
Abstract We investigate sparse networks of threshold units,
trained with the perceptron learning rule to act as associative
memories.  The units have position and are placed in a ring so that
the wiring cost is a meaningful measure.  A Genetic Algorithm is
used to evolve networks that have efficient wiring, but also good
functionality.  It is shown that this is possible, and that the
connection strategy used by the networks appears to maintain
connectivity at all distances, but with the probability of a
connection decreasing linearly with distance.

Index Terms Associative Memory, Neural Network, Genetic
Algorithm, Small World Network, Connectivity.

I. INTRODUCTION

In real neuronal networks the position of the neurons, and
the pattern of connectivity, appears to be highly optimized to
minimize the total amount of wiring [1].  For example in the
nematode worm the neurons are actually placed in almost
exactly the right position for most efficient wiring [2].
Normally in artificial neural networks the neurons are not
considered to have a geometric position and so
considerations of efficient wiring are not relevant.  However,
when the network is intended to be physically instantiated
then, of course, position and wiring costs become important.
For example in cellular neural networks the units are
normally placed in a grid and are connected locally [3].

When an artificial neural network is intended to perform
as an associative memory then it is known that using only
local connectivity leads to poor performance, with local
domains of errors not being corrected [4, 5].  In the work we
report here we attempt to find efficient connectivity in a high
capacity associative memory model by evolving networks
using a genetic algorithm (GA).

II. THE ASSOCIATIVE MEMORY MODEL

The particular neural network used here is a high
performing variant of the canonical Hopfield model [6].  A
set of perceptrons is sparsely interconnected with no attempt

to ensure symmetry of connectivity.  However the networks
are regular – each node has K incoming connections.  No
self connections are allowed.  Training is performed using
the standard perceptron learning rule, and the dynamics is
governed by asynchronous random-order updates.  To be
specific:

The net input, or local field, of a unit, is given by:
hi = wijS j

j≠i
∑  where S 

€ 

±1( )  is the current state and 

€ 

wij  is the

weight on the connection from unit j to unit i (zero if no
connection exists). The dynamics of the network is given by
the standard update: 

€ 

′ S i =Θ(hi) , where 

€ 

Θ  is the Heaviside

function.
The networks are trained using a variant of the normal

perceptron training rule.  The learning [7] algorithm is:

Begin with zero weights
Repeat until all local fields are correct
 Set state of network to one of the ξ p

 For each unit, i, in turn:
 Calculate 

€ 

hi
pξ i

p.  If this is less than T
   then change the weights to unit i
   according to:

    

€ 

∀j ≠ i ′ w ij = wij +
ξ i

pξ j
p

K

Where ξ p  denotes the training patterns, and T is the

learning threshold, which here has the value of 10.  Whilst
such a trained network will not satisfy the normal
requirements for simple dynamics, in practice these models
perform well [8].

The units are given a simple spatial relation: they are
arranged in a ring  (see Figure 1).  The distance between any
two units in the ring is taken as the (minimum) number of
steps on the ring to get from one unit to the other.

As already stated the neural networks used here do not
have full connectivity: in fact each unit is connected to 20
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other units – so K  = 20.  With random training sets, no
connection strategy can better a random one, in terms of
pattern completion capability [4].  However, it is known that
there are other connection strategies which give a pattern
completion performance as good as that of randomly
connected networks, but with much reduced wiring length.
In particular a so-called small world model (one with mostly
local connections but also with some distal ones, Figure 1,
right) [9] can give good performance [4].  However, there
may exist alternative connection strategies that are also
effective.  Here we begin the investigation into what sort of
efficient connectivity can be evolved using a GA.

Figure 1: Units arranged in a simple 1-dimensional ring.  On the left the
units have random connectivity and on the right they have local
connectivity and some distal connections – a small world model.

III. THE FITNESS FUNCTION

We are interested in how well the networks trained using
the perceptron style learning rule, described above, perform
as associative memories.  The capacity of such networks is
determined by the number of incoming connections (K) that
each perceptron receives.  For random pattern sets a
perceptron can learn up to 2K  patterns [10].  Assuming
regular connectivity graphs (as is the case here) the capacity
will be determined by the level of dilution and not the
specific pattern of connections, and hence is not subject to
empirical investigation.   These networks are often referred
to as high capacity associative memories since with full
connectivity, the capacity is 2N (where N is the number of
units) as against 0.14N for the standard Hopfield model,

We are, however, interested in the pattern correction
ability of the network and this is determined not only by
loading but also by the nature of connectivity.  So we
measure, R, the normalised mean radius of the basins of
attraction, as a measure of attractor performance in these
networks.  It is defined as:

 

€ 

R =
1−m0

1−m1
where m0 is the minimum overlap an initial state must have
with a fundamental memory for the network to converge on
that fundamental memory, and m1 is the largest overlap of
the initial state with the rest of the fundamental memories.
The angled braces denote a double average over sets of
training patterns (5 used in each case) and initial states.

Details of the algorithm used can be found in [11].  A value
of R = 1 implies perfect performance and a value of R  = 0
implies no pattern correction.

As already described, we also attempt to minimize the
total wire length in the network L.  Three different fitness
functions are used for the GA.  First we attempt to minimize

L alone, so 

€ 

fL =
1
L

.  We also attempt to maximize R alone,

so 

€ 

fR = R .  Finally we try to find networks with low L and

high R .  Experimentation showed the fitness function

€ 

fRL =
R
L4

 gave the appropriate balance between L and R for

the networks used here.

IV. THE EXPERIMENTS

Two sizes of network were used in the experiments: firstly
a 50 unit network and secondly one with 100 units.  The
networks are relatively small, as many tens of thousands of
them have to be trained and assessed in the process of
evolving a fit one.  In both sizes of networks each unit had
20 incoming connections.  The training sets consisted of six
random patterns for the 50 unit networks and seven random
patterns for the 100 unit networks.

Initially a population of 50 randomly configured networks
is created, so that each network has a different random
connectivity graph (subject to the 20 incoming connections
constraint and no self-connections).  Each network is then
trained on a different randomly created training set, and the
R and L values are calculated.  This is repeated five times
and the average value of R is reported for each network.  The
fittest networks are then selected as the basis for the next
generation.  Crossover in the GA is constrained so that each
unit in the offspring will still have 20 incoming connections
– this is maintained by restricting crossover to occur only at
boundaries representing complete sets of input connections
to a unit (see Figure 2).  Any mutation that takes place is
also constrained to maintain the same overall pattern of
connections.

The details of the GA used are as follows.  Rank-based
selection is used, with a structure length of 2500 bits (50 ×
50) or 10,000 in the case of larger networks.  The crossover
rate is 0.6 and the mutation rate is 0.001 for the smaller
network, dropping by 0.95 every 1000 generations.
Replacement uses single element elitism.  Typical runs of
the GA showed the fitness level stabilizing after about
12,000 generations.  The process is summarized as:

1. Create a population of 50 random networks.
2. Train each network 5 times with random training sets.
3. Evaluate L and the mean R for each network.
4. Select, crossover and mutate to form a new population.
5. Repeat from 2.



It is important to note here that only the pattern of
connectivity is being evolved.  A successful network will
have a pattern of connectivity that can function well with
any random training set.  The networks are thus not evolving
to perform well with a single, specific, set of training
patterns.
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Figure 2:
a) Two possible networks: one with random connectivity and one with local
connectivity. Connections to unit 1 are drawn. The corresponding
connection matrices are given under the network.  Note that the top row
indicates the connections for unit 1.
b) A possible crossover is shown between two connection matrices.
Crossover is constrained to take place only at the boundaries of complete
unit connections as shown.

V. RESULTS

The GA assesses networks relatively crudely, averaging R
over just 5 training sets.  In order to get a more reliable
indication of performance, all the results presented are
averages of assessing the final networks with 100 new
random training sets.

Our first experiment was undertaken as a simple test to see
if good connectivity could be evolved for the relatively
simple goal of having short wiring length – with fitness

function 

€ 

fL .  Obviously the solution to this problem is

simply for each unit to connect to its closest neighbours.
Table 1 gives the result of a run of 10,000 generations.

TABLE 1:
 THE RESULT OF TRYING TO FIND A NETWORK WITH LOW L

Initial Random Best at Generation 10,000
L 12.78 6.05
R 0.50 0.26

It is apparent that it is possible to evolve networks with
short wiring length, but because the fitness function ignores
any network performance factors, we see, as expected, that
the optimized network has a significantly poorer
performance (as measured by R) than that of the original
random network.  The resulting connectivity matrix can be
seen in graphic form in Figure 3.  The initially random
connectivity matrix is changed to one in which almost all the
connections are local.  Note that the leading diagonal is
empty, as no unit is allowed a self-connection in these
models.

The next experiment, attempting to maximize R, was run
to confirm that no connection strategy can better a random
one.  The result confirms this, as can be seen in Table 2.  It
has not been possible for the GA to find a network that has
an R value much better than the original random network.

TABLE 2:
 THE RESULT OF TRYING TO FIND A NETWORK WITH HIGH R

Initial Random Best at Generation 10,000
L 12.78 12.82
R 0.50 0.50

Thirdly we used fitness function 

€ 

fRL  to optimize R and

minimize L .  In this case the GA was run five times for
12,000 generations.  Table 3 gives the result.

TABLE 3:
 THE RESULT OF TRYING TO FIND A NETWORK WITH LOW L AND HIGH R

Initial Random Best at Generation 12,000
L 12.78 9.36
R 0.50 0.48



* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

Figure 3: The disordered random connectivity matrix (above) is transformed
into one with almost completely local connections (below), when L  is
minimized.

It can be seen that although R is maintained at about its
original value, L  is significantly reduced.  The final
connectivity matrix is shown in Figure 4.  Whilst there is a
predominance of local connections, a fraction of distal
connections are maintained.
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Figure 4: The connectivity matrix that results with fitness function 
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fRL

In order to further investigate the evolved connectivity
pattern, a histogram of the connection lengths, for both the
networks optimized with 

€ 

fL and 

€ 

fRL , was produced, and is

shown in Figure 5.
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Figure 5: A histogram of the final connection lengths in a network

optimized for low L (diamonds) and a network optimized for both low L
and high R (squares).  A trend line has been added for the 

€ 

fRL  plot, and a

moving average for the

€ 

fL   plot, to guide the eye.

A fully localized network would have a histogram that
showed all 100 connections between units up to 10 units
away being made, and no others.  As expected the 

€ 

fL
network approximates to this pattern. The 

€ 

fRL  network,

however, has some connections of all lengths.  Interestingly,
the histogram shows a fairly linear decrease in frequency
with length, as shown by the trend line.  In fact the Pearson



Correlation Coefficient for this data is 0.98.
The final experiment used the larger 100 unit network,

with K kept at 20 and seven random training patterns.

TABLE 4:
 THE RESULT OF TRYING TO FIND A NETWORK WITH LOW L AND HIGH R IN

THE 100 UNIT NETWORK

Initial Random Best at Generation 40,000
L 25.24 16.39
R 0.65 0.58

As before it can be seen, in Table 4, that although R is
maintained at about its original value (although here there is
a small falloff), L is again significantly reduced.  The
resulting connectivity matrix is given in Figure 6, and shows
a similar pattern to that in Figure 4. Figure 7 gives the
histogram of connection length in the evolved 100 unit
network.  Once again we see a fairly linear fall in frequency
with length (the Pearson Correlation Coefficient is 0.97).
The pattern is quite similar to the smaller, 50 unit, network
suggesting that this is a non-accidental feature of the evolved
connectivity.

Figure 6: The connectivity matrix that results with fitness function 

€ 

fRL  and

a 100 unit network.

In earlier work [4] we investigated high performance
associative memories with a small world architecture.  The
results presented here show that the evolved networks are at
least as effective as the best of the small world networks.
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Figure 7: A histogram of the final connection lengths of a 100 unit network
optimized for both low L and high R.

V1. DISCUSSION

Little attention has been paid, in the literature so far, to the
issue of efficient wiring of neural networks.  This is partly
due to the fact that in a simulated neural network the actual
wiring cost and complexity is of no concern, rather the
nature of the resulting computation is of interest.  It has only
recently become possible to gather detailed information
about the wiring of real neuronal networks, and the wiring
appears to be far from arbitrary.  Recent work has also
shown that the connectivity pattern in sparse associative
memories is important in determining functionality, and
various connection strategies have been proposed [4, 12-14].
In the work described here we allow the networks to be
relatively free to choose the most suitable connectivity
matrix, and by means of a GA to discover such an optimal
matrix with respect to the task in hand.  Of course,
evolutionary computation has been applied extensively to
finding architectures (and weights) for neural networks [15],
but as far as we know no one has used these methods in the
context proposed here.

Even with the small associative memories used here, the
search space in which the GA operates is vast: in the 100
unit network there are approximately 

€ 

5.4 ×1022  possible
connection matrices.  So it was not clear at the outset of this
research that a GA would succeed with even the simple task
of optimizing 

€ 

fL .  The results show, however, that it is

possible to find connectivity that not only minimizes L, but
also one that does this whilst maintaining pattern correction
performance.

The strategy that the networks appear to use is to maintain
some level of connectivity with nodes at all distances, with
the probability of a connection being present apparently
decreasing linearly with distance.  It will be interesting to
explore how well this result corresponds with real neuronal
systems.  Whilst the number of incoming connections of a



node in the network is fixed, the number of efferent,
outgoing, connections is not.  It will also be instructive to
investigate whether there is a pattern to this evolved efferent
connectivity.  Perhaps some units are acting like hubs as in
certain scale-free networks [16].

It will also be interesting to allow the network complete
freedom in connectivity, with no constraint on the number of
incoming connections that a node may have.

Although this is early work, it is already apparent that it is
possible to evolve non-trivial connection strategies, to
produce efficient associative memories.  Much further
analysis and experimentation is needed to properly
understand the intriguing relationship between functionality
and connectivity in these models.
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