
S-Net for Multi-Memory Multicores

Clemens Grelck
University of Amsterdam
Institute of Informatics

Science Park 107
Amsterdam, The Netherlands

c.grelck@uva.nl

Jukka Julku
VTT

Technical Research Center
of Finland

Espoo, Finland
jukka.julku@vtt.fi

Frank Penczek
University of Hertfordshire

Science and Technology
Research Institute

Hatfield, United Kingdom
f.penczek@herts.ac.uk

Abstract

S-NET is a declarative coordination language and component technology aimed
at modern multi-core/many-core architectures and systems-on-chip. It builds on
the concept of stream processing to structure dynamically evolving networks of
communicating asynchronous components. Components themselves are imple-
mented using a conventional language suitable for the application domain. This
two-level software architecture maintains a familiar sequential development envi-
ronment for large parts of an application and offers a high-level declarative ap-
proach to component coordination.

In this paper we present a conservative language extension for the placement
of components and component networks in a multi-memory environment, i.e. ar-
chitectures that associate individual compute cores or groups thereof with private
memories. We describe a novel distributed runtime system layer that complements
our existing multithreaded runtime system for shared memory multicores. Particu-
lar emphasis is put on efficient management of data communication. Last not least,
we present preliminary experimental data.

1 Introduction
Today’s hardware trend towards multi-core/many-core chip architectures [24, 15] places
immense pressure on software manufacturers. For the first time in history software does
not automatically benefit from new generations of hardware. Today, software must be-
come parallel in order to benefit from future processor generations! However, existing

1

software is predominantly sequential, and writing parallel software is notoriously dif-
ficult. So far, parallel computing has been confined to supercomputing. Now, it must
go mainstream. This step requires new tools and techniques that radically facilitate
parallel programming.

S-NET [12] is such a novel technology: a declarative coordination language and
component technology. The design of S-NET is built on separation of concerns as the
key design principle. An application engineer uses domain-specific knowledge to pro-
vide application building blocks of suitable granularity in the form of (rather conven-
tional) functions that map inputs into outputs. In a complementary way, a concurrency
engineer uses his expert knowledge on target architectures and concurrency in gen-
eral to orchestrate the (sequential) building blocks into a parallel application. While
the job of a concurrency engineer does require extrinsic information on the qualitative
and the quantitive behaviour of components, it completely abstracts from (intrinsic)
implementation concerns.

In fact, S-NET turns regular functions/procedures implemented in a conventional
language into asynchronous, state-less components communicating via uni-directional
streams. The choice of a component language solely depends on the application do-
main of the components itself. In principle, any conventional programming language
can be used, and a single S-NET network can manage components implemented using
different languages. In practice, there are, of course, limitations concerning the inter-
operability of languages and the technical interplay between coordination and compu-
tation layer. For the time being we provide interface implementations for the functional
array language SAC [10] and for a subset of ANSI C.

A

B

C

C

D

Figure 1: Illustration of an S-NET streaming network of asynchronous components

Fig. 1 shows an example of an S-NET streaming network. Note that any base
component is characterised by a single input and a single output stream. This restriction
is motivated, again, by the principle of separation of concerns. The concern of a box
is mapping input values into output values, whereas its purpose within a streaming
network is entirely opaque to the box itself. Concurrency concerns like synchronisation
and routing that immediately become evident if a box had multiple input streams or
multiple output streams, respectively, are kept away from boxes. Our solution achieves
a near-complete separation of computing and coordination aspects. We have identified
four fundamental construction principles for streaming networks:

• serial composition of two (potentially) different components where the output
stream of one component becomes the input stream of the other;

• parallel composition of two (potentially) different networks where some routing
oracle decides on which branch data takes;

2

• serial replication of a single network where data is streamed through the same
network a dynamically determined number of times; and

• indexed parallel replication of a single network where an index attached to the
data determines which branch (or which replica of the network) is taken.

These four construction principles allow concurrency engineers to define complex
streaming networks of asynchronous components and, thus, to turn sequential code
blocks into a parallel application.

While today small scale multicore processors with shared memory prevail, it is
very unlikely that memory remains shared if the number of cores grows as predicted.
It is time now to consider a more complex memory architecture to address likely future
scenarios. In our memory model multiple cores share the same memory, but commu-
nication between one such group of cores and all other cores is by means other than
shared memory. More precisely, we assume some form of network on the hardware
side and message passing on the software side. This two-tier memory organisation is
of interest for essentially two reasons. Firstly, for now the number of cores per chip is
still very limited, only clusters of multicores provide the compute power required by
challenging applications. Secondly, as soon as the number of cores on a chip exceeds
a certain limit, any shared memory is likely to produce a performance bottleneck and
future multicores most likely will have a memory organisation similar to our model de-
scribed in order to deliver scalable performance. Contemporary manycore architectures
(e.g. NVidia CUDA) already demonstrate this by a number of different memories.

As a high-level coordination language, S-NET in general is not bound to any mem-
ory model. The language concepts, however, fit in rather well with the basic concept
of programming distributed-memory systems, i.e. message passing. S-NET boxes and
networks are indeed asynchronous components that communicate with each other by
sending messages via communication channels. In principle, the language could be
used to define distributed memory systems as it is by mapping components directly to
nodes of the system. However, direct mapping of components may not be sensible as
we must take the cost of data transfers between nodes into account. Execution times
of components may vary significantly from simple filters performing lightweight op-
erations to boxes consisting of heavy computations. Another obstacle is the dynamic
nature of S-NET networks that evolve over time due to serial and parallel replication.

What we need instead of a one-to-one mapping of boxes to compute nodes is a
veritable distribution layer within an S-NET network where coarse-grained network
islands are mapped to different compute nodes while within each such node networks
execute using the existing shared memory multithreaded runtime system [8]. Each of
these islands consists of a number of not necessarily contiguous networks of compo-
nents that interact via shared-memory internally. Only S-NET streams that connect
components on different nodes are implemented by means of message passing. From
the programmer’s perspective, however, the implementation of individual streams on
the language level by either shared memory buffers or distributed memory message
passing is entirely transparent.

In principle, it would be desirable if the decomposition of networks into islands
would be transparent as well, thus resulting in a fully implicit parallelisation architec-
ture, that balances itself autonomously as the network evolves over time. With our

3

shared memory runtime system, we have done exactly this. However, given the sub-
stantial cost of inter-node data communication in relation to intra-node communication
between S-NET components the right selection of islands is crucial to the overall run-
time performance of a network. Therefore, we postponed the idea of an autonomously
dynamically self-balancing distributed memory runtime system for now and instead
carefully extend the language in order to give the programmer control over placement
of boxes and networks. In addition to the four above mentioned construction principles
of networks we add two more:

• static placement of a network on some node;

• indexed placement of a network where an index attached to the data determines
the node on which that data is to be routed to.

These extensions are transparent with respect to S-NET semantics, i.e. if an S-NET
program is not specifically compiled for a distributed memory environment, placement
has no effect. While static placement is just ignored, dynamic placement behaves like
standard indexed parallel replication.

The concept of a node in S-NET is a very general one, and its concrete meaning is
implementation-dependent. We use simple integer numbers to identify nodes because
that choice fits the concept of tag values in S-NET, and, thus, allows programmers to
compute placements both on the coordination language level (S-NET) and on the box
language level. For our reference implementation we chose MPI [13] as communi-
cation middleware, mainly for its paramount availability and well-known efficiency.
Hence, S-NET nodes map one-to-one to MPI process numbers. In fact, we use very
few of the MPI features in order to maintain compatibility with future, potentially more
lightweight middleware implementations specifically geared at multi-memory multi-
cores, where node numbers may well denote concrete hardware cores.

The specific contributions of the paper are

• the proposal of a conservative language extension for semi-explicit placement of
networks;

• description of a distributed memory runtime system implementation on top of
the existing multithreaded runtime system;

• outline of a data manager service for optimised communication;

• preliminary performance figures.

The remainder of the paper is organised as follows. In Section 2 we provide a
more detailed introduction to S-NET, while Section 3 introduces a running example
that we come back to throughout the remainder of the paper. Section 4 describes the
language extensions of Distributed S-NET in greater detail. Sections 5 and 6 illustrate
the distributed runtime system and the design of the data manager, respectively. Even-
tually, we provide some preliminary runtime figures in Section 7, discuss related work
in Section 8 and conclude in Section 9.

4

2 S-Net in a Nutshell
As a pure coordination language S-NET relies on a separate component language to
describe computations. Such components are named boxes in S-NET terminology,
their implementation language box language. Any box is connected to the rest of the
network by two typed streams: an input stream and an output stream. Messages on
these typed streams are organised as non-recursive records, i.e. sets of label-value pairs.
Labels are subdivided into fields and tags. Fields are associated with values from the
box language domain. They are entirely opaque to S-NET. Tags are associated with
integer numbers that are accessible both on the S-NET and on the box language level.
Tag labels are distinguished from field labels by angular brackets.

On the S-NET level, the behaviour of a box is declared by a type signature: a
mapping from an input type to a disjunction of output types. For example,

box foo ({a,} -> {c} | {c,d,<e>})
declares a box that expects records with a field labelled a and a tag labelled b. The box
responds with a number of records that either have just a field c or fields c and d as
well as tag e. Both the number of output records and the choice of variants are at the
discretion of the box implementation alone. The use of curly brackets to define record
types emphasises their character as sets of label-value pairs.

As soon as a record is available on the input stream, a box consumes that record,
applies its box function to the record and emits the resulting records on its output
stream. In the simple but common case of a one-to-one mapping between input and
output records the box function’s result value may determine the output record. In the
general case, our box language interface provides a box language specific abstraction
named snet_out to dynamically produce output records during the execution of the
box function. As soon as the evaluation of the box function is complete, the S-NET
box is ready to receive and process the next input record.

S-NET boxes are stateless by definition, i.e., the mapping of an input record to
a stream of output records is free of side-effects. We exploit this property for cheap
relocation and re-instantiation of boxes; it distinguishes S-NET from most existing
component technologies. In particular if boxes are implemented using imperative lan-
guages, S-NET, however, can only guarantee that box functions actually adhere to the
box language contract as far as the box language supports such guarantees. This is in
the end the same in any functional language that supports calling non-functional code.

In fact, the above type signature makes box foo accept any input record that has
at least field a and tag , but may well contain further fields and tags. The formal
foundation of this behaviour is structural subtyping on records: Any record type t1 is
a subtype of t2 iff t2 ⊆ t1. This subtyping relationship extends nicely to multivariant
types, e.g. the output type of box foo: A multivariant type x is a subtype of y if every
variant v ∈ x is a subtype of some variant w ∈ y.

Subtyping on the input type of a box means that a box may receive input records
that contain more fields and tags than the box is supposed to process. Such fields and
tags are retrieved from the record before the box starts processing and are added to each
record emitted by the box in response to this input record, unless the output record al-
ready contains a field or tag of the same name. We call this behaviour flow inheritance.
In conjunction, record subtyping and flow inheritance prove to be indispensable when

5

it comes to making boxes that were developed in isolation to cooperate with each other
in a streaming network.

It is a distinguishing feature of S-NET that we do not explicitly introduce streams as
objects. Instead, we use algebraic formulae to define the connectivity of boxes. The re-
striction of boxes to a single input and a single output stream (SISO) is essential for this.
As pointed out earlier, S-NET supports four network construction principles: static se-
rial/parallel composition and dynamic serial/parallel replication. We build S-NET on
these construction principles because they are pairwise orthogonal, each represents a
fundamental principle of composition beyond the concrete application to streaming
networks (i.e. serialisation, branching, recursion, indexing), they naturally express the
prevailing models of parallelism (i.e. task parallelism, pipeline parallelism, data paral-
lelism) and, last not least, we believe that these four principles are sufficient to construct
most streaming networks that prove useful on a coarse-grained coordination level. The
four network construction principles are embodied by network combinators. They all
preserve the SISO property: any network, regardless of its complexity, again is a SISO
component.

Let A and B denote two S-NET networks or boxes. Serial composition (denoted
A..B) constructs a new network where the output stream of A becomes the input stream
of B while the input stream of A and the output stream of B become the input and output
streams of the compound network, respectively. As a consequence, instances of A and B
operate asynchronously in a pipelined fashion. In the intuitive example of Fig. 1 serial
composition can be identified between the left, the middle and the right subnetworks.

Parallel composition (denoted (A|B)) constructs a network where all incoming
records are either sent to A or to B and the resulting record streams are merged to form
the overall output stream of the compound network. Type inference [3] associates each
operand network with a type signature similar to the annotated type signatures of boxes.
Any incoming record is directed towards the operand network whose input type better
matches the type of the record itself. The example network in Fig. 1 features parallel
composition in combining A and B.

If both branches in the streaming network match equally well, one is selected non-
deterministically. More precisely, the routing of such a record is underspecified and,
hence, implementation-dependent. While in principle an implementation could send
all such records to the, say, left branch, a more useful implementation employs some
statistical distribution. However, we deliberately do not specify properties of such a
statistical distribution in the language definition for now.

Serial replication (denoted A*type) constructs an unbounded chain of serially
composed instances of A with exit pattern type. At the input stream of each instance
of A, we compare the type of an incoming record (i.e. the set of labels) with type. If
the record’s type is a subtype of the specified type (we say, it matches the exit pattern),
the record is routed to the compound output stream, otherwise into this instance of A.
Fig. 1 illustrates serial replication as a feedback loop; however, it is not. Indeed, serial
replication means the repeated instantiation of the operand network A and, thus, defines
a streaming network that evolves over time (though in a controlled and restricted way)
depending on the data processed.

With S-NET as described so far serial replication and feedback loop are seman-
tically equivalent, indeed. However, S-NET also features a synchronisation primitive,

6

named synchrocell that is described in more detail further below. Synchrocells join two
or more records on their input stream to form a single record on their output stream. In
a feedback loop, a synchrocell would generally join records that have made different
numbers of iterations through the loop. Instead, our concept of serial replication en-
sures that synchrocells only receive records on the same level of network instantiation.

Indexed parallel replication (denoted A!<tag>) replicates instances of A in parallel.
Unlike in static parallel composition we do not base routing on types and the best-
match rule, but on a tag specified as right operand of the combinator. All incoming
records must feature this tag; its value determines the instance of the left operand the
record is sent to. Output records are non-deterministically merged into a single output
stream similar to parallel composition. In Fig. 1 we can identify parallel replication
of network C. To summarise we can express the S-NET sketched out in Fig. 1 by the
following expression:

(A|B) .. (C!<t>)*{p} .. D

assuming previous definitions of A, B, C and D. While this example remains in the
abstract, concrete S-NET applications can be found in [9, 11].

We already mentioned S-NET’s synchronisation component called synchrocell. It
takes the syntactic form [|type,type|]. Similar to serial replication the types act
as patterns for incoming records. A record that matches one of the patterns is kept
in the synchrocell. As soon as a record arrives that matches the other pattern, the two
records are merged into one, which is forwarded to the output stream. Incoming records
that only match previously matched patterns are immediately forwarded to the output
stream. Hence, a synchrocell becomes an identity after successful synchronisation and
may be removed by a runtime system. The extremely simplified behaviour of syn-
chrocells captures the essential notion of synchronisation in the context of streaming
networks. More complex synchronisation behaviours, e.g. continuous synchronisation
of matching pairs in the input stream, can easily be achieved using synchrocells and
network combinators. See [9] for more details on this and on the S-NET language in
general.

3 Running Example
Our running example is a very simple dictionary-based password cracker. It takes
a dictionary and a number of Md5-encoded passwords as its input and produces the
corresponding decoded password for each entry that can be cracked with the given
dictionary. The cracking is done by encrypting words of the dictionary one by one
and comparing the resulting hash value with the encoded password. Each password is
associated with a cryptographic salt to make the cracking more time-consuming. We
use the standard glibc function crypt to perform the relevant computations. Fig. 2
shows the complete S-NET implementation.

The code defines a network named crypto that consumes records containing two
fields and three tags. The field dict contains the dictionary and the field entries con-
tains a list of all the passwords and their salts. The tags dict_size and num_entries
contain the number of words in the dictionary and the number of passwords, respec-
tively. The tag num_branches is used to define in how many parallel branches the

7

net c r y p t o ({ d i c t , e n t r i e s , < d i c t _ s i z e > ,
< n u m _ e n t r i e s > , <num_branches >}
−> { word , < e n t r y >} | {< f a l s e > , < e n t r y >})

{
box s p l i t t e r ({ e n t r i e s , < n u m _ e n t r i e s >}

−> { password , s a l t , < e n t r y >}) ;

box c r a c k e r ({ password , s a l t , d i c t , < d i c t _ s i z e >}
−> { word } | {< f a l s e >}) ;

net l o a d _ b a l a n c e r
connect [{ < e n t r y > , <num_branches >}

−> {< e n t r y > ,
<branch = e n t r y % num_branches >}] ;

}
connect s p l i t t e r . . l o a d _ b a l a n c e r . . c r a c k e r ! < branch >;

Figure 2: S-Net code of our running example: password cracker

processing can be made. The network produces records that either contain the decoded
word and the number of the password or a tag that indicates that the password could
not be cracked.

The crypto network consists of two boxes and one subnetwork. The box splitter
takes records that hold the field containing the passwords and their salts and the tag
representing the number of passwords and splits these records into smaller records,
each holding fields for one password and its salt and a tag containing the ordinal
number of the password. The box cracker does the actual password cracking. It
consumes records containing the password data and the dictionary and produces de-
coded words or false tags in case the password could not be cracked. The subnetwork
load_balancer consists of a single filter box. Filter boxes, or filters, are S-NET-
defined boxes that do simple computations on the structure of records (e.g. removing
or duplicating fields) or on the values of tags (integer arithmetic and boolean algebra).
The filter in Fig. 2, for example, takes records containing the ordinal number produced
by the splitter box and assigns each record a branch number according to the ordi-
nal number. In conjunction with the indexed parallel replication combinator around the
cracker box, our filter realises a simple round-robin scheduler.

The records flowing in the crypto network are first passed in the box splitter
which is then serially connected to the load_balancer network. This combination
is then serially connected to the next network which is built by embedding the box
cracker into an index split combination. The index split combinator is controlled by
the tag branch assigned by the load_balancer, which means that the work is shared
between num_branches parallel cracker boxes. This allows the time-consuming de-
coding operation to be performed in parallel to multiple passwords in case the system
contains more than one processing unit.

The example also demonstrates the practical use of flow inheritance, introduced in
the previous section. While the crypto network as a whole expects to receive records
with a total of two fields and three tags, its first box (i.e. splitter) only expects to
see one field and one tag per record. Due to flow inheritance the excess fields and tags
are routed around the box itself and are transparently attached to records produced by
the splitter box. The advantage here is that boxes like splitter can be defined

8

and implemented in a context-free manner focussing only on fields and tags that are
relevant for the box itself. Still, on the coordination level the box can be integrated
into a streaming network even if concrete records at some location carry additional
fields and tags. As this example demonstrates, flow inheritance is a prerequisite for
compositionality of streaming networks in S-NET.

4 Distributed S-Net
We extend S-NET by two placement combinators that allow the programmer to map
networks to processing nodes either statically or dynamically based on the value of a
tag contained in the data. Let A denote an S-NET network or box. Static placement
(written A@42) maps the given network or box statically to one node, here node 42.
A location assigned to a network recursively applies to all of those subnetworks and
boxes within the network whose location is not explicitly specified by another place-
ment combinator. If no location is specified at the outermost scope of S-NET network
definition hierarchy, a default location, zero, is used instead.

The second placement combinator is actually an extension of the indexed parallel
replication combinator. Instead of building multiple local instances of the argument
network, it distributes those instances over several nodes. Let A denote an S-NET
network or box, then A!@<tag> creates instances of A on each node referred to by
<tag> in a demand driven way. Effectively, this combinator behaves very much like
regular indexed parallel replication, the only difference being that each instance of A is
located on a different node.

Placement combinators split a network into sections that are located on the same
node; each node may contain any number of network sections. Sections located in the
same node are executed in the same shared memory, which means that data produced
in one section can be consumed in another section on the same node without any data
transfers between address spaces.

We use ordinal numbers as the least common denominator to identify nodes. These
nodes are purely logical; any concrete mapping between logical nodes identified by
ordinal numbers and physical devices is implementation dependent. The motivation
for this is that defining the actual physical nodes in the language level would bind the
program to the exact system defined at compile time. Using logical nodes allows the
decisions about the physical distribution to be postponed until runtime. With MPI as
our current middleware of choice the number directly reflects an MPI node. In more
grid-like environments it may be more desirable to have a URL instead. We consider
this mapping of numbers to actual nodes to be beyond the scope of S-NET.

When the placement of a network is defined, the end of the input and the begin-
ning of the output stream of the network are always located on the given node. If the
location of the network is not explicitly defined, the end of the input stream of the
network is located in the node where the first component of the network is located at.
Correspondingly, the beginning of the output stream of the network is located on the
node in which the last component of the network is located at. The input and output
streams of a network do not have to be on the same node. This feature allows an S-NET
application to move data from one node to another while processing it.

9

net c r y p t o ({ d i c t , e n t r i e s , < d i c t _ s i z e > , < n u m _ e n t r i e s > ,
<num_nodes > , <num_branches >}
−> { word , < e n t r y >} | {< f a l s e > , < e n t r y >})

{
box s p l i t t e r ({ e n t r i e s , < n u m _ e n t r i e s >}

−> { password , s a l t , < e n t r y >}) ;

net l o a d _ b a l a n c e r ({ < e n t r y > , <num_nodes > ,
<num_branches >}
−> {< e n t r y > , <node > , <branch >})

connect [{ < e n t r y > , <num_nodes > , <num_branches >}
−> {< e n t r y > , <node = e n t r y % num_nodes > ,

<branch = (e n t r y / num_nodes)
% num_branches >}] ;

net d i v i d e r ({ password , s a l t , d i c t ,
< d i c t _ s i z e > , <branch >}
−> { word } | {< f a l s e >})

{
box c r a c k e r ((password , s a l t , d i c t , < d i c t _ s i z e >)

−> (word) | (< f a l s e >)) ;
}
connect c r a c k e r ! < branch >;

}
connect s p l i t t e r . . l o a d _ b a l a n c e r . . d i v i d e r !@ <node >;

Figure 3: Distributed S-Net specification of our running example

Fig. 3 shows a distributed version of our running example introduced in the pre-
vious section; a graphical representation of the network can be found in Fig. 4. We
assume a system that consists of multiple computing nodes each of which contains a
number of processing units, i.e. processors or cores. If each node had only contained a
single processor, it would be straightforward to run a single cracker box on each node,
and replacing the original index split combinator around the box cracker by a place-
ment split combinator would have achieved exactly this. Consequently, we cold have
achieved a distributed memory password cracker with changing only a few characters
in the original S-NET code of Fig. 2.

However, assuming nodes with multiple cores, we have wrapped the box cracker
and the index split combinator inside another subnetwork that is embedded into a place-
ment split combinator. This solution with the help of information about the number of
nodes and the updated load_balancer network extend the record scheduling scheme
to manage multiple nodes each containing the same number of boxes. As the result
of these modifications the S-NET network is spread over multiple computing nodes.
The initialization tasks including the splitting of the data and the load balancer are still
executed on the same node. The new divider subnetwork will be built into each of the
nodes and the records are scheduled to each instance of the network in a round-robin
fashion.

Low-level non-declarative cost intuiton would suggest that sending substantial con-
stant data structures like the dictionary in our running example repeatedly from one
node to another can hardly be efficient. However, S-NET is indeed a declarative lan-
guage and the chosen specification merely says that data like the dictionary need to be
present when needed. In Section 6 we will describe techniques for data management
that avoid useless data transfers through runtime system support.

10

< < B o x > >
Splitter

< < F i l t e r > >
Load Balancer

< < B o x > >
Cracker

< < B o x > >
Cracker

...

< < B o x > >
Cracker

< < B o x > >
Cracker

...

...

Node 0

Node N

Figure 4: Illustration of the network presented in Fig. 3

5 Distributed Runtime System
The runtime support for distributed-memory systems is built as a separate layer on top
of our existing shared memory runtime system. One of the main design principles is
to separate these layers from each other as completely as possible. In principle, no
S-NET component needs to know about the distribution as the distribution layer is
entirely hidden by the realisation of streams. This design facilitates maintenance and
further development of both the shared and the distributed memory versions inside the
same code base.

As mentioned before we chose MPI as middleware for its wide-spread availability
and because it satisfies our basic needs for asynchronous point-to-point communication
and data marshalling. Each of the logical nodes is implemented as an MPI process. The
logical node identifiers defined at the S-NET language level correspond directly to MPI
process ranks. Accordingly, we leave the exact mapping of logical nodes to physical
resources to the MPI implementation.

To ensure scalability of the S-NET runtime system implementation, the system
nodes cooperate as peers: there is no central control or name servers in the system that
could become a performance bottleneck. Each node is identical apart from the S-NET

11

components it contains.
On the language level, placement can be applied to any valid network or box. The

placement combinators divide the network representation into multiple sections, each
containing contiguous sequences of runtime components that are mapped into the same
node. Each node may contain an unbounded number of sections like this. If a subnet-
work of some network is mapped into a different node, a section is divided into multiple
smaller sections. Due to parallel composition, each section may have more than one
input and output stream.

The components do not send records directly to other nodes, but the boundaries
between the nodes are hidden behind streams. To manage these streams each node has
two active components: an input manager and an output manager. Figure 5 illustrates
the architecture of a single node.

The output buffer of a section and the input buffer of the next section can be con-
sidered as instances of the same buffer on different nodes. Output and input managers
transparently move records between these buffers. Both managers are implemented
with multiple threads, one for each connection. The reason for this is that with block-
ing communication the threads can be used to propagate congestion of the streams to
preceding nodes without blocking the whole node. Secondly, multi-threading is used
to prevent dead-locks. S-NET implementation uses bounded-size streams to propagate
congestion within the nodes. In single-threaded implementation in cases where there
are two such sections in the same node that one is reachable from the other, a dead-
lock may occur if the input manager blocks because of a full stream. In multi-threaded
implementation a dead-lock is not possible, because only one of the inputs is blocked,
not all of them. All the threads work completely independently and there is no shared
state between them.

Input
manager

Output
manager

Buffer Buffer

Buffer Buffer

Node

. . .

Data Storage

Data Manager

section 0

section N

Input

Input

Input

Output

Output

Output

Figure 5: Internal organisation of one node

The input manager consists of one control thread that listens for control messages
sent by the other nodes and one input thread per stream that arrives in to the node. The
control thread listens to requests to create new network sections and update messages

12

that contain information about new connections. Update messages trigger creation of
a new input thread. Each input thread listens to exactly one connection, deserialises
incoming records and passes them to the input stream of the corresponding network
section.

The output manager consists of an output thread per stream that leaves the node.
Each thread serves as a counterpart for an input thread on some other node. Output
threads simply serialise records and send them to the node containing the next section.

Data management is separated from the stream management. The box language
data is not transferred between the nodes with the records. Instead only a representation
of the data, consisting of the label of the field, the unique data identifier (UDI) of the
data and the current location of the data with accuracy of a node, is sent. The real data
is later fetched separately on demand. A UDI is a globally unique name for a data
item, that is used to refer the data item without exact knowledge of its location in the
memory.

The motivation for separation of the data and the records is that a record may flow
through several nodes before a particular data element is consumed. By fetching a data
element only into those nodes where it is actually needed, unnecessary data transfers
can be avoided. Another motivation to separate the data and the records is that, even
though both of them are moved from one node to another, the needs may be quite
different. For example, records are assumed to be relatively small messages, while the
size of the data elements may range from bytes to gigabytes.

Another active component, the data manager, is used to handle data management
needs of the distributed S-NET. References to all data elements are stored into a hash
table named data storage that allows tracking of data elements currently residing on a
node. UDIs are used as hash table keys for searching specific data elements.

In general, the input manager controls all the communication between the nodes,
except the communication related to remote data operations explained more in Section
6. This also gives the input manager an important role in creation of new network
sections. This is discussed more in the next section.

6 Managing Data Communication
In Distributed S-NET boxes are mapped to certain nodes. Hence, data needs to be
moved between the nodes. Data transfers may have a serious effect on runtime perfor-
mance, depending on the underlying system, amount of data to be moved and data ac-
cess patterns of the program. The programmer has the main responsibility in achieving
performance and can affect the performance by choosing the right data access patterns,
that is, minimising data transfers between the nodes. This section describes how the
prototype implementation manages the box language data.

One of S-NET’s main design principles is to separate coordination from compu-
tation. As the result, the current shared-memory implementation of S-NET is almost
unaware of the box language data. The data elements are simply collected into records
and managed through opaque pointers and copy and delete functions offered by the
language interfaces. Only the boxes know the data representation and can operate di-
rectly on the data. In a distributed memory environment data management becomes

13

somewhat more complex. To be able to move data between the nodes in potentially
heterogeneous environments the runtime system requires more information about the
data representation.

Motivated by the performance penalty of the data transfers, the main principle of
the data management is to avoid any unnecessary data movement. In the shared mem-
ory S-NET implementation each data element is directly stored into a record. In Dis-
tributed S-NET, the box language data is not transferred inside the records over node
boundaries, but instead only a representation of the data consisting of the labels and
locations of each data element is included. The motivation for this is that the fact that a
record is passed to a node does not imply that all the data of the record is needed there.
In fact, a record may flow through several nodes carrying exactly the same data, in
which case most of the data transfers would be unnecessary. The tag values are always
transferred with the records as they might be needed for routing purposes.

S-NET requires abstract copy and delete operations from the language interfaces,
but doesn’t particularly define how the operations are to be performed. The current
language interface implementations for C and SAC use reference counting, which goes
well hand-in-hand with S-NET’s functional behaviour requirements for the boxes. In
the distributed memory implementation, deep memory copies may be wasted in case
the data is not used on the same node but instead transferred to another node after the
copy. Reference counting is a cheaper operation in this case. On the other hand, always
assuming reference counting unnecessarily limits the language interface implementa-
tion.

This problem is solved by postponing the language interface level copy until the
copied data is actually needed. This is done by implementing reference counting mech-
anism inside the runtime system and only performing language interface level copy if
there are multiple fields referring the same data when one of the fields is consumed by
a box. This decision does not restrict possible future language interfaces that perform
real copying instead of reference counting or inherent reference counting of any box
language, as the language specific copy operation is eventually done if it is actually
required.

There is also another advantage in introducing the runtime system level reference
counting. In addition to avoiding unnecessary copies, also unnecessary data transfers
may be avoided in some cases. Since only the boxes can modify data and because of
their functional behaviour, it is safe to make assumptions about which data elements
are identical. Copies of a data element can be tracked and in case a node contains a real
copy of the data at the time when another fetch for the same data occurs, the fetch can
be satisfied much more efficiently by using the local copy instead and simply adjusting
the reference counts properly.

The opaque data pointers in records are replaced by reference objects. A reference
object holds the label of the referred data element and accounting information like the
count of fields referring to that particular data element through that reference. Data
elements are identified by their UDIs. UDIs in our case consist of the identifier of
the node where the data is originally created and a running counter specific to that
node. UDIs never change during the life time of a reference object. As data regularly
migrates, the node part of the UDI is not used for locating the data; that information
is separately contained within the reference object. References in records always point

14

directly to the data element; no reference chains need to be collapsed upon data access.
The reference objects are used to hide the reference counting and distribution of the
data from the rest of the runtime system.

In S-NET it is not generally decidable where some data element is actually needed.
This rules out any push communication. Only when some data is actually requested by
a box, the runtime system transparently fetches the data as necessary. An exception are
filters: they may copy or discard data elements, but do not require us to actually fetch
the data at all. Instead we use remote copy and delete operations: rather than loading
the data onto the node that executes the filter, the appropriate command is sent to the
node that currently hosts the data.

A node’s data manager organises all remote fetch, copy and delete operations trans-
parently to the rest of the runtime system. Having such a unique component on each
node ensures that, for example, repeated fetch operations to identical data are avoided.
In a way, our data management system resembles a software COMA (cache only mem-
ory architecture) where the data elements are freely replicated and migrated to the
nodes’ local memories [20]. Pulling data into nodes just before it is required by a box
introduces delays on box processing. Here, it becomes apparent why our nodes are
again multi-threaded themselves even if the number of cores per node is small or the
nodes are effectively unicores. In a sequential node implementation the deferred data
fetch would have an adverse effect on performance as the actual processing of data
would generally be postponed until the last piece of data has arrived. With our multi-
threaded node implementations we effectively hide the latencies inflicted by fetching
remote data as late as possible.

A data fetch protocol consist of three MPI messages. First a request message is
sent to the node where the data currently resides. This request identifies the requested
data element by its UID. The data manager of that node then replies with a message
containing representation of the data type of the requested data element. The data
type is reconstructed in the other node and memory is allocated for the data based
on the type. After this the data manager transmits the actual data. Since the S-NET
runtime system is unaware of the data representations of the box language interfaces,
the language interfaces play a crucial role in the data transfers. They for example
manage data type and data marshalling with the help of the MPI library.

Fig. 6 illustrates data management by means of an example. the original instance
of the data resides on node 1 and is locally referred to by a single record. References
to the data have been carried by records to every other node in the system. None of
the records referring to the data has yet been consumed on nodes 2 and 4. Both the
nodes contain several records referring the data, possibly as the result of local copies.
These copies have been satisfied by increasing the reference count. The local reference
in these nodes points to the original reference in node 1, as there is no local copy of the
real data in these nodes. In node 3 the case is somewhat different: there have been at
least two records referring to the data, and one of them has been consumed. Because
of this, the real data has been fetched into the node and all the local references point to
the local copy instead of the original copy on node 1. In case the record on node 3 is
moved, for example to node 4, the record is modified to point to the reference on that
node, and the data in node 3 is deleted, as the last reference to it would be lost.

15

DataStorage

DataStorage
DataStorage

Record

Record

Record

Record

Record

Reference
(ref count = 2)

Reference
(ref count = 3)

Reference
(ref count = 3)

Data

DataStorage
Record

Reference
(ref count = 1)

Data

Node 1

Node 3

Node 2

Node 4

Record

Figure 6: Data management example

7 Experimental Evaluation
We experimentally evaluate our approach using the running example of a password
cracker. The boxes of the program are implemented as C language functions using
S-Net’s C language interface. We use Ubuntu’s British-English dictionary containing
about 100,000 entries.

In the absence of multi-memory multicore processors for the time being, our first
test environment is a small cluster of 1.8 GHz Dual-Core AMD Opteron 1210 proces-
sors connected through Gigabit Ethernet and running Ubuntu Linux and MPICH-2 [2]
with maximum threading support enabled. We investigate three problem sizes trying
to crack 12, 36 and 60 passwords, respectively. We always use the same word as pass-
words, which generates more or less even workloads on our system.

nodes 12 36 60
1 1.006 1.002 1.002
2 0.503 0.502 0.504
3 0.337 0.337 0.337

Figure 7: Relative wall clock execution times of the running example using 1, 2 or 3
nodes and dictionaries with 12, 36 and 60 entries

16

!

"

#!

#"

$!

$"

%!

%"

&!

$ % & " ' () * #! ## #$ #% #&

&+%*&+%*"+"!'+!)'+$!'+%((+%))+#(*+$!*+"(
#$+%)

#"+%#

$!+%'

%%+&&

50 Identical Words, Entry #49163 in Dictionary

,-
.
/0
-1
02

-1
34
/5

63.7/809:069;/5

Figure 8: Measured wall clock times of the running example on 14 dual-processor
compute nodes searching for the same password in the dictionary (even workload)

Fig. 7 shows relative wall clock execution times measured on our experimental
setup, i.e. the execution time of a distributed version of our running example on 1, 2 or
3 nodes divided by the execution time of a non-distributed version running on a single
node. We observe nearly linear speedups for all size classes. If you wonder why we do
not see a 6-fold speedup given that we have a total of six cores, bear in mind that the
non-distributed version used as the baseline of this experiment already makes effective
use of the two cores of a single machine. Because of this the increase in computing
power is only threefold.

Our second experimental setup consists of a cluster of 14 Pentium-III based dual-
processor nodes running at 1.4GHz connected through 100Mbit Ethernet. We use a
similar software installation as before: Ubuntu Linux and OpenMPI. Fig. 8 demon-
strates that the problem scales well for this larger number of dual-processor compute
nodes.

In Fig. 9 we show results from using the same experimental setup as before, but
changing the password cracking problem such that we actually search for random
words from the dictionary. This naturally results in an uneven workload distribution.
Nevertheless, the figures demonstrate good scaling behaviour, although absolute per-
formance degrades slightly as expected.

Indeed, our chosen application is embarrassingly parallel, but one needs to take into
account that these speedups on distributed memory architectures have been achieved
without any classical parallel programming involved, solely by means of S-Net coor-
dination of conventional C-implemented components. 1

1We are fully aware that both architectural setups are not ideal to demonstrate what our system is intended
for, but for the time being we had no access to a larger cluster of up-to-date multicore nodes.

17

!

"

#!

#"

$!

$"

%!

%"

&!

$ % & " ' () * #! ## #$ #% #&

'+#""+#$
(+%()+$#)+#$(+&$)+#$

#!+$%
#$+$###+")

#&+""

#*+!&

$%+$"

%(+%(

50 Random Words

,-
.
/0
-1
02

-1
34
/5

63.7/809:069;/5

Figure 9: Measured wall clock times of the running example on 14 dual-processor
compute nodes searching for a random sequence of passwords in the dictionary (uneven
workload)

8 Related Work
The coordination aspect of the proposed stream processing language is related to a
large body of work in so-called data-driven coordination, see [18] for a survey of this
area. An early, layered approach that, like S-NET, treats coordination and compu-
tation as strictly orthogonal concerns is Linda [7]. As S-NET, Linda is not a “com-
plete” programming language as such, as it exclusively administers process creation
and the coordination of computation which is implemented in a separate language.
Implementations of the Linda model can be found for many programming languages,
see [21, 23, 25] for a non-exhaustive selection. Unlike in S-NETwith its stream based
communication model, communication in Linda uses a shared tuple space which al-
lows processes to interact with each other by adding, reading and removing data tuples
from this shared space.

The earliest closer related proposal, to our knowledge, is the coordination language
HOPLa from the Utrecht University’s Ariadne project [6]. It is again a Linda-like co-
ordination language, which uses record subtyping (which they call “flexible records”)
in a manner similar to S-NET, but does not handle variants as we do, and has no con-
cept of flow inheritance. Also, HOPLa has no static “wiring” and does not use type to
establish a stream configuration.

Another early source to mention is the language SISAL [5], which pioneered high-
performance functional array processing with stream communication. SISAL was not
intended as a coordination language, though, and no attempt at the separation of com-
munication and computation was made in it. Still it is important to acknowledge the
stream variables of SISAL as an early example of task decomposition using streams.

Also functionally based is the language Hume [17]. Hume’s conceptual design is

18

not that of a pure coordination language, but a fully-featured programming language,
primarily aimed at embedded and real-time systems. Programming in Hume follows
a layered approach. Values and functions are defined in a fully-functional expression
language, and interaction between functions is defined in a coordination language. The
finite-state machine based coordination language connects any desired amount of in-
bound and outbound “wires” to a function to allow for interaction between the compo-
nents (i.e. the functions) of a program. Originating from Hume’s primary domain and
the related necessity for space- and time bound analysis [14], the expression language
is an inherent part of the system and cannot be freely chosen as in S-NET. For the same
reason, dynamically evolving network structures as are possible in S-NET using serial
and parallel replication, are not expressible in Hume.

We shall also cite the work on the language Eden [16] as related to our effort,
since it is based on the concept of stream communication. Here streams are lazy lists
produced by processes defined in Haskell using a process abstraction and explicitly in-
stantiated, which are coordinated using a functional-style coordination language. Also,
like S-NET, Eden defines a connection topology for the processing entities; it however
deploys the processes completely dynamically and even allows completely dynamic
channels. Eden has no provision for subtyping and does not integrate topology with
types.

Another recent advancement in coordination technology is Reo [1]. The focus of
the language Reo is on streams but it concerns itself primarily with issues of channel
and component mobility, and it does not exploit static connectivity and type-theoretical
tools for network analysis.

Thematically closely related to the presented distributed runtime system of S-NET are
many systems that aim to orchestrate computation in a distributed memory setting. We
cite here FASAN [4], a coordination language primarily designed for recursive nu-
merical algorithms. A FASAN program describes the data-flow graph of an applica-
tion whose nodes are sequential modules written in an external computation language
like C or Fortran. Distributed execution of a FASAN program is implemented using
PVM [22].

Outside the domain of high-level programming languages we acknowledge inte-
grated problem solving environments for scientific computing, e.g. SciRun [26]. These
are graphical environments that allow the construction of simple data flow style appli-
cations based on standard component models for distributed computing. They show a
surprising similarity with graphical representations of S-NET, the difference being that
we use graphical notation merely for the sake of illustration for a component network it-
self described as data flow program, whereas integrated problem solving environments
take graphics first and generally lack the foundations of a programming language based
solution.

9 Conclusion
We extended the S-NET data flow coordination language by two new network combi-
nators in order to support architectures where several cores share their memory while
communication between different groups of course is based on message passing. These

19

are the static placement combinator and the dynamic indexed placement combinator.
They allow programmers to partition an S-NET network over several compute nodes.
As a result the runtime system deals with two levels of concurrency: coarse-grained
concurrency on the level of compute nodes using distributed memory communication
and fine-grained concurrency within each node using shared memory communication
managed by our existing runtime system [8].

The main challenges addressed by the implementation are the dynamic construction
of the S-NET network runtime representation spanning over several nodes, routing of
records between the nodes and data management problems caused by the separation of
the network into multiple distinct address spaces. Preliminary experiments show that
the approach taken allows us to achieve considerable speedups on clusters of multicore
processors with a distributed memory architecture without compromising the high-
level programming style of S-NET, i.e. without addressing architectural detail or low-
level organisational concerns.

An interesting area of future research is the combination of Distributed S-NET with
the ongoing research on reconfiguration and self-adaptivity described in S-NET [19].
In conjunction, the two lines of research add further expressiveness to S-NET: dis-
tributions of networks across distributed memory environments can dynamically be
changed either through external events (reconfiguration) or internal observation (self-
adaptivity).

Acknowledgments
We would like to thank Alex Shafarenko, Sven-Bodo Scholz, Juha Pärssinen and Juha
Koivisto for many fruitful discussions on this work and the anonymous reviewers for
their detailed and helpful comments. This work was partially funded by the European
Union through the Integrated Project Æther (Self-adaptive Embedded Technologies for
Pervasive Computing Architectures).

References
[1] Farhad Arbab. Reo: a channel-based coordination model for component compo-

sition. Mathematical. Structures in Comp. Sci., 14(3):329–366, 2004.

[2] Argonne National Laboratory. MPICH2, 2009.
http://www.mcs.anl.gov/mpi/mpich2.

[3] Haoxan Cai, Susan Eisenbach, Clemens Grelck, Frank Penczek, Sven-Bodo
Scholz, and Alex Shafarenko. S-Net Type System and Operational Semantics.
In Proceedings of the Æther-Morpheus Workshop From Reconfigurable to Self-
Adaptive Computing (AMWAS’08), Lugano, Switzerland, 2008.

[4] Ralf Ebner and Alexander Pfaffinger. Transformation of Functional Programs into
Data Flow Graphs Implemented with PVM. In EuroPVM ’96: Proceedings of the
Third European PVM Conference on Parallel Virtual Machine, pages 251–258,
London, UK, 1996. Springer-Verlag.

20

[5] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the sisal
language project. J. Parallel Distrib. Comput., 10(4):349–366, 1990.

[6] G Florijn, T Bessamusca, and D Greefhorst. Ariadne and HOPLa: flexible coor-
dination of collaborative processes. In P Ciancarini and C Hankin, editors, First
International Conference on Coordination Models, Languages and Applications
(Coordination’96), Cesena, Italy, 15-17 April, 1996. LNCS 1061, pages 197–214,
1996.

[7] David Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

[8] C. Grelck and F. Penczek. Implementation Architecture and Multithreaded Run-
time System of S-Net. In S.B. Scholz and O. Chitil, editors, Implementation and
Application of Functional Languages, 20th International Symposium, IFL’08,
Hatfield, United Kingdom, Revised Selected Papers, volume 5836 of Lecture
Notes in Computer Science. Springer-Verlag, 2010.

[9] C. Grelck, Shafarenko, A. (eds):, F. Penczek, C. Grelck, H. Cai, J. Julku,
P. Hölzenspies, Scholz, S.B., and A. Shafarenko. S-Net Language Report 1.0.
Technical Report 487, University of Hertfordshire, School of Computer Science,
Hatfield, England, United Kingdom, 2009.

[10] Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array language for ef-
ficient multithreaded execution. International Journal of Parallel Programming,
34(4):383–427, 2006.

[11] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Coordinating Data
Parallel SAC Programs with S-Net. In Proceedings of the 21st IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’07), Long Beach,
California, USA. IEEE Computer Society Press, Los Alamitos, California, USA,
2007.

[12] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A Gentle Introduc-
tion to S-Net: Typed Stream Processing and Declarative Coordination of Asyn-
chronous Components. Parallel Processing Letters, 18(2):221–237, 2008.

[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press, Cambridge, Massachusetts, USA,
1994.

[14] Kevin Hammond. Exploiting purely functional programming to obtain bounded
resource behaviour: the Hume approach. In Zoltán Horváth, editor, First Central
European Summer School, CEFP 2005, Budapest, Hungary, July 4-15, 2005,
Revised Selected Lectures, volume 4164 of Lecture Notes in Computer Science,
pages 100–134. Springer-Verlag, 2006.

[15] Jim Held, Jerry Bautista, and Sean Koehl. From a few cores to many: a Tera-scale
computing research overview. Technical report, Intel Corporation, 2006.

21

[16] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel functional programming
in Eden. Journal of Functional Programming, 15(3):431–475, 2005.

[17] Greg Michaelson and Kevin Hammond. Hume: a functionally-inspired language
for safety-critical systems. In Draft proceedings from the 2nd Scottish Functional
Programming Workshop (SFP00), University of St Andrews, Scotland, July 26th
to 28th, 2000, volume 2 of Trends in Functional Programming, 2000.

[18] G A Papadopoulos and F Arbab. Coordination models and languages. In Ad-
vances in Computers, volume 46, pages 329–400. Academic Press, 1998.

[19] Frank Penczek, Sven-Bodo Scholz, and Clemens Grelck. Towards Reconfigu-
ration and Self-Adaptivity in S-Net. In Sven-Bodo Scholz, editor, Implementa-
tion and Application of Functional Languages, 20th International Symposium,
IFL’08, Hatfield, Hertfordshire, UK, Technical Report 474, pages 330–339. Uni-
versity of Hertfordshire, UK, 2008.

[20] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared Memory: Con-
cepts and Systems. John Wiley and Sons, 1998.

[21] Ellen H. Siegel and Eric C. Cooper. Implementing distributed linda in standard
ml. Technical report, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, USA, 1991.

[22] V. S. Sunderam. PVM: a framework for parallel distributed computing. Concur-
rency: Pract. Exper., 2(4):315–339, 1990.

[23] Geoff Sutcliffe and James Pinakis. Prolog-linda : An embedding of linda in
muprolog. Technical report, Department of Computer Science, The University of
Western Australia, Nedlands, 6009, Western Australia, 1989.

[24] Herb Sutter. The free lunch is over: A fundamental turn towards concurrency in
software. Dr. Dobb’s Journal, 30(3), 2005.

[25] G. C. Wells, A. G. Chalmers, and P. G. Clayton. Linda implementations in java
for concurrent systems: Research articles. Concurr. Comput. : Pract. Exper.,
16(10):1005–1022, 2004.

[26] K. Zhang, K. Damevski, and S.G. Parker. SCIRun2: A CCA framework for
high performance computing. In Proceedings of The 9th International Work-
shop on High-Level Parallel Programming Models and Supportive Environments
(HIPS’04), Santa Fé, NM, USA, pages 72–79. IEEE Computer Society, 2004.

22

