Modeling and control of nonlinear systems using soft computing techniques

Denai, Mouloud, Palis, F. and Zeghbib, A. (2007) Modeling and control of nonlinear systems using soft computing techniques. pp. 728-738. ISSN 1568-4946
Copy

This work is an attempt to illustrate the utility and effectiveness of soft computing approaches in handling the modeling and control of complex systems. Soft computing research is concerned with the integration of artificial intelligent tools (neural networks, fuzzy technology, evolutionary algorithms, …) in a complementary hybrid framework for solving real world problems. There are several approaches to integrate neural networks and fuzzy logic to form a neuro-fuzzy system. The present work will concentrate on the pioneering neuro-fuzzy system, Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is first used to model non-linear knee-joint dynamics from recorded clinical data. The established model is then used to predict the behavior of the underlying system and for the design and evaluation of various intelligent control strategies

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads