws concerning seemingly dissimi-
lar phenomena are integrated into a compact and unitary theory.
Another is familiarity of principle: the already familiar laws of
motion are made to serve where independent laws would other-
wise have been needed. A third is scope: the resulting unitary
theory implies a wider array of testable consequences than any
likely accumulation of separate laws would have implied. A fourth
is fecundity: successful further extensions of theory are expedited.
The fifth goes without saying: such testable consequences of the
theory as have been tested have turned out well, aside from such
spare exceptions as may in good conscience be chalked up to un-
explained interferences. ([Quine, 1976], 247)

When we take these virtues seriously, so Maddy argues, then we see that
atomic theory satisfied these virtues at around 1900. However, and this is
Maddy’s point, at this time physicists did not actually believe in the existence
of atoms. Maddy cites Wilhelm Ostwald’s textbook of 1904:

2This formulation of the indispensability argument is taken from [Colyvan, 2015].
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the atomic hypothesis has proved to be an exceedingly useful aid
to instruction and investigation... One must not, however, be led
astray by this agreement between picture and reality and combine
the two. (as cited in [Maddy, 1997], 138)

This attitude changed, according to Maddy, through the work of Jean Perrin,
published between 1908 and 1911. This leaves us with a time-span in which
scientists used atoms in our best scientific theory, in fact, atoms were indis-
pensable to these theories, yet not even physicists believed in their actual
existence. There must hence be something wrong with (P1) in the indis-
pensability argument. What is missing, so Maddy argues, is an attention
to scientific practice. (P1) simply does not capture the actual theorising of
the scientific community. ‘[T]he indispensable appearance of an entity in our
best scientific theory is not generally enough to convince scientists that it is
real’; [Maddy, 1997], 143.

Maddy argues that we need to pay closer attention to actual scientific
reasoning in the indispensability argument. Then, if we wish to draw any
conclusions about the ontological status of mathematical entities from this
argument, we need to better understand how scientific reasoning regards
mathematics. We need to know just how mathematics features in scientific
theories and practice.

The first point Maddy notes is that mathematics is often usefully applied
to assumptions that we know are literally false. For example, in the theory
of water waves it is usually assumed that the ocean is infinitely deep. Maddy
points out that ‘on the face of it, an indispensability argument based on such
an application of mathematics in science would be laughable’; [Maddy, 1997],
143. Instead, if we wished to keep an argument based on the Quinean ar-
gument, we would need a more responsible indispensability argument, which
accounts for the kinds of subtleties of the application of mathematics in
science that infinitely deep oceans provide. Maddy concentrates on the ques-
tion whether science responsibly supports the assumption that there is a
continuum and concludes that this question is currently unsettled. In fact,
according to Maddy, responsible indispensability arguments support only
the existence of ‘a few (if any) mathematical entities’; [Maddy, 1997], 153.
Nevertheless, science does support the existence of scientific entities such as
atoms (after Perrin). This shows that the scientific enterprise does not treat
mathematical entities on epistemic par with scientific entities. Hence, science
does not seem to be in the business of assessing mathematical ontology, as
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Quine’s argument would have us believe.

The above argument is a serious attack on Quinean realism. However,
even if we allow for a more responsible form of indispensability argument,
one that pays closer attention to scientific practice, the fact that the ‘what is’
of mathematical entities is answered by science does not sit well with Maddy.
Consider the example of the continuum again. Maddy discusses the questions
of the continuity of space-time to ‘cast serious doubt on the existence of
any physical phenomena that are literally continuous’; [Maddy, 1997], 152.
According to Maddy, these kinds of questions are currently unsettled by
science. Now, if there were a continuum then the set theorist’s question
about its size is legitimate, even though this question cannot be settled from
the axioms of set theory, ZFC, alone.3 But if it should turn out that there is
no continuum, then the question for its size is nonsensical. Then, so Maddy
claims, every extension of ZFC by new axioms would be as good as any
other.4 This however does not square well with set theoretic practice. Some
set theorists who pursue the search for new axioms certainly do not regard
them all as equally good, as we will see in what follows. But should these
set theorists then not be very interested in the natural sciences, waiting as
it were on a decision of the natural sciences on the matter of the existence
of the continuum? Maddy’s point is that set theorists do not pay this kind
of close attention to the natural sciences, at least not more than any other
neutral bystander. This could show that set theorists do not know what
they should be interested in, but Maddy dismisses this point. Instead, she
concludes that mathematical methodology does not depend on application
and hence not on science.

Quine has presented science as an arbiter of mathematical ontology. Maddy
points out that if this were so, then set theoretic practice should account for
this and hence be different than it currently is. She writes

a philosopher wedded to realism, or unshakeably convinced by the
original Quinean considerations, could conclude [...] that math-
ematicians and scientists are in error, that they should correct
their methods and procedures in light of these various philosoph-

3Recall here the Continuum Problem discussed in chapter 2.
4This is a subtle point. Maddy presupposes here (in [Maddy, 1997]) that we need to

have ontological commitment to an objective mathematical reality to regard one axiom as
more suitable than another; a point Maddy later (in [Maddy, 2011]) rejects (cf. Arealism
below).
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ical insights. My own inclination– and here I follow Quine himself
[...]– is to reject such moves. This simple inclination lies at the
heart of naturalism. ([Maddy, 1997], 160)

Maddy phrases this inclination as a principle:

if our philosophical account of mathematics comes into conflict
with successful mathematical practice, it is the philosophy that
must give. (ibid., 161)

Maddy’s principle highlights a key difference between Quinean naturalism
and Maddy’s philosophy. Quine evaluates mathematical methods on grounds
of their connection to the natural sciences; Maddy proposes to evaluate math-
ematical methods on mathematical grounds. The principle also presents
Maddy with a reason to study mathematical practice: faithfulness to mathe-
matical practice is a criterion of adequacy for philosophical accounts of math-
ematics. As Maddy has told us, the inclination to reject those philosophical
results that are not aligned with mathematical practice lies at the heart of
her naturalism. This requires a study of the practice. Maddy proposes a
scientifically minded approach to philosophy, which tests its results against
a ‘reality’ of mathematical practice. This is such a fundamental belief for
her that she names her position after this insight: ‘Philosophy undertaken in
[...] complete isolation from science and common sense is often called “first
philosophy”, so I call [my position] Second Philosoph[y]’; [Maddy, 2011], 40.

Maddy’s reasons to study mathematical practice hence stem from her
naturalistic position. Her naturalism is embedded into a larger ‘scientific’
project. Maddy presents us with a literary character.

Imagine a simple inquirer who sets out to discover what the world
is like, the range of what there is and its various properties and
behaviours. She begins with her ordinary perceptual beliefs, grad-
ually develops more sophisticated methods of observation and
experimentation, of theory construction and testing, and so on;
she’s idealized to the extent that she’s equally at home in all the
various empirical investigations, from physics, chemistry, and as-
tronomy to botany, psychology, and anthropology. She believes
that ordinary physical objects are made up of atoms, that plants
live and grow by photosynthesis, that humans use language to
describe the world to one another, that social groups tend to be-
have in certain ways, and so on. She also believes that she and
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her fellow inquirers are engaged in a highly fallible, but partly
and potentially successful exploration of the world, and like any-
thing else, she looks into the matter of how and why the methods
she and others use in their inquiries work when they do and don’t
work when they don’t; in these ways, she gradually improves her
methods as she goes. ([Maddy, 2011], 38)

This inquirer is Maddy’s Second Philosopher. The quote displays Maddy’s
profound respect for the scientific method of ‘theory construction and test-
ing’. She accepts and embraces the fallibility of this method, in part because
she believes that it leads to a ‘partly and potentially successful exploration
of the world’, and acknowledges the need for constant revision and improve-
ment of the methods used. This kind of scientific-mindedness permeates
through Maddy’s Second Philosophy, as I will present in more detail in the
next section.

3.2 Second Philosophy

We have seen Maddy’s argument that mathematical practice deserves philo-
sophical attention. What does this mean for her? Maddy presents her Second
Philosophy.

There is no hard and fast specification of what ‘science’ must
be, no determinate criterion of the form ‘x is science iff...’ It
follows that there can be no straightforward definition of Second
Philosophy along the lines ‘trust only the methods of science’.
Thus, Second Philosophy, as I understand it, isn’t a set of beliefs,
a set of propositions to be affirmed; it has no theory. ([Maddy,
2007], 1)

My task then is not an easy one: describe that which has no theory. However,
there is precedent: Maddy has already done this. She introduces a character,
the Second Philosophical inquirer we met in the long quotation at the end of
the last section. ‘Second Philosophy is then to be understood as the product
of her inquiries’ (ibid.). It seems prudent to adopt Maddy’s method.

Before I continue with the presentation of Second Philosophy, let me draw
attention to the possible difference between the Second Philosopher’s posi-
tion and Maddy’s presentation thereof. Unlike the contemporary philosopher
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Maddy, the Second Philosopher is idealised; the Second Philosopher is equally
at home in all scientific disciplines whereas Maddy is not. Thus, we might
agree to Second Philosophy but disagree with Maddy’s presentation of some
of the particulars of the cases she has studied. In Maddy’s words

one might sign on as a Second Philosopher while thinking I’ve
gone astray in my pursuit of the particulars. ([Maddy, 2007], 3)

I will pick up this question again in chapter 6 and argue that because we learn
about the methodology of the Second Philosophical programme by follow-
ing Maddy’s lead by example, stripping away the idiosyncrasies of Maddy’s
investigation from the Second Philosophical programme leaves us without
answers to the pressing questions I highlighted in chapter 1.

In the long quotation given at the end of the last section, Maddy presents
us with an interested inquirer who ‘set out to discover what the world is like’.
Her, the inquirer’s, methods are those of observation and experimentation,
and her at first every-day inquiries soon lead her onto the terrain of more
sophisticated science. At this point, Maddy’s inquirer learns about scientific
theories and scientific methodology. It becomes clear that mathematics plays
an important role in these sciences, and so the inquirer develops an interest
in mathematics, especially applied mathematics. Her ‘narrowly applied sense
of the subject gradually gives way to the full pursuit of pure mathematics’
([Maddy, 2011], 41) after realising what Maddy presents as three strands
in the rise of pure mathematics: the legitimacy of mathematical goals; the
desire for a stocked warehouse of mathematical objects and structures; the
realisation that mathematical accounts of physical phenomena are not literal
truths. I discuss these in turn.

For Maddy’s argument of the first of these strands, consider the following
well-known quote from Cantor:

Die Mathematik ist in ihrer Entwicklung völlig frei [...] das Wesen
der Mathematik liegt grade in ihrer Freiheit. ([Cantor, 1883], 563-
564, emphasis in original)5

Maddy tells us that a systematic analysis of the historical developments that
led up to this view of mathematics would illustrate that the motivation for
some mathematical activities is based on mathematical rather than scientific

5Translated in [Hallett, 1984], 16, as ‘Mathematics is entirely free in its development.
[...] The essence of mathematics lies in its freedom.’
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goals and values. Maddy does not actually give this story (probably due to
space constraints) but makes her point by reminding us of parts of the history
of group theory. She tells us that Galois, in his well-known 1830 work on what
we today call substitution groups, did not identify the concept of a group;
Cayley presented the concept only about 20 years later. It took yet another
20 years for the concept to flourish because before the 1870s ‘there weren’t
enough examples of groups to make the notion useful’; [Maddy, 2011], 7. But
once enough examples were present, it became clear that the concept of a
group calls attention to similarities for a broad range of otherwise dissimilar
structures. The concept of a group became an object of mathematical study.
However, groups did not feature in the theories of the natural sciences until
the 1920s. Maddy’s Second Philosophical inquirer concludes that groups
were studied in pursuit of mathematical goals, not scientific ones.

The second realisation of Maddy’s inquirer is that mathematics should
provide a ‘stocked warehouse’ of mathematical objects and structures. The
idea is that mathematics is ‘peeled away’ from the natural sciences.

Descartes, Newton, Euler and many others believed mathematics
to be an accurate description of real phenomena [...] they re-
garded their work as the uncovering of the mathematical design
of the universe. ([Kline, 1972], 1028)

Maddy gives Gauss as an example of someone who held that Euclidean ge-
ometry is true of physical space. However, the use of non-Euclidean geometry
in the theory of General Relativity and, so Maddy tells us, the confirmation
of General Relativity made this view untenable. However, mathematicians
were reluctant to give up Euclidean geometry as straightforwardly false. In-
stead, mathematicians introduced a distinction between physical space and
mathematical space (or spaces). That is, here is a mathematical theory that
is ‘protected from empirical falsification by positing a realm of abstracta
about which they remain true’; [Maddy, 2011]. 9. Maddy has called this a
warehouse, stocked with mathematical objects and structures from which the
natural scientist can freely choose. The conclusion Maddy’s inquirer draws
from this is that not all mathematical objects and structures need to be used
in the sciences. It is desirable to create a stock of as of yet un-applied math-
ematics so that when the time comes, the scientists can help themselves in
the stocked warehouse to whatever they need – this is what happened in
Einstein’s case: he faced a problem in his theory of general relativity, and
the mathematician Marcel Grossman could point him towards non-Euclidean
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geometry. This is the Second Philosophical inquirer’s second reason to study
pure mathematics.

The above mentioned second realisation shows that mathematics can be
disconnected from empirical investigation. Nevertheless, this does not show
that Galileo’s ‘book of nature’ is not written in the language of mathematics.
Here is the relevant passage from Galileo:

Philosophy [nature] is written in that great book which ever lies
before our eyes– I mean the universe– but we cannot understand
it if we do not first learn the language and grasp the symbols,
in which it is written. This book is written in the mathematical
language, and the symbols are triangles, circles and other geomet-
rical figures, without whose help it is impossible to comprehend
a single word of it; without which one wanders in vain through a
dark labyrinth. ([Galileo, 1623], 4)

Maddy’s inquirer’s third realisation is that scientists today no longer agree
with Galileo’s view. One of Maddy’s case studies is the derivation of the Ideal
Gas Law. The argument for this law begins with an abstract description of
the gas as consisting of point masses that do not interact with each other
and whose collusions with the container walls are perfectly elastic. We can
now try to make this a more literal description of physical space by replacing
point masses by three-dimensional objects and account for their interaction
with each other. The result is van der Waal’s equation. Yet, van der Waal’s
model remains an abstract model. We can refine the model further, but
only up to a point. ‘Unfortunately, despite the stunning success of quantum
mechanics as a predictive device, we still have no firm grasp of what worldly
features underlie its various mathematical constructs’; [Maddy, 2011], 23.

One moral the Second Philosophical inquirer draws from these realisa-
tions is that today’s mathematics in application is not in the business of
discovering some hidden real world structures. Rather, ‘we’re constructing
abstract mathematical models and trying our best to make true assertions
about the ways in which they do and don’t correspond to the physical facts’;
ibid., 27. It is certainly interesting how this correspondence between math-
ematics and the world of physical phenomena works, but in this thesis, I
focus, with Maddy, on the ‘constructing abstract models’ side of mathemat-
ics; that is, on pure mathematics. Maddy’s questions are: what principles
guide and govern the pure mathematician. ‘What’, Maddy asks, ‘constrains
our methodological choices?’; ibid., 31.
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Faced with this question, Maddy’s inquirer turns to the history of math-
ematics once again. Maddy tells the story of mathematics at the end of the
19th century, how, after natural science as a pragmatic and empirical basis
for mathematics had been called into question, mathematics had broken up
into a variety of branches. Each branch seemed to rest on its own axiom
system, so the question for Maddy’s inquirer becomes which axiom systems
are acceptable. She, the inquirer, notes that the mathematicians of the time
did not accept just any such system. The worry at the time was, according
to Maddy, that the axioms might fail to describe genuine structures. ‘[F]or
example, the coherence of the axioms for non-Euclidean geometries had been
demonstrated by modelling them in Euclidean geometries, and Euclidean ge-
ometry itself could be modelled using the real numbers, but the buck has to
stop somewhere’; ibid. 32. Gradually it became clear, according to Maddy,
that all of mathematics could be expressed using only the means of set theory.
For Maddy, this means that the inquirer who is interested in the question
what constrains our methodological choices in mathematics can focus on set
theory.

Questions of the form– is there a structure or a mathematical
object like this? – are answered by finding an instance or a sur-
rogate within the set-theoretic hierarchy. Questions of the form–
can such-and-such be proved or disproved? – are answered by
investigating what follows or doesn’t follow from the axioms of
set theory. ([Maddy, 2011], 33-34)

Maddy refers here to set theory as a foundational theory. However, Maddy
understands the foundational character of set theory in a modest sense.

for all mathematical objects and structures, there are set theo-
retic surrogates and instantiations, and the set theoretic versions
of all classical mathematical theorems can be proved from the
standard axioms for the theory of sets (ZFC). This includes no
claim about the real identity of mathematical objects, no claim
to have reduced ontology, no claim to have founded mathematics
on something provably free from contradiction or more certain,
and no claim that all mathematical methods can be replaced by
set theoretic methods. ([Maddy, 1997], 34)

Maddy asked ‘What constrains our methodological choices in mathematics?’.
From the modest sense of the foundational character of set theory it does
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not follow that we can answer Maddy’s question by a study of set theory.
The point is that Maddy’s modest sense of the foundational character of
set theory allows for cases in which there are constrains on methodological
choices on some part of mathematics which are not the constrains of set
theory. Conversely, there might also be methodological constrains on set
theory which do not constrain other mathematical disciplines. Maddy does
not discuss this, perhaps due to the fact that she introduced us to the inquirer
in Second Philosophy, 10 years after her clarification of the ‘modest sense’
of the foundational goal. In any case, Maddy’s argument why the Second
Philosophical inquirer is interested in set theory remains underdeveloped.
Nonetheless, set theory is Maddy’s (and my) focus.

Let me recapitulate what we have seen thus far. The Second Philosophi-
cal inquirer uses the methods of hypothesising and testing to learn about the
world. Soon she is interested in science and, because of the role mathematics
plays in science, the inquirer becomes interested in mathematics. Mathemat-
ics turns out to be a discipline in its own right and set theory is a particularly
interesting practice. Two types of questions arise: what is the methodology
of set theory, what methods are used to introduce sets, justify axioms and so
on? The other question ‘is more traditionally philosophical’ ([Maddy, 2011],
41): what are sets? how do we come to know about sets? what sort of activ-
ity is set theory? The idea is that the Second Philosopher first arms herself
with knowledge about set-theoretic practice by answering the first question
and then uses this knowledge to engage in the second question. I continue
to follow her in her steps.

3.2.1 Naturalising Set Theoretic Practice

In this subsection, I discuss how the Second Philosopher learns about the
practice of set theory. In the next chapter, I will point out that the way
Maddy learns about set-theoretic practice might not be strong enough to sup-
port her general claims about proper conduct in set-theoretic practice. For
now, however, I will mostly refrain from criticism in an effort not to muddy
the waters here. What follows is hence largely an exposition of Maddy’s
position.

In order to find out about the methodology of set theory, Maddy con-
structs a naturalised model of the practice. Her idea is this. Turn to
the practice of set theory to give a description of a variety of cases where
methodological discussions have been resolved. This generates a picture of
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the practice that Maddy calls a naturalised model. This model is ‘purified’
if no contributions that turned out to be irrelevant to the resolution of the
methodological discussion are included in the naturalised model. Maddy is
only interested in purified naturalised models.

The claim is that this purified and amplified model provides an
accurate picture of the actual justificatory structure of contem-
porary set theory and that this justificatory structure is fully
rational. ([Maddy, 1997], 193-194)

Maddy never explicitly constructs a naturalised model of set theoretic prac-
tice. Throughout her books one finds descriptions of episodes of historical
and contemporary set-theoretic practice, but none of these is ever bundled
and called a naturalised model. This makes sense. Maddy’s approach to
philosophy is ever improving and open-ended; her Second Philosopher is
constantly in the process of improving her methods. Any attempt to fully
present a naturalised model would run counter to the Second Philosophical
approach, as it would fix the model and introduce a staticness where no stat-
icness is wanted. This of course raises the question why we need the concept
of a naturalised model in the first place. The answer, I believe, lies in its ex-
planatory power. By presenting this concept, Maddy makes clear what she is
after– a rational reconstruction of some relevant parts of the practice, purged
from the irrelevant methodological views – even if the Second Philosopher
can never actually give a full description of this model. This explanation
however is mine; Maddy is silent on this point.

What Maddy is after are stories that reveal some important insights about
set-theoretic practice. We find such stories scattered throughout her books.
I present five such stories here. The first is taken from Naturalism in Mathe-
matics and tells us about the foundational goal of set theory. The other four
stem from her more recent Defending the Axioms and deal with questions
about set introduction and axiom choice.

In [Maddy, 1997], 22, Maddy starts the discussion of the foundational
goal with the views of some set theorists on their discipline.

All branches of mathematics are developed, consciously or uncon-
sciously, in set theory. ([Lévy, 1979], 3)

Set theory is the foundation of mathematics. All mathematical
concepts are defined in terms of primitive notions of set and mem-
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bership. [...] From [the] axioms, all known mathematics can be
derived. ([Kunen, 2006], xi)

Mathematical objects (such as numbers and differentiable func-
tions) can be defined to be certain sets. And the theorems of
mathematics (such as the fundamental theorem of calculus) then
can be viewed as statements about sets. Furthermore, these the-
orems will be provable from our axioms. Hence, our axioms pro-
vide a sufficient collection of assumptions for the development of
the whole of mathematics– a remarkable fact. ([Enderton, 1977],
10-11)

According to Maddy, these set theorists express that they subscribe to the
foundational goal: ‘the job of set theoretic foundations is to isolate the math-
ematically relevant features of a mathematical object and to find a set the-
oretic surrogate with those features’; [Maddy, 1997], 26. The idea is that
set theory functions as one arena in which all mathematical objects can be
studied ‘side-by-side’; [Maddy, 2007], 35. This arena serves, according to
Maddy, as the ultimate arbiter for questions of mathematical existence and
proof: ‘if you want to know if there is a mathematical object of a certain
sort, you ask (ultimately) if there is a set theoretic surrogate of that sort; if
you want to know if a given statement is provable or disprovable, you mean
(ultimately), from the axioms of the theory of sets’; [Maddy, 1997], 26.

Maddy reminds us that the foundational goal was one of the goals of
set theory from its Cantorian beginnings and from the above quotes she
learns that some set theorists are still trying to provide a foundation for
mathematics. Naturalism in Mathematics is also an extensive study of this
goal of set theory. Maddy draws two morals from it, which she presents as
principles: UNIFY and MAXIMISE. If set theory is to serve as a foundation
of mathematics, then we should be looking for a single, unified theory of
sets; we should UNIFY. As mentioned in the last section, Maddy argues that
the pursuit of pure mathematics should not be encumbered in any way and
hence set theory should not encumber mathematics: ‘the set theoretic arena
in which mathematics is to be modelled should be as generous as possible’;
ibid., 210-211. This is the principle MAXIMISE. I discuss these two principles
in more detail in 4.1.

Maddy’s Second Philosopher learns from this that set theorists subscribe
to the foundational goal. I cast doubt on this in the next chapter. For my
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presentation of Maddy’s Second Philosophical programme however, we note
that Maddy’s Second Philosopher takes the foundational goal in the form
outlined above to be a goal of set theory.

The second case-study is Cantor’s introduction of sets. Maddy gives the
well-known story of Cantor’s attempt to generalise a theorem on representing
functions by trigonometric series. Cantor’s investigation of exceptional points
then leads to an investigation of collections of these points and the collection
of their limit points, the so-called derivative. Maddy cites Ferreirós

What is really original in this contribution is that Cantor does
not consider limit points in isolation, so to say, as Weierstrass
had done, but makes a step toward a set-theoretical perspective.
As a result, ‘set derivation’ is conceived as an operation on sets.
([Ferreirós, 2007], 143)

Maddy concludes

From a methodological point of view, what’s happened is that
a new type of entity– a set– has been introduced as an effec-
tive means toward an explicit and concrete mathematical goal:
extending our understanding of trigonometric representations.
([Maddy, 2011], 42)

The title of the third case study is ‘Dedekind’s introduction of sets’;
[Maddy, 2011]., 43. Maddy is well aware that Richard Dedekind’s is a
‘methodologically rich story’ (ibid.) but decides to concentrate on ‘one
central strand’ (ibid.) of this story: Dedekind’s insistence to treat sets of
numbers as mathematical objects in their own rights. Ernst Kummer had
introduced the concept of an ‘ideal number’, defined as a divisor of certain
numbers. For Dedekind, this is not a definition in its own right. He proposes
to replace Kummer’s ideal number ‘by a noun for something which actually
exists’; Dedekind writing 1877, translation by Avigad, [Ferreirós, 2007], 172.
This something is, for Dedekind, the set of numbers Kummer took his ideal
number to divide. Whereas Kummer had to represent each ideal number
by the numbers it would divide, Dedekind’s ‘insistence on treating [sets] of
numbers [...] as objects in their own right [has] important methodological
consequences: it encourages one to speak of arbitrary systems, and allows one
to define operations on them in terms of their behavious as sets or predicates,
in a manner that is independent of the way in which they are represented.
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For example, in 1871, Dedekind defines the least common multiple of two
modules to be their intersection, without worrying about how a basis for this
intersection can be computed from bases for the initial modules’; Avigad,
[Ferreirós, 2007], 173.

As Maddy tells us

Among Dedekind’s goals were general arguments in representation-
free terms that would then “‘explain” why calculations with and
properties of the objects do not depend on these choices of rep-
resentations’. ([Maddy, 2011], 43)

Important for the Second Philosophical naturalised model of the practice of
set theory is here that, just as it was the case with Cantor, Dedekind intro-
duces sets in service to particular mathematical desiderata: representation-
free definitions. Maddy then argues that Dedekind’s introduction of sets also
serves other mathematical goals: ‘non-constructive abstract algebra; a rigor-
ous characterisation of continuity to serve as a foundation for analysis and
a more general study of continuous structures; a rigorous characterisation of
the natural numbers and resulting foundation for arithmetic’; ibid. 45.

The fourth case study turns from the reasons to introduce sets to ques-
tions about the adoption of axioms about them. Under the heading ‘Zer-
melo’s defence of his axiomatisation’, Maddy presents an abridged history of
the discussion about Ernst Zermelo’s axioms, which focuses exclusively on
Zermelo’s arguments. According to Maddy, Zermelo had two sorts of evi-
dence for his axioms. The first relies on the intuitive evidence of the axioms.
Zermelo’s focus is the Axiom of Choice, AC, and part of his argument for
this axiom is that it has been implicitly used in the works of such prominent
figures as Cantor, Dedekind, Bernstein and others. This shows, according
to Zermelo, that there is some intuitive pull towards AC; that this axiom
catches something in the informal understanding of the term ‘set’. However,
so Maddy tells us, ‘Zermelo despairs of defining this concept with a preci-
sion adequate to the development of set theory’; ibid. 46. Instead, Zermelo
appeals to a second kind of evidence, one that can be ‘objectively decided’:
the necessity of the axiom for science.

no one has the right to prevent the representatives of productive
science from continuing to use this ‘hypothesis’ [i.e. AC]– as one
may call it for all I care– and developing its consequences to the
greatest extent. ([Zermelo, 1908], 189)
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Maddy notes

This mode of defence goes beyond the observation that his ax-
ioms allow the derivation of set theory as it currently exists and
the foundational benefits thereof; Zermelo here counts the mathe-
matical fruitfulness of his axioms, their effectiveness and promise,
as points in their favour. ([Maddy, 2011], 47)

Maddy notes that Zermelo’s two sorts of argument mirror Gödel’s distinc-
tion between the intrinsic evidence for axioms– their self-evidence, intuitive
appeal or being ‘part of the concept of set’– and the extrinsic evidence–
the effectiveness, fruitfulness and productiveness of the axiom. The Second
Philosopher notes that set theorists rely on extrinsic evidence.6

The fifth and last story is the case of determinacy. The Axiom of Deter-
minacy, AD, states that every set of reals is determined.7 The axiom was first
presented by Jan Mycielski and Hugo Steinhaus in [Mycielski & Steinhaus,
1962], in which the authors showed that the axiom contradicts the Axiom
of Choice. According to Kanamori, ‘ZF +AD was never widely entertained
as a serious alternative to ZFC’; [Kanamori, 2009], 378. Nonetheless, as
will become clear below, variations of the axiom have received considerable
attention from the set-theoretic community. Two variations are of particu-
lar interest, both of which restrict the range of considered sets of reals. In
the original formulation, the axiom is a statement about ‘all sets of reals’.
One variation, the Axiom of Projective Determinacy, PD, is a statement
about all projective sets, whereby projective sets are special types of sets
of reals.8 Another variation of AD is the statement that AD holds in a
certain generalisation of Gödel’s L called L(R). This axiom is denoted by
ADL(R). Since L(R) includes all the projective sets, ADL(R) implies PD. In
her presentation, Maddy focusses on arguments for ADL(R).

Maddy gives a ‘telegraphic summary’ ([Maddy, 2011], 49) of the current
evidence for ADL(R), which she divides into four classes. The first is that
ADL(R) generates a theory which answers ‘all the questions about projective

6Maddy ignores intrinsic evidence for the better part of [Maddy, 2011]. When she
discusses the concept in the later pages of her book, she ‘float[s] the heretical suggestion
that in fact intrinsic justifications are secondary to the extrinsic’ (134). Compare also
chapter 5.

7‘Determined’ is a technical term. See [Jech, 2006], section 33, for details.
8For a definition of ‘projective set’ and a discussion in relation to AD, see [Jech, 2006],

section 33.
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sets from classical descriptive set theory’; [Steel, 2010], 428. Maddy men-
tions Peter Koellner’s remarks that ADL(R) is implied by the consequences
of this theory, which shows that ADL(R) is necessary for this theory; [Koell-
ner, 2006], 170-174. Maddy refers to Steel to point out that ‘the theory of
projective sets one gets in this way extends in a natural way the theory of
low-level projective sets developed by the classical descriptive set theorists
using only ZFC’; [Steel, 2010], 428. According to Maddy, there is hence
some clear extrinsic evidence for ADL(R): it is powerful and resolves some
of the problems the set theorists are having. This quality is also shared by
the axiom expressing that every set is constructible: V = L. I will discuss
this axiom in more detail in the next chapter. Note here that, according
to Maddy, ADL(R) resolves the problems the set theorists are having in a
natural and useful way whereas V = L does not.

Let me briefly interrupt my presentation of Maddy’s argument here to
ask what ‘natural’ means in the setting above. Maddy relies on Steel’s and
Koellner’s judgement, but she does not give their arguments. Maddy is
relying on authority here. Steel and Koellner are experts in their field and
thus there is reason to rely on their judgement. However, it means that
Maddy endorses the position of two set theorists without discussing the views
of other set theorists who might disagree. I consider Maddy’s neglect of
the positions and arguments of those set theorists who do not agree with
her philosophical account of set-theoretic practice a weakness of Maddy’s
philosophical work. I take this theme up again in the next chapter and then
again in chapter 6.

I now continue the presentation of the four cases for ADL(R) Maddy gives
with the second case. Maddy claims that the equivalence of ADL(R) to the
existence of inner models which can accommodate large cardinals counts as
evidence in favour of the axiom.9 According to her,

ADL(R) inherits the intrinsic and extrinsic evidence for large car-
dinals, and large cardinals, in turn, gain extrinsic support by im-
plying the determinacy-based account of projective sets. ([Maddy,
2011], 50)

Thirdly, Maddy argues that ADL(R) is also supported by the fact that
‘virtually every natural theory of sufficiently strong consistency strength ac-
tually implies ADL(R)’; [Koellner, 2006], 173. Koellner gives two examples:

9The inner models can accommodate infinitely many Woodin cardinals; cf. [Jech, 2006],
theorems 33.16 and 33.26.
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the theory that states that there is an ω1-dense ideal on ω1 and the Proper
Forcing Axiom, PFA. Both these theories are incompatible,10 yet both imply
ADL(R). Moreover, so Koellner mentions, there are many more examples like
these. For him ‘definable determinacy is inevitable in that it lies in the over-
lapping consensus of all sufficiently strong natural mathematical theories’;
ibid., 173. Maddy draws the following conclusion

Given the long-standing foundational goal of set theory and the
open-endedness of contemporary pure mathematics, we have good
grounds to seek theories of ever-higher consistency strength. If
all reasonable theories past a certain point imply ADL(R), this
constitutes a strong argument in its favour. ([Maddy, 2011], 51)

Notice that what counts as a ‘reasonable theory’ here is crucial to the ar-
gument because not all theories of high consistency strength imply ADL(R).
This connects to the point about natural theories I made above, and I will
not discuss this further here.

The last supporting case for ADL(R) Maddy mentions is that it generates
a form of generic completeness. Recall that the best contemporary tool for
showing independence is forcing. However, in the presence of a proper class
of certain large cardinals called Woodin cardinals, the L(R) in the ground
model is elementary equivalent to the L(R) in all its forcing extensions. That
is, in the presence of ADL(R) (and a proper class of Woodin cardinals) forcing
cannot succeed in showing that some questions about L(R) are unsolvable.
Conversely, if there is a proper class of inaccessibles (the weakest of the large
cardinals) and the L(R) in the ground model is elementary equivalent to the
L(R) in all forcing extensions, then ADL(R) holds.11 That is, ADL(R) implies
and is implied by this kind of generic completeness. Maddy states:

Given that we want our theory of sets to be as decisive as possible,
within the limitations of Gödel’s theorems, generic completeness
would appear a welcome feature of determinacy theory. ([Maddy,
2011], 51)

This concludes the partial construction of Maddy’s naturalised model of the
practice of set theory. It is time to take stock of what we have learned.

10For connoisseurs: PFA implies Martin’s Axiom, MA, as well as 2ℵ0 = ℵ2. MA+¬CH
in turn implies that there is no ω1-dense ideal on ω1.

11For a discussion of these results, see [Koellner, 2006], 171-173.
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We have seen that, according to Maddy’s Second Philosopher, set theorists
subscribe to the foundational goal. Furthermore, we saw Maddy’s argument
that sets were originally posited in service of mathematical goals (extend-
ing our understanding of trigonometric representations; representation-free
definitions; non-constructive abstract algebra; a rigorous characterisation of
continuity to serve as a foundation for analysis and a more general study of
continuous structures; a rigorous characterisation of the natural numbers and
resulting foundation for arithmetic). That is: according to Maddy set theo-
rists have a goal and the discussed cases provide effective means to achieve
this goal. Similarly for the case of axiom candidates. Maddy counted the
fruitfulness of the Axiom of Choice in its favour because it leads to ‘pro-
ductive science’; [Zermelo, 1908], 189. In the case of determinacy, we have
seen Maddy’s argument that the relevant axiom produces solutions to old
problems that are desirable. And so on. Maddy concludes

Given what set theory is intended to do, relying on considerations
of these sorts is a perfectly rational way to proceed: embrace
effective means toward desired ends. ([Maddy, 2011], 52)

Thus, Maddy attributes means-ends reasoning to set-theoretic practice. How-
ever, what is set theory intended to do? Is it not in the business of describing,
say, an objective mathematical realm, some true universe of sets? Turning
again to the practice, Maddy tells us that many practitioners do in fact sur-
round their arguments with metaphysical claims. The example of Dedekind
is particularly striking: for him, the natural numbers are ‘free creations of
the human mind’; [Dedekind, 1888], 791. Thus, for Dedekind, we are not
discovering the natural numbers, we are creating them and this has conse-
quences for the methods we use to do so. However, as Maddy notes, other
mathematicians hold other metaphysical beliefs. Hence, Maddy follows, there
should be considerable disagreement on the proper methods of mathematics.
For example, the history of the Axiom of Choice shows such disagreement.
However, this methodological debate has been settled according to Maddy,
as well as many other methodological debates in mathematics. Maddy puts
it thus:

My point is simply that the methodological debates have been
settled, but the philosophical debates have not, from which it
follows that the methodological debates have not been settled
on the basis of the philosophical considerations. ([Maddy, 1997],
191)
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Instead, so Maddy continues, to answer questions about mathematical method-
ology, do not turn to philosophy but turn instead ‘to the needs and goals of
mathematics itself’; ibid..

Notice that Maddy’s Second Philosopher has studied mainly those goals
which have already been achieved by the set-theoretic community. The ex-
ception is the foundational goal.12 In the next chapter, I will show that not all
set theorists agree with Maddy’s Second Philosophical argument for her ver-
sion of this goal. In my conclusion in chapter 6, I pick up this train of thought
to argue that our philosophical programmes to study mathematics ought to
provide us with an anthropology of the contemporary and unachieved goals
of the mathematical practices we are studying.

Because the Second Philosopher claims that means-ends reasoning is
rational set-theoretic reasoning, goals play an important role in the Sec-
ond Philosophical programme. According to Maddy, the resolution of the
methodological debates rests on the goals of set theory, not some philosoph-
ical view.

Given the wide range of views mathematicians tend to hold on
[philosophical] matters, it seems unlikely that the many analysts,
algebraists and set theorists ultimately led to embrace sets would
all agree on any single conception of the nature of mathematical
objects in general, or of sets in particular; the Second Philosopher
concludes that such remarks should be treated as colourful asides
or heuristic aides, but not as part of the evidential structure of
the subject. What matters for her methodological purposes is
that all concerned do feel the force of the kinds of considerations
we’ve been focusing on here; these are the shared convictions that
actually drive the practice. ([Maddy, 2011], 53)

Maddy denies here the primacy of philosophy over mathematical goals. I take
up this point in chapter 5 and argue that there are instances of a reciprocal
relationship between the metaphysical views of the set theorists and the way
they practice set theory.

I now come back to my presentation of the Second Philosophical pro-
gramme. Maddy argues that the kind of reasoning that is convincing in
set-theoretic practice when discussing foundational issues is means-ends rea-
soning: if the means help to satisfy our goals, then it is rational to accept

12The case for determinacy is special in this regard. I discuss this in more detail in
chapter 6.
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the means. The next subsection explores what makes our mathematical goals
proper.

3.2.2 Mathematical Depth

The Second Philosophical inquirer set out on her open-ended quest to learn
about what the world is like by a broadly speaking scientific method: hy-
pothesising, testing, confirming, rejecting old beliefs and so on. When she
encountered the use of mathematics in the scientific theories she has been
using, her interest in mathematics stirs. Realising that the applied mathe-
matics is only a part of the larger realm of the practice of mathematics, the
inquirer investigates this practice. In our case, the practice of interest is set
theory. This practice however has norms quite different from the norms the
inquirer has encountered thus far.

For example, [the Second Philosophical inquirer] isn’t accustomed
to embracing new entities to increase her expressive power (as in
Cantor) or to encourage definitions of a certain desirable kind (as
in Dedekind), or to rejecting a theory because it produces less
interesting consequences (as with the alternative to determinacy’s
theory of projective sets that results from V = L). ([Maddy,
2011], 53)

Might not the inquirer now think that her usual methods can criticise the
methods of mathematics? Not according to Maddy. Remember Maddy’s
principle that whenever philosophy and mathematics clash, it is philosophy
that must give. Therefore, no matter how reasonable and philosophically
well-founded the norms of our inquirer are before she studies mathematics,
once she realises that mathematics is fruitfully used in science and that it has
other norms than science, she readily accepts these new norms. Mathematics
then has its own norms and goals and its own criteria for the appropriateness
of its methods and is in no need of external, philosophical justification.

The Second Philosophical inquirer is tracking two questions: 1) what are
the proper methods of set theory? 2) why are they reliable? Having given the
five examples presented above and a brief discussion to the extent that the
inquirer accepts mathematical norms and goals as in no need of philosophical
criticism or backing, Maddy somewhat surprisingly writes
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If all [the inquirer] ultimately cared about were answering ques-
tions of the first type– what are the proper set-theoretic methods?–
she’d now be done ([Maddy, 2011], 54)

Surely, Maddy does not intend this to be taken literally. After all, she has
told us that her Second Philosophical approach is an open-ended one, up for
constant improvement. One would hence suppose that this holds also true
for her answer to questions of the first type. The most favourable reading of
the above quote seems to be that Maddy simply intends here that the Second
Philosopher has answered the first question to her satisfaction at this point
and can now press on to the second type of question. Let me skip over this
lightly here– I discuss these issues in detail in the following chapters– and
follow Maddy as she turns her attention to the second type of question: what
makes the proper methods of set theory, those we have learned about from
the naturalised model, reliable? ‘Do they successfully track the existence of
sets and their properties and relations?’; [Maddy, 2011], 54. Thus, Maddy is
interested in the kinds of ontological and epistemological questions of what
Mancosu calls ‘mainstream philosophy of mathematics’; cf. chapter 1.

To answer her questions, Maddy spends the best part of her [Maddy,
2011] to develop three metaphysical positions that, according to her, can
account for the reliability of the set-theoretic methods. In this thesis, I am
not going to challenge Maddy on these metaphysical views; I study Maddy
out of the motivation to investigate set-theoretic practice and the lessons we
may learn from this investigation about the features we should demand of our
philosophical programmes to study mathematics; cf. 1.6. Thus, I will spend
little time on Maddy’s metaphysical proposals. Nonetheless, they need to be
mentioned because they are intimately connected with Maddy’s conclusions
about set-theoretic practice and they lead us to a concept that will receive
some attention in this thesis: mathematical depth.

Before the Second Philosopher can answer whether set-theoretic practice
successfully tracks the existence of sets, she needs to answer the question
whether there are sets at all. Maddy’s approach to this is to assume, for now,
that sets exist and go from there. The result is what she calls ‘Thin Realism’.
This helps to individuate the concept of mathematical depth. From there
Maddy can then construct a story which does without the existence of sets;
this is her ‘Arealism’. Maddy’s third metaphysical proposal is ‘Objectivism’,
the position that ultimately it does not matter whether we side with Thin
Realism or Arealism. I will roughly follow Maddy’s argumentative structure
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and explain her three metaphysical proposals as I go along.
For now, we are assuming that there are sets. Are the set-theoretic meth-

ods reliable in tracking them in the above sense? According to Maddy, this is
not a question that can be answered ‘within set theory or pure mathematics
proper’; ibid. 54. ‘We are, in effect, standing within empirical science, asking
a question about a particular human practice’; ibid. However, according to
Maddy, this external view does not supply means for criticism of the set-
theoretic methods. ‘Though [the Second Philosophical inquirer] is viewing
the practice from her external, scientific perspective, as a human activity, she
sees no opening for the familiar tools of that perspective to provide supports,
correctives, or supplements to the actual justificatory practices of set theory.
She has no grounds to question the very procedures that do such a good job
of delivering truths’; ibid. 55. Maddy concludes that the methods of set
theory are reliable guides to the facts about sets. The question that remains
to be answered is why these methods are reliable; what is the metaphysical
nature of sets such that the set-theoretic methods reliably track it?

Maddy develops her answer to the above why-question from an oppo-
sition to what she calls Robust Realism. For the Robust Realist, there is
some objective realm of abstract objects (or structures or else), which math-
ematical axioms describe. In this realm, all statements of the relevant kind
(set-theoretic statements in our case) are either true or false. One prominent
proponent of Robust Realism is Gödel: ‘the set-theoretic concepts and the-
orems describe some well-determined reality, in which Cantor’s conjecture
must be either true or false’; [Gödel, 1947], 260.

[Benacerraf, 1973] asked how we could gain reliable information about this
causally isolated realm. John Burgess and Gideon Rosen talk about a ‘great
gulf’ ([Burgess & Rosen, 1997], 29) between us and this realm of abstracta.
They remind us that the Robust Realist owes us ‘a detailed explanation how
anything we do here can provide us with knowledge of what is going on over
there, on the other side of the great gulf’ (ibid.).

Maddy’s Second Philosophical inquirer objects to Robust Realism even
before Benacerraf’s epistemological challenge can get off the ground. From
the naturalistic model given above, she has learned that mathematical rea-
soning relies on means-ends reasoning: if, say, you want to formulate and
prove a stronger theorem on trigonometric functions (as Cantor did) and the
introduction of sets allows you to do so, then it is reasonable to introduce
sets. Similarly, if you want a certain type of theory (say a generically com-
plete theory) and a certain axiom allows you to form such a theory, then
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it might be reasonable to assume the axiom (given that it does not conflict
with other desiderata). Nevertheless, means-ends reasoning does not suffice
as justification for the introduction of new entities for the Robust Realist.
For all he knows, the other side of the great gulf could be unpleasantly un-
cooperative. Think of it this way: just because some assumptions lead to an
intellectually pleasing theory about the physical world does not mean that
these assumptions are true. So why should this be the case for set theory?
Just because certain sets (e.g. large cardinals) solve a problem for us here
does not mean that they actually exist on the other side of that great gulf,
and just because we fancy a certain type of nice theory does not mean that
this nice theory actually describes the reality on the other side of the great
gulf. The Robust Realist hence needs a further argument of a different kind;
something that ensures him that what the mathematician is doing actually
tracks what is going on over there on the other side of the great gulf.

To the Second Philosopher, this hesitation seems misplaced: why
should perfectly sound mathematical reasoning require supple-
mentation? Hasn’t something gone wrong when rational mathe-
matical methods are called into question in this way? ([Maddy,
2011], 58)

Benacerraf’s question suggests that the Robust Realist needs to supplement
mathematical arguments with an epistemic account of why these arguments
track what is going on on the other side of the gulf. Maddy’s point is that it
seems odd to demand that mathematicians do more than they currently do.
True to her principle, Maddy finds fault with the philosophy rather than the
mathematics here.

In conclusion, Maddy regards Robust Realism as unsuited to answer the
question why set-theoretic methods are reliable. But then, what sort of things
are sets? ‘Under the circumstances, the Second Philosopher is naturally
inclined to entertain the simplest hypothesis that accounts for the data: sets
are just the sort of thing set theory describes; this is all there is to them;
for questions about sets, set theory is the only relevant authority’; [Maddy,
2011], 62. According to Maddy, Robust Realism tells a story which goes
‘well beyond’ (ibid., 62) what set theory tells us; cf. the point about the
uncooperative other side of the great gulf above. Her proposal seems, in
contrast, rather thin. Thus, she names her form of realism, which regards
set theory as the ‘only relevant authority’, Thin Realism.
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Maddy spends a whole chapter on fleshing out her Thin Realism. How-
ever, as mentioned above, these details will not play a role in this thesis.
Thus, I skip over them here and move directly to a worry that might be
raised in connection to her position.

According to Maddy, Thin Realism ‘not only squares with the Second
Philosopher’s austere and hard-nosed scientism, it actually seems to arise
naturally from it’; ibid. 77. Nonetheless, she acknowledges the worry that
her position might be ‘all too easy, that it rests on some sleight of hand’,
that connecting the metaphysical nature of sets and set-theoretic methods
in the way she does ‘invite[s] the suspicion that sets aren’t fully real, that
they’re a kind of shadow play thrown up by our ways of doing things, by our
mathematical decisions’; ibid., 77. According to her, ‘the position would be
considerably more compelling if it offered some explanation of why sets are
this way’; ibid., 77.

This brings us back to Maddy’s Second Philosophical inquirer. She wants
to find out about how the world is. Her hard-nosed scientism leads her to
believe that there is a world to find out about and that this world is made
in a certain way. There are hence some facts that are true about this world.
Some of these facts are ontological: Maddy’s inquirer holds that there are
trees in this world, there are humans, animals and chocolate cake. These are
the facts about what the world is made of. Then there are the facts about
how the world is. For example, that the ball falls to the ground once I let go
of it is a fact about how the world is. I might describe this phenomenon in
different ways (‘gravity!’ or ‘Godly intervention’ or whathaveyou), but the
fact remains. Similarly for mathematics: the world is in such a way that the
large cardinal axioms can be ordered in a linear hierarchy; the world is in such
a way that appealing to transfinite sets allows for generalisations of theorems
about trigonometric series. It is not ‘up to us’, to use Maddy’s expression,
that the concept of a group is ‘getting at the important similarities between
structures in widely different areas of mathematics’; [Maddy, 2011], 79-80.
It is not up to us because there simply is a fact of the matter how the world
is. And this fact remains regardless of what we think the world is made of.

According to Maddy, these facts about how the world is in regards to
mathematics extend beyond the merely logical connections. The definition of
a group stands out from all the slight variations of the concept of group, even
though logic does not differentiate between all these variations in definition
(assuming their internal consistency). What makes the definition of a group
special is that it is getting at similarities of particular structures that share
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otherwise no connection. That it does is a fact about how the world is,
and what it allows the mathematician to do is to develop a rich and fruitful
theory. That is: the world is in a certain way and because the world is this
way, the concept of a group is useful.

Because these facts about how the world is are not up to us, they are
not subjective. ‘I might be fond of a certain type of mathematical theorem,
but my idiosyncratic preference doesn’t make some conceptual or axiomatic
means toward that goal into deep or fruitful or effective mathematics’; ibid.
81. If the world is such that the definition you have come up with is fruit-
less, then, according to Maddy, no amount of hard work will make it fruitful.
Moreover, no matter how much you might dislike a fruitful idea, your emo-
tional position towards it does not make it any less fruitful.

Thus, for Maddy, there is an objective reality and some facts about it
are visible through mathematics. Nevertheless, notice that this is not an
objective reality on the other side of some great gulf. It is, quite simply, the
objective reality the Second Philosophical inquirer has been learning about
all along. She also set out to find out about the way the world is. It turns
out that the world is in such a way that our definition of a group gets at
similarities which can be fruitfully put to use in a way that other definitions
do not. Thus far, we are operating under the assumption that sets exist in
the sense of Thin Realism. Notice however that this ontological assumption
plays no part in the above. I come back to this below.

Some bits of mathematics can get at these facts how the world is. The
world is in such a way that allowing for transfinite numbers allows to generate
an expanded theorem on trigonometric series. The world is in such a way
that the introduction of sets allows for representation-free definitions. The
world is in such a way that the Axiom of Choice has a vast array of important
implications not shared by other axioms. And the world is in such a way
that allowing for ADL(R) answers ‘all the questions about projective sets from
classical descriptive set theory’; [Steel, 2010], 428. I have discussed these four
cases in the naturalised model (in order: Cantor, Dedekind, Zermelo and the
case for determinacy). In all cases, the mathematics involved has a special
virtue: it tracks some fact about how the world is. What we are getting at
here is what Mady calls mathematical depth.

Maddy uses the terms ‘mathematical depth, mathematical fruitfulness,
mathematical effectiveness, mathematical importance, mathematical produc-
tivity and so on [...] interchangeably’ and uses them as ‘a catch-all for the
various kinds of special virtues we clearly perceive in our illustrative examples
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of concept-formation and axiom-choice’ ([Maddy, 2011], 81).13 Mathemati-
cal depth (and its relatives) then is the virtue of a piece of mathematics of
tracking some fact about how the world is, of ‘track[ing] deep mathematical
strains that the [other pieces of mathematics] miss’; [Maddy, 2011], 79.

We have just seen that according to Maddy the works of Cantor, Dedekind,
Zermelo and the work on determinacy all have this ‘special virtue’ of getting
at the facts about how the world is; they are all mathematically deep. This
means that the methods Maddy has told us about in the discussion of the
naturalised model above lead to deep mathematics. However, deep mathe-
matics is that kind of mathematics that reveals how the world is, i.e. it does
exactly what the Second Philosophical inquirer set out to do. Therefore,
the proper methods of set theory do the job the Second Philosopher wants
done: they allow her to find out something about how the world is. And this
answers her question why the proper methods of set theory are reliable: they
track the strains of mathematical depth.

Maddy introduces us to this idea of mathematical depth by presenting us
with Immanuel Kant. For Kant, the three-sidedness of a triangle is an ana-
lytic truth about the triangle, i.e. the three-sidedness is (covertly) contained
in the concept of ‘triangle’. But that the inner angles add up to two right
angles is a synthetic truth, i.e. the inner angle sum of a triangle lies out-
side the concept of the triangle itself. Hence, to learn about the inner angle
sum of triangles, we need to bring intuition to the concept: either empirical
intuition in drawing an actual diagram or the kind of pure intuition that is
involved when we construct diagrams in our visual imagination. This means
that learning about the inner angle sum of triangles we do not only learn
about the concept but we are also constrained by the nature of space itself.
Moreover, space, so Kant thought, is Euclidean and this is why the inner
angle sum is equal to two right angles. ‘Of course, this picture of geometric
knowledge hasn’t survived subsequent progress in logic, mathematics, and
natural science’; [Maddy, 2011], 78. The reason Maddy presents it is that
Kant is tracking something beyond mere logical connections. According to
Maddy, Kant is tracking the nature of space. As we know by now, Maddy re-
places what is tracked with the facts about how the world is. So why tell the
story about Kant? Because what is tracked for Kant is intuition, something
traceable to ourselves. Not so for the kind of facts Maddy is after: ‘the facts
that constrain our set-theoretic methods [...] are not traceable to ourselves

13In most citations, I change all of Maddy’s variations to mathematical depth.
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as subjects’ (ibid. 81).
Maddy ‘anchors’ (ibid. 82) mathematical goals in the objectivity of what

the mathematics traces. The examples we have been rehearsing are not
mathematically deep because they fulfilled the goals of the relevant mathe-
maticians. ‘Cantor may have wished to expand his theorem on the uniqueness
of trigonometric representations, but if this theorem hadn’t formed part of
a larger enterprise of real mathematical importance, his one isolated result
wouldn’t have constituted such compelling evidence for the existence of sets’;
ibid., 82. Maddy draws an important conclusion:

our mathematical goals are only proper insofar as satisfying them
furthers our grasp of the underlying strains of mathematical [depth].
(ibid. 82)

Of course, there are many such proper goals and we have a choice amongst
them. However, our choice is not just amongst any goal. ‘The goals are
answerable to the facts of mathematical depth’; ibid., 82.

So there is a well-documented objective reality underlying Thin
Realism, what I’ve been loosely calling the facts of mathematical
depth. The fundamental nature of sets (and perhaps all mathe-
matical objects) is to serve as means for tapping into that well;
this is simply what they are. And since set-theoretic methods
are themselves tuned to detecting these same contours, they’re
perfectly suited to telling us about sets. ([Maddy, 2011], 83)

We now have a reason why set-theoretic methods are proper. We started
off by assuming that sets exist. Discarding Robust Realism led Maddy to
embrace Thin Realism, a form of realism that accepts set theory as the only
authority to tell us about sets. And the discussion about mathematical depth
has shown that the set-theoretic methods track the kind of objective reality
that is necessary for a realist account of mathematics.

I now return to the assumption that sets exist. Maddy’s Second Philo-
sophical inquirer accepts that the methods of set theory she has identified are
proper for the set-theoretic enterprise. However, they are also quite different
from the methods she is used to; ‘claims aren’t supported by her familiar
observation, experimentation, theory-formation, and so on’; [Maddy, 2011],
88. Rather than concluding that set theory is nonetheless a body of truths,
could the Second Philosopher not rest content with a description along the
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lines that ‘just as the concept of group is tailored to the mathematical tasks
set for it, the development of set theory is constrained by its own particu-
lar range of mathematical goals’; ibid. 89? Maddy thinks we can. ‘Such
a Second Philosopher would see no reason to think that sets exist or that
set-theoretic claims are true– her well-developed methods of confirming exis-
tence and truth aren’t even in play here– but she does regard set theory, and
pure mathematics with it, as a spectacularly successful enterprise, unlike any
other’; ibid. This is Maddy’s Arealism.

As with Thin Realism, Maddy considerably expands her elaborations on
Arealism and just as with Thin Realism I point out that these elaborations
play no role in this thesis and I hence do not give them here. I am interested
here in the fact that Maddy presents Arealism as a serious metaphysical
position. From this we can learn something about mathematical depth.

The Thin Realist holds that sets exist and set theory is a body
of truths, and the Arealist denies both. But despite their dis-
agreements over truth and existence, the Thin Realist and the
Arealist are indistinguishable at the level of method. [...] This
methodological agreement reflects a deeper metaphysical bond:
the objective facts that underlie these two positions are exactly
the same, namely, the topography of mathematical depth [...].
For the Thin Realist, sets are the things that mark these con-
tours; set-theoretic methods are designed to track them. For the
Arealist, these same contours are what motivate and guide her
elaboration of the theory of sets; she can go wrong as easily as
the Thin Realist if she fails to detect the genuine mathematical
virtues in play. For both positions, the development of set theory
responds to an objective reality– and indeed to the vary same
objective reality. ([Maddy, 2011], 100)

What we learn from this is that, according to Maddy, mathematical depth
is not dependent on the existence of sets. What really matters is depth, not
existence.

If existence is not the issue, then our Second Philosophical inquirer might
be free either to take the set-theoretic statements at face value and assume
that set-theoretic existence statements talk about something that exists and
accept that set theory has introduced some new methods for finding out
about what there is in this world– this is Thin Realism. Or the Second
Philosophical inquirer could view the set-theoretic methods as too different
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from her usual methods of observation, experimentation and so on and con-
clude that whilst being an extremely fruitful enterprise, set theory is not in
the business of telling us about what there is– this is Arealism. According
to Maddy, both choices are possible; the Second Philosopher is free to ac-
cept either Thin Realism or Arealism. And this insight, that the Second
Philosopher is free to choose at this point, is a position Maddy calls Objec-
tivism. For the Objectivist ‘Thin Realism and Arealism are equally accurate,
second-philosophical descriptions of the nature of pure mathematics. They
are alternative ways of expressing the very same account of objective facts
that underlie mathematical practice’; [Maddy, 2011], 112.
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Chapter 4

The Hamkins Story

So far in this thesis I have argued as follows. The question which features
we should demand of our philosophical programmes to study mathematics
is a pressing question for philosophers of mathematics. In order to bring
out three of these features, I have presented Maddy’s Second Philosophical
programme. The aim of this chapter and the next is to present two stories
about set-theoretic practice which are disharmonious with Maddy’s presenta-
tion thereof. In this chapter, I show that there is a relevant set theorist who
does not agree that the foundational goal of set theory implies the search for
a unique theory of sets. In the next chapter, chapter 5, I show that there are
instances of reciprocal relationship between mathematics and metaphysics. I
will show that these stories do not easily align with Maddy’s Second Philo-
sophical programme. In chapter 6, I will refer to these two stories about
set-theoretic practice in order to bring out the three features we should de-
mand of our programmes to philosophically investigate mathematics.

Maddy’s Second Philosopher studies the methodological debates of set-
theoretic practice that are regarded as resolved by ‘the set theorists’. Such
general claims about a practice face sample-size problems: how many set
theorists need to regard a debate as resolved for the philosopher to make the
general claim that the debate is resolved? Maddy does not discuss this point.
What she does is cite, quote and refer to some of the leading set theorists
of our time when it comes to these matters. Maddy refers to the views of
Kenneth Kunen, Herbert Enderton, Azriel Lévy and Yiannis Moschovakis
in regards to the foundational goal ([Maddy, 1997], 22, 25-26); the case for
determinacy relies on quotes from John Steel, Moschovakis, Peter Koellner
and Hugh Woodin ([Maddy, 2011], 47-51). Interestingly, the cases of set-
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introduction (Cantor, Dedekind) and axiom defence (Zermelo) rely not on
the views of contemporary set theorists in Maddy’s presentation. Instead,
she falls back to respected historians of mathematics, such as Ferreirós and
Jeremy Avigad, for set-introduction ([Maddy, 2011], 41-45). Regarding the
axiom of choice, Maddy presents Zermelo’s reasons for accepting it; that the
set theorists today accept it and why they accept it is not discussed ([Maddy,
2011], 45-47).

In this thesis, I do not dispute Maddy’s presentation of the historical
cases. I concentrate on those cases in which Maddy relies on the views
expressed by contemporary set theorists: the foundational goal and the case
for determinacy. According to Maddy, it is ‘fairly uncontroversial’ that ‘set
theory hopes to provide a foundation for classical mathematics’; [Maddy,
2007], 354. And with regards to determinacy she writes ‘the current case
for determinacy has blossomed so impressively that many would agree with
Woodin’s assessment: ‘Projective determinacy is the correct axiom for the
projective sets”; [Maddy, 2011], 51.1

In the next two sections, I argue that Maddy does not describe the prac-
tice of set theory as a whole but rather the practice of a particular group of
set theorists. To do this, I first discuss in more detail Maddy’s story about
the foundational goal of set theory in section 4.1. I then give a presentation of
Joel David Hamkins’ multiverse view in section 4.2. The aim here is twofold.
Firstly, Hamkins serves as an example of a noteworthy set theorist whose
views are neither captured nor discussed by Maddy. Secondly, I will draw on
the Hamkins story in the next chapter in order to tease out some instances
of the reciprocal relationship between mathematics and metaphysics. The
current chapter ends with a possible answer the Second Philosopher might
give in regards to the Hamkins story in section 4.4.

4.1 The foundational goal

Recall that Maddy is a proponent of means-ends reasoning. She gives us
‘simple counsel’: ‘identify the goals [of a practice] and evaluate the methods
by their relations to those goals’; [Maddy, 1997], 194. This means that we
need a way to identify the goals of a mathematical practice. The Second
Philosophical programme gives us no explicit story how to do so. Nonetheless,
Maddy has identified one such goal: the foundational goal of set theory. As

1The quote from Woodin is taken from [Woodin, 2001a], 575.
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we saw in 3.2.1, the Second Philosopher refers to the views of the respected
set theorists Lévy, Enderton and Kunen. These set theorists hold that the
foundational goal is, in fact, a goal of set theory. There is, however, a question
what this means.

In [Maddy, 1997], Maddy discusses various philosophical understandings
of the foundational goal, such as the ontological reduction of mathematical
entities to sets for example. According to Maddy however, the foundational
goal is not a goal of set theory because of philosophical benefits. Rather, the
mathematical benefits of having a foundational theory are the reason why
set theory has the foundational goal. The story about these mathematical
benefits is developed in more detail in [Maddy, 2011]. There, Maddy tells the
story how mathematics and science became divorced. This led to a renewed
emphasis on rigour, the central tool of which was axiomatisation. Maddy
continues that simply laying down a list of axioms is not enough to establish
that these axioms describe a genuine structure. It gradually emerged that ‘set
theory provides a natural arena in which to interpret the myriad structural
descriptions of mathematics’; ibid., 32. Today, so Maddy tells us, set theory
has solidified its role as a foundation of set theory. She claims

Questions of the form– is there a structure or a mathematical
object like this?– are answered by finding an instance or a sur-
rogate within the set-theoretic hierarchy. Questions of the form–
can such-and-such be proved or disproved?– are answered by in-
vestigating what follows or doesn’t follow from the axioms of set
theory. [Maddy, 2011], 33-34.2

With this goal given, the question is what the effective means to reach this
goal are; what are the methodological consequences for a mathematical prac-
tice with such a goal? Maddy answers:

if your aim is to provide a single system in which all objects and
structures of mathematics can be modelled or instantiated, then
you must aim for a single, fundamental theory of sets. ([Maddy,
1997], 209)

Notice what has happened here. Maddy, in the role of the Second Philoso-
pher, learns from three set theorists that set theory has a foundational goal.
Two questions arise: why does set theory have this goal and how is it to be

2Compare here also Maddy’s ‘modest sense’ of the foundational goal explained in 3.2.1.
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understood? Maddy answers these questions by pointing out what is math-
ematically beneficial. That is, Maddy answers to these questions here. She
does not tell us about the reasons the set theorists give why set theory has
the foundational goal. Also, the argument how the goal is to be understood
is hers, not that of any set theorists. This point will become important in
chapter 6.

In this chapter, I will present a set theorist, Hamkins, who agrees that
set theory has a foundational goal but disagrees with Maddy about what
this means for set theory. In the next chapter, I will present another set
theorist, Woodin, who agrees with Maddy that set theory should aim for a
single, fundamental theory of sets, but whose argument for this position does
not rely on the foundational goal. These points will become relevant in my
argument in chapter 6 that a philosophical programme to study mathematics
needs an anthropology of goals.

I now return to the presentation of Maddy’s thoughts on the founda-
tional goal. According to her, two ‘methodological morals’ or ‘methodologi-
cal maxim[s]’ (ibid., 209) follow from the foundational goal of set theory. One
is that set theorists should aim for one unified theory of sets. Recall that the
set theorists currently know of many different theories of sets: ZFC + CH,
ZFC+¬CH, ZFC+‘there is a measurable cardinal’ and so on. What Maddy
tells us here is that because of the foundational goal, the set theorist should
aim to identify a single such theory as the theory of sets. This is her maxim
UNIFY.

The second maxim relies on Maddy’s view that ‘contemporary pure math-
ematics is pursued on the assumption that mathematicians should be free to
investigate any and all objects, structures, and theories that capture their
mathematical interest’; ibid., 210. We have seen the argument for this in the
last chapter: it is useful to have a ‘stocked warehouse’ full of mathematics
which is potentially useful to the natural sciences.

If mathematics is to be allowed to expand freely in this way,
and if set theory is to play the hoped-for foundational role, then
set theory should not impose any limitations of its own: the set
theoretic arena in which mathematics is to be modelled should
be as generous as possible, the set theoretic axioms from which
mathematical theorems are to be proved should be as powerful
and fruitful as possible. ([Maddy, 1997], 210-211)

This is Maddy’s maxim MAXIMISE.
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In a sense, adding any axiom A to our axioms of set theory imposes
a limitation: ¬A is now no longer a player in the resulting set theoretic
arena– ‘CONSISTENCY is an overriding maxim’; ibid., 216.3 However, this
is not what Maddy means by ‘should not impose any limitations’. Today,
Maddy would probably try to phrase this in terms of mathematical depth,
but when she wrote Naturalism in Mathematics in 1997 she did not have
this terminology at her disposal (Maddy introduced mathematical depth as
a technical term in [Maddy, 2011]). Instead, she has Steel to help her try to
formalise the idea in the language of set theory.

Maddy starts with a crude definition of what it means for theory T to
maximise over theory T ′ in terms of (a non-standard understanding of) in-
ner models. She then introduces (some of) the (sometimes very artificial)
counter-examples that Steel invented. The idea of these counter-examples
is that some theory should intuitively maximise over the other but does not
according to the formalism, or that some theory should intuitively not max-
imise over the other but does according to the formalism. This helps Maddy
to improve upon her notion of ‘maximise’. In the end, Maddy presents us
with a formal criterion, but even here

Steel’s ingenious examples show that the formal criterion for re-
strictiveness [a term central to Maddy’s formalisation of MAX-
IMISE] is not enough by itself; it must be supplemented by use-
ful but nevertheless imprecise notions of the ‘optimality’ of inner
model interpretations and ‘attractiveness’ of alternative theories.
([Maddy, 1997], 231)

The reason why I skip over all of this so lightly is because in her later writing
Maddy discards her formalisation of the principle.

The differences between my version [of a formalisation of MAX-
IMISE] and Steel’s [as presented in ([Steel, 2010], 423)] are largely
due to my not entirely successful effort to spell out what counts
as a ‘natural’ extension of ZFC and a ‘natural’ interpretation.
See [Löwe, 2001] and [Löwe, 2003] for more. ([Maddy, 2007], 359,
n.1)

3The given quotation is the only instance where Maddy mentions the CONSISTENCY
maxim. There is no discussion whether set theorists hold it and why. Perhaps the point
is too obvious to be discussed.
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The formalisation might not have been fully successful, but Maddy’s norma-
tive claim still stands: because of the foundational goal of set theory, the
set theorists ought to look for theories that are as mathematically fruitful
and as mathematically powerful as possible. Now recall that Maddy uses
‘mathematical depth, mathematical fruitfulness, mathematical effectiveness,
mathematical importance, mathematical productivity and so on [...] inter-
changeably’ ([Maddy, 2011], 81) to see that MAXIMISE is trying to get at
the facts about mathematical depth. Maybe we could phrase it like this:
theory T ′ MAXIMISES over theory T if T ′ is better at tracking the facts of
mathematical depth. However, this is my formulation, not Maddy’s.

There is a tension between MAXIMISE and UNIFY. The theories ZFC+
V = L and ZFC +MC (where MC stands for ‘there is a measurable cardi-
nal’) are mutually exclusive (MC implies V 6= L). How is the set theorist to
choose between these theories? MAXIMISE seems to counsel to accept both
theories in an effort not to block any fruitful route of mathematics. This
however conflicts with UNIFY, which asks us to look for a single theory.
‘The subtlety of applying MAXIMISE and UNIFY will come in the effort
to satisfy both admonitions at once’; [Maddy, 1997], 211. Indeed, Maddy
uses her formal criterion for MAXIMISE to show that in the case of the two
above mentioned theories, it is possible to satisfy both admonitions simul-
taneously. The idea is this. For any model M of ZFC + MC there is an
inner model of M (namely: L) which is a model of ZFC + V = L. Thus,
we can recover ZFC + V = L in ZFC + MC by restricting every formula
to L. That is, working within ZFC +MC, instead of regarding the formula
φ, we consider φL, i.e. the formula φ with all its quantifiers restricted to L.
It now holds that ZFC + V = L proves φ if and only if ZFC +MC proves
φL.4 In this sense, ZFC +MC can emulate ZFC + V = L. Hence, there is
a sense in which accepting ZFC +MC does not lose anything we could get
from ZFC + V = L: we can simply emulate the latter theory in the former.
Maddy now claims that the converse direction does not work: ‘ZFC+V = L
cannot recapture [ZFC + MC] in a similar way’; [Maddy, 2007], 359. This
requires some illumination.

What does Maddy mean by ‘similar way’? The idea is that there is a
natural interpretation for one theory in the other but not vice versa. But
then, what is a ‘natural interpretation’? As mentioned above, Maddy had

4As Hamkins points out, this only holds under the assumption of an absolute back-
ground concept of the ordinals; see also below.
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given a formal definition of the concept in her 1997 book. But ten years
later, in her [Maddy, 2007] she concedes that her attempt was not entirely
successful; see above quotation. Instead, she now relies on John Steel, who
makes an argument very similar to the above about the recoverability of
the theories ZFC + V = L and ZFC + MC in one another; [Steel, 2010].
However, Steel does not define natural interpretation. Indeed, what a natural
interpretation is is an open problem, and it is not my intention here to
engage in this debate. I mention this point mainly because later on in this
chapter I will discuss Hamkins’ argument that, conversely to Maddy and
Steel, ZFC +MC can in fact be recovered in ZFC + V = L. More on this
below.

Maddy argues that once we accept ZFC + V = L we lose the math-
ematical fruitfulness of ZFC + MC. This means that ZFC + V = L is
restrictive. For Maddy, ZFC +MC as not restrictive in the same way. She
concludes: ZFC +MC properly MAXIMISES over ZFC + V = L.5 This is
Maddy’s argument against V = L. Steel defends an argument very similar
to Maddy’s; [Steel, 2004], [Steel, 2010].

4.2 Hamkins’ Multiverse View

In the last section, we saw that according to Maddy there is ‘one fairly un-
controversial motivation: set theory hopes to provide a foundation for clas-
sical mathematics’; [Maddy, 2007], 354. According to Maddy, the principles
MAXIMISE and UNIFY follow from the foundational goal of set theory. In
this section, I present a set theorist who disagrees, in part, with Maddy’s
picture: Joel David Hamkins. Hamkins has recently published two papers,
in which he defends a view which strongly disagrees with UNIFY; [Hamkins,
2011], [Hamkins, 2012]. Notice that these papers were published in the same
year as Maddy published her Defending the Axioms ; [Maddy, 2011]. Perhaps
we cannot fault Maddy for not taking Hamkins’ views into account in her
books. However, Hamkins’ position that set theory is not (or: no longer) in
the business of searching for a single unified theory of sets has been argued
by other set theorists before him, such as Paul Cohen and Thoralf Skolem.
Maddy might hence not have known about Hamkins’ argument, the general

5Since MAXIMISE is a formal criterion in Naturalism in Mathematics, one needs to
do further work to show this conclusion formally. Maddy shows that this can be done;
[Maddy, 1997], III.6.
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thrust of his position however is well-known amongst those interested in the
philosophy of set theory. I use Hamkins’ rather than Cohen’s or Skolem’s
arguments in this thesis because Hamkins’ arguments are contemporary and
well-documented, which make them particularly philosophically interesting;
see also my argument for philosophical analysis of contemporary mathemati-
cal practice in chapter 6. Maddy might respond here by pointing out that she
is making normative claims. I discuss this briefly at the end of this chapter
and pick the thought back up again in my conclusion in chapter 6.

To argue against a general claim about the practice of mathematics it is
not enough to present a practitioner who practices mathematics differently.
The point is that mathematical practices have a social dimension (cf. chapter
1) and the views and actions of a single quirky practitioner do not necessarily
affect the features of the practice as a whole. I hence have to ensure that the
presented practitioner, Hamkins in my case, leaves a footprint in the practice
of set theory; that is, I have to argue that Hamkins’ case is representative
enough to show us something about the practice.

Perhaps the most telling point about the resonance Hamkins’ views have
in the set-theoretic community is that he is discussed by his rivals. Magidor
engages with Hamkins’ views in [Magidor, 2012], Antos, Friedman, Honzik
and Ternullo do the same in [Antos et al., 2015]. Steel mentions Hamkins
in [Steel, to appear]. This list could be extended. However, Hamkins has
not only made rivals. His work on the modal logic of forcing and the set-
theoretic geology project– two projects which will be discussed in more de-
tail in the next chapter– have attracted collaborators such as Löwe (e.g.
[Hamkins & Löwe, 2008]), Leibman ([Hamkins et al., 2015]), Gitman ([Git-
man & Hamkins, 2010]) and many more.6 That Hamkins’ views have the
relevant kind of impact on the set theory community is also seen in that
fact that Hamkins presented at the perhaps most important series of talks
on the incompleteness issue in recent history: the Exploring the Frontiers of
Incompleteness project, led by Peter Koellner.7 There can be no doubt that
Hamkins’ views are influential. That is not to say that all set theorists agree
with him. But it does show that he is not some quirk with a weird opinion.
He is a relevant figure in the practice of contemporary set theory, and this
makes his position suitable for my purposes.

6See the entries on Hamkins’ web page at http://jdh.hamkins.org/
the-set-theoretic-multiverse/.

7http://logic.harvard.edu/efi.php

http://jdh.hamkins.org/the-set-theoretic-multiverse/
http://jdh.hamkins.org/the-set-theoretic-multiverse/
http://logic.harvard.edu/efi.php
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4.2.1 The dream solution to the CH

Recall from chapter 2 that the Continuum Problem deals with the question
about the size of the continuum. Cantor’s Continuum Hypothesis, CH, is
that the continuum is as small as possible. This hypothesis is independent
from the currently accepted axioms of set theory, ZFC. Maddy claims that
the set theorists are looking for a maximally strong (in her sense) and unique
theory of sets. If found, such a theory would decide the truth-value of the
CH. Hamkins calls set theorists who hold such a view ‘universists’ and their
position the universe view ; [Hamkins, 2011].8

According to Hamkins, most universists try to solve the continuum prob-
lem by what Hamkins calls the ‘dream solution template to the CH’:

Step 1 Produce a set-theoretic assertion φ expressing a natural
and ‘obviously true’ set-theoretic principle.

Step 2 Prove that φ determines CH. That is, prove that
φ→ CH, or prove that φ→ ¬CH. ([Hamkins, 2011], 16)

What does ‘obviously true’ mean? Hamkins elaborates as follows:

the assertion φ should be obviously true in the same sense that
many set-theorists find the axiom of choice and other set-theoretic
axioms, such as the axiom of replacement, to be obviously true,
namely, the statement should express a set-theoretic principle
that we agree should be true in the intended interpretation, the
pre-reflective set theory of our imagination. (ibid.)

Hamkins presents us with a possible contender for such a φ: Freiling’s Axiom
of Symmetry. Imagine you throw a dart onto the real line, hitting the point
p. There it ‘scatters’ and (at most) countably many points on the real line
are associated with the entry-point of the dart. Let us call the set of all these
(at most) countably many points f(p). Now imagine you throw another dart
at the same line, hitting the point q. Then, so Freiling argues, one would
expect q to be outside of f(p). The argument is that there are ‘so many
more’ points on the real line than points in the countable set f(p), that it
seems very unlikely to hit any point belonging to f(p). Now let the second

8In Hamkins’ presentation, the universe view is a realist view. As we have seen in chap-
ter 3, Maddy’s Second Philosopher does not need to subscribe to realism. This difference
plays no role for the argument at hand.
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dart scatter to an (at most) countable set of points on the real line as well,
call it f(q). Since the order in which we have thrown the darts should not
matter, the same reasoning as above applies to argue that it is very unlikely
that p is in f(q).

Now take a step back and look at what I have done. I have been talking
about a scattering-function f , which scatters the point p ∈ R onto the at
most countable set of reals f(p), i.e. f is a function mapping reals to at most
countable sets of reals. Furthermore, Freiling argues that it is highly likely
that the couple of reals (p, q) satisfies the statement ‘p /∈ f(q) and q /∈ f(p)’.
So it seems reasonable to assume that even if a specific pair p and q does
not satisfy the statement, there will be some x and y such that x /∈ f(y) and
y /∈ f(x). And since we made no assumptions on the precise nature of f , we
can conclude:

For all functions f mapping real numbers to at most countable
subsets of real numbers there is a couple (x, y) of real numbers
such that x /∈ f(y) and y /∈ f(x).

This statement is the Axiom of Symmetry, AS. By the above dart-throwing
argument, AS is ‘obviously true’ in Hamkins’ sense. Hence, step 1 of Hamkins’
dream solution template is satisfied.

Interestingly, the AS also satisfies step 2 of the dream solution template:
AS is equivalent to ¬CH. Quite in accordance with the dream solution
template, Freiling holds that the dart-throwing argument, together with the
proof of the equivalence AS ↔ ¬CH, is ‘a simple philosophical ‘proof’ of the
negation of Cantor’s continuum hypothesis’; [Freiling, 1986], 190. However,
as we know, the set theory community did not accept Freiling’s proof, even
though it fits the dream solution template. The question is why.

Hamkins tells us that many mathematicians pointed out that Freiling
makes various non-trivial assumptions in his dart-throwing argument. For
example, the argument assumes that the set {(x, y) | y ∈ f(x)} is measur-
able. This is no trivial matter because measure-theory has shown us that
measurability of a set is not always a given. However, Hamkins reminds us
that

Freiling clearly anticipated this objection, making the counterar-
gument in his paper that he was justifying his axioms prior to any
mathematical development of measure, on the same philosophical
or pre-reflective ideas that are used to justify our mathematical
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requirements for measure in the first place. ([Hamkins, 2011], p.
17)

Hamkins does not venture to defend Freiling’s argument. Rather, Hamkins
draws attention to the point that

mathematicians objected to Freiling’s argument largely from a
perspective of deep experience and familiarity with non-measurable
sets and functions, including extreme violations of the Fubini
property, and for mathematicians with this experience and famil-
iarity, the pre-reflective arguments simply fell flat. ([Hamkins,
2011], 17)

It is this kind of experience that is important for Hamkins’ thought. When
the mathematicians of the above quote (sadly, not given by name) point to
their experience with ‘badly behaved functions and sets of reals [...] in terms
of their measure-theoretic properties’ (ibid.), then what they are pointing
out is that they have experience with some of the mathematical facts about
measure theory. These mathematical facts entail that certain functions and
sets can be badly behaved. Freiling’s philosophical and pre-reflective ideas
imply that these same functions and sets are not badly behaved. Thus,
Freiling makes an additional assumption here. Hamkins’ point is that the
mathematicians had too much experience with the contrary of Freiling’s as-
sumption to consider the assumption as ‘obviously true’ (in the sense of point
1 of the dream solution). And this robs AS of its intuitive appeal.

In the discussions Maddy mentions, the set theorists point to certain
mathematical facts to support their arguments. Maddy has called these facts
the ‘facts of mathematical depth’, cf. 3.2.2. Hamkins tells a similar story,
in which the reasoning of some mathematicians about a proposed axiom is
guided by some facts about certain pieces of mathematics. Hamkins has
another example of the kind of experience he is after, a discussion of which
will be helpful at this point.

Hamkins presents us with the results of a experiment of his own. On the
well-known website www.mathoverflow.net, he has published some mathe-
matical statements and asked the mathematicians visiting this site about
the intuitive appeal of these statements.9 In [Hamkins, 2011], Hamkins dis-
cuses an example.

9http://mathoverflow.net/questions/6594

www.mathoverflow.net
http://mathoverflow.net/questions/6594
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If a set X is smaller in cardinality than another set Y , then X
has fewer subsets than Y .

According to Hamkins, amongst mathematicians who are not set theorists
(henceforth: non-set-theorists) this statement is largely accepted. ‘An enor-
mous number of mathematicians, including many very good ones, view the
[above statement] as extremely natural or even obviously true in the same way
that various formulations of the axiom of choice or the other basic principles
of set theory are obviously true’; ibid., 18. Most of these mathematicians are
surprised to hear that, in fact, this statement is independent of the current
theory of sets.

Set theorists, so Hamkins tells us, react differently. To understand why
many set theorists deny the intuitive appeal of the axiom, we first need to
understand why the statement is independent of ZFC.

Recall that the powerset of X, P(X), is the set of all subsets of X. We
can restate the above as follows.

For all sets X, Y : if |X| < |Y |, then |P(X)| < |P(Y )|

Hamkins calls this the Powerset Size Axiom, PSA. To see the independence
of PSA from ZFC, notice first that PSA is implied by the Generalised
Continuum Hypothesis, GCH. Because GCH holds in Gödel’s constructible
universe L, we know that ZFC +GCH is consistent. It follows that ZFC +
PSA is consistent. Conversely, ZFC+¬PSA is also consistent. To see this,
consider Cohen’s model of ¬CH. We know that ω < ω1. But in Cohen’s
model one can also prove that |P(ω)| = |P(ω1)|. That is, ¬PSA holds in
Cohen’s model, which proves the consistency of ZFC + ¬PSA.

The set theorists have experience with both kinds of models involved in
the above proof sketch in a way that non-set-theorists do not. In fact, there
are many more models that would do the job in the above proof, and most
set theorists have ‘met’ them in their undergraduate studies. According to
Hamkins, the intuitive appeal of PSA is limited for the set theorists by their
experiences with the facts about a theory of sets which implies that ‘PSA?’
is not so easily answerable.

We are again in a situation in which mathematicians deny the intuitive
appeal of a certain statement or thought on the basis of their experiences
with certain mathematical facts. Given sufficient experience with these facts,
according to Hamkins, a mathematician would not accept a statement or
thought based on pure intuition if it is at odds with these facts. That is,
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both Hamkins and Maddy stress the importance of certain mathematical
facts in discussions about axioms. I will discuss mathematical facts in more
detail below. I now return to the discussion of the dream solution template.

According to Hamkins, set theorists have a ‘deep understanding how
the CH can hold and fail [and] a rich experience in the resulting models’;
[Hamkins, 2010], 24. We saw an example of this in the proof sketch of the
PSA above. In some models the CH holds, in others it fails. In fact, for
every model in which the CH holds, there is a forcing extension in which
the CH fails and for every model in which the CH fails, there is a forcing
extension in which the CH holds. In this sense, the CH is like a lightswitch
that can be turned on and off at will via forcing. This is a mathematical fact
about forcing in general and the CH in particular. Hamkins’ point is that
the set theorists have the necessary kind of experience and familiarity with
this fact. If someone were to propose a restriction on the kinds of models
that are allowed, then, so Hamkins claims, this would counteract the deep
experience of the set theorists with the now ‘disallowed’ models. The re-
striction would not be seen as natural or obviously correct. According to
Hamkins, the accustomedness of the set theorists with both CH and ¬CH
models influences what they regard as natural, obvious and intuitively clear
here.

The conclusion Hamkins draws from the set theorists’ experience with CH
and ¬CH models has severe consequences for the dream solution template of
the universists. Recall that in step 1 the universists look for an obviously true
φ and in step 2 they prove that this φ resolves the Continuum Problem. By
the thought presented above, any φ that satisfies step 2 will seem unnatural
to the set theorists. But then it does not satisfy step 1. ‘Once we learn that
a principle fulfils step 2, we can no longer accept it as fulfilling step 1, even
if previously we might have thought it did’; [Hamkins, 2011], 16.

Does this mean the Continuum Problem will never find an answer in
Hamkins’ view? Not at all. In fact, on Hamkins’ multiverse view – explained
in more detail in the next section – the Continuum Problem is already solved.

On the multiverse view [...] the continuum hypothesis is a settled
question; it is incorrect to describe the CH as an open problem.
The answer to CH consists of the expansive, detailed knowledge
set theorists have gained about the extent to which it holds and
fails in the multiverse, about how to achieve it or its negation
in combination with other diverse set-theoretic properties. Of
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course, there are and will always remain questions about whether
one can achieve CH or its negation with this or that hypothesis,
but the point is that the most important and essential facts about
CH are deeply understood, and these facts constitute the answer
to the CH question. ([Hamkins, 2011], 15-16)

4.2.2 The multiverse view

Set theorists have deep experience not only with the various CH and ¬CH
models. Forcing has been used to force a variety of statements, i.e. to build
forcing extensions of given models in which the desired statements hold.
And forcing is not the only method to construct models. There are the inner
models, ultrapower constructions, cut off universes and so on.

A large part of set theory over the past half-century has been
about constructing as many different models of set theory as pos-
sible, often to exhibit precise features or to have specific rela-
tionships with other models. Would you like to live in a universe
where CH holds, but ♦ fails? Or where 2ℵn = ℵn+2 for every nat-
ural number n? Would you like to have rigid Suslin trees? Would
you like every Aronszajn tree to be special? [...] Set theorists
build models to order. ([Hamkins, 2011], 3)

Hamkins continues

As a result, the fundamental objects of study in set theory have
become the models of set theory, and set theorists move with
agility from one model to another. (ibid.)

According to Hamkins, set theorists do not study sets, they study models of
set theory.

According to the universists, there is what Hamkins calls an ‘absolute
background concept of set’ (ibid.), a way sets really are. This is instantiated
in a single model, often called the ‘true universe of sets’. Hamkins points
out that the universe view owes us an explanation why the other universes
the set theorists study are ‘imaginary’ and ‘illusion[s]’; ibid., 10. This seems
difficult, given that ‘we have a robust experience in those worlds, and they
appear fully set-theoretic to us’; ibid., 3.

Hamkins incorporates the experience with the various models of set theory
in his multiverse view. On this view, ‘there are diverse distinct concepts of
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set, each instantiated in a corresponding set-theoretic universe, which exhibit
diverse set-theoretic truths’; ibid., 2. For Hamkins, ‘each such universe exists
independently in the same Platonic sense that proponents of the universe
view regard their universe to exist’; ibid., 2. The idea is ‘to tease apart
two often-blurred aspects of set-theoretic Platonism, namely, to separate the
claim that the set-theoretic universe has a real mathematical existence from
the claim that it is unique. The multiverse perspective is meant to affirm the
realist position, while denying the uniqueness of our set-theoretic background
concept’; [Hamkins, 2012], 2-3. Playing on the distinction between first-order
logic, where the variables range over individuals, and second-order logic,
where the variables range over collections of individuals, Hamkins has called
his position a ‘second-order’ platonism: platonism not about sets but models
of set theory (i.e. collections of sets).10

The full force of Hamkins’ multiverse view becomes visible in his argu-
ments in the V = L debate. Recall from section 4.1 Maddy’s argument
against V = L: ZFC + V = L is limiting because it can be recaptured in
large cardinal extensions of ZFC but not vice versa. As I mentioned in that
section, Maddy’s argument relies on a certain understanding of what it means
to ‘recapture a theory’. I already pointed out that Maddy relies on natural
interpretations to cash out the meaning of ‘recapturing a theory’. It is at
this point that Hamkins disagrees. In [Hamkins, 2014] he collectively calls
arguments such as Maddy’s ‘V 6= L via maximize arguments’ and aims to
erode the force of this type of argument by pointing out some mathematical
facts. For example, Hamkins reminds us that every transitive model of ZF
can be end-extended to a model of ZFC +V = L. Thus, a model for a large
cardinal extension of ZFC can be end-extended to a model of ZFC+V = L.
In Hamkins’ words

Any given set-theoretic situation is seen as fundamentally com-
patible with V = L, if one is willing to make the move to a better,
taller universe. Every set, every universe of sets, becomes both
countable and constructible, if we wait long enough. Thus, the
constructible universe L becomes a rewarder of the patient, reveal-
ing hidden constructibility structure for any given mathematical
object or universe, if one should only extend the ordinals far

10Cf. Hamkins’ Exploring the Frontiers of Incompleteness talk; video available at http:
//logic.harvard.edu/efi.php. See also [Hamkins, 2011], 2.

http://logic.harvard.edu/efi.php
http://logic.harvard.edu/efi.php
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enough beyond one’s current set-theoretic universe. ([Hamkins,
2014], 20, italics in original)

In this sense then ZFC+V = L can, contrary to Maddy, recapture large
cardinal extensions of ZFC, but of course ‘recapturing’ means something dif-
ferent here because Hamkins’ end-extended models do not qualify for Maddy
as natural interpretations.

4.3 Mathematical Depth Again

From the last two sections we can draw the rather obvious conclusion that
the practice of set theory is not homogeneous. In her recent book, Pluralism
in Mathematics, Michele Friend has raised a related point; [Friend, 2014],
246. Friend claims that Maddy does not present the practice of set theory.
Rather, Maddy presents the views of some set theorists. I specify: the views
expressed are largely those of the Cabal. The Cabal is a loose and informal
group of set theorists, formed in the 1970’s. Due to its informal nature, it
is difficult to pin down the members of this group, but according to Akihiro
Kanamori they include Steel, Moschovakis, Martin, Solovay, Kunen, Kechris
and Woodin; [Kanamori, 2009] 368. Notice that the views of all these set
theorists, and especially those of Steel, feature in various places of Maddy’s
work. In fact, Maddy refers directly to the Cabal in her [Maddy, 1988] and
has dedicated her [Maddy, 2011] to the group. We might say that Maddy is
presenting not a philosophy of the practice of set theory but a philosophy of
set theory as practised by the Cabal. This jars slightly with the historical
cases Maddy discusses because her examples in these cases were not members
of the Cabal. But because there is arguably a similarity in the spirit of the
historical cases Maddy presents and the spirit of the Cabal (e.g. all are
universists), the shorthand ‘Maddy discusses the practice of the Cabal’ is
warranted and I will use it in what follows.

As Maddy tells the story, she presents a philosophy of set-theoretic prac-
tice. One might be tempted at this point to argue that this chapter shows
that Maddy is doing exemplar philosophy (cf. 1.4) in a way which overlooks
a relevant part of set-theoretic practice without telling her readers about it.
Let me make two observations at this point.

First, there is a terminological issue with viewing Maddy as an exemplar
philosopher. In the above, the charge is that Maddy points to exemplars
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to support her philosophy. That is, exemplars are taken to be set theorists.
However, for Inglis and Aberdein exemplars are pieces of mathematics, not
mathematicians; [Inglis & Aberdein, to appear]. This terminological issue has
philosophical implications. Inglis and Aberdein have argued that philosophy
based on pieces of mathematics as exemplars needs to assume consensus
about the exemplar in question. When Steiner aims to explicate the concept
of an explanatory proof on the basis of the examples he gives, he assumes
consensus about these examples; cf. 1.4. When the examples in questions are
mathematicians rather than pieces of mathematics, as in the case of Maddy
(and myself; cf 5.1), then no such consensus need be assumed. Maddy does
not make the claim that all set theorists think just like those set theorists
she has studied. Rather, Maddy describes parts of successful set-theoretic
practice in order to further our understanding of good conduct in set theory.
To criticise her solely on the point that her analysis of set-theoretic practice
does not capture the views of all set theorists misses the point of what she is
trying to do. Thus, the criticism that Inglis and Aberdein bring forth against
pieces-of-mathematics based exemplar philosophy does not apply equally to
the kind of philosophy Maddy is proposing. It is for this reason that I will
not call Maddy an exemplar philosopher in this thesis.

Revising the above accordingly leaves us with the claim that Maddy only
presents the philosophy of a sub-practice, the practice of the Cabal set theo-
rists, in a way which overlooks a relevant part of set-theoretic practice with-
out telling her readers about it. This is severe criticism of Maddy’s work.
Maddy may have a response to these criticisms; this is the second observa-
tion mentioned above. In the last few pages of this chapter, I suggest what
Maddy’s response might look like. Some of the ideas raised here will be taken
up again in chapter 6. However, keep in mind that it is not a goal of my the-
sis to refute Maddy. The aim of the following is to give Maddy a fair hearing
and introduce some thoughts on mathematical facts, their desirability and
Maddy’s concept of mathematical depth, not to construct an argument to
refute Maddy’s philosophical position.

4.4 Desirability

We can learn from Maddy that the Cabal set theorists refer to certain pieces
of mathematics in their arguments for the foundational debate. For example,
they mention the desirable features of the Axiom of Projective Determinacy,
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PD, of the Axiom of Choice and of the other examples explored in 3.2.1. As
Maddy has already pointed out, that these axioms have these features is not
‘up to us’. Given the historically grown set-theoretic background of accepted
axioms, modes of reasoning, accepted logics and proof-styles, it is not up to
us that PD has these implications. It might be up to us whether or not these
features are desirable - more on this below - but it is not up to us that PD
has these kinds of implications. Since these features are independent of our
volition, I shall refer to them as mathematical facts.

There is stable agreement about the mathematical facts amongst prac-
titioners of set theory, but there is disagreement about what follows from
these facts. Hamkins sees them as supporting his multiverse view; Maddy’s
Cabal set theorists disagree. Confronted with a body of mathematical facts,
the question is how to deal with them. Maddy has proposed as solution:
desirability. This is the topic of the next section.

According to Maddy, some pieces of mathematics have the special virtue
of ‘track[ing] deep mathematical strains that the others miss’; [Maddy, 2011],
79. The implications of PD are desirable, so Maddy tells us, because the
mathematical fact that PD has these implications has the virtue of tracking
something deep.

With this account of desirability given, Maddy tells us that ‘depth is used
to adjudicate between axioms [in [Maddy, 2011]]’ in her contribution to [Ernst
et al., 2015], 6. In fact, not only is depth used to adjudicate between axioms
but also between goals: ‘our mathematical goals are only proper insofar as
satisfying them furthers our grasp of the underlying strains of mathematical
[depth]’; [Maddy, 2011], 82, n. 42. This is the path of mathematical depth
on which, as Maddy has told us, mathematicians ought to wander; cf. 3.2.2.

Hamkins does not wander on the path of mathematical depth Maddy has
laid out. He knows about PD and acknowledges its consequences as fruitful.
He mentions the ‘attractive determinacy and regularity features, as well as
the forcing-absoluteness properties for L(R)’ ([Hamkins, 2011], 1) and tells
us that the multiversist ‘may prefer some of the universes in the multiverse
to others, and there is no obligation to consider them all as somehow equal’;
ibid., 2. But for Hamkins this does not entail lifting the axiom to a similar
status as the axioms of ZFC; for Hamkins, PD is not true in the same
sense as the axioms of ZFC. The style of Hamkins’ arguments however is
very similar to the set-theoretic arguments Maddy has considered. Hamkins
points out mathematical facts and argues that these support consequences
beyond the formal machinery of set theory; he argues that the mathematical
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facts he points out support his multiverse view. This suggests that Hamkins
might wander on a path of his own. I will not explore this path any further
here. All I need in this thesis is the suggestion that, contrary to Maddy,
there might be more than one path of mathematical depth.

Maddy would resist this suggestion. In [Maddy, 2011], she has claimed
that it is an objective fact of the matter that the mathematical facts which
surround PD (cf. 3.2.1) have the desirable feature of tracking something
deep; for the Maddy of Defending the Axioms not only the mathematical
facts are objective but also their desirability. Depth is objective, and this, so
Maddy has claimed, provides an objective basis for the truth of the axiom.

In a recent special issue of Philosophia Mathematica, Maddy and the other
contributors to the Mathematical Depth workshop11 have taken up the issue
of the objectivity of mathematical depth again; [Ernst et al., 2015]. Maddy
admits that this objectivity ‘is asserted [in [Maddy, 2011]] with perhaps more
bluster than argument’; 247. She does not give an argument for the objectiv-
ity of mathematical depth in the special issue. Her writing clearly shows that
she sees mathematical depth as an objective feature of some pieces of math-
ematics, but the points she raises do not amount to an argument. Maddy is
aware of this and points out that what is at stake is whether Thin Realism is
a tenable position. Her argument is that if mathematical depth should turn
out to be subjective, then Thin Realism would lose its objective basis and
become philosophically unattractive.

A point similar to Maddy’s about Thin Realism can be made in connec-
tion with the suggestion of multiple paths of mathematical depth. If there
were two such paths, say Maddy’s and Hamkins’, then the Thin Realist would
hold, with the Cabal set theorists, that PD is true in the one true universe of
sets whilst simultaneously believing PD to be only relatively true depending
on which universe of the set-theoretic multiverse we are in. For the Thin
Realist Maddy has presented, this would be incoherent.

The above suggests that Maddy is not merely describing the practice
of the Cabal. She makes the normative claim that the proper set-theoretic
methods are those of the Cabal and hence that Hamkins uses improper set-
theoretic methods in his arguments. However, Maddy has also repeatedly
claimed that philosophy can neither criticise nor defend mathematical prac-
tices. This raises the question whether Maddy’s normative claim fits into her
Second Philosophical programme. As mentioned in chapter 1, the aim of this

11The workshop was held in April 2014 at the University of Irvine, California.
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thesis is not to refute Maddy. I will touch upon the question of normativity
again in my conclusion in chapter 6, but even there I will not provide an
answer. My goals are to contribute to the debate what kind of philosophical
programme to study mathematics we should endorse and to philosophically
analyse some features of set-theoretic practice. A discussion of normativity
is beyond the scope of this thesis.

In this chapter, I have shown that there is a set theorist – Hamkins –
who disagrees with the arguments of the set theorists Maddy has presented.
There is disagreement amongst the practitioners of set theory on set-theoretic
matters. The Hamkins story focussed in particular on a disagreement about
a goal of set theory: is it a goal of set theory to provide a single unified theory
of sets? As we have seen, Hamkins, much like the set theorists Maddy has
studied, bases his arguments on mathematical facts. These mathematical
facts form the discursive reality of the foundational debate some set theo-
rists are currently having. However, there is disagreement about what the
mathematical facts show. Maddy’s normative claims would resolve this dis-
agreement. I stay descriptive and explore the disagreement the set theorists
are having further in the next chapter.



Chapter 5

Metaphysics in Practice

The philosophical debate will
likely not be settled by
mathematical proof. But a
philosophical view suggests
mathematical questions and
topics, and one measure of it is
the value of the mathematics to
which it has led.

Hamkins, EFI Talk 2011

In this chapter, I present my main contribution to the project of philo-
sophically studying mathematical practice: I argue that the mathematics as
practised and the metaphysical views of the mathematicians can stand in
a reciprocal relationship.1 I show this for the particular case of set theory.
After some preliminary remarks in 5.1, I show in 5.2 how some set theorists
have set up mathematical questions in a way that the solutions to these ques-
tions can decide a metaphysical problem the set theorists are facing: roughly,
whether they should be universists or multiversists. This shows that mathe-
matical results can influence the metaphysical beliefs of mathematicians. In
5.3, I show that metaphysics can influence mathematical practice. I present
two types of case studies. The first shows how the metaphysical beliefs of set
theorists can influence their research agenda. The second type of case studies

1The slides for Hamkins’ talk mentioned in the epigraph are available at http://logic.
harvard.edu/EFI Hamkins MultiverseSlides.pdf, the citation is taken from page 66.
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highlights how certain justifications in mathematical practice rely on meta-
physical assumptions. In 5.4, I collect what we have learned from the various
case studies in this chapter and form the argument that there are cases of a
reciprocal relationship between metaphysics and mathematics: metaphysics
can influence mathematics and mathematics can influence metaphysics.

In the next chapter, I will return to the question what features we should
expect of our programmes to philosophise about mathematics and rely on
the philosophical analysis presented in this chapter to form my argument.

5.1 Preliminaries

In this chapter I present the evidence for my philosophical claim that there are
instances of a reciprocal relationship between mathematics and metaphysics.
In the next chapter, I will use this result to challenge Maddy on her claim
that the metaphysical views of the mathematicians ‘should be treated as
colourful asides or heuristic aides, but not as part of the evidential structure
of the subject’; [Maddy, 2011], 52-53. But before I give the arguments for
these claims, it will be helpful to discuss the nature of the evidence I rely on.

I draw my evidence mainly from the works of three scholars: Woodin,
Koellner and Hamkins. Thus, the size of my samples is small. It directly
follows that I cannot make any argument of the form ‘all of set-theoretic
practice is such-and-such’ based on the evidence I present in this chapter; cf.
also last chapter. My evidence will only support weaker claims of the form
‘there are parts of set-theoretic practice in which...’. Hence my formulation
‘there are instances of a reciprocal relationship between mathematics and
metaphysics’. As will become clear in the next chapter, this claim is enough
to support the argument that philosophers should not ignore the metaphys-
ical views of the mathematicians.

How relevant is the evidence I present in this chapter? I have already ar-
gued that Hamkins has the necessary kind of traction with the set-theoretic
community (cf. 4.2), but what about Woodin and Koellner? Woodin hardly
needs argument. He is widely considered to be one of the leading set theo-
rists of our time with many prominent and important contributions to the
field.2 The argument that relying on case-studies obtained from Koellner’s

2A certain type of large cardinal even bears his name: Woodin cardinal; cf. [Kanamori,
2009] for details.
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publications can tell us about set-theoretic practice requires a bit more work.
For one, one might not even consider Kollner as a set theorist.

Koellner received his PhD in philosophy and is currently employed as a
professor in philosophy at Harvard University.3 Judging by titles alone he
would hence be more suitably called a philosopher than a mathematician. His
work, however, includes aspects of the work of a mathematician. Koellner
has read various set theory courses, has supervised at least two mathemat-
ical senior theses and advised on one other. He has published in respected
journals, some of these publications in collaboration with other respected
set theorists, most notably Woodin.4 Koellner has organised the Exploring
the Frontiers of Incompleteness project (EFI), already mentioned in 4.2, in
which leading set theorists (Magidor, Martin, Steel, Welch and others) pre-
sented their work. Whether Koellner is regarded as a set theorist or not, he
is certainly respected by the set-theoretic community and his contributions
to the field are valued. Thus, Kollner, Woodin and Hamkins are relevant
figures in the contemporary landscape of set theory and this lends force to a
philosophical argument based on their contributions to set-theoretic debates.
And it is in this sense of having the relevant kind of traction with the set-
theoretic community in which I will consider Koellner to be a set theorist for
what follows.

Koellner can be seen as a set theorist. However, he is philosophically
trained and we can hence expect him to do some philosophically inspired
mathematical work. The worry is that Koellner’s work might not be repre-
sentative of set-theoretic practice. After all, is it not reasonable to assume
that normal set-theoretic publications deal with set theory and not with
philosophical issues?

The answer to the worry about the representativeness of Koellner’s work
is that his are not solitary musings but rather contributions to a collective
practice. In the last chapter we saw that Hamkins engages with some of the
philosophical questions in set theory. In this chapter we will see that Woodin
does the same. And these three set theorist, Koellner, Hamkins, Woodin, are
not the only set theorists thinking about the philosophical issues of their field.
There is the list of contributors to the EFI project, which includes names such
as Magidor, Martin, Steel and Welch. Sy Friedman and his collaborators also

3Koellner’s curriculum vitae is available online at http://logic.harvard.edu/koellner/
CV Koellner.pdf.

4Examples include [Koellner & Woodin, 2009] and [Koellner & Woodin, 2010].
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discuss such philosophical matters; e.g. [Antos et al., 2015]. And Sharon
Shelah has written papers on some of these philosophical issues (albeit under
external pressure).5 The set theorists mentioned here have a track record
of set-theoretic excellence with important publications in the field and are
amongst the leading set theorists of our time. They use set-theoretic means
not merely to think about the philosophical issues in set theory but to engage
in a debate about such matters. They refer to, discuss and critically assess
each others work. We saw in the last chapter that Hamkins discusses the
universists. In [Antos et al., 2015], Friedman discusses the views of Hamkins,
Shelah and Woodin. Magidor mentions Hamkins’ views in [Magidor, 2012].
This list could be continued. And what this shows is that this kind of set-
theoretic thinking about some of the philosophical issues in set theory is more
than a personal affair; it is a practice in which some set theorists engage. And
because Koellner engages in this practice his work suitable for my purposes.

The above paragraph shows more than just that a study of Koellner’s
work is suitable for what I aim to do. It shows that the kind of activity
I investigate in this chapter, the set-theoretic exploration of some of the
philosophical questions in set theory, is an endeavour carried out by some of
the world’s leading set theorists. Not every set theorist participates, yet this
practice is nonetheless worthy of philosophical investigation precisely because
it is a collective effort of some set theorists to investigate these philosophical
matters.

There is one last preliminary caveat to this chapter I need to mention.
Hamkins, Koellner and Woodin are realists; all three believe in the existence
of abstract mathematical objects. Focusing on these three realists allows
me to make the two-way flow of influence between mathematics and philos-
ophy in the works of some mathematicians visible. However, it also means
that I do not study non-realist mathematicians and hence, given that there
are philosophically relevant non-realist mathematicians,6 I do not study the
practice of set theory at large. It might turn out that non-realist set theo-
rists do not let their set-theoretic practice be influenced by philosophy. This

5In Shelah’s colourful words: ‘under the hypothesis that I had some moral obligation to
help Haim in the conference (and the proceedings) and you should not let a friend down,
had I been given the choice to help with organizing the dormitories, writing a lengthy well
written expository paper or risking making a fool of myself in such a lecture [about the
future of set theory], I definitely prefer the last’; [Shelah, 1991], p. 1.

6[Friend, 2014] tells us that today many mathematicians consider themselves to be
non-realists; p. 84. One example is Nelson; [Nelson, 1995].
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would not threaten the argument of this chapter that there can be a recip-
rocal relationship between set theory and metaphysics. A proper analysis of
non-realist set-theoretic practice is left for future work.

Because the three set theorists studied in this chapter are realists, they
all agree that there are some mathematical objects. A metaphysical ques-
tion arises: what are these existing mathematical objects like? It is on the
answer to this question that Woodin, Koellner and Hamkins disagree. I will
show in this chapter that they aim to base their answer to the metaphysi-
cal question on mathematical grounds; mathematics influences metaphysics.
Furthermore, their answer to the metaphysical question influences their set-
theoretic practice; metaphysics influences mathematics.

5.2 Mathematical Influence on Metaphysics

Woodin is, in Hamkins’ terminology, a universist. Koellner has introduced
a more fine-grained terminology to capture the universist/multiversist split.
Furthermore, he has given the dispute a name: the pluralism/non-pluralism
debate.

The non-pluralist holds that the statements of the language of set theory
have determinate truth-values. He holds that theoretical reasons can be given
that resolve the independence issues and ‘maintains that the independence
results merely indicate the paucity of our standard resources for justifying
mathematical statements’; [Koellner, 2014], introduction.

Non-pluralism is very similar to what Hamkins calls the universe view.
The main difference is that for the universists there is a true universe of sets
and hence theoretical reasons that resolve the independence issues can be
given, whereas the non-pluralist may either hold the existence of a universe
prior to the theoretical reasons or vice versa.

The pluralist holds that some independence issues cannot be resolved. We
have seen a version of this in Hamkins’ multiverse view. A pluralist could,
for example, hold that the ZFC axioms are true axioms of set-hood whilst
all statements independent of these axioms lack a determinate truth-value.

Pluralism comes in degrees. Another pluralist might hold that, say,
ZFC+‘there is a measurable cardinal’ is a system of true axioms about
set-hood. These two pluralists would then disagree on the truth-value of
statements such as V = L: the former pluralist holds that V = L lacks a de-
terminate truth-value because it is independent from ZFC, the latter holds
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that V = L is false (because ZFC+‘there is a measurable cardinal’ implies
V 6= L).

Koellner tries to capture the various degrees of pluralism in the inter-
pretability hierarchy. This hierarchy contains formal (recursively enumer-
able) theories ordered by their strength to interpret other theories. This can
be formalised; cf. [Koellner, 2011], section 2. At the bottom are compara-
tively weak theories, such as Peano Arithmetic, and the higher one climbs the
stronger the considered theories become, via ZFC through ZFC + V = L
to ZFC+‘large cardinal axioms’ and beyond.

The higher we are on the interpretability hierarchy, the stronger the the-
ories become and hence the more formerly undecidable statements become
decidable. On the level of ZFC, the statement V = L is undecidable (V = L
is independent from ZFC). On the level of ZFC+‘there is a measurable
cardinal’, V = L is decided (the theory proves V 6= L). In this way the
interpretability ladder is connected to the foundational issues discussed in
chapter 2.

One can be a non-pluralist up to any level of the hierarchy and a pluralist
beyond. For example, one could be a non-pluralist about ZFC but a pluralist
about any theory higher up on Koellner’s interpretability hierarchy than
ZFC. Alternatively, one might hold that theoretical reasons can be given to
resolve the independence issues up to the level of projective determinacy (i.e.
up to ZFC+‘there are infinitely many Woodin cardinals’) and furthermore
be a pluralist about anything higher up in Koellner’s hierarchy. The choices
are, quite literally, infinite.

It is not an easy task to situate Hamkins in this hierarchy. Hamkins’
writing does not specify whether he holds ZF , ZFC, ZFC +Con(ZFC) or
some other theory to be the shared theory of the universes in his multiverse.
That is, it is not clear up to which level Hamkins extends his non-pluralism.
The only thing that is clear is that it is situated comparatively low in the
hierarchy and we can thus reasonably call him a pluralist. For the purposes
of this thesis, this is enough.

5.2.1 The Truth of the Large Cardinal Axioms

Woodin is a non-pluralist. Indeed, Woodin sees set theory haunted by a
‘spectre of undecidability’; [Woodin, 2010a], 17. This is a problem for him,
which he has called the ZFC dilemma:
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The ZFC Dilemma: Many of the fundamental questions of Set
Theory are formally unsolvable from ZFC axioms. ([Woodin,
2009a], 1)

Notice that Woodin does not intend ‘dilemma’ here as a choice between two
or more undesirable alternatives but rather in its informal meaning as ‘a
difficult problem or situation’, as becomes clear from his formulation of the
dilemma.7

As a non-pluralist, Woodin needs to make the case that non-pluralism
extends further and further up the interpretability hierarchy. Woodin has
recently, in papers that started to appear around 2010, offered such an argu-
ment and I present it in 5.2.1. As I will point out, Woodin’s argument is an
argument in favour of the truth of the Continuum Hypothesis, CH. Interest-
ingly, around the turn of the millennium Woodin gave a different argument
to the effect that the CH is false. That is, Woodin has recently changed his
mind about the truth of the CH. I explore this in the historically minded
paper [Rittberg, 2015]. In this thesis, I concentrate exclusively on Woodin’s
2010 argument; his 2000 argument will play no part in what follows.

It is not my aim in this thesis to criticise or defend any arguments given
by set theorists. My intentions in giving their arguments are descriptive.
Thus, I will not criticise the argument that follows below (with the exception
of what I say in 5.3.2). I will also not discuss any of the criticisms Woodin’s
argument has received from elsewhere, especially the question for the validity
of some of the points Woodin makes; e.g. [Steel, to appear], esp. footnote 24.
This is because the argument I present below is the argument as it appears in
contemporary set-theoretic practice as a contribution by one of the leading
figures of the community. Woodin’s argument as it stands is part of a highly
relevant set-theoretic practice and hence suitable for my purposes. I here
only mention the worry about the validity of Woodin’s argument to then
discard it and leave the debate about such matters to the experts.

Most of the mathematical facts mentioned in what follows can be found
in [Woodin, 1999], [Woodin, 2010b] and [Woodin, 2011]. These results are
amongst the most advanced results in contemporary research in set theory.
I rely on Woodin’s expository papers [Woodin, 2009a], [Woodin, 2009b] and
[Woodin, 2010a] as well as his slides to a talk, [Woodin, 2010c], for the

7Notice that if ZFC were inconsistent, then every set-theoretical statement could be
proven from ZFC and hence there would be no dilemma. Therefore, Woodin assumes the
consistency of ZFC in the above mentioned dilemma.
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reconstruction of Woodin’s argument.
As mentioned, Woodin needs to make the case that non-pluralism extends

further and further up the interpretability hierarchy. Woodin’s argument for
‘climbing higher’ depends on his claim that the large cardinal axioms are
‘true axioms about the universe of sets’; [Woodin, 2009a], 5. The argument
starts with Woodin’s prediction about the consistency of a certain theory,
call it theory T . The precise nature of T is technical and not illuminating for
the point I wish to make; see [Woodin, 2009a], 2-5, for details.8 The consis-
tency of T cannot be proven from ZFC (assuming that ZFC is consistent).
Woodin reminds us that if T were inconsistent, then the inconsistency could
be proven in finitely many steps. However, there is currently no indication
that this is the case. With this in mind, consider the following prediction:

There will be no discovery ever of an inconsistency in [T ]. ([Woodin,
2009a], p. 6, emphasis in original)

Woodin calls this a ‘specific and unambiguous prediction about the physical
universe’ which could be refuted by ‘finite evidence’; [Woodin, 2009a], 5-6.
Therefore, according to Woodin, ‘[o]ne can arguably claim that if this [...]
prediction is true, then it is a physical law’; [Woodin, 2009a], 6. Woodin holds
that if this prediction is true (and currently we have no reason to believe that
it is not), then set theorists should be able to account for it. For Woodin, the
way to do so is via large cardinals. It is a mathematical fact about theory T
that it is consistent if and only if the large cardinal extension ZFC+‘there
are infinitely many Woodin cardinals’ is. Using this information, Woodin
writes about the above prediction:

It is through the calibration by a large cardinal axiom in con-
junction with our understanding of the hierarchy of such axioms
as true axioms about the universe of sets that this predic-
tion is justified. ([Woodin, 2009a], p. 5, emphasis in original)

Woodin writes ‘[a]s a consequence of my belief in this claim, I make [the
above] prediction’; ibid., 5. Hence, Woodin accounts for the prediction of
the consistency of T by

a) the calibration of the problem of consistency of T by large cardinal
axioms.

8For connoisseurs: the theory T is ZFC+SBH, whereby SBH denotes the Stationary
Basis Hypothesis.
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b) the truth of the large cardinal axioms.

Part a) is a mathematical fact. What is at stake here for Woodin is part b).
If b) is needed to make the prediction, then, according to Woodin, we have
reason to believe in b). Assume that b) does not hold. Then all we have
is an equiconsistency result of the theory T with ZFC+‘there are infinitely
many Woodin cardinals’. However, Woodin claims, ‘[j]ust knowing the [...]
two theories are equiconsistent does not justify [the] prediction at all’ (ibid.).
Hence we need b) to make the prediction, i.e. Woodin argues that we have
reason to believe that large cardinal axioms are true.9

5.2.2 Ultimate L

Recall from chapter 2 that the aim of the inner model programme is to
construct mathematically accessible structures that can accommodate large
cardinals; i.e. to construct models such that these models believe that certain
large cardinal axioms hold. As we have seen, all the constructed inner models
are limiting in the sense that only large cardinals up to the targeted large
cardinal axiom can be accommodated, but no stronger ones.

Woodin has recently presented results in formal set theory which indicate
that it might be possible to rid the inner model programme of the limiting
results. The point is that the models produced by the inner model programme
shed their limiting nature if the level of a supercompact cardinal could be
reached. The axiom stating that there is a supercompact cardinal is fairly
high up in the large cardinal hierarchy; they are the strongest large cardinals
considered in this thesis up to this point and are situated in the upper third
of Kanamori’s chart of large cardinal axioms; [Kanamori, 2009], 472. This
subsection explains Woodin’s results on inner models with supercompact
cardinals.

Woodin considers what would happen if an inner model which accom-
modates a supercompact cardinal could be found. Assuming that there is
an inner model which can accommodate a supercompact cardinal, Woodin is
able to show that, unlike other models built in the inner model programme,
this model would accommodate essentially all large cardinal axioms (con-
sistent with ZFC)10. Before I say more about the term ‘essentially’ in the

9For some critical remarks on this argument see 5.3.2.
10For the remainder of this section, I use ‘all large cardinals’ to mean ‘all large cardinals

consistent with ZFC’.
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antecedent sentence, let me stress the point. Usually, if set theorists succeed
in building an inner model for some large cardinal axiom LCA, then no large
cardinal axiom stronger than LCA holds in this model. But, ‘and this is the
surprise’ ([Woodin, 2009a], 20), if the set theorists would succeed in build-
ing an inner model for a supercompact cardinal, then this model, unlike the
others, can accommodate essentially all large cardinals, even those that are
stronger than supercompact cardinals.

What does it mean for a model to accommodate essentially all large cardi-
nals? In [Woodin, 2009a] we find an example. Inner models are constructed
by using so-called extenders. These extenders can then witness that certain
statements hold in the inner model. Woodin asks us to assume that there
is a class of extenders, all satisfying a technical condition,11 which witnesses
that there is a supercompact cardinal in an inner model. Then, so Woodin
points out, these extenders also witness, for all natural numbers n, the exis-
tence of n-huge cardinals. The existence of an n-huge cardinal is amongst the
strongest large cardinal axioms listed on Kanamori’s chart of large cardinals;
[Kanamori, 2009], 472. The point is, so Woodin remarks, that requiring the
technical condition on the extenders witnessing the existence of a supercom-
pact cardinal already ensures that the technical condition is met ‘for a much
larger class of extenders’ ([Woodin, 2009a], 20, emphasis in original). At this
point, Woodin has fleshed out what he means by ‘essentially all’ but whether
this fleshing out is rich enough to make the notion sufficiently precise for
mathematical use is a question I will leave to the experts on such matters.12

In any case, it seems that Woodin finds the notion clear enough to work with
it, and I will follow his lead in this.

An inner model that can accommodate a supercompact cardinal would be
an ultimate step in the inner model programme of generalising L to account
for more and more large cardinal axioms, precisely because it could account
for essentially all large cardinals. This is why Woodin has called such an
ultimate inner model Ultimate-L, written as Ult-L. Thus far, Woodin has
been unable to construct an ultimate L; see concluding remarks of [Woodin,

11For Connoisseurs: For transitive class N such that there is a cardinal δ with N |= ‘δ is
a supercompact cardinal’ and extender E the technical condition is E ∩N ∈ N ; [Woodin,
2009a], 20.

12In fleshing out the meaning of ‘essentially all’, Woodin refers, in [Woodin, 2009a] on
page 20, to results presented in his over 600 pages long Suitable Extender Models, published
as the two volumes [Woodin, 2010b] and [Woodin, 2011]. Sadly, he does not indicate which
results he means in particular.
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2009a] and [Woodin, 2009b]. Hence, we currently do not have a mathemati-
cally accessible structure that can accommodate all large cardinals.

There are various axiom candidates which could function as the axiom
that the universe of sets is an ultimate-L, expressed as V = Ult-L ; [Koell-
ner, 2013a].13 The various axiom candidates for V = Ult-L form a family of
axioms. Woodin has formulated mathematically precise questions, the an-
swer to which could individuate the most suitable V = Ult-L axiom. Thus,
Woodin relies on future mathematical results here. Koellner connects these
future mathematical results to the pluralism/non-pluralism debate. The rest
of this sections spells out some of the details of this argument.

The V = Ult-L axioms are powerful. They would banish the ‘spectre of
undecidability’ because

There is no known candidate for a sentence which is independent
from [a version of V = Ult-L] and which is not a consequence of
some large cardinal axiom. [Woodin, 2009a], p. 27

Hence, according to Woodin, all contemporary known formal questions are
decidable in the large cardinal extension ZFC + V = Ult-L+ LCAs, where
V = Ult-L stands for one of the versions of this axiom and LCAs stands
for a schema expressing that large cardinals exist. This result recalls the
pluralism/non-pluralism debate. The non-pluralists could strengthen their
case if they could find an axiom that would banish the ‘spectre of undecid-
ability’. The versions of V = Ult-L (plus large cardinals) do precisely this
job. Assuming ZFC + V = Ult-L + LCAs, there are no more contempo-
rary natural and formally unsolvable questions; the ZFC dilemma is solved
(assuming that we agree with Woodin on what the contemporary natural
questions are).

But yet again, there is a problem: the different versions of V = Ult-L
contradict each other. For example, there is a version that implies the CH
and one which implies ¬CH. Hence, those non-pluralists who subscribed to
the argument thus far are forced to choose between the different versions of
V = Ult-L. But how to do so? The ‘spectre of undecidability’ resurfaces
here because it is, prima facie, unclear how the set-theoretic methods of dis-
covery could deal with the issue. In the next subsection, I present Koellner’s
proposal to resolve this issue.

13For a presentation of one of the axioms for V = Ult-L and possibilities for its gener-
alisation, see [Woodin, 2010a], 17.
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5.2.3 Convergence

Above, I introduced the V = Ult-L axioms, mentioned that they banish
the contemporary ‘spectre of undecidability’ and argued that the spectre
resurfaces in the form of the different and mutually exclusive versions of
V = Ult-L. In [Koellner, 2013a], Koellner discusses a method that could lead
to a decision between the different V = Ult-L axioms. In this subsection, I
first explain this method and then present how Koellner connects this method
to the pluralism/non-pluralism debate.

The proposed method to choose between the ultimate Ls is to analyse,
for each version of V = Ult-L, the structure theories of two set-theoretic
structures under the assumed axiom. One of these structures is well known
to the set theory community; the other has not received much attention yet.
The idea is that if the structure theories of these two structures converge in
similarity under a version of V = Ult-L, then this counts as evidence for this
version of V = Ult-L. To elaborate on this, I present the two structures that
are to be analysed and give an idea of what is meant by the similarity of
structure theories.

My elaboration starts with the structure which is well-known to the set
theory community: L(R).14 This structure contains all the reals and all
their definable subsets. It ‘has figured prominently in the investigation of
strong hypotheses’ ([Kanamori, 2009], 142) and set theorists have come to
an intimate understanding of this structure. For example, the structure
featured in the arguments Maddy has told us about that support the Axiom
of Projective Determinacy, PD. As we know from 3.2.1, the statement that
the Axiom of Determinacy, AD, holds in L(R), written as ADL(R), implies
PD. As Maddy has pointed out, ADL(R) has been studied, and with it the
structure L(R). In fact, the axiom ADL(R) features in Koellner’s argument
for the similarity condition of the two structures; see below.

The second structure which is important for the method to choose be-
tween the different versions of V = Ult-L is a technical generalisation of
L(R). It is helpful to notice here that L(R) is L(Vω+1).

15 We can hence
concentrate on L(Vω+1).

14L(R) is constructed just like L, but rather than starting the construction with ∅ one
starts with R instead.

15Both Vω+1 and R are isomorphic to P(N) and hence isomorphic to each other. This
means that the class of definable sets that can be constructed out of Vω+1 is the same as
the class of definable sets that can be constructed out of R.
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Given that we are thinking about L(Vω+1), we might wonder what hap-
pens when we replace ω by some cardinal λ. We obtain the model L(Vλ+1).
Now let λ be such that there is an elementary embedding from L(Vλ+1) into
itself with critical point below λ.16 As Koellner remarks, this embedding con-
dition is ‘the strongest large cardinal axiom that appears in the literature’;
[Koellner, 2013a]. The structure L(Vλ+1) is the second structure considered
in the method to choose between the different versions of V = Ult-L. ‘The
difficulty in investigating the possibilities for the structure theory of L(Vλ+1)
is that we have not had the proper lenses through which to view it. The
trouble is that [...] the theory of this structure is radically underdetermined’;
[Koellner, 2013a].

I now turn to the similarities of the structure theories of the two structures
L(Vω+1) and L(Vλ+1). Firstly, observe that one can prove from the ZFC
axioms that, under the assumption that ADL(R) holds, the cardinal ω1(= ω+)
is a measurable cardinal in L(Vω+1). Similarly, one can prove from the ZFC
axioms that, under the embedding condition, the cardinal λ+ is a measurable
cardinal in L(Vλ+1). In this case, there is an obvious similarity between
L(Vω+1) and L(Vλ+1), namely that both ω+ and λ+ are measurable in their
respective structures. This presents L(Vλ+1) in a light which makes visible
that this structure is a generalisation of (the well-known and understood)
L(Vω+1).

The proposal is to study these two structures in light of the different ver-
sions of V = Ult-L. As mentioned, V = Ult-L is a powerful axiom which
could counteract the ‘radical underdetermination’ (Koellner) of L(Vλ+1).
Thus, assuming one of the V = Ult-L axioms, it might happen that further
similarities between the structure theories of L(Vω+1) (under the assumption
that AD holds) and L(Vλ+1) (under the embedding condition) become visi-
ble. If this happens for some version of V = Ult-L, then, according to the
argument, this counts as evidence for the version of the axiom. However, if
dissimilarities of the structure theories of these two structures are revealed
under a version of V = Ult-L, then this counts as evidence against this ver-
sion of the axiom. The thought here is one of convergence: if the structure
theories converge under one of the V = Ult-L axioms, then this is evidence
for the axiom; divergence counts as evidence against the axiom.

16An elementary embedding between two models is a truth-preserving function between
these models. For an elementary embedding j the critical point of j is the smallest ordinal
α such that j(α) > α.
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A negative convergence-result has already been obtained. Woodin showed
that for one of the V = Ult-L axioms the structure theories do not converge
in similarity. According to the methodology on offer here, this axiom should
not be considered to hold in the true universe of sets; [Koellner, 2013a].

The search for similarity leads to, as Koellner terms them, a ‘list of definite
questions’, [Koellner, 2013a]. These questions are answerable; ‘independence
is not an issue’ (ibid.). The ‘spectre of undecidability’, which resurfaced in
the wake of the choice-problem between the different versions of V = Ult-
L, seems finally to be tamed. It is not yet banished, as the analysis of the
convergence of structure theories is not yet completed, but the set theorists
are now in possession of a method that could potentially banish the spectre
for good.

This leads us to Koellner’s connection between mathematics and the
pluralism/non-pluralism debate. Above, I wrote ‘potentially banish’ be-
cause there is the possibility that the structure theories might diverge for
all versions of V = Ult-L. In this case the method to banish the ‘spectre of
undecidability’ considered here would fail. It is this thought that Koellner
uses to connect the mathematical results about the axioms V = Ult-L to the
philosophical pluralism/non-pluralism debate.

According to Koellner, if a version of V = Ult-L is found under which
the structure theories of L(Vω+1) and L(Vλ+1) converge in similarity,

then one will have strong evidence for new axioms settling the un-
decided statements (and hence non-pluralism about the universe
of sets); while if the answers [to the question of convergence] oscil-
late, one will have evidence that these statements are“absolutely
undecidable” and this will strengthen the case for pluralism. In
this way the questions of “absolute undecidability” and plural-
ism are given mathematical traction. ([Koellner, 2013a], closing
words)

The idea then is this: if we can find a version of V = Ult-L for which the
structure theories converge, then the ‘spectre of undecidability’ would be
banished, the ZFC dilemma resolved and the mathematical results obtained
from the analysis of the relevant structure theories would pull us towards
non-pluralism. If, on the other hand, the structure theories diverge, then the
‘spectre of undecidability’ is not banished by the methodology on offer here,
which pulls us towards pluralism. Koellner has set up a mathematical test
and given us an argument that the outcome of this test indicates an answer
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to the pluralism/non-pluralism question. I call this Koellner’s convergence
argument.

5.2.4 Mathematical Pull

The V = Ult-L story shows that some set theorists are actively working
on the connection between mathematics and metaphysics. This means first
of all that some set theorists take the metaphysical debate seriously. They
realise that their position in the pluralism/non-pluralism debate influences
the list of leading problems in set theory; e.g. some non-pluralists are looking
to settle CH, some pluralists are not. This makes the metaphysical debate
important for these set theorists.

Some philosophers of mathematics currently have a debate about the
pluralism/non-pluralism issue. For example, Mark Balaguer has proposed a
‘full-blooded Platonism’, which assumes that there is a platonic reality for all
consistent mathematical theories and which is hence, in the terminology of
this thesis, a pluralist position; [Balaguer, 1998].17 One of his philosophical
opponents is Colyvan, who defends a non-pluralistic version of Platonism;
[Colyvan, 2001].

I have shown that there are set theorists who do not wait for the philoso-
phers to resolve the pluralism/non-pluralism issue. Woodin, Koellner (and
Hamkins) actively participate in this debate, and they use mathematical
means to do so. Woodin tries to strengthen the case for non-pluralism by
resolving a deep problem the non-pluralists have: the ZFC-dilemma. The
‘spectre of undecidability’ resurfaces in the various versions of the V = Ult-
L axioms, but it is tamed in the sense that formally solvable mathematical
questions can be asked which could settle which of the axioms should be
accepted. At this point, Koellner uses his convergence argument to connect
the mathematics used to the metaphysical discussion: convergence of the
relevant structure theories for a certain V = Ult-L axiom would be an ar-
gument for non-pluralism, divergence an argument for pluralism. Koellner
proposes here that mathematical facts, namely the future mathematical re-
sults obtained from studying the two relevant structures, should influence our
position in the pluralism/non-pluralism debate. This means that we can now

17Balaguer defends full-blooded Platonism against some philosophical concerns but ul-
timately discards it because, according to him, it is disharmonious with mathematical
practice.
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generate arguments in a metaphysical debate by doing more mathematics.
Mathematics is set up to pull the metaphysical debate.

Importantly, Koellner does not point to some past events in the his-
tory of mathematics for his arguments in the pluralism/non-pluralism de-
bate. By relying on future mathematical results, he connects mathematics
to metaphysics in such a way that mathematics actively influences meta-
physics. Koellner establishes mathematical pull. Through the convergence
argument, the mathematician has a way to search for an answer to a philo-
sophical question without overstepping the boundaries of the mathematical
discipline, and that this is possible is an important aspect of the connection
between mathematics and metaphysics.18

The story about the Ultimate-L axioms shows that mathematicians can
actively search for mathematical facts which exert mathematical pull. How-
ever, mathematical pull, the pull mathematical facts exert on the metaphys-
ical beliefs of mathematicians, need not be actively sought. Hamkins for
example finds himself confronted with the various kinds of mathematical
facts discussed in the last chapter. For him, these facts exert pull towards
pluralism; cf. chapter 4.

I have argued that mathematical facts can exert pull on the metaphysical
beliefs of the set theorists. In the next section, I argue that metaphysical
positions can influence how mathematics is practised.

5.3 Metaphysical Influence on Mathematics

In this section, I argue that the metaphysical positions of set theorists can
influence how they practice set theory. I offer two arguments. The first is
that the metaphysical position of set theorists can influence their research
agenda; 5.3.1. I present Hamkins’ modal logic of forcing and his set-theoretic
geology project as an example of pluralism influencing the research agenda
of a set theorist. I refer to work by Magidor to show how non-pluralism
influences can affect research agendas.

My second argument is that some arguments in the foundational debate
are metaphysically laden; 5.3.2. I discuss Woodin’s argument for large car-
dinals and Hamkins’ arguments about forcing.

18The argument that Woodin and Koellner are establishing mathematical pull on the
metaphysical debate is also given in [Rittberg, 2016]. For a presentation of the historical
development of Woodin’s arguments in the foundational debate, see [Rittberg, 2015].
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5.3.1 Research Agendas

The claim I wish to defend in this subsection is that the metaphysical position
a set theorist holds can influence his research agendas. I first show that some
pluralists are analysts of the relations between different universes. I then
argue that some non-pluralists are universe builders.

Notice that I do not claim that pluralists are only concerned with the
relations between set-theoretic universes. This would be false. As I show
below, in Hamkins’ study of the multiverse it is at times crucial to study
certain specific universes in order to understand the truth-values of certain
statements in these universes. I also do not claim that non-pluralists are not
interested in the relations between set-theoretic models. Woodin has studied
the so-called generic multiverse, which is connected to a more restricted form
of pluralism than Hamkins’ multiverse view, in detail (see below). My claim
is hence not that the pluralism/non-pluralism stance of some set theorists
excludes certain areas of set-theoretic practice from their interests. Rather, I
argue that metaphysical stances can guide set-theoretic research by attaching
importance to certain questions.

Studying the Multiverse

Section 10 of [Hamkins, 2011] is entitled ‘Multiverse-inspired Mathematics’.
It begins as follows

The mathematician’s measure of a philosophical position may be
the value of the mathematics to which it leads. Thus, the philo-
sophical debate here may be a proxy for: where should set theory
go? Which mathematical questions should it consider? The mul-
tiverse view in set theory leads one to consider how the various
models of set theory interact, or how a particular world sits in the
multiverse. This would include such mainstream topics as abso-
luteness, independence, forcing axioms, indestructibility and even
large cardinal axioms, which concern the relation of the universe
V to certain inner models M , such as an ultrapower. A few recent
research efforts, however, have exhibited the multiverse perspec-
tive more explicitly, and I would like briefly to describe two such
projects in which I have been involved, namely, the modal logic
of forcing and set-theoretic geology. ([Hamkins, 2011], 27)
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Hamkins tells us here that his multiverist position influences which mathe-
matical questions he thinks set theory should consider. He tells us that these
questions include what he calls ‘mainstream topics’, but particular attention
is given to the question ‘how the various models of set theory interact, or how
a particular world sits in the multiverse’. Here we have a pluralist telling us
that his pluralism affects what he thinks the important set-theoretic ques-
tions are (without excluding more commonly studied questions). Hamkins
is hence a good example of a set theorist who is an analyst of the relations
between different universes.

Let me here briefly explain what the analysis of the multiverse looks like
in Hamkins’ case. I first explain the modal logic of forcing. I then consider
the set-theoretic geology project.

The Modal Logic of Forcing

The Continuum Hypothesis (and other statements) are like light-switches
with respect to forcing: by moving to a forcing-extension one can make the
CH true or false at will; one can turn it on and off. Other statements,
such as V 6= L, are not recoverable in this fashion. Once they become true
in a forcing-extension they necessarily remain true in every further forcing-
extension.

Hamkins’ ‘initial inquiry centered on the question: Could the universe
be completed with respect to what is forceably necessary?’; [Hamkins, 2011],
27. Interpreting the modal operator 3 as ‘it is forcable that...’ and � as ‘in
all forcing extensions holds that...’, Hamkins’ question can be expressed as
follows: can a model of set theory be build such that 3�φ → �φ holds in
this model? Hamkins explains the formula as follows: ‘This principle asserts
that the universe has been completed with respect to forcing in the sense
that everything permanent achievable by forcing has already been achieved’;
[Hamkins, 2011], 27. Hamkins’ initial results in [Hamkins, 2008] established
that the above formula is equiconsistent with ZFC.

Notice that Hamkins’ question is a question about ‘the universe’ and is
hence not closely linked to his pluralism. His pluralism affects his research in
the interpretation of his result and the follow up questions he asks. Hamkins’
result establishes that if there is a model of ZFC, then there is a model of
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ZFC which is completed with respect to forcing in the above sense. Rather
than focussing on an argument that this completed universe is or is not the
true universe of sets, Hamkins asks ‘What are the generally correct principles
of forcing? Which modal principles are valid in all models of set theory?
Which can be valid?’; [Hamkins, 2011], 27. Hamkins’ focus is hence on
an analysis of the (forcing) relations between the various universes in the
multiverse.

Hamkins published his answer to the question about the correct principles
of forcing in a joint paper with Benedikt Löwe; [Hamkins & Löwe, 2008].
They show that the modal logic of forcing is S4.2, a formal modal theory
that is sound and complete with respect to the class of Kripke frames that
form a finite pre-lattice, i.e. finite lattices with equivalence classes at their
nodes. To prove this, one needs to first establish that the relevant axioms
hold. This is relatively easy. For example, the axiom �φ → φ states that
what holds in every forcing extension of the considered ground model already
holds in the ground model. Noting that the trivial forcing extension is just
the ground model, the axiom obviously holds. The difficult part is to show
that no other modal axioms hold. Hamkins and Löwe have shown this for
the class of all forcings.19

It is interesting to note that once one restricts the class of forcings, show-
ing that no other axioms of modal logic hold becomes much harder. Take
c.c.c.-forcing for example. This class of forcing is in many respects a class of
simple forcings with certain nice properties. Cohen forcing is an example of
a c.c.c.-forcing. However, the modal logic of c.c.c.-forcings is still unknown;
cf. [Hamkins & Löwe, 2008], section 6. Other alterations, such as the restric-
tion to a single model or considerations of forcing with parameters, open up
further questions. The modal logic of forcing is hence a rich field of study
which investigates the multiverse. Here is an extendible list of contributions
on this topic: [Hamkins & Löwe, 2008], [Hamkins, 2008], [Rittberg, 2010],
[Friedman et al., 2012], [Inamdar, 2013], [Hamkins et al., 2015].

Set-Theoretic Geology

19For a detailed development of the proof that the modal logic of forcing is S4.2, with
a small correction of Hamkins’ and Löwe’s original proof, see [Rittberg, 2010].
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Forcing constructs out of a given model of set theory V a ‘fatter’ outer
model V [G]; cf. 2. Given a model of set theory W , we can ask whether there
is a V and a G such that W = V [G]. In a sense, this reverses the direction of
forcing. Rather than constructing outer models, we ‘dig into’ a given model
W and search for a model V such that our given model is a forcing-extension
of V . This is the core idea of set-theoretic geology.

In the above scenario, V is called a ground for W (assuming that G is
P-generic over V for some forcing P ∈ V ). A bedrock is a minimal ground.
As Reitz showed, there are models that do not have a bedrock; [Reitz, 2006],
[Reitz, 2007]. This leads to ‘the principal new set-theoretic concept in [forc-
ing] geology’ ([Hamkins, 2011], 31): the mantle M is the intersection of all
grounds.

One of the ‘fundamental questions’ (ibid. 32) is whether the mantle is a
model of ZFC. Thus far, this has not been proven. The directed grounds
hypothesis is that every intersection of two grounds is itself a ground.20 This
hypothesis implies that the mantle is a model of ZF , but not necessarily of
ZFC. The strong directed grounds hypothesis states that the intersection
over A many grounds, where A is a set, is itself a ground. This hypothesis
implies that the mantle is a model of ZFC; cf. ibid., 32. For Hamkins, the
questions for the truth of these hypotheses are questions about ‘fundamental
properties of the multiverse’.

‘It is natural to consider how the mantle is affected by forcing, and since
every ground of V is a ground of any forcing extension of V , it follows that
the mantle of any forcing extension is contained in the mantle of the ground
model’; ibid., 32. As a limit, we arrive at the generic mantle gM : the
intersection of all grounds of set forcing extensions of V . This generic mantle
turns out to be a more robust notion that the mantle. For example, the
generic mantle is always a model of at least ZF .

According to Hamkins

Set-theoretic geology is naturally carried out in a context that in-
cludes all the forcing extensions of the universe, all the grounds of
these extensions, all forcing extensions of these resulting grounds
and so on. ([Hamkins, 2011], 32)

20The directed grounds hypothesis was proved by Toshimichi Usuba in late 2015/early
2016. He presented his proof at the IMS-JSPS Joint Workshop on Mathematical Logic and
the Foundations of Mathematics, Singapore, in January 2016. His slides contain a sketch
of the proof; http://www2.ims.nus.edu.sg/Programs/016wjsps/files/usuba.pdf.

http://www2.ims.nus.edu.sg/Programs/016wjsps/files/usuba.pdf
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It is in this regard that Hamkins’ multiverse perspective nourishes his inves-
tigation of set-theoretic geology. Hence, his metaphysical views influence his
research agenda here.

Not only pluralists are interested in set-theoretic geology. Woodin, for
example, has studied the topic as well. In fact, Woodin, Hamkins and Reitz
have collaborated in their study of set-theoretic geology and published a
paper together; [Hamkins et al., 2008].

Woodin introduces the concept of a generic multiverse of a model, the
smallest family of models of set theory containing that model which is closed
under forcing extensions and grounds; [Woodin, 2009b], section 1.4. Hamkins
remarks: ‘Woodin introduced [the generic multiverse] specifically in order to
criticize a certain multiverse view of truth, namely, truth as true in every
model of the generic multiverse’; [Hamkins, 2011]. Hamkins points out that
this is not his position. Nonetheless, Woodin introduces us to the generic
multiverse, which he considers to be a ‘natural candidate for a multiverse’;
[Woodin, 2009b], 18. Woodin then argues against this view. His argument
includes two multiverse axioms and the Ω conjecture. A development of these
thoughts would lead us too far astray. Suffice here to say that Woodin argues
that ‘the essence of the argument against the generic-multiverse position is
that assuming the Ω Conjecture is true (and that there is a proper class of
Woodin cardinals) then this position [the generic multiverse view] is simply
a brand of formalism that denies the transfinite by reducing truth about the
universe of sets to truth about a simple fragment such as the integers or [...]
the sets of real numbers’; [Woodin, 2009b], 17.21

In [Woodin, 2009b], Woodin is interested in set-theoretic geology to for-
mulate a reductio ad absurdum argument. Assume the generic multiverse
view. Then, by various results, some of them obtained by a study of set-
theoretic geology, the transfinite has to be denied. Woodin argues that the
transfinite cannot be denied and thus a pluralistic view on set-theoretic truth
connected with a ‘natural candidate for a multiverse’, the generic multiverse,
cannot be upheld.

Building Universes

In this part of my thesis, I aim to show that the non-pluralism of some set
theorists has influenced their research agendas.

21For a historically minded exposition of the Ω-conjecture, see [Rittberg, 2015]. See
[Bagaria et al, 2006] for an introduction to more technical details on the Ω-conjecture.
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Menachem Magidor asks ‘Is [the] choice [between pluralism and non-
pluralism] relevant at all to the working mathematician?’; [Magidor, 2012],
2. His claim is ‘that the choice of the underlying Set Theory is relevant to
the mathematical work’ (ibid.) and thus begins his defence of non-pluralism.
Magidor holds that ‘the main motivation of studying Set Theory is still the
foundational goal: creating a framework in which all of Mathematics (or at
least a major part of it) can be included under a uniform system’; ibid. 3.
For him ‘the spectre of having multitude of set theories [...] is as troubling
as imagining a city with different sets of traffic rules for every street’; ibid.,
3.

Magidor clearly subscribes to Maddy’s UNIFY; cf. 4.1. Indeed, Magidor
acknowledges Maddy in his paper and points out his sympathy for her nat-
uralism; [Magidor, 2012], 2. Similar to Maddy, Magidor claims that UNIFY
is part of set-theoretic practice in a strong sense: it is the ‘main motivation’
to study set theory. Such a view on set theory allows only for non-pluralism.

Magidor continues

The fact that the numbers, groups and real valued functions can
be construed to be members of the same universe, obeying the
same rules is the most important reason d’etre of Set Theory.
([Magidor, 2012], 3)

This shows that for Magidor, UNIFY is a mission. The ‘main motivation’
to study set theory is to ‘create’ a unified system in which all mathematical
objects ‘obey the same rules’. For Magidor, non-pluralism shapes the most
important research agendas of set theory.

As Maddy has told us, her Cabal set theorists share the view that set
theory has a foundational goal, that UNIFY is intimately connected to this
foundational goal and this generates a mission for those set theorists that
engage in the foundational debate: search for the one true universe of sets.
Magidor is a strong defender of this view in that he believes this is the most
important motivation to study set theory, it’s ‘reason d’etre’. Maddy makes
no claim that her Cabal set theorists share Magidor’s views on motivation
and reason d’etre here. They do, however, share the conviction that UNIFY
is a mission to find the true universe of sets, at least in Maddy’s presentation
of their views.
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5.3.2 Metaphysical Justifications

In this subsection, I argue that some arguments presented in the foundational
debate are not metaphysically innocent. I discuss Woodin’s argument for
large cardinals and Hamkins’ arguments about forcing.

Woodin’s Argument for Large Cardinals

Woodin’s argument for the large cardinal axioms rests on the metaphysical
belief in non-pluralism. Recall that Woodin gave a prediction that a certain
theory T would never be shown to be inconsistent. A formal result shows
that this theory is equiconsistent with a certain large cardinal extension of
ZFC. According to Woodin, the prediction is justified because of a) the
truth of the relevant large cardinal axioms and b) the equiconsistency result.
Since equiconsistency alone is not enough to make the prediction, so Woodin
claims, we have reason to believe in the truth of the relevant large cardinal
axioms.

For the sake of argument, let me agree with Woodin that his prediction
can and should be made, that it is correct and so on. Does this commit
me to the belief in the truth of large cardinal axioms? Woodin’s point is
that the prediction is only justified because of the truth of the relevant large
cardinal axioms and the equiconsistency results. Could I not weaken this
and claim, in a multiversist spirit, that truth of the relevant large cardinal
axioms in one of the universes of the multiverse is enough? The idea here is
this: because there is a universe in which the relevant large cardinal axioms
hold and because of the equiconsistency results, there is a universe in which
Woodin’s prediction about the consistency of the theory T holds true. Hence
we can make this prediction.

Woodin does not claim that T is consistent in some unspecified universe.
He makes the stronger claim that T is consistent in our universe. He calls
it a ‘specific and unambiguous prediction about the physical universe’ which
could be refuted by ‘finite evidence’; [Woodin, 2009a], 5-6. If the prediction
should turn out to be true, then, so Woodin claims, it is a ‘physical law’;
(ibid.).

Woodin makes a category mistake here. He confuses the physical to-
kens used to write down proofs of inconsistency with the mathematical facts.
Assume T was shown to be inconsistent. Then there would be strings of sym-
bols, written on a piece of paper (or else) which convey some information.
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These symbols are the physical tokens. Woodin is not making a prediction
about them. Rather, Woodin is making a prediction about a piece of math-
ematics. Knowledge about this piece of mathematics may be transferred
through the physical symbols, but it is distinct from these symbols.

What matters for Woodin’s predictions are set-theoretic universes. By
linking a set-theoretic universe to our physical universe and using the fact
that many of us believe that there is only one such physical universe, Woodin
suggests his non-pluralistic view of the truth of the large cardinal axioms.
However, once we disconnect the set-theoretic from the physical universe, we
lose grip on the suggestion of a unique set-theoretic universe. At this point,
my pluralistic suggestion above, that a single universe in which the large
cardinals hold suffices to make Woodin’s prediction, seems unopposed.

For the non-pluralist however, Woodin’s argument for the truth of the
large cardinal axioms may still go through. Of course there may be ‘il-
lusionary’ (Hamkins) non-standard submodels of the true universe of sets.
However, Woodin’s prediction that T is consistent is justified because in the
universe that matters, the true universe of sets, there are large cardinals that
guarantee the consistency of T .

The above argument shows that Woodin has a non-pluralist stance prior
to his argument that the large cardinal axioms are true. Notice how deeply
this affects the mathematics that follows. Woodin’s whole Ultimate-L argu-
ment rests on the idea that we should try to construct a model that can ac-
commodate essentially all large cardinal axioms. Because an inner model that
can accommodate a supercompact could serve as such a desired model, these
inner models are studied by Woodin. The work on the proposed Ultimate-
L axioms will serve, so Woodin and Koellner hold, as an argument for the
foundational debate. We have seen all this above in 5.2. What I have shown
here is that Woodin’s non-pluralistic beliefs play a role in his argument.

Hamkins and Forcing

Hamkins accepts any forcing extension M [G] over a model of set theory M
as a universe in the set-theoretic multiverse. As Koellner points out, M [G]
is necessarily a non-standard model; [Koellner, 2013b], 18-22. I explain in
more detail below.

The question is whether forcing extensions really exist. Here is a quick
argument against their existence. The true universe of sets V is meant to
include all sets. If there were a V -generic filter G, we could construct a new
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set-theoretic universe V [G]. This new universe would contain sets that are
not part of V , such as G for example. But V was meant to be the collection of
all sets. Hence, there can be no (non-trivial) V -generic filter G to construct
V [G]. Hamkins calls this a catechism of the universe view: ‘There are no
V -generic filters’; [Hamkins, 2011], 5.

According to Hamkins, the claim that there is no V -generic filter is similar
to the claim that there is no square-root of −1. ‘Of course,

√
−1 does not

exist in the real field R. One must go to the field extension, the complex
numbers, to find it. Similarly, one must go to the forcing extension V [G] to
find G’; [Hamkins, 2011], 5. As Hamkins notes, complex numbers can be
modelled in R. Similarly, the ground model V has some access to the forcing
extension V [G]. However, the modelling of the forcing extension is not as
powerful as the modelling of the complex numbers in the (two-dimensional)
reals; there cannot be a fully isomorphic copy of the forcing extension in the
ground model. Nonetheless, the access of the ground model to its forcing
extensions comes ‘maddeningly close’ (ibid.) to this.

According to Hamkins, ‘full acceptance of complex numbers was on its
way’ (ibid.) once it was realised that the reals could simulate the complex
numbers. Hamkins argues that we should view the case of forcing extensions
similarly. He presents three accounts of forcing to make this point. Koell-
ner counters by pointing out that all three approaches lead to non-standard
models of set theory. I discuss the three accounts in turn.

One way forcing can be understood is in the way Cohen used forcing. He
started with a countable (and transitive) model M . In this case, a generic
filter G can be build for any forcing P; cf. [Kunen, 2006], 186. Once the
existence of G is secured, the forcing extension M [G] can be build. Koell-
ner points out that in this case M [G] is countable. ‘As such M[G] is (by
construction) a non-standard model of set theory’; [Koellner, 2013b], 18.

Another way to construct forcing extensions is via Boolean valued alge-
bras. In this case, one considers a Boolean valued algebra B rather than
the partial order P. This allows to extend any model of set theory V to a
forcing extension V B, not only countable ones as in the case above. In V B,
one can show that ZFC (plus the statement one wished to force) holds with
Boolean value 1. As such, the Boolean valued approach to forcing ‘produces
a class-size object V B but one which is not two-valued. As such V B is (by
construction) a non-standard model of set theory’; [Koellner, 2013b], 18.

The two approaches to forcing presented above can be considered as stan-
dard approaches and are discussed in many introductory books on set theory;
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e.g. [Jech, 2006], [Kunen, 2006]. Hamkins presents a third approach to forc-
ing, ‘the Naturalist account of forcing, which seeks to legitimize the actual
practice of forcing, as it is used by set theorists’; [Hamkins, 2011], 8. This
approach to forcing rests on the theorem that for every set-theoretic universe
V and every forcing P there is a set-theoretic universe V ′ such that there is
an elementary embedding from V to V ′ and that there is a V ′ generic filter
G ⊆ P. The idea is this. To force over V by using P one first moves to
V ′, a model which is ‘essentially the same’ as V because of the elementary
embedding. By the theorem, we know that there is a generic filter and we
can hence construct the forcing extension V ′[G]. This can be a class sized
model of set theory which is two-valued. Hence, Koellner’s criticisms above
do not apply here. However, Koellner points out that ‘there are three im-
portant things to note about V ′[G]– it need not be transitive, it need not be
well-founded, it is a definable class in V . For all three reasons it is as non-
standard a model of set theory as those produced in the first two approaches
to forcing’; [Koellner, 2013b], 19.

Hamkins remarks

Of course, one might on the universe view simply use the natural-
ist account of forcing as the means of explaining the illusion: the
forcing extensions don’t really exist, but the naturalist account
merely makes it seem as though they do. The multiverse view,
however, takes this use of forcing at face value, as evidence that
there actually are V -generic filters and the corresponding uni-
verses V [G] to which they give rise, existing outside the universe.
This is a claim that we cannot prove within set theory, of course,
but the philosophical position makes sense of our experience– in
a way that the universe view does not– simply by filling in the
gaps, by positing as a philosophical claim the actual existence
of the generic objects which forcing comes so close to grasping,
without actually grasping. ([Hamkins, 2011], 10-11)

Hamkins states here that his philosophical position– his form of pluralism–
influences the way he thinks about forcing extensions. Notice how Hamkins’
understanding of forcing extensions as fully real influences his further argu-
ment in the foundational debate. Because we have so much experience with
forcing extensions in which CH holds and in which it fails, and because all
these forcing extensions are considered as fully real, what Hamkins called
the ‘dream solution’ for the CH can no longer be obtained. In fact, because
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all the forcing extensions are fully real, we have, according to Hamkins, an
answer to the Continuum Problem: ‘The answer to CH consists of the expan-
sive, detailed knowledge set theorists have gained about the extent to which
it holds and fails in the multiverse, about how to achieve it or its negation
in combination with other diverse set-theoretic properties’; [Hamkins, 2011],
15-16. In this case, Hamkins’ philosophical position gives him an answer to
the long standing set-theoretic Continuum Problem. Metaphysics influences
mathematics here.

5.4 What did we learn?

It is now time to draw attention to some of the features of set-theoretic prac-
tice we have learned about in this chapter. I argue that there are instances
of a reciprocal relationship between mathematics and metaphysics. To do
so, I sum up the examples I have discussed in this thesis. I start with cases
in which metaphysics influences mathematics, then move to cases in which
mathematics influences metaphysics and then move back to cases of meta-
physical influence on mathematics. I argue that this back and forth shows the
reciprocal relationship between mathematics and metaphysics which reveals
itself in some pieces of mathematics.

Some set theorists are having a debate about the metaphysical issues con-
nected to their practice: the pluralism/non-pluralism debate. Some leading
set theorists contribute to this debate; I have discussed some of the contri-
butions of Hamkins, Woodin, Koellner and Magidor. This shows that the
metaphysical issues discussed in this debate are taken seriously by a relevant
group of set theorists. These set theorists realise that metaphysical views can
influence set-theoretic practice and this makes the pluralism/non-pluralism
debate mathematically relevant.

In this chapter, we have seen some examples of how the metaphysical
beliefs of a set theorist can influence his practice. Perhaps the most obvious
one is his research agenda. Some of the set theorists who participate in the
foundational debate and who subscribe to non-pluralism are trying to find
out about the truths that hold in the true universe of sets. Not so the plural-
ists. Hamkins-style pluralism for example aims at exploring the multiverse,
not at finding out truths about a specific universe of this multiverse (even
though investigating the truths of a specific universe may at times be part of
the investigation of the multiverse). Thus, the metaphysical beliefs of a set
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theorist can form some of his set-theoretic aims and goals.
The above shows that the pluralism/non-pluralism debate is also a debate

about the goals of set theory. One goal has received special attention in
this thesis: the goal of finding out about the true universe of sets. The
pluralism/non-pluralism debate is also a debate about whether or not this
goal is a suitable goal for set theory.

The contributions of the set theorists to the pluralism/non-pluralism de-
bate show that some leading set theorists are not waiting for the philoso-
phers to settle the metaphysical issues involved. Instead, they engage with
the relevant problems directly, using the means set theory provides. For
example, the members of the Cabal highlight the desirable features of the
Axiom of Projective Determinacy explored in 3.2.1. Hamkins aims to criti-
cise the non-pluralistic position by pointing out that ‘dream-solutions’ to the
Continuum Problem, such as Freiling’s Axiom of Symmetry, push the math-
ematical facts about the various models of set theory we have experiences
with into the realm of illusions; 4.2.1. The argumentative structure of these
arguments fundamentally relies on some mathematical facts; without these
mathematical facts there would be no argument.

One contribution to the pluralism/non-pluralism debate, which is of par-
ticular interest for the argument of this thesis, is Koellner’s convergence
argument. Woodin has individuated the Ult-L axioms. Given that there
are many versions of these axioms, the question is how to decide between
them. As detailed in 5.2.3, a certain set-theoretic structure serves as a test-
ing ground. If, under a version of the Ult-L axioms, the structure theory
of this set-theoretic structure converges in similarity towards the structure
theory of an already well-understood structure, then this would be evidence
for this version of the Ult-L axioms. This argument is of particular interest
because it does not simply argue for pluralism or non-pluralism. Instead,
it sets up a test for these two positions. In case convergence is observed
for a single one of the axioms, this would count as strong evidence for non-
pluralism. However, if the structure theories do not converge in this way,
then pluralism is further supported, even though the question up to which
specific level on Koellner’s interpretability hierarchy (cf. 5.2) we should climb
would still lack an answer. This shows that mathematics can be set up in
such a way that future results have a bearing on the metaphysical issues of
the pluralism/non-pluralism debate.

Some set theorists are hence not only interested in resolving the meta-
physical issues; the examples above show that set theory provides them with
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the means to do so without overstepping the boundaries of their discipline.
Mathematical facts, such as the ones mentioned above, are used to form
arguments that aim to impact the metaphysical debate.

As explored above, the metaphysical pluralism/non-pluralism debate is
also a debate about the goals of set theory. We can now see that set the-
ory provides the means to discuss set-theoretic goals within its disciplinary
boundaries. Thus, in the pluralism/non-pluralism debate, set theorists can
use set-theoretic means to discuss the metaphysical issues and the connected
goals of their discipline.

Their metaphysical positions and the connected goals influence the argu-
ments of some set theorists in the foundational debate; some non-pluralists
are seeking the one true V , some pluralists are not (and, presumably, there
are pluralists and non-pluralists not discussed in this thesis who do not en-
gage in the mathematical exploration of such philosophical issues). In 5.3.2,
I showed that the metaphysical views of the set theorists can also influ-
ence the conclusions they draw from the mathematical facts they discuss.
Woodin argues that his prediction that a certain consistency statement holds
is an argument for the existence of certain large cardinals. As I pointed out,
Woodin assumes that there is only one set-theoretic universe, that a plural-
ist could argue that it suffices that there is a universe which accommodates
the relevant large cardinals without claiming that this is the single true uni-
verse of sets. Similarly, Hamkins adopts a pluralistic stance when he argues
that the forcing-extensions are real. As Koellner has pointed out, a non-
pluralist would simply regard them as sub-universes of the true universe of
sets. Hamkins seems to agree to this point (cf. 5.3.2). These examples show
that the metaphysical positions of the set theorists can influence what they
take the mathematical facts to point to. Pluralists and non-pluralists find
themselves in the same discursive reality provided by the mathematical facts,
but how they accommodate these facts in their view on set theory depends
also on their metaphysical views.

In this section, I argued that metaphysics can influence the way set theory
is practised. The discussion then moved to the influence set-theoretic means
can have on the metaphysical debate through the arguments given in the
pluralism/non-pluralism debate. I then returned to the influence metaphysics
can have on set theory by pointing out that the metaphysical positions of
the set theorists can influence how they react to certain mathematical facts.
This back and forth of the direction of influence, from metaphysics influenc-
ing mathematics to mathematics influencing metaphysics and then back to
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metaphysical influences on mathematics, shows that there are instances of a
reciprocal relationship between metaphysics and mathematics. I highlighted
this point for the special case of set theory. We can learn from this that
there are instances where contemporary set-theoretic reasoning is intimately
connected with metaphysics. To appreciate the arguments some set theo-
rists give in the foundational debate, we need to take into consideration their
metaphysical views. Furthermore, in order to appreciate why they hold their
metaphysical views, we need to understand the set-theoretic arguments that
have led them to their positions.



Chapter 6

Conclusion

With Maddy’s Second Philosophical investigation of set-theoretic practice
presented and my stories about this practice told, it now time to highlight
some of the insights we might draw from this thesis. A summary of the thesis
will be helpful at this point.

In chapter 1, I argued that most (if not all) philosophers of mathematics
take mathematical practice seriously but they differ about what ‘mathemat-
ical practice’ means and which aspects of it are philosophically relevant.
Philosophers of mathematics use different methods in their philosophising
about mathematics and some find the methods of their philosophical rivals
wanting. From these thoughts it emerges that the philosophical landscape of
contemporary philosophy of mathematics is not split neatly into two camps,
the mainstream and the practice-oriented camp, but rather sprawls along di-
mensions such as the understanding of the term ‘mathematical practice’, the
allowed and disallowed methods to philosophically study mathematics and
others. In contemporary philosophy of mathematics, the debate about the
proper way to philosophise about mathematics is not a debate between two
camps but rather between the proponents of the various philosophical pro-
grammes to study mathematics. A particularly well developed programme is
Maddy’s Second Philosophy. Concentrating on this programme in my thesis
gave me a methodologically and philosophically rich story about set-theoretic
practice. This story served as a starting-point for my own philosophical in-
vestigation of the practice and through the disharmonious parts of my story
with Maddy’s– pluralism and the instances of reciprocal relationship between
mathematics and metaphysics– I will develop my contribution to the debate
about how to philosophise about mathematics below.
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It is part of the aim of this thesis to present results of contemporary re-
search in set theory. As explained in chapter 2, set-theoretic practice reaches,
and sometimes pushes beyond, the limits of the formal mechanisms of math-
ematics. The various set-theoretic models, obtained by forcing, inner model
constructions or otherwise, amount to a formal proof that the truth of certain
set-theoretic statements cannot be decided from the contemporary axioms of
set theory, ZFC. As we have seen in this thesis, some set theorists are trying
to determine the truth-value of these independent statements. One of the in-
sights of chapter 4 was that even though the truth-values of the independent
statements cannot be determined by purely formal means, some set theorists
nonetheless use the formal mechanisms of their practice to determine these
truth-values; set theorists use mathematical facts in their arguments in the
foundational debate. The mathematical facts form a discursive reality for the
set theorists and this requires us, as philosophers, to understand this reality.
I aimed to provide such an understanding in chapter 2.

With the groundwork done, it was then time to discuss Maddy’s Second
Philosophical programme and her investigation of set-theoretic practice in
chapter 3. Maddy spends considerable effort to argue that mathematical
practice is philosophically relevant. These efforts situate her philosophical
programme to study mathematics in the debate about how to philosophise
about mathematics and thereby show that Maddy takes this debate seriously.
Maddy argues that the attention to mathematical practice in the works of
‘mainstream’ philosophers of mathematics such as Quine is insufficient for
a satisfactory philosophical account of mathematics. I then moved on to
a presentation of Maddy’s thoughts on how to philosophically investigate
mathematical practice. Maddy introduces us to a methodological tool: the
Second Philosophical inquirer. She, the inquirer, is idealised in the sense
that she is at home in all scientific disciplines. Her aim is to find out what
the world is like and she realises that mathematics is a powerful and helpful
tool in this endeavour. Thus, the Second Philosopher wants to know what
the proper methods of mathematics are. In her uses of the Second Philo-
sophical methodology, Maddy quickly reduces the scope of her investigation
to the proper methods of set theory. To find out about these, Maddy as the
Second Philosophical inquirer rationally reconstructs resolved methodologi-
cal debates in set theory and purifies them from all those elements of the
arguments that did not play a role in the resolution of the debate; I stressed
in particular that metaphysics is merely one such colourful aside for Maddy’s
Second Philosopher. From these purified rational reconstructions Maddy ob-
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tains some set-theoretic methods. She concludes that these methods are the
proper methods of set theory. In an attempt to determine the ontological
status of set theory– should we be Realists?– Maddy worries that her ac-
count of Thin Realism might be too thin, that we need an argument why the
methods her Second Philosophical investigation has identified as the proper
methods of set theory correctly describe the realm of the abstract objects
called sets. Maddy presents mathematical depth as a way out. According
to her, mathematical depth is not ontologically committing. Nonetheless, it
is sufficiently objective to serve as a philosophical basis for her Thin Real-
ist (and her Arealist). From this, Maddy frames a ‘path of mathematical
depth’ and claims that mathematicians who do not stick to this path are
going astray.

One set theorist who is straying from Maddy’s path of mathematical
depth is Joel David Hamkins. As I have shown in chapter 4, Maddy argues
that set theory has a foundational goal. Hamkins agrees with this. However,
Maddy argues further that the foundational goal implies UNIFY, i.e. the
aim to search for a single unified theory of sets. Hamkins disagrees with this.
Hamkins argues that any single theory of sets, and thus the concentration on
a single set-theoretic model, would degrade our profound experiences with
the various set-theoretic models to mere illusions. Just like the set theorists
Maddy has studied, Hamkins bases his arguments on the kind of pieces of
mathematics I have called mathematical facts. Hamkins points to the deep
and mathematically fruitful implications of these mathematical facts. At this
point, it looks as if, contrary to Maddy, there might be more than one path
of mathematical depth.1

Maddy argues that metaphysics is not part of the justificatory struc-
ture of set theory. The Hamkins story has drawn attention to the fact that
Maddy concentrates solely on non-pluralists. The fact that the set theorists
are having the pluralism/non-pluralism debate shows that the issue is not
as clear cut as Maddy presents it to be. Through her argument for UNIFY,
Maddy has taken sides in a metaphysical debate, and this argument for
non-pluralism affects her account of proper set-theoretic practice. In chap-
ter 5, I showed that the positions some (realist) set theorists take on the
metaphysical pluralism/non-pluralism issue stand in a reciprocal relation-
ship with their set-theoretic practice. I presented in detail how Woodin and
Koellner set up set theory in such a way that future mathematical results

1However, cf. 4.4.
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can exert mathematical pull on the metaphysical pluralism/non-pluralism
debate. I also argued that Hamkins is similarly led by mathematical facts
to his pluralistic position. This shows that mathematics can influence the
metaphysical beliefs of set theorists. I then showed that the metaphysical
beliefs of set theorists can influence the way they practice set theory. In
particular, I argued that pluralistic and non-pluralistic stances can influence
the research agendas of set theorists and that the set theorist’s position on
the pluralism/non-pluralism issue can influence his or her interpretation of
the mathematical facts.

With this summary of the first five chapters of my thesis given, I return
to the issues raised in chapter 1: how should we philosophically study math-
ematics? A comprehensive answer to this question lies well beyond the scope
of a PhD thesis. Based on the case-studies presented in this thesis, I can
however give a partial answer to this question. In the following, I highlight
three inter-connected lessons we can learn from this thesis about what our
philosophical studies of mathematical practice should take into considera-
tion. In the last part of this chapter, I then briefly touch again on Maddy’s
Second Philosophical investigation of set-theoretic practice and the question
whether the insights of this thesis clash with Maddy’s investigation or, more
generally, with Second Philosophy as a programme. I end by speculating a
little about philosophical methodology.

The pluralism/non-pluralism debate stood at the center of attention in
chapters 4 and 5. As I have highlighted (esp. 5.3.1), this debate is also
a debate about the goals of set theory. The stance a set theorist takes in
this debate can have direct bearing on his arguments in the foundational
debate. Pluralists like Hamkins might regard the foundational issues as (es-
sentially) resolved; recall that according to Hamkins the Continuum Problem
is a settled question. Non-pluralists such as Woodin and Maddy’s Cabal set
theorists disagree. Their one true universe of sets is not yet identified and it
thus remains a goal of set theory to find this universe.

The pluralist and non-pluralist positions may not only influence the goals
of set theory connected with the foundational issues. I showed that Hamkins
is interested in exploring the multiverse. He has offered his project to explore
the modal logic of forcing and his set-theoretic geology project to do so; cf.
5.3.1. The results produced are the kind of formal results upon which there is
stable agreement within the set theory community. In the terminology of this
thesis, Hamkins’ projects make visible mathematical facts. Hamkins’ interest
in these facts is carried by his pluralistic conception of set theory; these facts
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tell him about the set-theoretic multiverse. As mentioned, Woodin is also
interested in these mathematical facts. Unlike Hamkins however, Woodin
aims to use these facts to construct an argument against pluralism. Woodin
studies the multiverse as a means to obtain an argument in the foundational
debate. Hamkins studies the multiverse also because for him it is a goal of
set theory to find out about the multiverse. Hamkins’ pluralism influences
his set-theoretic goal here.

The pluralism/non-pluralism debate then is also a debate about the goals
of set theory. This shows that the set theorists are having a debate about
the goals of their discipline. In particular, there is disagreement amongst the
set theorists about the goals of their practice. This means first of all that the
question ‘What are the goals of set theory?’ is not a trivial one. Therefore,
our philosophical programmes to study mathematics need to provide us with
some guidance how to find out about the goals of the mathematical practice
we are interested in. We need an anthropology of the goals of mathematical
practices.

Secondly, the pluralism/non-pluralism debate shows that the goals of a
mathematical discipline may change. As Maddy has pointed out, in its be-
ginning the non-pluralistic goal to provide a single unified theory of sets was
a goal of set theory. Hamkins makes the argument that we now have new
evidence– our extensive experience with the various models of set theory–
that supports a change in set-theoretic goals. This opens up the possibility
that the goals of a mathematical discipline can change and our stories about
how to find out about the goals of a mathematical practice need to be able
to account for that.

Lastly, we have seen in this thesis that relevant set theorists disagree
about some goals of their discipline; for Woodin it is a goal of set theory to
provide a single and unified theory of sets, Hamkins disagrees. Our philo-
sophical programmes to study mathematics hence need not only provide us
with an anthropology of mathematical goals which is sensitive to change but
one which is also sensitive to disagreement amongst the practitioners on the
current goals of their discipline as well.

I now move the discussion to the second insight we can draw from the
case-studies presented in this thesis: parts of set-theoretic practice are not
metaphysically innocent. This point has become partly visible in the dis-
cussion about mathematical goals above and in chapter 5. The point is
that some of the set-theoretic goals of the set theorists studied in this thesis
are influenced by their metaphysical views. Thus, some goals of set-theoretic
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practice are not metaphysically innocent. Hence, there are instances in which
set-theoretic practice is not metaphysically innocent.

In chapter 5, I argued in detail that there are cases of a reciprocal rela-
tionship between mathematics and metaphysics. As we have seen there, this
relationship extends beyond the influence the metaphysical positions of some
set theorists have on their goals. I have argued that the metaphysical views
of these set theorists can influence how they account for certain mathemati-
cal facts. For example, I have discussed how the pluralist Hamkins accounts
differently for the existence of the various forcing-extensions of set-theoretic
models from the non-pluralist Koellner; 5.3.2.

Throughout this thesis we have seen cases in which set theorists embed
their arguments in the pluralism/non-pluralism debate into the discursive
reality the mathematical facts provide. Set-theoretic practice produces for-
mal results which can reflect back onto the metaphysical beliefs of its prac-
titioners. As the story about the Ultimate-L axioms shows, set theorists
can even set up the formal machinery of set theory in such a way that fu-
ture set-theoretic results may provide such metaphysical guidance. Thus,
set-theoretic practice is also metaphysically laden because its results can in-
fluence metaphysical views.

From the last three paragraphs, we learn that a faithful analysis of math-
ematical practice needs to take the metaphysical beliefs of the set theorists
into consideration, at least where the foundational debate in set theory is con-
cerned. Thus, we should expect our programmes to philosophically analyse
mathematics to be sensitive to the metaphysical beliefs the mathematicians
hold.

Thus, my thesis has shown that the metaphysical views of the mathe-
maticians can influence their mathematical goals and how they interpret and
account for some mathematical facts. Furthermore, mathematical facts can
influence the metaphysical views of the mathematicians. I have shown that
in the particular case of set theory there are instances of metaphysically laden
mathematical practice.

Mathematical practices are not defined in terms of how the mathemati-
cians conceive of them or by the mathematical goals they pursue. I have
shown in this thesis that the practice of set theory is not homogeneous enough
to support such a definition; according to Magidor the foundational goal as
understood by Maddy is set theory’s reason d’etre, Hamkins disagrees. But
how the mathematicians conceive of their practice and which goals they pur-
sue is also not entirely disconnected from mathematical practice. In this
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thesis, I have argued that the metaphysical positions of the set theorists can
influence their set-theoretic goals. Thus, the metaphysically laden instances
of set-theoretic practice do not define what the practice of set theory is,
but they do influence it. And this is why our philosophical programmes to
study mathematics ought to be sensitive to these metaphysical influences on
mathematical practices.

My third and last point is the importance of the philosophical study
of contemporary mathematical practices. Mathematics is a human prac-
tice. It has a temporal dimension and is subject to change. Hamkins’ argu-
ment for pluralism makes this visible: non-pluralism was once tenable and
perhaps even desirable, but now that our experiences with the various set-
theoretic models have accumulated to the point where, according to him, we
can no longer accept the degradation of these experiences to mere illusions,
we should accept pluralism. Woodin’s and Koellner’s set-up for the individu-
ation of the correct V = Ult-L axiom is similarly time-dependent: today we
do not have access to the mathematical facts necessary to make an informed
choice of axiom, but in the future, so they hope, we will.2 Mathematical
practices can change over time and thus contemporary mathematical prac-
tices may differ from the historical mathematical practices from which they
developed. To understand these differences, we need to get a philosophical
grip on contemporary mathematical practices. This does not discredit the
philosophical study of historical mathematical practices – without them the
changes in the practice could hardly be identified as change – but it does
show that our philosophical programmes to study mathematics need a story
about how to study contemporary mathematical practices.

The case-studies I have presented in this thesis show that contemporary
set-theoretic practice is rich enough to sustain philosophical investigation. I
concentrated on disagreement in this practice. This thesis showed that some
set theorists are still disagreeing about the fundamentals of their field. It
also revealed that some set theorists today have proposals for solutions which
could, if accepted, resolve the debate. This shows that there is progress in the
foundational debate in set theory, even though no final solution has yet been
reached. This progress deserves our philosophical attention because it can
tell us about set-theoretic practice. Furthermore, if we as philosophers wish

2As I explore in detail in [Rittberg, 2015], Woodin has recently changed his mind
about the truth of the Continuum Hypothesis, which further supports my claim that
mathematical practices have a temporal dimension.



136 CHAPTER 6. CONCLUSION

to make a contribution to this debate, then we need to take the progress
the set theorists have made into account, lest we provide out-dated argu-
ments. This is a big ‘if’. I touch again on this point below. That is, I will
continue my argument for the philosophical investigation of contemporary
mathematical practices shortly. But before I do, I now return to Maddy’s
Second Philosophical investigation.

Above, I argued that our philosophical programmes to study mathematics
should have three features: they should provide an anthropology of mathe-
matical goals; they should account for the fact that mathematical practices
can be metaphysically laden; they should provide us with the means to study
contemporary mathematical practices. Below, I present an argument which
could imply that Second Philosophy as a programme has none of these fea-
tures. There are two moves one could make to save the Second Philosophical
programme from my criticisms. One is to meet the challenge head on and
argue that Second Philosophy as a programme does indeed have the three
features mentioned above. The other is to concede the point and retreat to
the claim that my criticisms hit Maddy’s use of the Second Philosophical
programme, but not to programme itself. I discuss all this in turn below.
My argument then moves to some considerations about the possibility for
philosophers to provide impactful arguments for set-theoretic debates.

The Second Philosopher studies resolved methodological debates in order
to individuate the proper methods of the practice. This does not seem to
extend to the individuation of the goals of the practice. Recall here that
the argument that set theory has a foundational goal which implies UNIFY
is Maddy’s, not that of any set theorist (even though some set theorists
might agree with Maddy; cf. 4.1). To identify this goal, Maddy does not
study resolved methodological debates. Rather, she tells us a story about
general mathematical desirability: it is mathematically desirable to have a
single unifying mathematical theory and since set theory could provide such
a theory it is (or ought to be?; see below) a goal of set theory to provide
such a theory. As mentioned above, this argument may be an idiosyncrasy
of Maddy’s philosophy rather than the methodological choice of the Second
Philosopher. Or it may be a programmatic argument of the Second Philoso-
pher along the lines of mathematical depth: mathematicians ought to stay
on the path of mathematical depth, UNIFY pushes the set theorists along
this path and hence set theory should aim to provide a single unified theory
of sets. For now, I am working under the assumption that my thesis conflicts
with Second Philosophy as a programme. Idiosyncrasy is discussed below.
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Thus, the point here is that the Second Philosophical argument for UNIFY
does not lead to a faithful description of contemporary set-theoretic practice.

According to Maddy, some methodological debates have been resolved
but the philosophical debates have not, from which she follows that the
methodological debates have not been resolved on philosophical grounds.
The Second Philosopher thus excludes the metaphysical views of the set
theorists from her philosophical analysis of the practice, dubbing them as
colourful asides which are not part of the evidential structure of the subject.
As I have shown in this thesis, the metaphysical beliefs of some set theorists
can stand in a reciprocal relationship to the way these set theorists practice
set theory. To ignore these metaphysical beliefs hence misses relevant parts
of set-theoretic practice and leads to an unfaithful description of the practice.

The Second Philosopher studies resolved methodological debates. This
programmatically excludes the philosophical study of ongoing unresolved
contemporary debates in set theory. Nevertheless, Maddy still engages with
these debates. For example, she presents her argument against V = L; cf.
4.1. However, she engages with these debates as a participant providing
arguments, not as a philosophical inquirer aiming at philosophical analysis
of an ongoing debate. The exception to this is her analysis of the debate
surrounding the Axiom of Projective Determinacy. In this case she studies
a contemporary debate in set theory. However, in light of pluralists such as
Hamkins, she misinterprets the debate as settled for the set-theoretic com-
munity. The point is that a Second Philosopher who accepts that the debate
about the Axiom of Projective Determinacy is not settled would, in accor-
dance with the Second Philosophical programme, not aim at a philosophical
analysis of the debate.

The Second Philosopher might have answers to all three of my criticisms
above. As mentioned, she could meet my challenges head on or she could
try to redirect the criticism onto the idiosyncrasies of Maddy’s use of the
Second Philosophical programme. I discuss all this in turn, starting with the
redirection to the idiosyncrasies of Maddy’s use of the Second Philosophical
programme.

In Maddy’s Second Philosophical investigation of set-theoretic practice,
Maddy assumes the role of the Second Philosophical inquirer. My three
points above rely on Maddy’s investigation of set-theoretic practice. Thus, it
might be argued, all my points can show is that Maddy has misrepresented
set-theoretic practice in some way. Second Philosophy as a programme, so
the thought, remains untouched.
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I argue that it is incorrect to say that the Second Philosophical pro-
gramme remains untouched when the burden is shifted onto the idiosyncrasies
of Maddy’s investigation. Recall how Maddy tells us what Second Philoso-
phy is. According to her, ‘it has no theory’; [Maddy, 2007], 1. The way we
learn about the programme is through Maddy’s use of it. Maddy’s Second
Philosophical investigations play an integral part in fleshing out what Sec-
ond Philosophy is supposed to be. Hence, any criticisms directed at Maddy’s
investigations are also directed at Second Philosophy as a programme. As
an example, take the point about the individuation of the goals of a practice.
The way we learn about how a Second Philosopher would individuate the
goals of a practice is through following Maddy’s lead by example. Doubt
about the example erodes the Second Philosophical programme because the
example serves an important purpose in fleshing out what Second Philosophy
is.

One might argue that stripping away the idiosyncrasies of Maddy’s in-
vestigation still leaves us with the core ideas of the Second Philosophical
programme, such as being practice-focussed and broadly speaking scientific
for example. However, in chapter 1 I showed that there are various practice-
focussed approaches to the philosophy of mathematics. Practice-focussedness
is not enough for a philosophical programme to study mathematics. I have
argued in that chapter that questions about the philosophical methods to
study practice or the understanding of the term ‘mathematical practice’ are
pressing issues. Maddy provides answers to these questions by doing Sec-
ond Philosophy, not by giving us some methodological framework. And this
means that stripping away the idiosyncrasies of her investigation strips away
the answers to these pressing questions.

I have argued that redirecting my criticisms to the idiosyncrasies of Maddy’s
investigation does not save a philosopher in favour of Second Philosophy from
engaging with the points I raised above. There are, however, answers such a
philosopher might give to my three points. I discuss these in turn.

The Second Philosopher could point out that she is interested only in
the proper set-theoretic methods. There may well be set theorists, such as
Hamkins, who do not think that the foundational goal implies UNIFY. The
point is however, so the Second Philosopher might argue, that the proper
understanding of the foundational goal implies UNIFY. To provide a unified
arena for all of mathematics is, so she has argued, mathematically desirable.
Hence, so the Second Philosopher might point out, she did not aim at de-
scribing set-theoretic practice at this point but rather pointing out what set
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theorists ought to accept as their goal.
In regards to set-theoretic practice not being metaphysically innocent,

the Second Philosopher will agree that the set theorists often refer to their
metaphysical views (as Maddy has already done, cf. chapter 3). She might
even agree that these views influence set-theoretic practice. However, she
might claim, the actual justificatory structure of the subject is based on the
kind of objective mathematical fruitfulness Maddy has called mathematical
depth, not on the subjective metaphysical beliefs of the set theorists. The
claim is that metaphysics is a heuristic aid at best, what really matters, what
settles mathematical debates, is mathematical depth. Thus, the proper kind
of arguments in those debates are metaphysically innocent arguments.

The Second Philosopher could offer a two piece argument why she does
not study contemporary set-theoretic practice. Firstly, she is interested in
the proper methods of set theory. Unresolved contemporary debates do not
reveal properness in a way suitable to her philosophical programme and hence
these debates need not be studied. Secondly, the Second Philosopher actively
participates in these debates. She has identified which are, according to her,
the proper methods of set theory and she then brings these methods to bear
on the contemporary debates in order to make her contribution in terms of
normative claims. Examples of this are her argument for UNIFY, where
she participates in the pluralism/non-pluralism debate, and her argument
against V = L and for the axiom stating the existence of a measurable
cardinal, which is a contribution to the debate about axiom choice.

In all three answers the Second Philosopher does not aim at a descrip-
tion of the practice. Rather, she makes normative claims about the proper
conduct in set-theoretic practice. Prima facie, this stands in conflict with
Maddy’s claim that philosophy can neither criticise nor defend mathemati-
cal practice; recall here Maddy’s principle discussed in 3.1. However, it is not
purely philosophy that does the criticising here. It is philosophy informed
by mathematical practice. At various points in Maddy’s writing this kind
of mathematically informed philosophy makes normative claims; examples
are Maddy’s contributions to the mathematical debates mentioned in the
last paragraph and Maddy’s claim that mathematicians ought to stick to the
path of mathematical depth.

The thoughts I presented above suggest a possible route to criticism and
show how one might defend Second Philosophy against such criticism. At
this point, the question arises whether the kind of mathematically informed
philosophy the Second Philosophical programme provides us with can ef-
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fectively criticise mathematical practice and provide the kind of normative
guidance Maddy’s path of mathematical depth and her contributions to the
set-theoretic debates aim to provide. In short, does Second Philosophy have
some teeth?

The aim of this thesis is to present two stories about set-theoretic practice–
the pluralism/non-pluralism debate and some instances of the reciprocal rela-
tionship between mathematics and metaphysics– and to draw some method-
ological conclusions from this about philosophical programmes to study math-
ematics. My aim is not a refutation of Maddy’s Second Philosophy (neither
idiosyncratic nor programmatic). The question whether any mathematically
informed philosophy can have the teeth to effectively provide some normative
guidance to mathematical practices is a deep and open philosophical question
which lies well beyond the scope of this thesis. In these last few paragraphs, I
speculate a little about these matters, provide a possible route to further the
above indicated criticism of Second Philosophy and strengthen my argument
for a philosophical engagement with contemporary mathematical practices.

In [Lakatos, 1976], Lakatos presents various ways in which mathemati-
cians have reacted to the proofs and refutations of the Euler formula. One of
these Lakatos calls the method of surrender: once a refutation to the proof
is found, the proof no longer receives any attention and is discarded. Other
methods, such as the method of proofs and refutations, do not discard the
proof. These methods investigate the proof in order to improve the theo-
rem/proof couple accordingly. As Lakatos convincingly argues, the method
of surrender is less sophisticated than the method of proofs and refutations.
Here we have a piece of mathematically informed philosophy which provides
some normative guidance to mathematical practices. Lakatos’ philosophy
has some teeth.

The Second Philosopher’s teeth grow out of her analysis of resolved
methodological debates. One of her assumptions is that what resolved the de-
bates back then were proper mathematical methods. Another assumption is
that the methods that were proper back then are still proper today. This pro-
vides arguments which are aligned with the history of the subject and which
can reasonably be called strong. It also introduces conservatism. It does
however not provide an explanation why we should be conservative in this
way. There is no philosophical engagement with the mathematical thought
that calls for change, such as pluralism for example, and no weighing of the
virtues of the call for change against the virtues of more conservative ap-
proaches. The set-theorists calling for change are not given a fair hearing by
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the Second Philosopher. In fact, they are programmatically not given any
hearing at all. The Second Philosopher studies only resolved methodological
debates which, by definition, excludes the ongoing debates about possible
change in the discipline. The Second Philosophers teeth are blunted by the
fact that she does not consider some parts of the practice which are relevant
to the argument the Second Philosopher is trying to make.

To really make the above point stick I would have to ask more carefully
whether Maddy intends Second Philosophy to have any teeth at all. She
has repeatedly said that she does not. The philosophy she presents however
suggests otherwise. This is a deep question about Maddy’s philosophy which
will not find an answer in this thesis.

A further question is whether philosophy can have any teeth at all. It is
the mathematicians, not the philosophers, who decide mathematical debates.
Philosophers may offer their expertise and insights, but the question remains
how impactful on the practice such philosophical efforts are or can be. In the
above, I assumed that philosophers can provide mathematicians with strong
arguments for their debates, and I hope that I can argue for this point in
future work. Here however it has to remain an assumption.

The Second Philosopher’s teeth are blunted because she does not study
all sides of the mathematical debates. This suggests a way to provide a philo-
sophical programme to study mathematics with sharper teeth: study contem-
porary mathematical debates. Investigate the mathematical disagreement
present in contemporary mathematical practices and identify the virtues and
short-comings of the different positions. Then provide arguments to the still
ongoing mathematical debates which are based on these virtues. These ar-
guments, so I claim, can be the sharp teeth of our philosophical programme
to study mathematics. In future work, I aim to develop this suggestion into
a coherent argument and investigate in detail the values and virtues of the
set-theoretic cultures.
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