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Abstract

We propose a modeling and analysis method for biochemical reactions based on finite state automata. This is a
completely different approach compared to traditional modeling of reactions by differential equations. Our method
aims to explore the algebraic structure behind chemical reactions using automatically generated coordinate systems.

In this paper we briefly summarize the underlying mathematical theory (the algebraic hierarchical decomposition
theory of finite state automata) and describe how such automata can be derived from the description of chemical
reaction networks. We also outline techniques for the flexible manipulation of existing models. As a real-world example
we use the Krebs citric acid cycle.

1. Introduction

Here we propose a modeling and analysis method
for biochemical reactions based on the algebraic
hierarchical decomposition theory of finite state au-
tomata (also known as Krohn-Rhodes Theory [1]).
This method can be used in conjunction with the
classical modeling methods based on differential
equations, as they each work on a different level of
abstraction. The automata based method analyses
the discrete computational structure of the reaction
network, while differential equations model the ac-
tual physical processes. Clearly, we have to resolve
several issues regarding the possibility of a sensible
finite state description of a reaction network.

The ultimate goal is to provide a classification of
biochemical reactions along the lines of the classi-
fication of well-studied algebraic structures (finite
simple groups) and to describe such reactions us-

ing predictive coordinate systems that are automat-
ically constructed and based on algebraic structures
(transformation semigroups) canonically associated
to reaction graphs. The finite simple groups are now
generally accepted as having been fully classified (cf.
[2]) as a result of a concerted effort, spanning well
over a hundred years, of numerous researchers in
group theory. Therefore the reactions could be po-
tentially studied in a way that exploits this exten-
sive mathematical groundwork.

Most of the ideas described here were proposed
long time ago in a (still unpublished) book by John
L. Rhodes, usually referred as the “Wild Book”
[3], developing ideas presented earlier [4] on apply-
ing automata theory to biochemical reactions. But
recently we have created the first computational
tools [5,6] realizing these methods (in particular
the holonomy method of obtaining decompositions
used here – see, e.g. [7, Chapter 3]), and therefore
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the exploitation of these ideas can begin now. We
have also begun to apply the ideas of automati-
cally generated coordinate systems in other fields:
for genetic regulatory networks [8] and in artificial
intelligence [9].

2. Reactions as Automata

We have tools for understanding any phenomenon
in terms of coordinate systems (see Sect. 3), if it
is amenable to a finite state automata description.
However, biochemical reaction networks consist of
macroscopically continuous processes, their state
descriptions involve concentration values and thus
they are quite far from a discrete model (although
individual molecules are in fact discrete entities).
Therefore their modeling is usually done by differ-
ential equations. Differential equations are defined
in a recursive form, one has to actually calculate
their time evolution in order to gain some knowl-
edge about the system (and even this provides no,
or only limited, insight as to important factors,
organizing principles, etc.).

In order to generate a finite state automata de-
scription, we can try discretizing the continuous
state space and time. But this approach has several
problems. One is the combinatorial explosion which
may arise during discretization if the the state space
has many dimensions. Moreover, it may be possible
that we thus abstract away important properties
(like subtle changes of concentrations triggering
other events) of the reaction network. Therefore we
propose a completely different approach.

2.1. Perturbation-based Modeling

First we need to explain some biochemical termi-
nology. Enzymes are biological catalysts. Catalysts
modify the speed of a chemical reaction without
being used up or appearing as one of the reac-
tion products. The reactants (i.e. the molecules
or molecular assemblies that are consumed) in a
particular enzyme-catalysed reaction are called
the enzyme’s substrates/metabolites. These are
molecules, usually of low molecular weight with
respect to enzymes, that take part as reactants
and products in metabolism, the complete set of
chemical reactions that occur in living cells. Indi-
vidual metabolites usually take part in a limited
number of different reactions. In the examples pre-
sented here, in the Krebs cycle, pyruvic, citric,

isocitric, oxaloacetic, α-glutaric, succunic, fumaric,
and malic acid are the metabolites. A coenzyme is
a special type of substrate, one that fulfils the same
function, that of the acceptor or donor of a specific
chemical group, in many different reactions. Coen-
zyme acceptor/donor pairs that take part in the
Krebs cycle are NAD+/NADH, NADP+/NADPH,
CoA/acetyl-CoA (where CoA is an abbreviation for
CoenzymeA), and FAD/FADH. We also make use
of the intuitive notion of a soup, which is a solution
containing all the required substrates, inorganic
ions and enzymes required for the reactions.

The idea is simple:
Idea 1 Steady states of the system are the states
of the automaton, and perturbations to these steady
states are the inputs of the automaton (rather than
time intervals).
The definition of the steady state can be a matter of
dispute but generally it corresponds to some macro-
scopically observable stable circumstance (e.g. fixed
concentration levels of substrates). The input can
be a sudden change of the concentration level of any
substrate, enzyme, inorganic ion. However, here we
choose a slightly more restricted approach here. We
choose coenzymes as inputs; all the substrates, in-
organic ions, inactive enzymes are in the soup. So
we choose inputs as the “last missing tiny bits” that
are required for the reaction.

Thus in our model we will not attempt to de-
scribe such phenomena as membrane transport or
diffusion, although such physical aspects are impor-
tant, perhaps crucial, to the maintenance of many of
the metabolic states. Another aspect of our model
is that it is not kinetic, i.e. it will not be concerned
with rates. The model will be built on the basis of
biochemical reactions that are known to occur, but
whose rates need not be known, especially when they
occur as part of a complex system of reactions. Sim-
plifications are usually necessary, sometimes even
desirable, in any analysis, however distortions (and
falsifications) are to be avoided as much as possible.
Accordingly, the model has been conceived as being
embeddable in a real — in vitro — situation.

2.2. Example: The Krebs Cycle

Under normal circumstances the major portion of
the cell’s energy requirements are met by the break-
down of sugars.

The principal source of energy for the cell is glu-
cose and the complete burning of 1 mole of glucose
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via the Krebs cycle is given by

C6H12O6 + 6O2 → 6CO2 + 6H2O + 673 kcal.

In the cell, glucose is converted to CO2 and water
by a process involving nearly 30 different steps and
in each step a small amount of energy is realized.
This reaction network was a big evolutionary leap,
since anaerobic glycolysis is much less efficient at
extracting energy from sugar [10].

The Krebs cycle is well understood in its fine de-
tails, therefore it is an excellent example for demon-
strating and validating our methods. Any standard
textbook in biochemistry contains the details (see
e.g. [11]).

Figure 1 shows the reaction graph of the Krebs cy-
cle in which substrates appear as states and arrows
are labelled by coenzymes required for the transi-
tion. In cases where the transition from one sub-
strate to another runs to completion given the con-
stitution of the soup, the substrates in questions are
shown as in the same state of the model (e.g. Cit-
ric and Isocitric Acid). We denote this model of the
Krebs cycle as K1. Regarding the states as states of
a finite automaton and the transitions as the action
of inputs, we will be in a position to apply algebraic
automata theory to obtain a decomposition and co-
ordinate system for this reaction system, once we
introduce some basic concepts in the next section.

3. Coordinate Systems for Finite State

Automata

3.1. Finite State Automata

By a finite state automaton, we mean a triple A =
(A, X, δ) where A is the (finite nonempty) state set,
X is the input alphabet and δ : A × X → A is the
transition function. We do not explicitly consider
any output of the automaton, as any such function
can be recovered from the state and the input sym-
bol. We tacitly use the state as the output.

For example, in model K1 of the Krebs cycle (see
Figure 1), δ(a5, x4) = a6 since the reaction graph
shows

a5 = Succinyl CoA
x4=GDP
−→ Succinic acid = a6,

whereas

δ(a1, x4) = a1

since, according to the model there is no arrow la-
belled GDP (x4) leaving state a1, so if GDP does

come in contact with pyruvic acid (a1), it leaves this
substrate unchanged.

As the state transition function δ is fully and
uniquely defined for all possible state and input sym-
bol combinations, we have a complete knowledge of
the automaton. However, this knowledge does not
imply immediate understanding of the automaton,
as it is given in a recursive form (just as in the
case of differential equations), i.e. in order to gain
insight about the computations carried out by the
automaton, we need to start from an initial state,
apply an input symbol, arrive in another state, then
apply another transformation, and so on. Formally,
we can naturally extend the transition function to
input “words”, i.e. sequences of input symbols: for
the empty word δ(a, λ) = a, and for arbitrary words
u, v ∈ X∗ (finite input sequences from the input al-
phabet X), we have δ(a, uv) = δ(δ(a, u), v). This
justifies the practice that, for notational simplic-
ity, we sometimes write x · u instead of δ(a, u) for
any a ∈ A and u ∈ X∗. For example, in Figure 1,
δ(a1, x6x1x2) = a1 ·x6x1x2 = ((a1 ·x6) ·x1) ·x2 = a3

as the reader can immediately verify.
Thus we can follow a trajectory through the state

space by applying input sequences starting at any
given initial state, but in order to promote under-
standing we need to introduce coordinates into the
state space.

3.1.1. Transformation Semigroups
Finite state automata can be looked at in an al-

gebraic way. Each input symbol gives an operator
on states, denoted simply by x where x ∈ X . For
instance x2, the operator associated to CoASH in
the model of the Krebs cycle K1 changes states as
follows:

a1 7→ a1 a5 7→ a5

a2 7→ a3 a6 7→ a6

a3 7→ a3 a7 7→ a7

a4 7→ a4 a8 7→ a3

since CoASH acts nontrivially only on substrates
Acetyl CoA (a2) and Oxaloacetic Acid (a8) in the
Krebs cycle.

Several input symbols in a sequence also give a
well-defined operator, namely the composition of
their transformations. This way the input symbols
generate a set of transformations, which is a semi-
group S (i.e. a set equipped with an associative mul-
tiplication). If we keep the original state set A of the
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a1 = pyruvic acid

x1=NAD+CoASH

��
a2 = Acetyl CoA

x2=CoASH

))TTTTTTTTTTTTTTT

a8 = Oxaloacetic acid
x2=CoASH // a3 = Citric acid

Isocitric acid

x3=NADP

��
a7 = L-malic acid

Fumaric acid

x6=NAD

OO

a4 = Oxalosuccinic acid
α-Ketoglutaric acid

x1=NAD+CoASH

��
a6 = Succinic acid

x5=FAD

OO

a5 = Succinyl CoA
x4=GDPoo

Fig. 1. Reaction graph and finite state automaton model K1 of the Krebs cycle. Substrates corresponds to states of the
automaton and if acted on by the relevant coenzyme are transformed, e.g. pyruvic acid (a1) interacting with NAD and CoASH
(x1) is transformed into Acetyl CoA (a2). This is denoted δ(a1, x1) = a2. Note that in case the coenzymes have no effect on a
substrate then no arrow is shown, e.g. δ(a8, x4) = a8 since Oxaloacetic acid (a8) is not transformed by interaction with GDP
(x4). The presentation is “event-based” or “perturbation-based” and time does not appear explicity in the model. Reactions
shown run to completion, and thus all transitions are idempotent (i.e. δ(a, x) = δ(δ(a, x), x) always holds in a reaction graph).

automaton with the semigroup, then we get a trans-
formation semigroup denoted by (A, S). The trans-
formation semigroups should be considered here as
just a different view for finite automata. Moreover,
if the transformations are all permutations (one-to-
one mappings) we talk about a permutation group.

3.2. Algebraic Hierarchical Decomposition

For explaining Krohn-Rhodes Theory, the best
way is to present it by using a metaphor. Basically
we do the same thing that the decomposition into
prime factors does for the integer numbers, but in-
stead of for integers we do it for more complicated
structures, namely finite state automata considered
as transformation semigroups (see Fig. 2).

The basic building blocks are (1) the simple 1 per-
mutation groups (for the reversible computation)
and (2) a single additional building block for the irre-
versible computation, the so-called flip-flop automa-
ton, which is essentially a one-bit resetable memory
that can be set and read. 2 The simple groups are

1 This has a well-defined meaning in group theory: a group
is simple if it has only trivial homomorphic images, i.e. any
structure preserving map to another group is either one-to-
one or collapses all elements to a single point. See, e.g. [12].
2 An important but subtle point here is that although the
flip-flop can be reset, this does not make it reversible. Indeed,
it is not possible to reverse a resetting operation since this
erases the previous state, and hence is not a permutation of

called the “primes” of this theory, as they play a role
analogous to the prime numbers in the multiplica-
tive decomposition of integer numbers (see Figure 2
and the discussion of this analogy below).

The way of putting together the components, the
so-called cascaded or wreath product, is hierarchical
and no feedback is allowed from deeper levels to up-
per levels (see Fig. 3). The usefulness of this special
type of composition is due to the following special
properties of hierarchy that render the composed
structure manipulable and comprehensible:
– Generalization and specialization are natural op-

erations realized by taking subsets of levels in ei-
ther direction up or down the hierarchy.

– Information flow between levels is restricted,
avoiding problems associated to understanding
feedback.

Note that any number of parallel, non-interacting
components are allowed on any hierarchical level.

The hierarchical composition is a proper balance
between the two conflicting requirements: having a
nice, comprehensible structure and possessing the
expressive power to construct any arbitrary automa-
ton (see Fig. 4). The parallel composition (direct
product) has a very simple structure, all of its com-
ponents are completely independent, but this also
means that it is not possible to surpass the complex-
ity of the building blocks. On the other hand, if we

the flip-flop’s state set.
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Fig. 4. Schematic diagram of the position of the wreath prod-
uct relative to alternative decomposition methods. The di-
rect product is the easiest to understand (just understanding
the parallel components separately), but not all automaton
can be constructed that way. When arbitrary wiring of the
building blocks is allowed, the structure becomes impossible
to understand. The wreath product seems to be the most
satisfactory compromise between the two opposing criteria.

allow arbitrary wiring of the components (feedback
loops with different lengths) then any system is real-
izable (even using only flip-flops as building blocks –
see, e.g. [7]), but such a construction generally pro-
vides no insight into structure or dynamics. In con-
trast, with a cascaded decomposition, feedbacks in
the original automaton being decomposed can give
rise to structural permutation groups – possibly at
different levels in the hierarchical decomposition –
reflecting local symmetries in the system.

3.3. Examples of Coordinate Systems

The natural example of a hierarchical coordinate
system is our decimal positional number notation
system: different coordinate positions correspond to
different power-of-ten magnitudes.

Another simple, but non-trivial example to de-
scribe hierarchical dependence is a bidirectional
counter. Imagine a device which keeps track of how
many times you press a button, where you also have
two other buttons to set the operating mode. For
instance to count and double-check the number of
passengers on an airplane while walking along the
aisle, you start from zero in adding mode, count,
and then as a check whether the resulting number
is the correct value, you switch to subtracting mode
and count again, but this time downwards, until you
reach zero again. The operation of this device can
be represented with the following simple coordinate
system on its states:

(n, mode),

where n is the current tally and the possible modes
+ and − correspond to adding and subtracting. The

mode coordinate is the top level of the hierarchy.
The buttons provide three operations: counting c,
switching to adding mode m+, and switching to sub-
tracting mode m−. For instance, the result of each
elementary operation is exemplified as follows:

(9, +) · c = (10, +)

(9, +) · m− = (9,−)

(9, +) · m+ = (9, +)

(9,−) · c = (8,−)

Hierarchical dependence here is clear: the counting
operation does different things (adding or subtract-
ing 1) to the coordinate giving the current tally, de-
pending on the top level coordinate (the right co-
ordinate giving the current mode); but this depen-
dence is only one way: the state of the tally count
(left coordinate) never influences the effect of the
basic transformations on the mode coordinate.

4. Prime Components and Automatic

Decompositions of the Krebs Cycle Models

We used our software tool jSgpDec [5] to decom-
pose the transformation semigroups of model K1 of
the Krebs cycle and a simpified version K2 (see Sec-
tion 5) and to obtain their group and prime compo-
nents.

4.1. Decomposition of the Simplified Model K2

The prime group components of K2 are the
cyclic groups C2 and C3 of order 2 and 3, respec-
tively. These correspond to the graphical cycle of
the reaction network graph of the model. We have
PRIMES(K2) = {C2, C3}. The computational
results confirm the correctness of the manual calcu-
lation of the “Wild Book” [3]. The decomposition
is shown in Figure 6. The non-trivial permutation
groups occur at the two lowest levels of the hierar-
chy.

4.2. Decomposition of the Full Model K1

Moreover, we also decomposed the other more
complex model of the Krebs cycle (the model K1

shown in Figure 1) using the holonomy method. Car-
rying out this latter computation is far beyond the
possibility of manual, brute-force calculation), and
here we found the the same type of groups C2 and
C3, but also the cyclic groups C4 and C5 with larger
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Integers Finite Automata

Building Blocks Units (±1), Primes Flip-flop Automaton, Permutation Automata

Composition Multiplication Wreath Product

Precision Equality Division, Emulation

Uniqueness Unique (up to units) Different Decompositions

Fig. 2. The parallel between the factorization of integer numbers and finite state automata. The very same idea is applied to
computational structures in algebraic automata theory. Here we have two types of irreducible building blocks (also called primes
(simple groups) and units (divisors of the flip-flop)), but as automata are more complicated structures, we have emulation
of the decomposed structure by possibly larger, decompositional structure (also called division of the decomposition by the
original automaton) rather than equality, and the factorization need not be unique at all.

Fig. 3. Example of a 3-level coordinate system composed using the cascaded/wreath product of component transformation
semigroups (An, Sn), n ∈ {1, 2, 3}. The resulting composed automaton is enclosed in dashed lines; both its input and output
are 3-tuples. Left: For a state transition in the wreath product (A3, S3) ≀ (A2, S2) ≀ (A1, S1), the input transformation (f3, f2, f1)
is applied to state (a3, a2, a1) yielding (b3, b2, b1) = (a3 · f3(a2, a1), a2 · f2(a1), a1 · f1). The “trays” visualize how at each
level i the components of the input (dependency functions fi) are evaluated according to hierarchical dependence on the
states at higher levels. The resulting transformations fi(ai−1, . . . , a1) ∈ Si are then applied to transform the state component
within level i. Note that the applications of these functions happen simultaneously; their arguments are the previous states
of other components, therefore there is no need to wait for the other components to calculate their new states. Right: The
new state (b1, b2, b3) is (without loss of generality) the output of the automaton. Projection onto initial coordinates (e.g.
(a3, a2, a1) 7→ (a2, a1) or (a3, a2, a1) 7→ (a1)) is a structure-preserving mapping (homomorphism).

order (4 and 5). A group of order 4 is not simple
and can be constructed from two groups of order 2.
We have PRIMES(K1) = {C2, C3, C5}. For some
insight into what the automatically derived coordi-
nate structure for the Krebs cycle reveals, see Fig. 7.
Again the non-trivial groups appear at the (four)
deepest levels of the hierarchy with C5, C4, C3, and
C2 occurring, respectively, at levels 4, 3, 2, 1 (the
lowest level). For more on the interpretation of such
holonomy decompositions, we refer the reader to [8],
where genetic regulatory networks are considered.

4.3. Complexity of the Krebs Cycle

Krohn-Rhodes Theory includes a rigorous notion
of complexity as the minimal number of alternations
(minimal over in all possible decompositions of the
structure) between levels with trivial and non-trivial
group components. The complexity of finite automa-
tonA is defined to be this non-negative integer num-
ber for decompositions of its associated transforma-
tion semigroup and denoted cpx(A). This complex-
ity measure satisfies a natural set of axioms (for an
introduction and its relationship to biological mod-
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b1 = pyruvic acid

y1=NAD

��

b2 =

Acetyl CoA
Citric acid

Isocitric acid
Oxaloacetic acid

y2=NADP
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b6 = L-malic acid
Fumaric acid

y1=NAD

77oooooooooooo

b3 = Oxalosuccinic acid
α-Ketoglutaric acid

y1=NAD

��
b5 = Succinic acid

y4=FAD

OO

b4 = Succinyl CoA
y3=GDPoo

Fig. 5. Simplified finite state automaton model K2 of the Krebs cycle. This model is obtained from the model K1 by putting
into the coenzyme CoASH into the soup and then identifying the transformations due to NAD+CoASH and NAD. For instance,

CoASH is needed for the reaction Acetyl CoA → {Citric acid, Isocitric acid} (i.e. a2

x2
→ a3 in the original model K1, but since

CoASH has been put into the soup the reaction runs to completion and we have that all substrates of a2 and a3 belong to a
new state b1 of the derived model. This way we must group together several substrates as the reactions go to completion when
the coenzymes are available in the soup. Moreover, putting CoASH in the soup implies that we should identify the transitions
involving the same coenzymes that did and did not require CoASH. Thus, transformations x1 =NAD+CoASH and x6 =NAD
appear as the combined transformation y1 labelled as simply as “NAD” in the derived model.

eling and evolution, see [13]). Since in the decom-
positions of the two Krebs cycle models, the levels
from the top until the last few levels only include
trivial groups, these upper levels include no alterna-
tion with group components. The remaining, group-
containing levels can be decomposed into group and
non-group containing components each with a single
group level. Thus these models (and holonomy de-
compositions in general), have complexity no more
than the number of levels with non-trivial groups.
It follows that

cpx(K1) ≤ 4 and cpx(K2) ≤ 2,

and, moreover, an argument of Rhodes [3, Chapter
6, Part I] proves the dependency between the groups
of K2 is “essential” in a certain technical sense, im-
plying that their computation could never be carried
out within the same group level of any wreath prod-
uct decomposition for K2. This implies cpx(K2) ≥
2, and thus cpx(K2) = 2. The complexity of the
Krebs cycle model K1 is therefore at least 2 (since
K1 can certainly emulate K2) but could well be as
much as 4, although its exact value has not been
rigorously established here.

5. Changing the BioChemical Model

We have presented two different models of the
Krebs cycle, K1 in Fig. 1 and K2 in Fig. 5. We as-

serted that K2 is a simplified version of K1 but they
are both models of the Krebs cycle. Here we make
this precise.

In fact, any modeling technique should be ca-
pable of incorporating new empirical findings, re-
fining details or simplifying some aspects of the
model. Clearly, when we execute these modifica-
tions we expect some kind of gradual change in
the model. For instance adding new details to one
model should not give another one contradicting
the original, but rather a refinement or extension of
it, or, in the other direction, when simplifying the
model, we expect a (possibly abstracted) substruc-
ture of it. In the automata realm this means that
the division/emulation relation should be preserved
through the modifications. Formally, the transfor-
mation semigroup of the larger model should have
a substructure mapping in a manner that respects
structure (i.e. homomorphically) onto the transfor-
mation semigroup of the smaller model. For reaction
graph models we have the following operations
– Putting a coenzyme into the soup - in the

biochemical model, this means that we assume
the coenzyme is present in sufficient quantity so
that all reactions in model that require that co-
ezyme can go to completion. This corresponds al-
gebraically to “localizing at an idempotent”.

– Unifying independent reactions - in the bio-
chemical reaction graph of the model, two transi-
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tions with the different labels whose order of oc-
currence does not influence the result may be col-
lapsed. This means that the agents acting in these
transitions are no longer distinguished, i.e. they
may be considered as given by the same agent, re-
sulting in single new global transition of the sys-
tem. Algebraically, this corresponds to identify-
ing commuting transformations (generally idem-
potent ones in the case of reaction graphs).

– Expanding substrates or adjoining more

substrates supplied with the required en-

zymes.
Mathematical proofs [3, Fact 6.9] show that the em-
ulation relation is preserved for biochemical mod-
els for the associated transformations semigroups
when applying these operations. These operations
for model manipulations have been implemented in
our open-source SgpDec software [5].

5.1. Coenzyme into Soup

Idempotent transformations are defined by the
following property: a · t = a · t · t for all states a ∈
A, thus after applying t once, the subsequent appli-
cations of the same input would not yield any fur-
ther change (at least as long as nothing else occurs
in the meantime). Since reactions in our approach
continue until they stabilize, their catalysts corre-
spond to idempotents. It is very important that the
cell require a different enzyme for practically every
reaction it carries out. No enzyme no reaction. This
specificity is not entirely absolute but for the major-
ity of enzymes absolute specificity is the rule, there-
fore this technique is widely applicable when mod-
eling biochemical reactions.

Putting a coenzyme into the soup (or, alge-
braically, localizing at an idempotent) is also useful
computationally to reduce the size of the semigroup.
Especially when we are looking for only the prime
components of the automaton (such as the case of
biochemical reactions), we can get some of them
from the decomposition of the reduced automaton.

This operation can be formalized in the following
way: Assume that for an automaton (A, X, δ) the
input symbol x0 is an idempotent, i.e. a · x0 · x0 =
a · x0 for all states a ∈ A. Then we can construct
a modified automaton (A′, X ′, δ′), read putting x0

into the “soup” of (A, X, δ). The new state set will
consist of states that are fixed by x0,

A′ = {a ∈ A : a · x0 = a}.

Then input x0 disappears from the new input set
X ′ = X − {x0}. The new state transition function
is δ′ : A′ × X ′ → A′ with

δ′(a′, x) = a′ · x0 · x · x0

(with · taken with respect to δ).
For example, in Figure 1 putting x2 = CoASH

into the soup and letting reactions run to comple-
tion entails that a2 and a8 are no longer observable
as states since, according to the reaction graph, the
reactions that yield them continue on to yield a3 due
to the presence of CoASH. Thus in the simplified
model with CoASH in the soup, there are two less
states, and NAD+CoASH is regarded as transform-
ing pyruvic acid directly to citric acid, while NAD is
then regarded as transforming L-malic acid to citric
acid.

5.2. Independent Reactions

Suppose we have two different coenzymes x1 and
x2 catalysing different reactions and their order does
not matter, i.e. applying x1 then applying x2 has
exactly the same effect on the system as applying
x2 then x1. ‘Different reactions’ means that they
are not connected through any substrate or product.
We then say that x1 and x2 ‘commute’ and we can
identify them as an input. Commutativity is needed
here, otherwise the identified input would yield dif-
ferent results depending on the order, therefore the
automaton model would become nondeterministic.

Formally, for an automaton (A, X, δ), assume that
x1, x2 ∈ X and a · x1 · x2 = a · x2 · x1 for all a ∈ A.
Then a modified automaton (A, X∗, δ∗), read x1 is
identified with x2 in (A, X, δ) can be constructed.
The state set remains the same. We replace the two
commuting transformations with a new one X∗ =
(X − {x1, x2}) + {y}. The state transition function
δ∗ : A × X∗ → A is defined with δ∗(a, x) = δ(a, x)
for x ∈ X−{x1, x2} (just act as before for the other
transformations) and

δ∗(a, y) = a · x1 · x2 = a · x2 · x1

(replacing the commuting transformations with
their unique combined transformation).

For example, after putting CoASH into the soup
of the model K1 as described above, one may identify
the commuting transformations due to NAD and
NAD+CoASH in the resulting model, yielding a new
simplified model K2 for the Krebs cycle (Figure 5).
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5.3. Expanding and Adjoining Substrates

Ongoing experimental research may reveal that in
a given reaction there are more substrates involved,
so we would like to add them to the model together
with the required enzymes/coenzymes. There are
two ways to do this: either expanding an existing
substrate or adding new ones.

5.3.1. Expanding
Let us consider the following very simple reaction

network. The substrates are {a1, a2, a3, a4} and the
coenzymes are {x1, x2, x3, x4}.

a1

x1

!!B
BB

BB
BB

B

a4

x4

==||||||||
a2

x2

}}||
||

||
||

a3

x3

aaBBBBBBBB

Expanding the substrate a1 gives the following net-
work.

a′

1
x // a′′

1

x1

��
a4

x4

OO

a2

x2

}}{{
{{

{{
{{

a3

x3

aaBBBBBBBB

5.3.2. Adjoining
Another way to add substrates is to adjoin new

substrates. Intuitively this means adding substrates
which feed into the old substrates or are fed from
the old substrates, but do not form part of the basic
reactions of the old substrates.

a1

x1

!!B
BB

BB
BB

B

a3

x3

==||||||||
a2x2

oo

After adjoining substrates and new coenzymes:

a0

x2

��
a1

x1

!!B
BB

BB
BB

B

a5

x2

��
a4x5

oo a3

x3

==||||||||
x4

oo a2x2

oo

Again, this operation can be exploited for compu-
tational efficiency as well: when dealing with large
networks we can remove those substrates that feed

into and those that are products core reactions.
Mathematically speaking, we can focus on the de-
composition the strongly connected components
only.

5.4. K2: A Derived Model

While introducing tools for manipulating models,
we have just observed how a simplified model K2 of
the Krebs cycle can be obtained from the model K1

by the operations of putting a coenzyme into the
soup and identifying commmuting inputs.

Thus Fig. 5 is a simplified reaction graph model
of the Krebs cycle derived from Fig. 1. The coen-
zyme CoASH has been put into the soup, therefore
some substrates must now be grouped together in
one state, as the reactions go to completion, and in-
puts NAD and NAD+CoASH are identified.

As mentioned above, a theorem guarantees that
the transformation semigroup associated to model
K1 has a substructure that maps in a structure-
preserving way onto the transformation semigroup
of model K2. From the automated decompositions
we know that PRIMES(K1) = {C2, C3, C5} and
PRIMES(K2) = {C2, C3}. This again confirms the
smoothness and usability of the model changing op-
erations, and illustrates the fact that the primes in
an emulated structure must be computable by the
emulating one. Since the transformation semigroup
of K1 emulates the transformation semigroup of K2,
we find these groups in the primes of K1 too.

Moreover, the second model is derived by the soft-
ware from the modeler’s specification of what to add
and identify, and can then be immediately decom-
posed.

6. Discussion

We suggested an algebraic approach for model-
ing and analysing biochemical reactions and showed
how it can be applied to automatically decompose
the computational structure within real examples.
After finishing the computational implementation
of this modeling method, this research can now con-
tinue on a larger scale. We can start to systemati-
cally analyse biochemical reactions regarding their
algebraic core structure.

The next natural questions to investigate are:
- What predictions do the coordinate decompositions
allow us to make and test for particular biochemical
reactions?
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Fig. 6. The internal structure of the decomposition of the automaton model of the Krebs cycle. The numbers indicate the
hierarchical levels, and the boxes on one level define the components on that coordinate position. The nodes contain subsets
of the state set (i.e. the set of substrates that are observed at a given moment). The boxes indicate local reversibility, so for
any two nodes within one box there is at least one sequence of coenzyme applications that takes the system from one set of
substrates to the other set of substrates. Therefore the top levels denote transient states. The grey shade denotes the existence
of a nontrivial permutation group component. On the first level (lowest, deepest in the hierarchy) we have a cyclic group on
two points C2, on the second level we have a cyclic group C3 of order 3. These are the only symmetries within the system,
e.g. observing the states {b3, b5, b6} and applying certain coenzymes in order (the group generators) the macroscopic system
would show no change, but individual molecules would trace out the permutation group structure.

- What is the significance of the presence of permu-
tation groups for understanding the biochemical net-
work in questions?
- If two biochemical systems give rise to the same
prime groups, how can the knowledge of one be used
in understanding and manipulating the other?
- What type of simple groups can be found in the
prime components of the decompositions of biochem-
ical reactions?
And after the classes of ‘biochemical groups’ are
found, we can ask:
-What are the special properties of these classes of
simple groups?
-What makes these groups biologically embeddable?
In answering the last question, the advanced tech-

niques of the finite group theory are expected to
prove extremely helpful.
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Fig. 7. The decomposition for the K1 model of the Krebs cycle has 25 hierarchical levels and reveals four hierarchical levels
involving non-trivial permutation groups (in parallel composition with other components). These non-trivial permutation
group components are indicated by darker shading. The automatically generated decomposition visualized here illustrates that
software tools now available to assist in understanding biochemical reaction networks can now go well beyond the realm of
manual human calculations. Similarly to the K2 model the prime components include the cyclic groups C2 on the 1st (lowest)
level and C3 on the 2nd level as in the decomposition of K2, but cyclic holonomy permutation groups C4 and C5 also appear

on the 3rd and on the 4th levels, respectively. The additonal presence of C4 and C5 reflects the fact that K1 is a more detailed
model of the Krebs cycle. It follows that the primes of the Krebs cycle model K1 are thus C2, C3, and C5 and that its
complexity is at least 2 but no more than 4 (see text). The levels of the decomposition, similar to those for K2 in Figure 6,
include transient levels (21 levels in this case), as well as macroscopic pools of stability and reversibility, corresponding to the
presence of each of the non-trivial group components in the four deepest levels in the decomposition and thus reveal ‘hidden’
local symmetries within the Krebs cycle.
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