
reverse accumulation and accurate

rounding error estimates for taylor

series coefficients

Bruce Christianson

School of Information Sciences� University of Hertfordshire

Hat�eld� Herts AL�� �AB� England� Europe

Numerical Optimisation Centre Technical Report ���� July ����

published Optimization Methods and Software 	����
 �� ����


Abstract

We begin by extending the technique of reverse accumulation so as to obtain gradients of
univariate taylor series coe�cients� This is done by re�interpreting the same formulae used
to reverse accumulate gradients in the conventional �scalar� case� Thus a carefully written
implementation of conventional reverse accumulation can be extended to the taylor series
valued case by �further� overloading of the appropriate operators� Next� we show how to
use this extended reverse accumulation technique so as to construct accurate �ie rigorous
and sharp� error bounds for the numerical values of the taylor series coe�cients of the
target function� again by re�interpreting the corresponding conventional �scalar� formulae�
This extension can also be implemented simply by re�engineering existing code� The two
techniques �reverse accumulation of gradients and accurate error estimates� each require
only a small multiple of the processing time required to compute the underlying taylor
series coe�cients� Space requirements are comparable to those for conventional �scalar�
reverse accumulation� and can be similarly managed� We conclude with a discussion of
possible implementation strategies and the implications for the re�use of code�

�



�� Reverse Accumulation� Suppose that we have a calculation which takes as input
a number of independent variable values� and produces as output the values of one or
more dependent variables� Such calculations are not in practice performed atomically� but
are internally expressed as a number of elementary steps involving intermediate variables�
�The precise sequence of such steps may depend upon the initial values of the independent
variables�� The values of such intermediate variables are typically calculated by elementary
operations of the unary form x 	 f�u� where f is an operation such as sin� log�p etc� or of

the binary form x 	 g�u� v� where g is an operation such as plus� times etc� Here x is an
intermediate or a dependent variable� and u� v are intermediate or independent variables�

Note that we are assuming that each intermediate and dependent variable is assigned
a value exactly once� and once assigned that value is not subsequently overwritten� The
variables used here thus correspond� not to program variables in code to calculate the
dependent variable values� but rather to nodes in the computational graph representing
such a calculation� The computational graph can be constructed automatically from the
evaluation code by overloading the arithmetic operators� For a fuller account see 
�� and

�
��

In what follows we also assume for simplicity of exposition that dependent variables
are not themselves used as arguments to further operations�

Using the computational graph we can evaluate� for each dependent variable y� the
gradient vector ry �which contains an element �y��u corresponding to each independent
variable u�� This calculation is performed as follows�

With each variable x we associate an accumulator �or adjoint variable� �x� initially
zero� To each atomic operation x 	 f�u� we associate the reverse accumulation step
�u �	 �x�f ��u�� where f � is the derivative of f � � denotes �scalar� multiplication� and l �	 r
denotes the operation of incrementing l by r� Similarly� to the atomic operation x 	 g�u� v�
we associate the two reverse accumulation steps �u �	 �x � g��u� v� and �v �	 �x � g��u� v�
where g� and g� denote the partial derivatives of g with respect to the �rst and second
arguments respectively�

Gradients are evaluated as follows� Choose a dependent variable y� and set �y 	 � for
that variable� Then carry out the reverse accumulation steps in the reverse order to the
original sequence of atomic operations� After this is done� we have by the chain rule that
�x 	 �y��x for each independent or intermediate variable x�

Alternatively� we may evaluate an arbitrary linear combination of the gradients corres�
ponding to distinct dependent variables yi by initializing the corresponding �yi to ci so as
to obtain

P
i ciryi 	 c � Jy where J denotes Jacobian�

It can be shown 
��� x����
�� x�� that the computational cost �in terms of the number
and time length of arithmetic operations� of obtaining ry �respectively c �Jy� in this way
is a small multiple �about three times� that of calculating y �respectively y� in the �rst
place� regardless of the number of independent variables represented in the gradient vector�

This remarkable result is particularly signi�cant in the case where the yi share com�
ponents of the calculation by making common use of intermediate variables� and hence
have sub�additive total cost�

Even if the entire Jacobian is required� extraction one column at a time using reverse
accumulation is attractive compared to forward accumulation provided that the number
of dependent variables is small compared to the number of independent variables�

�



In particular all parallelism which could be exploited in the function computation can
also be exploited in the reverse accumulation of the gradient�

In practice there is a performance penalty associated with the use of the computational
graph� owing to the fact that the indirect referencing� operation interpretation� and cache
usage pattern� are poorly supported by modern conventional hardware relative to the
support modern architectures give to �oating point arithmetic� Consequently when the
computational graph is used to drive a function calculation� these overheads can increase
the cpu time required by a factor of up to ten� thus leading to a total cpu time for gradient
calculation of up to twenty times the underlying conventional calculation cost 
�� x��
��

��� x�����

The space requirements of the reverse accumulation algorithm can be extremely large
compared to those of the underlying program to calculate the dependent variable values�
since the entire computational graph must be explicitly represented� However� the fast
RAM storage requirement can be held to a small multiple of that for the underlying pro�
gram� with the remaining storage space being held in slow sequential access archive store�
or re�calculated from program checkpoints� For further details of storage requirements
refer to 
��� 
��� and 
���

�� Univariate Taylor Series Valued Variables� Frequently it would be useful to
have not merely the numerical values of the dependent variables corresponding to par�
ticular values of the independent variables� but also information about the behaviour of
the dependent variable values under perturbations of the independent variables� Complete
information could be obtained by regarding each of the dependent variables as an ana�
lytic function of the independent variables� and calculating numerical values for the taylor
coe�cients of the corresponding multivariate taylor series�

This in turn requires calculating the gradient vector� Hessian matrix� and higher order
derivative tensors at the point in question� but if the number of independent variables is
large this labour is exhausting 
����

The use of sparse data structures may alleviate this overhead dramatically in the case
of separable calculations� ie in the case where most of the intermediate variables depend in�
dividually �directly and indirectly� upon only a small number of the independent variables


��

In many cases� however� it is possible to assume that each independent variable is itself
a polynomial function �usually a linear function� of an underlying taylor variable t� and
thus to be satis�ed with expressing each dependent variable as a univariate taylor series in
t� In particular� the required numerical coe�cients of a multivariate taylor series expansion
can usually be extracted fairly e�ciently by interpolating a number of univariate taylor
expansions� See 
��� x�� for further details�

If for each independent variable ui we have ui 	 ai�bit then the terms in the univariate
taylor series for a dependent variable y correspond to repeated directional derivatives of
the form d�dt 	

P
i bi ���ui 	 b�r evaluated at the point t 	 �� ie for ui 	 ai� In e�ect

we may regard t as an �in�nitesimal� generator if we are interested in local behaviour of
the dependent variables� or as a �possibly quite large� �nite o�set if we are concerned with
global behaviour� In the latter case we generally require a relatively large number of terms
in the taylor series �see for example 
����

�



Provided the elementary operation are su�ciently smooth� each dependent or interme�
diate variable x can be regarded as a polynomial series x 	 x��� � t�x��� � t��x��� � � � ��
where the x�k� depend �potentially� upon the values for ai and bi� but not upon the value
of t�

In general� if x is any �truncated� taylor series in t� we write 
x�k to denote the coe�cient
of tk in x� so that x 	

P
k t

k
x�k�
We can consider dx�dt as well as the component partial derivatives �x��ai 	 �x��ui�

Clearly 
dx�dt�k 	 �k � ��
x�k��� whence �by induction�


x�k 	
�

k�

�
dkx

dtk

�
�

Each partial derivative �x��ai is also a taylor series� and we could similarly consider
the taylor series �x��bi� The interesting thing is that 
�x��bi�k 	 
�x��ai�k�� for k � ��

This is a special case of the following more general result�

Theorem� Let u be a univariate taylor series in t� and let x 	 f�u� for some smooth
function f � Denote 
x�k by x�k� and 
u�k by u�k�� Then for all k � �� p � � we have

�x�k�p�

�u�p�
	

�x�k�

�u���
�x�k�

�u�k�p�
	 �

Proof� Since f is smooth� x can indeed be written as a taylor series x 	
P

k t
k � x�k� in

t� Expand f�u� as a power series in u� substitute u 	
P

k t
k � u�k� and collect terms in like

powers of t� Each x�k� is a �multinomial� function of u�j� for j � k� but �obviously� x�k�

does not itself depend on t� whereas x itself can be considered as a function of all the u�k�

and of t�
Now consider the derivative of x with respect to u�p�� say� The chain rule gives

�x

�u�p�
	 f ��u� � �u

�u�p�

which since
�u

�u�p�
	 tp

�x

�u���
	 f ��u� � �u

�u���
	 f ��u�

gives
�x

�u�p�
	

�x

�u���
� tp

This is true for a range of values of t about � hence� if we consider the two sides of this
equation as taylor series� corresponding coe�cients must be equal� In particular� since t
and u�p� are mutually independent� considering the coe�cient of t�k�p� gives

�x�k�p�

�u�p�
	

�
�x

�u�p�

�
k�p

	

�
�x

�u���
� tp
�
k�p

	

�
�x

�u���

�
k

	
�x�k�

�u���

as asserted by the theorem� A similar argument gives the second identity�
Qed

�



�� Forward Calculation of Taylor Series Coe�cients� We can evaluate the taylor
coe�cients for x 	 f�u� and x 	 g�u� v� numerically given the corresponding values for u
and v�

One obvious �but ine�cient� way to do this for x 	 f�u� is by noting that

x 	 f�u� 	 f�u��� � t�u��� � t��u��� � � � ��
	 f�u���� � f ��u������t�u��� � t��u��� � � � ��
�

�

��
f ���x������t�u��� � t��u��� � � � ��� � � � �

	 f�u���� � f ��u�����ts �
�

��
f ���u�����t�s� � � � �

where s 	 u��� � tu��� � t�u��� � � � � and so we can evaluate


sk�p 	 
s�sk���p 	
pX

q��


s�p�q
s
k���q 	

pX
q��


u�p�q��
s
k���q

x�p� 	
pX

k��

�

k�
f �k��u����
sk�p�k

where 
s��� 	 �� 
s��p 	 � for p � � whence

x��� 	 f�u���� x�p� 	
pX

k��

�

k�
f �k��u����
sk�p�k for p � �

Here for each k we require order n� operations �multiplies and adds� to evaluate the �rst
n taylor coe�cients for sk given the corresponding values for sk��� and hence we require
order n� operations to evaluate the �rst n taylor coe�cients for x�

This operation count can be reduced to order n� logn by using fast fourier multiplica�
tion to convolve the polynomial coe�cients� and even further to �n log n���� by using the
strategy of 
�� Algorithm �����

The �quite large� increase in the order constant means that a large value for n is required
before the use of fast convolution algorithms gives a signi�cant performance improvement�
Nevertheless� where the use of fast convolution methods has potential to improve perform�
ance� this will be noted in what follows�

�� Alternative Calculation Strategies� Alternatively� we can derive the taylor
coe�cients for x 	 f�u� as follows� Clearly x��� 	 f�u����� Recall that x�k� 	 ���k� �

dx�dt�k�� whence for k � � we have

x�k� 	
�

k

�
dx

dt

�
k��

	
�

k

�
f ��u� � du

dt

�
k��

	
�

k

k��X
l��


f ��u��k���l

�
du

dt

�
l

	
�

k

k��X
l��

�l � ��u�l���
f ��u��k��l��� 	
�

k

kX
l��

lu�l��
f ��u��k�l

�



Note that if we require the �rst n terms of the taylor series for f�u� then we require
only the �rst n� � terms of the taylor series for f ��u�� which in turn require only the �rst
n�� terms of f ���u� and �eventually� only the constant �zero order� term for f �n��u�� Thus
once again the calculation requires order n� operations�

In the two variable case where x 	 g�u� v� we can show in a similar fashion that

x�k� 	
�

k

kX
l��

l
�
u�l��
g��u� v��k�l � v�l��
g��u� v��k�l

�

again requiring n� operations �or n� log n if fast fourier multiplication is used 
�� x����
However� in the case of the vast majority of common mathematical operations it is well

known that the �rst n terms of the taylor series for x can be calculated in ascending order
at a computational cost proportional to n� rather than n� �respectively n logn rather than
�n log n���� using fast fourier methods�� by using the �already computed� lower order series
terms for x� f ��u� and u itself�

For example� consider the case x 	 sin u� Set w 	 sin� u 	 cos u� Then as before

x�k� 	
�

k

kX
l��

lu�l��
f ��u��k�l 	
�

k

kX
l��

lu�l��wk�l

and similarly since cos� u 	 � sin u we have

w�k� 	
�

k

kX
l��

lu�l��
f ���u��k�l 	 ��

k

kX
l��

lu�l��xk�l

Noting that each w�k� depends only upon x�p� for p � k and conversely� we see that the
two sets of taylor coe�cients for x and w can be calculated together for n terms at a total
cost of order n��

As an example of a two variable operation consider x 	 g�u� v� 	 u�v� Then u 	 vx so

u�k� 	
kX

l��

v�l��x�k�l� 	 v���x�k� �
kX

l��

v�l��x�k�l�

whence

x��� 	
u���

v���
x�k� 	

u�k� �Pk
l�� v

�l��x�k�l�

v���
for k � �

Again� note that the total computational cost is order n��
For details of use of fast fourier methods to reduce the operation count to order n logn�

see 
�� x���
These taylor series may be evaluated by further overloading the operators which build

the computational graph� or by a subsequent re�traversal of the computational graph in
the forward direction for speci�c choices of the coe�cients u

���
i in the independent variables

ui 	 u
���
i � u

���
i t� For further details see 
��� pp ��������� 
��� C�� code�� and 
��� 
���

�� Reverse Accumulating Gradients of Taylor Series Coe�cients� The �rst
objective of this note is to point out that the technique of reverse accumulation can be
applied to calculate gradients of univariate taylor series�

�



Let us clarify what we mean by this� If y is a dependent variable with taylor series
coe�cients y�k� then we can consider for speci�c k the gradient vector ry�k� which con�
tains an element 
�y��u�k 	 
�y��u����k 	 �y�k���u��� corresponding to each independent
variable u� �Recall that each independent variable u is itself a taylor series� usually linear�
in t��

Our assertion is that we can use reverse accumulation to calculate simultaneously all
the gradient vectors ry�k� for the given y� It makes no di�erence whether we regard this
as taking a gradient of each term of the taylor series for y or as evaluating a taylor series
for the gradient vector ry� since r

�
y�k�

�
	 
ry�k�

In fact� our purpose here is to show that the very same formulae used in the scalar case
can be re�interpreted as applying to taylor series values� For let x� u also be univariate
taylor series in t with x 	 f�u�� Let �x be the taylor series de�ned by

�x 	
�y

�x
	

�y

�x���
ie �x�k� 	

�y�k�

�x���
	

�y�k�p�

�x�p�
for k� p � �

The partial derivative �y�p���u��� is� by the chain rule� made up of a sum of contribu�
tions over all intermediate variables x such that x depends directly upon u� Considering
the e�ect that a small change in u��� would have upon y�p� through x we see that the
contribution to �y�p���u��� corresponding to x 	 f�u� is

X
k�p

�y�p�

�x�k�
� �x

�k�

�u���
	
X
k�p

�y�p�k�

�x���
� �x

�k�

�u���
	
X
k�p


�x�p�k
f
��u��k 	 
�x � f ��u��p

where �x � f ��u� denotes the polynomial product of �u and f ��u� considered as taylor series�
Thus to the forward step x 	 f�u�� where now x and u are taylor series� we associate the
reverse accumulation step �u �	 �x� f ��u�� where f � is the derivative of f � �x� �u� f ��u� are all
taylor series� and � now denotes taylor series product �ie coe�cient convolution��

A similar argument applies to the two�variable case� With the atomic operation x 	
g�u� v� we associate the two reverse accumulations �u �	 �x � g��u� v� and �v �	 �x � g��u� v�
where g� and g� denote the partial derivatives of g with respect to the �rst and second
arguments respectively�

Thus we can reverse accumulate 
ry�k 	 ry�k� as follows� Set �y 	 � �ie set �y��� 	 �
and �y�p� 	 � for p � �� and then carry out the reverse accumulation steps in taylor form�
in the reverse order to the original sequence of atomic operations� After this is done we
have that �x 	 �y��x� ie �x�k� 	 �y�k���x���� for each independent or intermediate variable
x�

These gradient components may correspond to mixed derivatives which are of interest
in themselves to a calculation� For example� the e�cient numerical approximation of the
bifurcation points and cusp singularities of dynamical systems requires �interpolations of�
gradients of exactly this form 
��� x�����

Alternatively� gradients of taylor coe�cients may be useful in estimating the sensitivity
of the taylor series coe�cient values to changes in the initial values of the independent
variables� One particular application of this is the estimation of the e�ects of rounding
error� an issue to which we return below �x���

�



Note that� since �constant� parameters may be regarded as independent variables with
�xed �unchanging� values� this method may also be used to estimate sensitivities to such
parameters�

	� Performance Analysis� The method described in the previous section requires
that we obtain a taylor series for the �rst derivatives of each elementary operation in�
volved in the function calculation� but only for the �rst derivatives� As we have seen�
frequently these �rst derivative series are available anyway as a by�product of the taylor
series calculation for the underlying function� or can be made available be re�arranging
that calculation�

Although 
f ��u��k �	 �k���
f�u��k�� or anything as simple as that� nearly all interesting
functions are solutions to some ODE of order �at most� two� from which recurrence relations
for the derivative coe�cients can be derived�

Once the taylor series corresponding to these derivatives are available� the reverse
accumulation requires of order n� multiplies and adds per intermediate variable to produce
the whole of ry to n terms �reducing to order n log n if fast fourier methods are used to
perform the convolutions��

Assuming that the derivative taylor series can be made available in a time comparable
to that required to calculate the taylor series corresponding to the underlying function
value �a safe assumption�� the time requirement for calculating the whole of the matrix
ry is then a small multiple of the time required to evaluate the taylor series for y�

The space requirement is the product of the space requirement for conventional �scalar�
reverse accumulation with a number of the form � � �n� where typically � �� �� Similar
remarks apply to those made above in x��

The calculations given in 
�� x�� to evaluate a linear combination of rows of the Hessian
of a function f are a special case of the construction described here� To see this� argue
as follows� Observe �rst that if y 	 f�u� where u 	 a � bt then b �Hf 	 r�b � rf� 	
r�dy�dt� 	 ry����

In the forward pass of the code to calculate the Hessian given in 
�� x�� each xi corres�

ponds to x
���
i in our notation� and wi to x

���
i � The values

Dpfi�x�i�� � � � � x�ini
� and

niX
q��

w�iq�DqDpfi�x�i�� � � � � x�ini
�

�which as remarked in 
�� could be calculated on the forward pass� correspond to the
zero�th and �rst order terms of the taylor series for Dpfi�x�i�� � � � � x�ini

��

In the reverse pass� we see that each �xi corresponds to �x
���
i in our notation� and also

by induction each �wi corresponds to �x
���
i since if �wi 	 �x

���
i then the term added to �w�ipin


�� is in fact

�wi�Dpfi�x�i�� � � � � x�ini
� � �xi

X
q

w�iq�DqDpfi�x�i�� � � � � x�ini
�

	 �x
���
i 
Dpfi�x�i�� � � � � x�ini

��� � �x
���
i 
Dpfi�x�i�� � � � � x�ini

���

	 
�xi�Dpfi�x�i�� � � � � x�ini
���






whence �w�ip 	 �x����ip
in agreement with the algorithm given here�

This approach can be used to obtain the entire Hessian row by row� as suggested in 
���
at a total cost which is linear in the number of independent variables� However� for sep�
arable problems where the entire Hessian is required� better performance can be obtained
by using sparse data structures and conventional �forward� accumulation techniques 

��
��
as mentioned above �x���

Where the entire third or higher order derivative tensor is required� the method outlined
here is even less attractive� However where only part of the tensor is required� ie the
number of required �linear combinations of� components of the tensor is small relative
to the number of independent variables� good performance may be obtained using this
approach�

Reverse accumulation of gradients for taylor series coe�cients is not itself a new idea

���� However the analysis presented here allows reverse accumulation code written for the
scalar case using operator overloading to be extended with relatively little modi�cation so
as to provide reverse accumulation of taylor series coe�cient gradients� We return to this
point below �x���

An alternative approach to the problem would be to regard each computational step
as a calculation of the n taylor terms of the result �as dependent variables� from the
corresponding taylor terms of the parameters �as independent variables� by �sub�atomic�
operations� and use overloading at this �lower� level to construct the computational graph
for the whole calculation� The gradients can then be computed in one reverse pass� by
starting from y�n� and afterwards using the fact that

dy�p�

dx�q�
	

dy�n�

dx�n�q�p�

This approach has not been followed here for three reasons�
Firstly� it involves a larger interpretive overhead in traversing the computational graph�

The trend in automatic di�erentiation is towards each node in the graph representing more
computation �ie towards �larger� elementary operations��

Secondly� the use of exact arithmetic to reduce roundo� error in the taylor steps �see
x
 below� would be hampered by this approach�

Thirdly� the approach followed here appears to lay a better foundation for our next
task� the derivation of accurate error bounds for taylor series coe�cient values�


� Accurate Error Bounds for Scalar Valued Calculations� It is frequently of
interest to have accurate bounds on the extent to which the calculated numerical value of
a dependent variable may have been a�ected by rounding errors during the course of the
calculation�

Interval arithmetic usually gives bounds which are too loose �frequently by several
orders of magnitude�� since it takes no account of those rounding errors in calculating
intermediate values which in fact are guaranteed to cancel one another out�

For example� suppose that x 	 f�u�� y 	 x���x� and suppose that the calculated value
for x is known to be within 	 of �� where 	 represents the rounding error in the calculation
of f�u� from u�

�



Then �assuming just for the sake of argument that 	 is small relative to � and large
relative to the subsequent rounding errors� ��x is within �

	
	 of �

�
� and so �naively� y is

within 

	
	 of ��

�
� In fact� however� we can see that y must be within �

	
	 of ��

�
� This

corresponds to the fact that dy�dx 	 �� ��x� 	 �
	
�

For convenience we suppose in what follows that the intermediate and dependent vari�
ables are indexed in some common fashion consistent with the dependencies in the com�
putational graph� so that each dependent variable y can be identi�ed with xm for some
index m�

In the general case� we associate with each atomic step of the calculation an upper
bound 	i on the rounding error introduced at that step into the value of the corresponding
intermediate variable xi� Recall that following a reverse accumulation starting from a
dependent variable y 	 xm we have �xi 	 �y��xi� Consequently an approximate worst�
case upper bound on the rounding error for the dependent variable y is given by


 	
X
i

j�xij 	i

where the summation is over all computational steps upon which y �functionally� depends
�ie all steps in which rounding error a�ecting y may have been introduced��

If desired� the summation for 
 may be extended to contain terms corresponding to
initial uncertainties in the independent variables� as well as the terms corresponding to
rounding errors introduced during the course of the computation� thus producing an es�
timate of the total uncertainty in y�

Usually for each given hardware and software environment we can specify a small
constant � such that 	i is bounded by the greater of � � jxij and minreal for all steps of all
possible calculations�

However� as Iri shows in 
���� it is possible to give a more exact estimate of the rounding
error� as follows�

Supplement the �forward� calculation of the scalar quantities xi 	 f�ui� by correspond�
ing interval calculations for interval quantities Xi 	 F �Ui�� Clearly xi � Xi�

Replace each reverse accumulation step �u �	 �x � f ��u� by the corresponding interval�
valued operation �U �	 �X �F ��U� �where F ��U� denotes the interval�valued derivative and
� denotes interval multiplication��

Finally set �i 	 
�	i� 	i� where now 	i is a �tight� upper bound for the worst�case
rounding error that could occur in the step Xi 	 F �Ui�� and de�ne

E 	
X
i

�Xi ��i

Then this gives an error bound for the rounding error of y 	 xm which is accurate in
the sense of being both rigorous and sharp�

Rigorous means that the correct value for y and the calculated value can di�er by at
most half the width of E �ie the true value for y must lie in the interval y �E� where y is
the scalar calculated quantity�� Note that usually the width of the interval E will be much
less than the width of the interval Y � sometimes by several orders of magnitude�

Sharp means that this bound is asymptotically tight as the rounding errors diminish�
More precisely� the ratio between the width of E and the actual worst�case rounding error

��



tends to unity as the accuracy of machine arithmetic improves �ie as � 	 ��� In practice� of
course� the bound tends to be pessimistic� since the worst�case scenario� although possible�
rarely occurs�

These results can be proved by considering the e�ects upon y of a perturbation� rep�
resenting the e�ects of rounding� applied to each variable in turn� in the order of their
calculation� The use of the mean value theorem in conjunction with interval arithmetic
allows us to disregard the e�ect of second and higher order derivatives �contrast with 
�����

In practice� for a given level � of machine precision� it may be necessary or desirable
to apply this accurate error bounding technique recursively in order to tighten the bounds
on certain intermediate variable values� This can be done in a similar fashion to the
�preaccumulation� technique used for derivatives 
��� provided care is taken to distinguish
between the �tight� bound on the error in the tightened intermediate variable �which will
include the summation terms corresponding to uncertainties in the parameters to the sub�
graph being tightened� and the �tight� bound on the rounding error introduced in the
calculation of the intermediate variable being tightened �which will exclude such terms��

One obvious class of candidates for this �premature tightening� is singularities� for
example points in the computational graph where division is attempted by an interval
containing zero� In this case� premature tightening may remove the singular value from
the relevant interval�

Another case where premature tightening may be useful is at intermediate variables
for which roundo� errors in the �forward� calculation of the values of the corresponding
elementary function or of its derivative have a large e�ect on the worst�case error bound�

One strategy for identifying such variables is by checking the size of 	i�xi relative to �y�
Assuming that 	i 
 �jxij� the variables sought are those for which j�xixij �� jyj� If any
improvement is to result from premature tightening� then at least one of the corresponding
intervals Xi� �Xi must span several �binary� orders of magnitude �or include zero��

If this is the case for Xi 	 Fi�Xj� then it may be worth tightening Xj� It may also be
worth tightening Xj when F ��Xj� spans several binary orders of magnitude� if this has the
prospect of tightening the appropriate �X�s�

�� Accurate Error Bounds for Taylor Series Coe�cients� The second objective
of this note is to show that the results of the previous section can be extended to the case
where the variable values correspond to taylor series� Indeed� once again the very same
formulae can be re�interpreted so as to apply to taylor series valued variables�

The e�ect on y�p� corresponding to roundo� error in the calculation step corresponding
to the intermediate variable x is approximately

pX
k��

�y�p�

�x�k�
� 	�k� 	

pX
k��

�y�p�k�

�x���
� 	�k� 	

pX
k��

�x�p�k� � 	�k� 	 
�x � 	�p

where 	�k� is the roundo� error in the calculation of x�k� introduced in that calculation
step�

Suppose that we have associated with each atomic step of the calculation an upper
bound 	

�k�
i on the rounding error introduced at that step into the value of the corresponding

intermediate variable coe�cient x
�k�
i �

��



De�ne the taylor series 
 by

 	

X
i

j�xij 	i

where the modulus of the taylor series for �xi is taken component by component�
Then for a dependent variable y 	 xm an approximate worst�case upper bound on the

rounding error for y�p� will be given by 
�p��
Once again� augmenting the scalar taylor series operations by interval valued operations

in the same way as above allows us to produce error bounds on the taylor coe�cients for
y which are accurate in the sense of being both rigorous and sharp�

Speci�cally� supplement the �forward� calculation of the taylor series quantities xi 	
f�ui� by corresponding interval valued taylor series calculations Xi 	 F �Ui� which associate

an interval X
�p�
i with each term x

�p�
i �

Replace each reverse accumulation step �u �	 �x � f ��u� by the corresponding interval�
valued operation �U �	 �X�F ��U� �where F ��U� denotes the interval�valued taylor series for
the derivative and � denotes multiplication of interval valued taylor series� ie convolution
of interval valued coe�cients��

Finally set �
�k�
i 	 
�	�k�i � 	

�k�
i � where 	

�k�
i is a �tight� upper bound for the worst�case

rounding error that could occur in the k�th term of the step Xi 	 F �Ui�� ie the worst
rounding error in x�k� that could occur for any point u � Ui in the step x 	 f�u�� and
de�ne

E 	
X
i

�Xi ��i

Then E�k� gives an error bound for the rounding error of y�k� which is accurate in the
sense of being both rigorous and sharp�

Furthermore� provided the values 	�k� are made available in the computational graph�
this error estimate calculation may readily be combined with the reverse accumulation
process for the calculation of the gradient of the respective dependent variable� at an
additional cost of order n� per step �order n logn if fast convolution is used��

It remains to determine tight bounds 	�k� for the roundo� errors introduced at each
step into the taylor series calculations for x�k� with k � ��

For some operations this is straightforward� We suggest two �non�exclusive� alternative
ways by which this might be done in general� First� by using the methods of Corliss 
���

Second� by using exact arithmetic as described in �for example� 
��� and 
�� Chapter
Three�� extended to intervals� Since the taylor series formulae involve mainly convolutions�
similar techniques to those used for scalar products should work well in minimizing the ac�
cumulated error during the forward step� Exact arithmetic could also be used to advantage
during the reverse accumulation calculation and interval error estimate summation�

The numerical stability of alternative forms for evaluating the taylor coe�cients of
intermediate variables and the corresponding �rst derivatives is a live issue� particularly if
fast convolution methods are used�

Premature tightening techniques can be applied to the roundo� error estimation for
taylor series� just as in the scalar valued case� although the criteria must now be applied
on a maximum component basis�

��



�� Re
using Code� We have shown that reverse accumulation and accurate error
bounds can be extended to taylor series valued calculations by re�interpreting the same
formulae used in the scalar valued case� This has implications for the re�use of code
implementing such techniques�

Where code to implement reverse accumulation is written in a language which permits
operator overloading� such as Ada� or better yet in an object�oriented language such as
C��� then it becomes possible to combine the reverse accumulation code with similar
code written to perform interval arithmetic� exact arithmetic� and taylor series arithmetic�
in such a way as to produce code which will reverse accumulate gradients of taylor series
coe�cients�

Similarly the very same code used to calculate accurate roundo� error bounds for
function values in the scalar case can be used to produce corresponding bounds for taylor
series coe�cients� by combining that code with other� existing� well understood code�
provided that su�cient care has been taken in the speci�cation of the di�erent pieces of
code�

One possible development strategy would be as follows� Begin with a �plain vanilla�
scalar reverse accumulation package and modify �if necessary� so as to store elementary
function values as pairs �f�x�� f ��x���

Re�declare the relevant variables as being of truncated�taylor type� and combine with
�pre�existing or independently developed� code for manipulating such types� Re�building
the resulting package to support more e�cient manipulation of the taylor coe�cients �for
example� by incorporating fast convolution� exact arithmetic� and sparse data structures in
the taylor manipulation code� is straightforward� whether done immediately or at a later
stage�

Take an interval processing package� including accurate scalar product if desired� and
combine with the taylor manipulation code� Re�overload the latter to match the former
where necessary� �In particular� coe�cient convolution can be interpreted as a scalar
product�� Test the resulting interval�valued taylor manipulation package and then lay to
one side�

To the original �vanilla� package� add approximate error estimates� Re�declare the
relevant variables in the resulting package to be of interval type �or of �scalar� enclos�
ing interval� composite type� as appropriate�� Combine directly with the same interval
processing package used earlier� and test the resulting error estimates for accuracy�

When satis�ed� combine this package with the interval taylor package prepared earlier�
by re�overloading appropriate variables as of type �taylor series of �previous type���

The fact that the very same code can be re�used in these ways not only shortens
development time� but also heightens the con�dence of the implementor in the correctness
of the �nal artifact�

References�


�� M�C� Bartholemew�Biggs� ����� An Introduction to Numerical Computation using
Ada� Technical Report ���� Numerical Optimisation Centre� Hat�eld Polytechnic


�� R�P� Brent and H�T� Kung� ���
� Fast Algorithms for Manipulating Formal Power
Series� JACM ����� �
�����

��




�� D�B� Christianson� ����� Automatic Hessians by Reverse Accumulation� IMAJNA
�to appear�


�� D�B� Christianson and S� Davis� ����� Why is Automatic Di�erentiation so Slow
and What can be Done About it� in preparation


�� G�F� Corliss and L�B� Rall� ����� Computing the Range of Derivatives� IMACS
Annals on Computing and Applied Mathematics� to appear


�� G�F� Corliss� ����� Overloading Point and Interval Taylor Operators� in Automatic
Di�erentiation of Algorithms� SIAM� Philadelphia�


�� L�C�W� Dixon� ��
�� Automatic Di�erentiation and Parallel Processing in Optimiz�
ation� Technical Report �
�� Numerical Optimization Centre� Hat�eld Polytechnic



� L�C�W� Dixon et al� ����� Automatic Di�erentiation of Large Sparse Systems�
Journal of Economic Dynamics and Control �North Holland� �� �������


�� L�C�W� Dixon� ����� Use of Automatic Di�erentiation for Calculating Hessians and
Newton Steps� in Automatic Di�erentiation of Algorithms� SIAM� Philadelphia�


��� A� Griewank� ��
�� On Automatic Di�erentiation� in Mathematical Programming


� Kluwer Academic Publishers� Japan


��� A� Griewank et al� ����� ADOL�C A Package for the Automatic Di�erentiation
of Algorithms written in C!C��� ACM Transactions on Mathematical Software to

appear


��� A� Griewank� ����� Automatic Evaluation of First and Higher�Derivative Vectors�
International Series of Numerical Analysis Vol ��� Birkhauser Verlag� Basel


��� A� Griewank� ����� Achieving Logarithmic Growth of Temporal and Spatial Com�
plexity in Reverse Automatic Di�erentiation� Optimization Methods and Software�
to appear


��� M� Iri� ��
�� Simultaneous Computation of Functions� Partial Derivatives and Es�
timates of Rounding Errors � Complexity and Practicality� Japan Journal of Applied
Mathematics ���� �������


��� M� Iri and K� Kubota� ��
�� Methods of Fast Automatic Di�erentiation and Ap�
plications� Technical Report METR 
���� Department of Mathematical Engineering
and Instrumentation Physics� University of Tokyo


��� M� Iri et al� ��

� Automatic Computation of Partial Derivatives and Rounding
Error Estimates with Application to Large�scale Systems of Non�linear Equations�
Journal of Computational and Applied Mathematics �North Holland� �� �������


��� M� Iri et al� ��

� Estimates of Rounding Error with Fast Automatic Di�erentiation
and Interval Analysis� Technical Report RMI 

���� Department of Mathematical
Engineering and Instrumentation Physics� University of Tokyo

��




�
� M� Iri� ����� History of Automatic Di�erentiation and Rounding Error Estimation�
in Automatic Di�erentiation of Algorithms� SIAM� Philadelphia�


��� G� Kedem� ��
�� Automatic Di�erentiation of Computer Programs� ACM Transac�
tions on Mathematical Software 	��� �������


��� U� Kulish and W� Miranker� ��
�� Computer Arithmetic in Theory and Practice�
Academic Press�


��� S� Linnainmaa� ����� Taylor Expansion of the Accumulated Rounding Error� BIT
�	 �������


��� R�D� Neidinger� ����� An E�cient Method for the Numerical Evaluation of Partial
Derivatives of Arbitrary Order� ACM Transactions on Mathematical Software� to

appear

��


