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Abstract 

This thesis aims to design an appropriate human-following solution for a mobile 

robot. The research can be characterised as interactive model building for a Human 

Robot Interaction (HRI) scenario. It studies possible proposals for the robot system 

that learns to accomplish the task autonomously, based on the human preference 

about the positions and movements of the robot during the interaction. A multilayered 

feedforward network framework with backpropagation is the adopted learning 

strategy. 

The research breaks the task of following a human into three independent 

behaviours: social positioning, human avoidance and obstacle avoidance. Social 

positioning is the behaviour that moves the robot, via reasonable paths, to the most 

appropriate location to follow the human. Both the location and the paths reflect the 

preference of the human, which varies by individual. The main body of the research 

therefore proposes a using-while-learning system for this behaviour such that the 

robot can adapt to the human’s preference autonomously. 

This research investigated multilayered feedforward networks with 

backpropagation learning to fulfil the social learning task. This learning model is less 

used in HRI because a complete set of correct training data doesn’t exist as the human 

preference is initially unknown. The research proposes a novel method to generate the 

training data during the operation of learning and introduces the concept of adaptive 

and reactive learning. A novel training scheme that combines the two learning threads 

has been proposed, in which the learning is fast, robust and able to adapt to new 

features of the human preference online. The system enables the behaviour to be a 

real using-while-learning system as no pre-training of any form is needed to ensure 

the successful performance of the behaviour. Extensive simulations and interactive 

experiments with humans have also been conducted to prove the robustness of the 

system. 
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Terminology 

Adaptive learning The backpropagation learning that contributes to the 

overall generalisation and convergence. 

Flat surface The area with a gradient of zero in the human reward 

surface. 

Lower peak This specifically refers to one of the reward peaks, 

which is geographically located in the lower half of 

the reward surface. It is used in Chapter 6 only. 

Reactive learning The backpropagation learning that concentrates on 

the fast learning of local situations and environment. 

Reference frame, global The frame of reference where the stationary objects 

in the environment are still. Often uses the initial 

robot position as the origin of its coordinates. 

Reference frame, human The frame of reference where the human is always 

still and at the origin of its coordinates facing right. 

Reference frame, robot The frame of reference where the robot is always still 

and at the origin of its coordinates facing right. 

Reward peak The area in the reward surface that has the highest 

reward value. 

Reward score The value of feedback given by human, based on the 

robot movements. This is also the value of the 

human reward surface at each position. 

Reward slope The area of reward surface that has non-zero 

gradient. 

Reward steps The total number of levels of values that appear in a 

reward surface. 

Reward surface The function that represents the human preference, 

which is used to rank the performance of the robot 

movements. 

Session A set of walks (in simulation), in which the robot 
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tries to position itself socially. 

Walk A set of movements from the start point of the robot 

to the end of the movements where either the goal is 

reached or simulation/interaction ends or expires. 

Upper peak This specifically refers to one of the reward peaks, 

which is geographically located in the upper half of 

the reward surface. It is used in Chapter 6 only. 
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Mathematical Notation Convention 

Space 

Spaces are denoted by uppercase roman letters with Euclid Math font. For example: 

A : general action space of a system; 

X : general state space of a system; 

Y : general output space of a system; 

P : the robot position space (social behaviour state space). 

Vector and Matrix 

Vectors are denoted by bold lowercase letters and matrices are denoted by bold 

uppercase letters. For example: 

p: the robot position vector in the human frame of reference; 

q: the human position vector in the robot frame of reference; 

x: general state vector; 

s: displacement; 

W: the neural network weight matrix. 

Limitation Constant 

The limitation constants are denoted by italic capitals. For example: 

K: the limit of the speed; 
H: the limit of the learning rate; 
D: the neighbour learning distance limit. 

Learning Rate 

Greek letter η  is used specifically to denote learning rate in this thesis. For example: 

η : general learning rate notation; 

rη : the reactive learning rate; 

sη : the scalar for the secondary scoring surface. 

Time Index 

Superscript, k and t are used specifically to denote the time index where there is no 

confusion with power. For example, pk is the robot position vector at time index k; 
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Quantised/discrete Elements 

The circumflex (^) over the top of an element means this element is either quantised 

or discrete. For example: 

Â : quantised robot action space; 

P̂ : quantised robot position space; 

â : quantised robot action state; 

p̂ : quantised robot position vector. 

System Function 

Greek letter µ  is used specifically to denote the system function in this thesis. For 

example: 

µ : desired system function; 

µ̂ : the discrete estimation of the desired system function; 

µ~ : the continuous estimation of the desired system function. 

Natural Logarithm 

Italic roman letter e is used specifically to denote the natural logarithm constant. 

Vectors Observed in Global Frame of Reference 

Prime is used to denote vectors observed in global frame of reference exclusively in 

Chapter 7. For example: 

p': the robot position vector observed in the global frame of reference; 

s': the displacement vector observed in the global frame of reference. 

Vectors Observed in Different Time 

The vertical bar, |, with the subscription of the time index at the right side denotes the 

frame of reference in which current vector is observed, which is used exclusively in 

Chapter 7. For example, pu|k: the observation of vector p from the coordinate frame at 

time k of the robot position vector measured at time u. 

System Reward Functions 

R is used to denote the reward surface in this thesis, which is presented as a function 

of position, r(.). Rs denotes the secondary scoring surface. 
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Chapter 1 Introduction 

This thesis aims to build a mobile robot behaviour that can maintain the appropriate 

social position autonomously while following a human. In the proposed research 

scenario, the human uses a performance index feedback to express their level of 

satisfaction about the robot’s performance, but neither the human preferences about 

social distance nor the desired positioning policy of the robot is known initially. This 

thesis addresses the problem of constructing a using-while-learning behaviour that 

learns to position the robot appropriately online, based on feedback from the human. 

This research is motivated by two rapidly growing fields in robotics: Human 

Robot Interaction (HRI) and autonomous machine learning. The aim of HRI research 

is to develop robot systems and behaviours that fulfil some tasks in a social 

environment. The robot is required to behave like a social member to perform a 

certain social function. In the wide range of applications seen in recent years, besides 

the challenges introduced by conventional robotics, a central debate in HRI concerns 

the ways to model robot behaviours to match the human’s social preferences. This 

unavoidably involves modelling human behaviour. The use of common solid social 

models from psychology has become one of the most commonly used methods for 

researchers. Many other researchers have started with HRI experiments in order to 

build a trustworthy interactive model based on the samples of human responses 

towards robots before modelling the autonomous robot behaviour. In either case, the 

model of human preference plays a significant role in how the robot behaviour is 

modelled. The fitness of the robot behaviour is largely subject to the correctness of 

the predefined human behaviour model that is assumed to be true universally among 

all human beings that the robot may encounter. It is, however, obvious that variation 

is one of the most important features of human behaviour. Acting as a social member, 

the robot has to have the ability to respond to the dynamics of other social members 

and to respect individual differences among humans. This thesis therefore seeks to 

develop a robot behaviour that dynamically adjusts itself to the human preference, and 

begins with a minimal model of what that preference might be. 
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Autonomous machine learning has provided an attractive option for this 

adaptive robot behaviour, especially backpropagation learning with its ability to 

generalise. Traditionally, autonomous learning is developed for estimating a function 

where some examples of the function are known and can act as the teacher during the 

learning. The HRI scenario here has presented a new challenge because the human 

preference, which is essentially the function that must be learnt, is totally unknown 

initially and useful information can only be collected through the human’s feedback 

while the robot is operating. The learning thus has to take place while the system is 

working. This is known as online learning. However, online learning applications in 

HRI still largely remain unexplored. Because of the engagement of the human, the 

prior knowledge that can be offered to the learning system is little, the possible 

uncertainties involved in the learning are significant and the useful information, i.e. 

the human’s feedback, is limited. The learning system has to learn as soon as the 

robot starts operating and has to learn fast enough so that the human suffers a 

minimum amount of dissatisfaction. The development of such a learning system is 

another challenge faced by this thesis. 

The novelties of this thesis come from both HRI and autonomous. From the 

overlaps of the two fields, the major goal of the research emerges, which is to achieve 

an autonomous using-while-learning socially interactive robot behaviour. In this 

Chapter, Section 1.1 will first summarise our contributions to knowledge and Section 

1.2 will provide an overview of the following chapters of this thesis. 

1.1 Contributions to Knowledge 

The central aim of this thesis is to propose an autonomous using-while-learning 

system for an interactive behaviour in an HRI scenario: following a human. The 

research has been presented in two international conferences (Wang and Lee, 2006a, 

2006b). The main contributions of this thesis can be summarised as: 

1. The design of a successful using-while-learning HRI behaviour without any 

pre-training, which gives the social behaviour the ability to generalise, the 

ability to work with little prior knowledge of human’s preference, fast 

adaptation to the individual preference as well as flexible adaptation to the 

new features of the human preference discovered during interactions; 

2. A novel online training data collection method that solves the problem of the 

lack of training data for multilayered feedforward neural networks in the HRI 
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scenario, which enables multilayered feedforward neural networks to be used 

in the social interactive robot behaviour; 

3. The novel proposal of using two learning threads with different learning 

speeds and targets. This gives the system fast learning speed, good 

convergence and the flexibility of learning new features quickly while 

maintaining existing knowledge, which enables the system to be truly  

using-while-learning in interactions engaging human behaviour; 

4. A new assessment routine tailored for the proposed using-while-learning 

system that employs not only error performance but also a set of system 

measurements including the system outputs, reward history and the training 

data set behaviour to monitor and analyse the system’s online behaviour. A 

thorough understanding of the behaviour of the system and the two learning 

threads during the operation of the system is established through a  

cross-comparison of these measurements; 

5. A new method to give the conventional reinforcement learning the ability to 

generalise by introducing a secondary reward surface. This surface smoothes 

the system reward surface so that the states that originally have no trainable 

information can learn effectively as well; 

6. A learning speed enhancement of reinforcement learning by adopting the idea 

of neighbour learning from competitive networks. By assuming that nearby 

states in the system should have similar actions, this method significantly 

increases the learning speed of conventional reinforcement learning. 

1.2 Overview of the thesis 

The remainder of the thesis is structured as follows: 

Chapter 2 introduces the context of this research. This thesis is built upon the 

fields of HRI, autonomous learning and behaviour-based robotics, the concepts of 

which are reviewed in this chapter. It presents the proposed human-following scenario 

and the core interactive behaviour, social positioning, which the robot needs in order 

to fulfil the human-following task. This chapter identifies the directions of the 

research, which the rest of the thesis follows.  

Chapter 3 studies the learning model for the interactive behaviour. The model 

is an abstract from existing research on the understanding of human preference in the 

context of our interactive scenario. This chapter describes the basic configuration of 
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the learning system as well as the learning objectives, on which the research into 

learning systems is based. 

Chapter 4 studies the use of reinforcement learning in the proposed model. 

The study modifies the reinforcement learning algorithm to fit the needs of  

using-while-learning. Analysis of the simulation results reveals both the strength and 

the weakness of this popular form of learning, which shows the necessity for a study 

on alternative learning methods in social positioning behaviour. 

Chapter 5 proposes to use multilayered feedforward neural networks for the 

learning task so that the system can benefit from their ability to generalise. This 

chapter first introduces an online training data collection method to overcome the 

problem of lack of training data. Then the study presents simulations in a similar 

setting to the one used for reinforcement learning in Chapter 4. The comparison of the 

results supports our choice of the new learning method. Concluding that the proposed 

leaning method is successful, this chapter raises the further question of the system’s 

fitness in a more complex situation. 

Chapter 6 identifies the weakness of the proposed neural learning in social 

positioning, in that it is unable to adapt to future changes in the environment or the 

human preference. To solve this problem, this chapter first introduces the concept of 

adaptive and reactive learning threads. It then proposes the novel training routine of 

training the system with both learning threads simultaneously. The analysis of the 

successful simulations not only provides concrete support for the proposal but also 

presents thorough understanding of the effects of the two learning threads during the 

operation. Placing the system in a more complex situation, some interactive 

experiments with human operators then are presented at the end of this chapter. 

Chapter 7 discusses the robot control system in order to bring the proposed 

scenario from simulation to reality. This chapter studies the general control structure 

of the robot system and the necessary sensor for human position measurement. The 

kinematics of the robot are also analysed and the chapter concludes with experiments 

with the robot and a learnt social positioning behaviour. 

Chapter 8 discusses our major findings in this thesis, which is the  

using-while-learning framework consisting of the online training data selection and 

the neural network with two learning threads. After summarising our contributions to 

knowledge, this chapter extends our finding into other possible applications and 

discusses the advantages that could be achieved with our framework, compared to 
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existing results in those applications areas. Finally, we discuss possible future 

research directions and improvements in our research. 
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Chapter 2 The Context of the Research 

The aim of the proposed project in this thesis is to build an autonomous learning 

behaviour for a mobile robot to follow the human at an appropriate social distance. 

The proposed scenario, following a human, concerns the social interaction between 

the human and the robot which belongs to one of the popular current research areas: 

HRI (Breazeal, 2003, 2004). The targeted problem solving method, an autonomous 

learning system, has shown a rising potential in adaptive control systems and artificial 

intelligence. Also, being an application of robotics, the concept of behaviour-based 

systems (Maes, 1993) that has been widely adopted in contemporary robotics is also a 

foundation of our research. As a project concerning such wide areas, the perspectives 

and methodologies existing in the literature are plenty. The objective of this chapter is 

therefore to position this thesis in the related literature, establish the interests of our 

research, and identify the key challenges and tasks. 

In the remainder of Chapter 2, Section 2.1 reviews the background of the 

human following scenario and HRI. Section 2.2 looks into the existing methods of 

autonomous learning in social robotics. Section 2.3 analyses the human-following 

task based on behaviour-based concepts and identifies the core interactive behaviour 

for accomplishing the human-following task: the social positioning behaviour. 

Finally, Section 2.4 establishes the context of the research by stating the research 

objectives. 

2.1 Human Following: An HRI Scenario 

The emergence of the concept of social robots was an outcome of the research into 

animates, where the early social behaviours studied were ant and swam robots, the  

so-called collective robot behaviour (e.g. Deneubourg et al., 2000, Kube and 

Bonabeau, 2000, Melhuish et al., 1998, Stricklin et al., 1995). Bonabeau (1999) points 

out that although those robots appear to work separately, they produce complex 

behaviour patterns collectively. Given the growing interest in developing robots 

situated in human society, researchers have been looking into social robots that 

produce social patterns or finish social tasks individually. Dautenhahn (1997) argues 
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that for those robots, they act as members of society and have characteristics that 

adhere to societal norms and conventions. Dautenhahn and Billard (1999) define such 

individualised social robots as follows: 

‘Social robots are embodied agents that are part of a heterogeneous group: 

a society of robots or humans. They are able to recognise each other and 

engage in social interactions, they possess histories (perceive and interpret 

the world in terms of their own experience), and they explicitly 

communicate with and learn from each other.’ 

Social interaction has been recognised as one of the most important features of 

a social agent by social scientists such as Ashworth (1979) and Cairns (1979). Efforts 

made by robotics researchers to study the issues of social interactions between robots 

and humans are enormous. Breazeal (2003) defines classes of social robots in terms of 

the complexity of social interactions, Scassellati (2000) and Tews et al. (2002) 

identify some fundamental issues for humanoid robots, and Dautenhahn (2004) 

studies the issues of a robot as a life companion. While researchers are trying to 

introduce social robots into human society, how to model a successful interaction 

between the robot and the human has become a widely studied area. This is the 

discipline that looks into the design of the robot behaviours so that the robot can 

interact with a human successfully, where the accomplishment of such an interaction 

is always associated with the personality or preference of the human. This field of 

research is known as Human Robot Interaction, of which Fong et al. (2003) provide a 

useful survey. 

2.1.1 Human Robot Interaction 

In the field of HRI, one of the fastest growing areas is peer-to-peer interaction  

(e.g. Murphy, 2004, Skubic et al., 2004, Triesch et al., 2006, Nakauchi, 2002). That is 

the interaction between one robot and one human. The interest in this field is 

essentially to investigate possible robot designs to satisfy certain social functions in 

human society. Many researchers have identified practical motives and initiatives for 

HRI development. Dautenhahn, for example, has presented possible domains and 

desirable social skills for social robots (Dautenhahn, 2003), as well as their design 

issues (Dautenhahn, 1999). Paulos and Canny (2001) on the other hand presented the 

social robot as a representation or representative for the human. Research in HRI is 
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growing very fast at present but the practical future of the research still remains vague 

and the possible roles for social robots to play in the human world as identified by 

these researchers are still distant goals (Dautenhahn, 1997, Dautenhahn and Billard, 

1999). Therefore huge potential remains in this area and plenty is yet to be revealed. 

Because the social interactions are so complex in the human world, HRI 

projects in the literature have divided the interactions into many different aspects, 

each of which has attracted a large number of researchers. The interactions are 

normally divided by the means of communication. Facial expression (e.g. Breazeal, 

2000, Canamero and Fredslund, 2001, Kobayashi et al., 1994, Scheeff et al., 2000) is 

a popular example of those interactions being pursued by many researchers. Body 

language has also been widely studied (e.g. Skubic et al., 2004, Kanda et al., 2002, 

Song-Yee et al., 2000). Imitation also generates huge interest (e.g. Schaal, 1999, 

Bakker and Kuniyoshi, 1996, Hirzinger, 1996). 

The robot behaviour that concerns only the robot position has already attracted 

lots of researchers in non-interactive scenarios, typically obstacle avoidance (e.g. 

Laue and Röfer, 2005, Zavlangas et al., 2000) and localisation (e.g. Fox et al., 1999, 

Jetto et al., 1997, Demirli and TRurksen, 2000, Tardós and Neira, 2002). It is, 

however, not until recently that the issue of the positioning of robot in the presence of 

a human has become another huge interest of research. Nicolescu and Mataric (2001) 

present their research concerning a robot that learns a positioning strategy from 

human’s demonstration. Yoda and Shiota (1996) propose to pass and avoid collision 

with a human while avoiding any human discomfort. Nakauchi (2002) studies how a 

robot stands in line with humans. How to position the robot appropriately to avoid the 

discomfort of a human is the question that these researchers aim to answer. In fact, it 

has been long established in psychology and social science that social agents are 

sensitive to the spaces around them (e.g. Malmberg, 1980, Sack, 1986, Secord and 

Backman, 1964). Bringing their definition of such problems forward into HRI 

research, the controlling of the robot position as a means of interaction with human is 

known as social distance interaction. 

2.1.2 Social Distance Interaction 

Hall (1966) points out that social space is an important element of any form of social 

organisation and that the control of distance between agents is an important means of 

communication. The humans’ preference about their social space defines a desired 
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manner of the positioning of other social agents around them. In HRI research, 

modelling human behaviour and preferences plays an important role. How the human 

preference is modelled directly regulates the outcome of the robot behaviour. It is 

known that humans react differently according to the position of other agents around 

them. Secord (1964) points out that their reactions commonly indicated certain 

regularities of a person’s feelings, thoughts and predispositions to act towards some 

aspect of their environment. Many HRI research projects have adopted models from 

psychology to build a model of a human’s preference about social space in certain 

scenarios. They are mostly models of the human’s comfort level over the space 

around them. The most commonly used model of this type describes the ‘passing a 

human’ scenario, and has been well studied in previous social science research. Figure 

2-1 is the model of the human’s preference of social distance while someone is 

passing them, used by Pacchierotti (2006). This surface with ellipse-shaped cross 

sections has also been used in many other HRI applications involving passing a 

human (e.g Chen et al., 2004, Yoda and Shiota, 1997, Simmons et al., 1997). 

 

Figure 2-1 The human preference of spatial distance zones in the scenario of a robot passing a human. It 
generally describes how the human feels about an agent regarding to the distance and position 
between them (Pacchierotti et al., 2006) 

Based on this human preference, Nakauchi (2002) discovered that, in the case 

of a robot trying to stand in line with humans, their preference turns out to be a 

diamond-shaped surface, as shown in Figure 2-2. He achieves this result based on the 

calculation derived from the human preference in Figure 2-1 and bases the rule of 

stand-in-line behaviour on such a human preference model. 
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Figure 2-2 The human preference of spatial distance zones when a robot tries to stand in line with humans. 
(Nakauchi, 2002) 

The HRI scenario proposed by this thesis is following a person. It is another 

one of the most common scenarios falling into the context of interaction over social 

distance but the model of the human preference has not been well defined. For a 

social behaviour in which no previous human preference model can apply, researchers 

normally conduct experiments with humans to draw out the model. For example, in 

the research into a home companion robot, Dautenhahn et al. (2006) collected the data 

from experiments of how a human would like to be approached by a robot. They 

conclude a robot movement policy based on the human preference as shown in  

Figure 2-3. In Figure 2-3, the dots are values assigned to positions. They are costs of a 

robot being in those positions. The task of the robot is to approach the human with 

lowest possible cost, i.e. avoiding the highly valued position on the map. 

 

Figure 2-3 The cost of robot action based on the human preference in home companion robots. The higher the 
value on the map, the higher cost for the robot to take action, i.e. the human is less satisfied 
(Dautenhahn et al., 2006) 
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In their research into the human’s preference of social distance, the 

methodology is to measure the human’s feedback with different robot behaviours. 

Such feedback reflects the human’s attitude that is essentially the requirement that the 

robot is trying to satisfy. In current HRI research, the most commonly used method is 

to ask the human in the interaction to indicate their feelings through a handheld 

device. Koay et al., (2005) studied the issues involving using a handheld feedback 

device in HRI, a device that has been used in the research carried out by Dautenhahn 

et al. (2006) and Woods et al., (2006). Similar device has been used in various social 

robot applications (e.g. Calinon and Billard, 2006, Syrdal et al., 2006, Blumberg et al., 

2002). By using such measurable feedback, a direct appraisal of the robot 

performance in the social context is available. Researchers thus can sketch the model 

of the human preference tailored to the HRI scenario they propose. 

The availability of measurable human feedback gives the research a new 

possibility of modelling the robot behaviour without fully known human preference 

model because such feedback is essentially a partial presentation of the human 

preference. Kanda (2003) uses only some basic rules of human interaction but leaves 

the exact robot behaviour to be adjusted by the human feedback, which involves the 

adjustment of social distance. A similar technique has been adopted by Kaplan (2002) 

using a clicker feedback device to control a simulated robot behaviour. With the 

human feedback, the requirement of human preference can be come less strict as it is 

possible to abstract the human model from their feedback. An attractive idea thus is to 

have a robot behaviour that needs no previous knowledge of the human preference but 

can adapt itself to the human preference based on the feedback during operation and 

produce reasonable interaction behaviour. This can offer highly flexible robot 

behaviours in a dynamic social environment. It can be particularly useful for a 

behaviour such as human following because the human preference of being followed 

can vary a lot among individuals and can change in different environments, which 

makes it very difficult to model the human preference beforehand. It is easy to 

understand that in a narrow crowded place, the human would like the follower in a 

different place from their preference in a wide quiet environment. 

It is reasonable to believe that human preferences are distinguished from one 

to another and that the individual uniqueness can play an important part in the social 

interaction. Given the unpredictable elements in the nature of the interaction in human 

following, a dynamic adaptive system approach is promising. This thesis aims to build 
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a system that learns how to position the robot based on the human preference 

presented by their feedback during the interaction so that the robot’s behaviour 

respects and adapts to the human’s individual preference. The availability of the 

measurable human feedback gives the possibility to dynamically form the social 

positioning method of the robot in HRI. One of the adaptive system solutions which 

have been given a large amount of attention is autonomous learning. 

2.2 Autonomous Machine Learning 

Autonomous machine learning has been widely used to construct dynamic control 

systems that are highly adaptive to the environment. Such use of machine learning is 

mostly to estimate a target function based on some limited examples of that function. 

Those examples act as the teacher of the learning system and this type of learning is 

called supervised learning. The learning is autonomous because the system adjusts 

itself based on certain rules and the examples presented to the system. This  

self-adjustment process of the learning system is known as training. Many 

autonomous learning systems exist in the literature and remain highly active research 

topics.  

Learning systems have been introduced into many HRI applications. The 

human preference can be understood as a map that directs the robot movements. Some 

research refers to such a function as human decision state (Nicolescu et al., 2006). In 

the research into learning from demonstration (e.g. Schaal, 1999, Atkeson and Schaal, 

1997), they propose a system that acquires skills to finish difficult tasks by mapping 

such human decision functions through learning examples presented by humans. 

Similar concepts have also been adopted in human-robot skill transfer (e.g. Grudic 

and Lawrence, 1996, Asada and Liu, 1991). These are some of the examples where 

the research is not based on accurate pre-calculations of the human preference but on 

adaptive methods to build robot behaviours by learning from the human. Among 

various published machine learning studies, two which especially interest us in our 

research are: reinforcement learning (Kaelbling et al., 1996) and neural networks 

(Patterson, 1996). 
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2.2.1 Reinforcement Learning 

Reinforcement learning was initially proposed based on mathematical psychology 

(Hilgard and Bower, 1975). It has become a very popular algorithm since then. 

Reinforcement learning is essentially a discrete map estimator. For any system whose 

behaviour can be described as a set of possible actions over a set of possible states, 

knowing some kind of performance index of the system actions, reinforcement 

learning is able to create a map between quantised system states and actions to 

estimate their real desired relationship. The estimating, i.e. the training, takes place by 

counting the likelihood of executing each quantised action at each quantised state 

based on the performance appraisal of the system. Different rules for this counting of 

the likelihood define different types of reinforcement learning. One of the early 

proposals is the linear reward-inaction rule, the convergence of which has been 

proved by Narendra (1974). More recently, Q-Learning proposed by Watkins (1989) 

has established its place as the most commonly used reinforcement learning rule. 

Chapter 4 gives more detail of the reinforcement learning algorithm. 

The use of reinforcement learning in robotics has been a very successful 

research field, typically the research into dynamic programming as opposed to prior 

programming of robot behaviours. The initiative is to build a successful robot 

behaviour that is difficult to model directly from physical and mathematical models. 

This approach has been applied to learning from demonstration (Schaal, 1997) and 

some HRI applications (e.g. Nicolescu et al., 2006, Kasper et al., 2001, Atkeson and 

Schaal, 1997, Wang and Lee 2006a).  

Reinforcement learning has a great generality. It quantises the system into a 

set of states. By assigning each action at each state a reward, the learning can find the 

desired transition between states and the corresponding actions in a quantised map. 

Reinforcement learning has been one of the most studied learning methods and has 

appeared to have dominance in the learning of interactive robot behaviour. Compared 

to conventional control methods, reinforcement learning functions without requiring 

the desired output examples of the system, in other words the system error 

performance is not needed. The learning is based on a reward that indexes the 

performance of the system, which is a much easier condition to meet than finding the 

desired system output or system error measurements in many HRI applications. The 

desired performance of a robot in HRI is always defined by the preference of a human 
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and is normally unknown. But certain forms of ranking index on the robot 

performance are, however, normally achievable. This index can be constructed either 

from perception of human as mentioned in Section 2.1.3 or from some mathematical 

rules. Both are much more reliable or easier to get than the estimated examples or 

models of the human preference (e.g. Mitsunaga et al., 2005, Isbell et al., 2001). This 

then explains the great attention paid to reinforcement learning by the academics in 

the learning of HRI. As a matter of fact, such popularity of reinforcement learning is 

not only in HRI but across most areas of robotics. 

2.2.2 Neural Networks 

Another alternative form of autonomous learning that has been growing very fast is 

artificial neural networks. Although, the use of neural networks in robotics in existing 

literature is still largely limited to conventional control problems (e.g. Fierro and 

Lewis, 1998, Lewis et al., 1995), and rarely to the learning of a structured social 

behaviour, we have a particular interest in this learning because of one of its 

distinctive advantages over reinforcement learning: the ability to generalise, which 

gives the neural network the ability to perform in an unlearnt situation based on learnt 

knowledge. 

The foundation of modern neural network learning is based on  

Hecht-Nielsen’s (1989) proposal of error backpropagation learning, in which he 

defines a neural network as follows: 

A neural network is a parallel, distributed information processing structure 

consisting of processing elements, the neurons, interconnected together 

with unidirectional signal channels called connections, each of which 

carries a single discounting factor called weight. Each neuron has a single 

output which branches into as many collateral connections as desired. The 

output function of a neuron can be of any mathematical type desired. All 

of the processing that goes on within each neuron must be completely 

local. That is, the output of a neuron must depend only upon the current 

values of the input signals arriving at the processing neuron via impinging 

connections and upon values stored in the processing neuron’s local 

memory, which are the backpropagation factors from previous layers. 
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Supervised neural networks are more general function estimators than 

reinforcement learning because the map established by neural networks is continuous. 

Neural networks have been greatly used in control systems (e.g. Ahmed et al., 1995, 

Bryson and Ho, 1969, Chen, 1990, Zhao et al., 2002) and function estimating (e.g. 

Battiti, 1992, Foresee and Hagan, 1997, Werbos, 1988). They generate the system 

function as a continuous map between the input and output space. Therefore, when 

the learning is finished, the system can provide reasonable outputs for any input value 

from the defined input space, no matter whether those input values have been exposed 

to the system or not, hence the ability to generalise. This appears to be a huge 

attraction to us because the ability to conduct reasonable behaviour in unknown 

situations based on current knowledge will be an advantage in any HRI scenario. 

However, as we can see, the learning of neural networks is based on some known 

examples of the desired outputs of the system. This has become an obstacle in 

applying neural networks in the social learning of robots as the desired output of a 

social robot behaviour is normally defined by the human mind and it is difficult to 

model desired system outputs. A performance index given by the human as a 

feedback is what most researchers can achieve in many applications, as mentioned 

above, and it is the human feedback that we have in our research. 

It is clear that both types of autonomous learning discussed above have their 

attractions to fit into the HRI scenario. Reinforcement learning can learn without 

knowing the desired system outputs but only from the human feedback. Neural 

networks have difficulty to learn with human feedback but can generalise based on 

known knowledge. It is unwise to decide which approach to adopt before any concrete 

investigations have been done, which are located in Chapter 4 and 5. However, 

whichever method that might be chosen, it has to have the ability to perform the 

learning online because the human feedback is not known beforehand and training 

before use is not possible. Moreover, for a realistic robot behaviour, the system has to 

behave reasonably even when it is still learning. This brings up another important 

feature of our robot behaviour: the ability of using-while-learning. 

2.2.3 Using-while-learning 

Autonomous learning methods can be applied to a system in two ways: offline and 

online. Traditionally, a system is trained before use. The introduction of learning was 

aimed at, and is still widely used in, problems that are difficult or impossible to model 
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but for which some information, such as some examples of the input and desired 

output of the system, is known. The use of the learning network is then to train the 

system fully so that the system has a close enough presentation of the desired system 

function and it is put into operation afterwards. This process of training before 

operating is now known as offline learning or pre-training. 

With the growing interest in adaptive systems, a big challenge that researchers 

face is systems with factors that are unknown or unpredictable at the design stage. In 

learning systems, many problems that are difficult to model have no trainable data 

beforehand. Human-following behaviour is one such problem as the model of an 

individual preference can neither be modelled nor predicted by some prior examples. 

Pre-training before the operation of the system therefore can’t be organised. For 

systems like this, researchers propose to train the system while the system is 

operating. The learning then adjusts the system performance while the system is being 

used. This kind of learning system is known as an online learning system. One of the 

most typical uses of an online learning system is goal finding. In order to find an 

unknown goal, the learning is performed while the system is operating. As the 

learning adjusts the system dynamically, the goal is achieved at the end of the 

operation. 

Being an online learning system, it is not trained before use and has to rely on 

random outputs before the system learns. However, for some systems, long term 

random outputs may not be practical. For example, in the human-following robot 

behaviour, long time random movements of the robot are neither practical for the 

motor system nor acceptable for the human. An online learning system is not always 

usable online. This is the reason that, in this thesis, we will use the term  

”using-while-learning” to describe the desired ability of online learning in the 

proposed systems. We use this term to emphasise that, in order to behave successfully 

in the HRI scenario, the system needs not only to learn while operating but also to 

produce usable outputs while learning. Therefore the goal of the learning system that 

this thesis aims to achieve is a using-while-learning system that learns based on the 

online feedback of the human in order to follow the human appropriately. 

Both reinforcement learning and neural networks have been known to be able 

to work online. In this thesis, we will investigate both the learning behaviour of 

reinforcement learning and the learning of interactive robot behaviour by neural 
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networks before we select the more appropriate method based on their learning 

performance and their using-while-learning ability. 

2.3 Behaviour-based Structure 

Behaviour-based structures (Arkin, 1998, Maes, 1993) have now been widely adopted 

in robotics. In contrast to traditional planner-based robot applications (e.g. Beetz et 

al., 2001, Ge and Cui, 2000), behaviour-based structures split a complete task into 

several simple behaviours and it is argued that by completing each simple behaviour 

and combining their outputs, complex tasks can be achieved. Contemporary research 

projects in robotics are mostly based on behaviour-based structures.  

A typical case of this is the split between the goal-finding behaviour and 

collision avoidance behaviour. We identify the behaviours involving completing the 

human following task as follows. 

Obstacle avoidance: 

Obstacle avoidance is a typical behaviour for avoiding collisions, which acts 

independently in behaviour-based robot systems. It is one of the most well studied 

robot behaviours, and rich research literature exists. There are many well studied 

methods, most of which are based on range sensors or cameras. A typical early 

application is obstacle avoidance using potential fields (e.g. Ge and Cui, 2000, Koren 

and Borenstein, 1991). Fuzzy logic has been widely introduced in obstacle avoidance 

as well (Hoffmann, 2004, Jetto et al., 1997, Demirli and TRurksen, 2000). A wide 

range of variations have been presented for this behaviour (e.g. Laue and Röfer, 2005, 

Zavlangas et al., 2000, Tardós and Neira, 2002). 

Human avoidance: 

Although obstacle avoidance is the behaviour that is most often referred to for 

dealing with collisions, HRI researchers have suggested that the avoidance of a 

human is a different behaviour from avoiding an object (e.g. Yoda and Shiota, 1997, 

Pacchierotti et al., 2006). Passing a human, as has been reviewed in Section 2.2, is 

one such behaviour. It is listed differently from traditional obstacle avoidance 

because, while avoiding the human, minimising the human’s discomfort is always a 

requirement for social robots. Thus the human preferences play an important role in 
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this behaviour. The typical human preference model applied is the model used in 

passing human behaviour as shown in Figure 2-1. This preference model has been 

widely accepted by researchers. 

Social positioning: 

Social positioning is the behaviour in which the robot interacts with human 

through the human feedback and adjusts its position and movement. It is the ‘goal-

finding’ behaviour and the main interactive component of the human following task. 

The positioning of the robot is solely defined by the human preference. Existing 

studies in HRI haven’t addressed any possible human preference that is suitable 

universally. Unlike human avoidance behaviour, the personal preference among 

humans in the context of being followed varies among individuals. Even the 

preference of the same person can change due to the environment. Social positioning 

behaviour remains less studied in literature and is, therefore, the major target of this 

thesis. 

By separating social positioning behaviour from collision avoidance 

behaviours, it is reasonable to exclude possible obstacle avoidance from the social 

positioning model. The behaviour-based system is based on the cooperation of 

different behaviours, each of which completes a separate task in an independent 

model. By assigning collision avoidance to separate behaviours, we can study the 

social positioning behaviour in a collision-free model. The collision-free assumption 

here includes both the avoidance with objects and the collision between the human 

and the robot. 

The perception of the robot is measured relative to the human. Therefore, the 

control of the robot by the social positioning behaviour is in the human reference 

frame that offers the coordinate. In this frame, human is placed at the origin and faces 

the positive direction of x-axis. Therefore, the walking speed of human doesn’t affect 

the social positioning behaviour. Tracking the human speed is a control issue when 

the system tries to follow the route recommended by the social positioning and other 

behaviours (e.g. collision avoidance), i.e. tracking a certain desired trajectory. It is 

therefore not a separate behaviour but a controller to execute the decision of the 

behaviours.  

Tracking the human or object speed has been a commonly discussed problem 

in robotics and many projects have studied it (e.g. Sekmen et al., 2002, Jiang and 
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Nijmeijer, 1997, Sun, 2005). Thus it is not our major concern in the interactive 

behaviour. The social positioning behaviour will, consequently, be modelled without 

considering human speed. We assume that the human is moving at a constant speed 

where by subtracting such speed from the social positioning system, he or she can be 

seen as stationary. 

2.4 Conclusion: The Objective of the Thesis 

From the review in this chapter, it can be seen that human-following is an attractive 

HRI scenario because it offers the challenging situation where no universal human 

preference exists. The robot then has to have the ability to adapt to different human 

preferences and to possible dynamics introduced by the interaction when it takes place 

in a given environment. This drives us to consider the approach of autonomous 

learning. The two methods that interest us are reinforcement learning and neural 

networks. The learning, however, has to be using-while-learning because the HRI 

interaction offers no knowledge about the human’s preference prior to the operation 

of the robot system. Following the behaviour-based concept, we believe that the key 

to accomplishing a plausible human-following task is the interactive social 

positioning behaviour. This is the behaviour to position the robot appropriately 

according to the human’s preference. It is the behaviour that needs learning and the 

behaviour to which this thesis will pay great attention. The primary objective of this 

thesis therefore is to construct a using-while-learning social positioning behaviour. 

The next chapter is going to further sketch the model of social positioning behaviour 

and to define the aim for the learning system. 
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Chapter 3 The Social Positioning Model 

In Chapter 2, we have pointed out that social positioning is the major challenge of this 

thesis. The main objective is to build an autonomous using-while-learning system to 

accomplish the social positioning behaviour. Before any further discussion on the 

learning algorithm processes, the model of the social positioning scenario, on which 

all learning system operates, needs to be specified. Following the behaviour-based 

concept, as discussed in Section 2.4, social positioning behaviour is an independent 

behaviour that is modelled in a collision-free space where the human speed has no 

impact. The human can give feedback on the position of the robot, which is in the 

form of a performance index. The aim for the robot is to position itself based on the 

human feedback to achieve the best performance index possible. To establish a clear 

stage for the study of the learning social positioning behaviour, this chapter has two 

objectives. Firstly, it aims to define a minimal human preference model that provides 

a foundation for the learning system analysis. Then it states the target for the learning 

system and clarifies necessary assumptions we keep throughout the study. 

In the remainder of the Chapter, Section 3.1 introduces the concept of reward 

surface that presents the human preference in human-following scenario and will be 

used throughout the simulations in this thesis. Section 3.2 introduces the aim and 

general concepts of the learning system in the proposed scenario. 

3.1 The Reward Surface 

It has been recognised by researchers that some mental function presenting the level 

of comfort or satisfaction in the human mind can reflect how the human thinks a task 

should be done. As reviewed in Section 2.1.2, modelling human behaviour and 

preferences plays an important role in this research. We have also pointed out in 

Chapter 2 that, in the scenario of human-following, the human preference differs a lot 

among individuals and the same individual tends to have difference preferences in 

different situations. Thus we adopt the concept of the existence of the unknown 

human mental preference function which will be referred to as the human reward 

surface in the rest of the thesis. But we aim to build the system independent of any 
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assumption we may make about the reward surface in the computational model and 

simulations so that the system is adaptive to unpredictable human preferences that are 

not able to be included in the pre-designed models. 

However, it is necessary to make certain assumptions about the reward surface 

in order to compose proper simulations for the computation model and to identify 

some potential difficulties a human reward surface may have in the human-following 

scenario. Research on personal space of humans (e.g. Sack, 1986, Malmberg, 1980) 

points out that the preference of human can be solely based on the position of others 

relative to them. Therefore we can assume that the reward surface is a function of the 

relative position, p, between the robot and the human. Vector p is measured in the 

human reference frame that defines space P . It is the frame of reference where the 

human is located in the origin facing the positive x-axis. The reward surface, 

]1 ,0[∈R , is then in the form of: 

 )(prR =     , (3-1) 

where r(.) is the mapping from the robot’s current position to the reward surface. r(p) 

is the reward score denoting the degree of the human’s satisfaction about the robot 

position p: the higher the reward score, the higher the human’s satisfaction. 

In the model, the reward score is the feedback from the human, where  

Section 2.1.2 has reviewed some examples in literature of its detection. Although the 

reward score ranges from 0 to 1, the values that can be received from human while 

being followed vary. The levels of the reward value that they would like to use to 

express their feelings are different among individual cases. The more different levels 

a human use, the more details are described in the reward surface. We refer to those 

levels of reward score as reward steps. 

At this stage of the thesis, we assume ‖p‖≤1500mm. This is about the width 

of a normal office corridor, which also limits the size of the reward surface to be 

3000mm×3000mm. It is useful to mention here that the size of the map doesn’t play a 

significant role in the learning system, the reason for which will become clear after 

the study in Chapter 5. 
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Figure 3-1 The contour plot of two possible reward surface examples: the contour lines illustrate the surface of 
the reward score that the human is able to provide relative to the robot’s position. The values of the 
reward score are marked on the contour line. 

Two possible examples of the reward surface are shown in Figure 3-1, both of 

which have 10 reward steps. In Figure 3-1(a) the target person shows a certain 

preference in both the angle and distance to the follower, and would therefore like to 

be followed behind on the left. The non-zero gradient of the reward surface only 

exists in a limited range, which is referred to as the reward slope in this thesis. The 

desired position is located on the reward slope, which is also referred to as the reward 
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peak in the thesis. Outside the reward slope, the surface provides a zero gradient. This 

part of the reward surface is regarded as flat surface that occupies most of the map in 

Figure 3-1(a). The term flat surface denotes the mental state of human, which 

provides no change in attitude. Flat surface exists because it would be unrealistic for a 

human to input smooth continuous feedback over the whole space. Figure 3-1(a) 

describes the scenario where the human is not willing to comment on all the positions 

over the map but those around the desired area. 

Figure 3-1(b) demonstrates another situation. Two reward peaks exist in this 

reward surface. This happens when the corridor is narrow and the human is normally 

walking against the wall of one side. Then the human may have two desired places for 

the robot to stay as he may walk along either side of the corridor along the wall. But 

only half of the map, either the upper half or the lower half, is available during any 

one specific walk of a robot. This is a presentation of a more complex preference of 

human under a certain environment, which will be examined in Chapter 6. 

A successful learning outcome of the behaviour interacting with human is 

expected to be an appropriate estimation of a movement policy desired by the human. 

We assume that each individual has a fixed reward surface. That is, their general 

preferences maintain unchanged during the operation of the robot. But even though, 

the human feedback can be noisy, their feelings towards the environment may change 

and their perception of the robot position is brief. The shape of the reward surface is 

by no means to remain an absolute constant. The complete feature of human 

preference is very unlikely to be fully included in these assumptions and 

unpredictable human actions in the interaction can cause changes in the reward 

surface during operation. Therefore the learning that has to be designed upon these 

assumptions can not be dependent on any specific form of reward surface. An ability 

to adapt to unknown and dynamic human preference is one of the basic requirements 

for the proposed learning system. 

3.2 The Learning System 

Assume that the human has an initially unknown reward surface reflecting the degree 

of approval of the position in which the robot is following, which will feedback into 

the robot system throughout the interaction. The relative position between the robot 

and human is known at every time step. We aim to design an autonomous online 
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learning robot system that learns to adapt to this reward surface and to estimate an 

appropriate control policy while following so that the robot will always follow the 

human at, or attempt to get into, the most approved position, with reasonable 

movements and through appropriate routes. Such a system should be able to learn and 

adapt to unpredictable changes in the human’s preference. It is important that the 

system is able to operate online without pre-training because if the human preference 

is unknown, a pre-training is not able to be conducted.  

Robot learning through action-related performance feedback from a teacher 

has been widely studied as an adaptive controlling approach for social robots (e.g. 

Bakker and Kuniyoshi, 1996, Nicolescu, 2003), where the commonly used concept is 

to find a close enough approximation of the desired map between the robot actions 

and the system states. Such an adaptive system presents the control policy as a form 

of mapping from selected system state space to a bounded action space. It aims to 

learn a general policy that reflects the desired state-action relation of the teacher and 

thus enables the robot to act correctly later on its own. Hirzinger (1996), describes the 

role of the teacher as to demonstrate successful examples where performance scores 

of the robot actions are provided, and a successful learning system will eventually 

stabilise the system on the goal state with desired actions.  

The perception of spatial positions of the robot defines the system state of the 

proposed system. Having mentioned in Section 3.1, the state space is defined upon the 

human reference frame. The state space of the system is denoted byP , and we will 

use P̂  to denote the quantised state space. Therefore, each possible robot position p 

belongs to P  and is a possible system state. 

The action space, A , is the space that contains all possible robot actions. A 

quantised form of this space, Â , will be defined by the transition of the states as we 

will do in Chapter 4. Chapter 5 will then redefine the action space based on the plant 

and the social requirements, e.g. safety and efficiency issues. Different definitions of 

the system state and action space are due to different learning methods being 

investigated. The learning system aims to find a close approximation of the relation, 

AP →:µ , desired by the human preference, the reward surface. The outcome of the 

learning system can either be a discreet map between quantised spaces, AP ˆˆ:ˆ →µ , 

or a continuous function, AP →:~µ . 
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One assumption that has been adopted widely in similar problems is Markov 

independence. A system for which the states transition is independent from previous 

states or actions is known to be Markov. This assumption has been discussed by many 

references (e.g. Bellman, 1957, Howard, 1960, Puterman, 1994). That is to say the 

desired system action is only decided by current state of the system. Markov 

modelling is a common assumption adopted in robot learning using reinforcement 

learning algorithm (e.g. Atkeson and Schaal, 1997, Pasemann, 1997) and we keep this 

assumption throughout our research of this behaviour. 

Another condition that will be adopted throughout the learning behaviour 

study is that the human speed will not be considered. Chapter 2.3 has pointed out that 

tracking human speed is a control function outside of the robot behaviours and 

clarified that the social positioning behaviour takes place in the human reference 

frame. Thus the human speed won’t have any direct impact on the social positioning 

behaviour and therefore the human will be considered to be still during the learning 

analysis. Also, leaving discussion of the robot kinematics to Chapter 7, the study and 

simulations before that point will assume the robot carries out the expected movement 

in the expected time period exactly. 

We believe that there exists a mapping relating the robot position space to 

proper actions, which is always approved by the human and is reflected by the human 

feedback. Because the reward surface is not known prior to the learning, the 

information of the human preference, i.e. the human reward, can only be revealed 

while operating. More importantly, the unexplored area in the map remains 

uncommented by the human feedback. This requires the system to be ready for any 

possible new challenge when new features of the human preference are explored, 

although the human preference is assumed to be consistent. This then requires the 

system to be truly using-while-learning. Our study in the following three chapters will 

build an autonomous learning strategy so that the robot learns such mapping 

dynamically from human during the interaction and satisfies the using-while-learning 

requirements. 

Among the literature, the learning algorithm that has been used the most to 

accomplish the mapping from states to actions in robotics is reinforcement learning. 

For systems like the proposed model that can’t provide direct error measurements but 

only a numeric ranking score to indicate the performance of the system, the 

reinforcement network has the distinctive advantage of establishing the online 
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learning based on such a performance score with guaranteed convergence. In the next 

chapter, we will investigate the strengths and limits of using the reinforcement 

approach in the proposed scenario. It will also provide a further understanding of the 

proposed scenario and the learning model as well as the learning objective. 
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Chapter 4 Reinforcement Learning 

Chapter 3 has introduced objectives of the learning system for social positioning. This 

behaviour aims to learn a general policy that reflects the desired state-action relation 

of the teacher, which can direct the robot to accomplish the assigned task 

autonomously. The teacher’s feedback is a performance index ranking of how 

satisfied the teacher is with the action of the robot. Schaal(1997) identifies the 

learning task of such a system as: to learn such a policy that provides appropriate 

actions in response to a perceived state in order to steer a dynamical system to 

accomplish a task. The assigned task for the system is usually described in terms of 

optimising an arbitrary performance index without direct training data, which can’t 

perform learning that depends on direct system error measurements such as 

backpropagation learning proposed by Hecht-Nielsen (1989). In Schaal’s study, he 

proposed a reinforcement learning system to estimate the state-action map of the 

teacher in order to fulfil the learning task of pole balancing by a robot arm. 

In the robot learning of a state-action map, the algorithm that has received the 

most attention is reinforcement learning, a strategy that has been adopted in many 

applications studying social learning of robots (e.g. Isbell et al., 2001, Calinon and 

Billard, 2006, Mitsunaga et al., 2005). The attraction of reinforcement learning is 

largely due to the absence of direct trainable system error measurements in the model. 

In situations where only the performance rated ranking is available, the reinforcement 

rule has the advantage of being able to learn, following the gradient of the reward and 

climbing up the reward surface (Zeidenberg, 1990). By enforcing the actions that 

achieve high rewards from the teacher, reinforcement learning is able to estimate a 

general policy reflecting the state-action relation presented by the teacher. Therefore it 

is worthwhile, as a preliminary endeavour, to study the reinforcement system and 

investigate its feasibility towards the proposed situation of social positioning 

behaviour. 

However, a common assumption existing in published research is that every 

step of the robot during learning will be given trainable feedback by the teacher, 

because reinforcement learning generally requires a step reward measurement so that 
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the agent can try each action at a particular state and can evaluate its consequences 

immediately (Sutton, 1988) or its long-term cost (Sutton, 1990). But this requirement 

is hard to satisfy by a human preference. Consider the reward surface demonstrated in 

Chapter 3 as shown in Figure 4-1. 

 

Figure 4-1 The contour plot of a reward surface representing a human’s preference of being followed in the 
human reference frame consists of large flat surface and a small reward slope. 

As shown in Figure 4-1, a large portion of the map is a flat surface. This 

reward surface is designed in this manner because we recognise that it is unrealistic 

for a human to provide a smooth and continuous feedback. In the flat surface, the 

human reward is not trainable information because it doesn’t offer any difference 

among different actions and different states. In this Chapter, we introduce a secondary 

scoring surface which is an online-generated extension of the reward surface in the 

flat area to help the system perform successful reinforcement learning. In Section 4.1, 

we will first review one of the fundamental reinforcement algorithms: linear reward-

inaction. In Section 4.2, the secondary scoring surface is introduced. The control and 

enhancement of learning are discussed in Section 4.3 and the simulation results are 

analysed in Section 4.4. Finally, Section 4.5 summarises the system’s performance 

and discusses the further direction of the learning system that will lead our study to 

Chapter 5. 



 Chapter 4 – Reinforcement Learning   

Autonomous Learning of A Mobile Robot in Social Distance 29 

4.1 Reinforcement Algorithm 

According to Kaelbling et al.(1996), for a system that has state space X, action space 

A and the desired action control policy AX →　:µ , describing the system by a 

discrete set of states X̂ , a discrete set of actions Â  and a reinforcement signal, i.e. 

the reward R, the reinforcement learning is to find policy AX ˆˆ:ˆ →µ . This is an 

estimation of desired relation from states to actions, which is close enough to the 

target µ  and satisfies R that is also commonly referred to as the cost or performance 

function. 

Narendra and Thathachar (1989) point out in their survey that it is feasible to 

model algorithms as finite-state automata so that actions of the system describe the 

internal state of the system as a probability distribution according to the action that 

will be chosen. The probability of each action will be adjusted based on its previous 

failure and success. One such fundamental reinforcement rule is known as  

linear reward-inaction. It was developed based on mathematical psychology (Hilgard 

and Bower, 1975). Based on the reward score definition in Equation (3-1), we define 

∆Rk to be the reward measurement at time k. For the proposed model, it is: 

 X̂ˆ,ˆ       ),ˆ()ˆ( 11 ∈−=∆ ++ kkkkk xxxrxrR  , (4-1) 

where superscription is the time index and ℜ⊂→ MMX     ,ˆ:r  is the reward 

function.  

Let the probability of taking action â  at state x̂  be )ˆ|ˆ( xaP . The probabilities 

are assigned with small random numbers initially and the sum of the probabilities of 

all actions in any one state is 1: 
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For the current system state kx̂ , the linear reward-inaction rule updates the 

probabilities of the actions when the measurement of reinforcement is satisfied: 

If 0>∆ kR  then: 
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where µ̂  is the control policy described by the network and )1,0[∈η  is the rewarding 

learning rate. Learning rate is a scalar used in autonomous learning to control the 

strength of the step adjustment of the system while updating. 

Equation (4-3) increases the probability of successful actions. In machine 

learning, a more appropriate measure is the expected decrease in reward gained due to 

executing the learning is algorithm instead of behaving optimally. Such a measure in 

reinforcement learning sometimes is known as regret (Berry and Fristedt, 1985). It 

penalises mistakes during the operation of the system. Patterson (1996) argues that the 

penalisation of linear reward-inaction rule should take place as: 

If 0<∆ kR then: 
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(4-4) 

where 1>n  is the total number of actions in set Â  and )1,0['∈η  is the penalising 

learning rate. When 0=∆ kR , the probabilities of the actions will not be updated. 

Narendra (1974) proves that the linear reward-inaction rule is able to converge 

to an arbitrary degree if the learning rate is small enough. This reinforcement rule 

aims at encouraging outputs that receive a better reward score, which means, in our 

case, that the human is more satisfied. Though many modern algorithms have 

emerged after the proposal of linear reward-inaction, especially the widely used Q-

learning proposed by Watkins (1989), we decided to apply linear reward-inaction to 

our model first because its simple structure allows a fast investigation but still reveals 

the general features of reinforcement learning. The discussion of the possibility of 

benefiting from a more sophisticated reinforcement rule will take place later in this 

chapter. 

To place the reinforcement learning structure into the social positioning 

model, the map in Figure 4-1 has been divided into 30×30 states with fixed intervals, 

each of which presents a position vector, p̂ . The set of discrete position vectors 

composes the state space P̂ . At any state, the robot is able to move to any other state 

next to the current one or to stay at the same place. Thus there are 9 possible actions 

in total as the output of the network. At any position p̂ , the robot can expect a 
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feedback reward from the human, )ˆ(pr . By assuming that the control policy 

estimation AP ˆˆ:ˆ →µ  is a function of current state only, the system transition 

PP ˆˆ: →o is also a function of current state because: 

 )ˆ(]ˆ),ˆ([)ˆ,ˆ(ˆ 1 kkkkkk ofaf ppppp ===+ µ  . (4-5) 

This state transition shows that the new system state is solely decided by the current 

system state and independent from previous history. As discussed in Chapter 3, this is 

the Markov presentation of the system. The assumption that the action of the system 

is only dependent on the current system state remains true as long as the system is 

Markov. 

Once an action leads to an increase in the score, 0>∆R , it is rewarded by 

Equation (4-3). Otherwise it is penalised by Equation (4-4). The states in the reward 

slope are directly trainable through Equations (4-3) and (4-4). As long as the robot is 

not moving in the flat surface, so that the reward score changes according to the 

position of the robot, it will eventually end up with a set of rewarded moves, all of 

which have 0>∆R . 

However, if the robot is located in the flat surface, no move will cause any 

change of the reward, i.e. 0=∆R . This means that all actions in the flat region will 

not be rewarded, where no real learning can be established because no action can be 

rewarded by (4-3). A simple approach we propose is to use an online-generated 

secondary scoring surface which always has a gradient for the learning to follow. 

4.2 Learning through Secondary Scoring Surface 

 

Figure 4-2 States that can’t be trained by the original reinforcement rule. The horizontal axis presents a 
collection of states and the vertical axis is the reward value. The move starts at flat surface and 
manages to receive a change of reward after the action. 
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Figure 4-2 shows a vertical section through a reward surface with flat areas. In  

Figure 4-2, )ˆ(ˆ kpµ  is an action achieving a change in the reward but )ˆ(ˆ 1−kpµ is not, 

where 0>∆ kR and 01 =∆ −kR . The states that are located in the flat surface and are 

away from the edge of the reward slope such as 1ˆ −kp  won’t learn effectively. 

However, it will be reasonable for them to be rewarded through (4-3) if their actions 

enter states like kp̂ , a state whose action will then receive a better reward score. Such 

learning can be established by introducing another scoring surface 

ℜ⊂→ MMP     ,ˆ:sr . Initially P̂ˆ:0)ˆ( ∈∀= ppsr . )ˆ(psr  is updated if 0>∆ kR and 

01 =∆ −kR  through: 

 )ˆ()1(:)ˆ( 1+−= k
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k
s rr pp η   , (4-6) 

where 1<sη is a very small positive constant, e.g. 0.01. 

Equation (4-6) assigns state kp̂  a secondary score that can be understood as 

the potential of receiving a better reward score at position kp̂  taking the current action 

that has the highest probability, )ˆ(ˆ kpµ . For all states in the flat surface, if they learn 

when their actions manage to receive a change in the secondary score, even if their 

original reward scores maintain no improvement, effective learning can still be 

established for the states near the reward slope. In order to expand this learning 

throughout the flat surface, this rule needs further extension so that every state in the 

flat surface is able to receive a secondary score, and the learning can be established 

following the change of the secondary scoring surface. At time k, for a position state 
kp̂  in the flat surface, whose action enters state 1ˆ +kp , its secondary score is: 
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where )ˆ()ˆ( 1 k
s

k
s

k
s rrR pp −=∆ + . 

After the states at the edge of the reward slope have received non-zero 

secondary scores based on Equation (4-6), Equation (4-7) is able to expand the slope 

of the secondary scoring surface over the whole flat area. Thus, after complete 

learning, for some state ap̂  located at the flat surface, the secondary score will have a 

form of exponential descent: 
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 +ℜ∈−= crr bs
c

sas ,)ˆ()1()ˆ( pp η , (4-8) 

where state bp̂  is some state adjacent to the reward edge. 

For all possible states on the map, there are three possible situations: 

• If the state is at the edge of the reward slope, Equation (4-6) can be used to 

update its secondary score if its actions enter the reward slope, where it 

has 0>∆ kR  and 01 =∆ −kR ; 

• If the state is located at the flat surface, Equation (4-7) can be used to update 

its secondary score if its actions receive a secondary score, where it 

has 0=∆ kR  and 0>∆ k
sR ; 

• To complete the rule for all states, we let the secondary score equals the 

original reward score while the robot is located on the reward slope, where it 

has 0>∆ kR  and 01 ≠∆ −kR . 

Summarising the rules for updating the secondary score, we have: 
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(4-9) 

The learning for the states in the flat reward surface can be established by following 

the change of the secondary score. This learning rewards the current action if 

0>∆ k
sR and penalises it otherwise. Therefore, for any time instance k, the modified 

learning rule can be summarised as:  

• if 0>∆ kR or ( 0=∆ kR and 0>∆ k
sR ), reward current action using Equation 

(4-3); 

• if 0<∆ kR or ( 0=∆ kR and 0≤∆ k
sR ), penalise current action using Equation 

(4-4); 

• update secondary score through Equation (4-9). 



 Chapter 4 – Reinforcement Learning   

Autonomous Learning of A Mobile Robot in Social Distance 34 

4.3 Learning Control 

Narendra (1974) proves that the linear reward-inaction rule is able to converge to an 

arbitrary degree if the learning rate is small enough. However, a constant small 

learning rate results in slow convergence. We propose that the learning rate should 

change relative to the maturity of current learning action so that actions with high 

probability are rewarded slowly and penalised fast, and actions that have low 

probability are rewarded fast and penalised slowly. The calculation of the learning 

rate for each action is based on linear functions: 
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where Η∈(0,1) is a constant that specifies the upper limit of the learning rate 

adjustment. 

Even with the control of learning rate, the learning speed of the reinforcement 

network is still limited by the fact that only at most one state can learn at each step. 

The concept of Neighbour learning was introduced by Kohonen (1982) for  

self-organised feature maps. It is a concept often employed in competitive networks. 

If we assume that nearby states have similar actions, introducing such a technique can 

significantly increase the speed of learning by stimulating the learning of the states 

near the current states. For a neighbour distance d, if state p̂  learns action â , all other 

states within distance d learn action â  as well in a discounted manner. As the states of 

our system are actual spatial positions, it is reasonable to define the distance to be 

Euclidean distance. 

According to Kohonen, the magnitude of neighbour learning is based on the 

Mexican hat function: 
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where d is the distance of a neighbour and D the limit of the neighbour learning 

distance. When the 2=D , the function appears as shown in Figure 4-3. Based on 

Mexican hat function shown in Figure 4-3, the learning of neighbours that have the 

same distance as the limit D has been reduced to 0 and a small region after that 

appears to be a penalty zone prohibiting the learning of the action fired by the current 
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system state. This zone is used to distinguish the recognition of different classes of 

patterns in the competitive network. 

 

Figure 4-3 Mexican hat function with a distance of 2. When the distance large than 2, there is a prohibiting zone 
on each side of the x-axis, where the magnitude of learning is negative (penalising). 

In the proposed reinforcement system here, there is no reason to prohibit the 

learning of the neighbour as the states are not competitive. Therefore, we adjusted the 

Mexican hat function by dropping the prohibiting factor in Equation (4-11) : 
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(4-12) 

With a distance limit of 2, the new neighbour function is shown in Figure 4-4. 

 

Figure 4-4 Neighbour learning function adapted from Mexican hat with on prohibiting zones and a distance of 2. 
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Neighbour learning allows the states of a system to interact. By assuming that 

nearby states fire similar actions, it can overcome the limit that only at most one state 

can learn in a reinforcement network. However, neighbour learning also means that a 

maturely learnt state can be modified by its falsely or immaturely converged 

neighbours, which can risk the convergence of the system. Thus, the distance limit D 

should be a small value. Also, neighbours learn only if they have a lower secondary 

score than the current learning state, which can avoid some false modification made 

by the neighbours. 

Based on this rule, Figure 4-5 shows a comparison of a system trained by the 

reward surface shown in Figure 4-1 with 2000 random walks, where a walk denotes a 

set of movements carried out by the robot from a start point to the destination. The 

selected measurement of the system convergence is the average probability of all 

actions with highest probabilities: ]}ˆˆ:)ˆ|ˆ(max[avg{∑̂
∈

∈∀
P

A�
p

p aaP . 

Figure 4-5 The comparison of the system convergence with different neighbour distance. Squares mark the 
average probabilities and the bars are the standard deviations. The value should be around 1 when the 
network converges ideally: the higher this value and the lower the standard deviation, the better the 
convergence of the system. 
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Figure 4-5 shows the average probability of all actions with highest 

probabilities after 2000 walks for networks with different neighbour distances. A well 

converged network ideally should have a high value close to 1 and a short standard 

deviation range. Test results shown in Figure 4-5 clearly support using a neighbour 

distance of 2 which enhances the convergence without introducing observable risk. A 

higher neighbour distance however has shown a risk to damage the convergence as 

the value of the average probability gets lower and the standard deviation gets larger. 

4.4 Simulations 

The simulations of the reinforcement learning system are based on the reward surface 

with one reward peak and a large flat surface, as shown in Figure 4-1. The aim of the 

system is to direct the robot to the reward peak. However, as discussed in Chapter 2, it 

is important for this system not only to learn successfully but also to be usable while 

learning. The ability of the reinforcement learning in these aspects will be 

investigated. The following simulations took place in the MATLAB environment. 

4.4.1 Simulation System 

 

Figure 4-6 Reinforcement learning simulation system. Solid arrows represent the data flow in the system. The 
notations on the arrows mark the type of data in the flow, where data marked in plain form go into 
the shared data arrays and data with italic captions go out of it. The dotted arrows denote the flow of 
the execution of functions. 
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The simulation system is centralised around shared data. All functions follow a 

certain execution sequence, as shown by dotted arrows, and visit the shared data 

arrays in order. The goal detector stops the program when the goal is achieved. That is 

taken to mean that the desired position of the robot has been reached. The robot is a 

simulated position counter and the human feedback is the selected reward surface. As 

discussed in Chapter 3, the human is assumed to be stationary so their speed is not 

simulated in the system here. 

The learning rate limit H in the system is 0.7 and neighbour distance D is 2. 

The constant that determines the gradient of the secondary scoring surface, sη , is 0.05 

and learning rate η  is 0.1. As discussed above there are a total of 900 states with 9 

possible actions for each state. 

4.4.2 Simulation Results 

The first simulation demonstrates the results of training based on the reward 

surface shown in Figure 4-1. In Figure 4-1, flat surface occupies the majority of the 

map. The learning therefore starts with walks that start on the reward slope so that the 

learning can be more effective. After 9 such walks, the training then starts at random 

starting points. Each walk ends after the robot reaches the goal or 1000 steps. 

 

  

(a) Early walks near the reward slope. Numbers over 
start points mark the sequence of walks. 

(b) Example of walks after 2000 walks 

Figure 4-7 Sample movements of reinforcement system. The reward surface has one peak and large flat surface. 

Figure 4-7(a) gives examples of the system performance during the early 

learning phase. The movements made by the robot appear to be aimless because most 

of the states in the state space have not been trained and many of the states were only 
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fired a few times. But given enough time, the robot can always reach the target based 

on the reinforcement rules. The worst possible case is that the robot achieves the goal 

in the early stage of learning through random wandering. The system’s ability to reach 

the target regardless of the stage of learning is an important feature of online learning 

systems. 

As the learning progresses, the system starts to perform more sensibly with 

smoother moves that move more directly to the goal, as shown by Figure 4-7(b). 

Those movements are then closer to the actual desired movements presented by the 

reward surface. Learning of the movements in the flat surface is based on the online 

generated secondary scoring surface. Figure 4-8 is the secondary scoring surface 

generated by the network after 2000 random walks. 

  

(a) Reward surface: contour plot (b) Secondary scoring surface: contour plot 

  

(c) Reward surface: surface view (d) Secondary scoring surface: surface view 

Figure 4-8 The comparison of reward and generated secondary reward surfaces in the case that the reward 
surface has a large flat surface. 
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As shown in Figure 4-8(b) and (d), the secondary scoring surface will not be 

smooth and even. The secondary scoring surface is built upon the routes taken by the 

robot, which contain a large number of random moves. It is an exponential descent 

expansion of the reward slope based on the history of the robot’s movements. The 

gradient of the secondary scoring surface always leads to the peak of the reward 

surface. The deep holes that can be seen on the contour plot of the secondary surface 

are the locations that the robot didn’t experience and the secondary scores therefore 

remain zero. The reinforcement system can direct the robot to the goal from any state 

with a non-zero secondary score in a rational manner following the generated 

gradient. As a further evidence of the benefits of introducing neighbour learning with 

small distance, Figure 4-9 shows the secondary scoring surface from the 

reinforcement system after 2000 walks with exactly the same setting but without 

using neighbour learning.  

 

 

(a) The contour plot of the secondary scoring surface 
from a system that doesn’t using neighbour 
learning 

(b) The secondary scoring surface from a system that 
doesn’t using neighbour learning 

Figure 4-9 The generated secondary reward surface in the case that the reward surface has large flat surface and 
the system doesn’t use neighbour learning. 

The result in Figure 4-9 is based on 2000 walks of the system. It is evident that 

the surface is much less developed and the gradient is not direct. The gradient of the 

secondary scoring surface is not smooth and direct. The robot will thus use longer 

walks with less improved moves to reach the goal, and its paths will be worse than 

those presented in Figure 4-7. 
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4.5 Capabilities of the Network 

The simulations have clearly demonstrated the network’s ability to reach the most 

desired position in a finite number of movements. The system works online in that the 

goal can be reached without providing any pre-training. The system starts by making 

random movements and the performance of the system gradually becomes more direct 

and smoother. The gradient of the secondary scoring surface is an exponential descent 

of the reward slope and the states with non-zero secondary score converge to the 

actions that can follow the generated gradient to the goal. As the learning progresses, 

the secondary scoring surface spreads the slope throughout the state space. It is 

generated online based on the data collected over time. 

However, the nature of reinforcement learning is probability counting, which 

has to be based on a significant number of random actions. It works online because 

reinforcement learning’s convergence rule is based on statistical theory and, given 

enough time, the system can always stabilise at the goal, regardless the stage of 

learning. However, the early stage of the training has to be filled by a large number of 

random moves, which is hardly feasible for any real robot motor system. This chaotic 

performance is unavoidable because unlearnt states can only fire randomly. The 

system improves the performance as learning progresses but the process is lengthy. 

After a robot has followed a human two thousand times, the human would expect a 

behaviour better defined than the results presented in the simulation. Infeasible early 

output, lengthy learning processes and a less-than-ideal learning outcome make it hard 

to use this learning online to control the robot in real world. The simulation results 

show that the reinforcement learning system here is not using-while-learning. 

There are reinforcement rules known to produce better learning outcomes. 

One of the most popular algorithms is Q-learning proposed by Watkins(1989). It has 

been extensively used in a wide range of areas. A large number of examples of robot 

learning using Q-learning can be found in the literature (e.g. Schaal, 1999, Nicolescu, 

2003). But, as a form of reinforcement network, it still relies on excessive random 

actions to start the learning. By describing the system as a collection of discrete states, 

the reinforcement system is not able to function acceptably until the majority of the 

states in the collection have converged to a correct action. ‘By trying all actions in all 

states repeatedly, it learns which are best overall’ (Watkins and Dayan, 1992). The 

online use of Q-learning or other form of reinforcement rules on real robot motor 
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systems thus has been strictly limited to those systems with a small state space and a 

limited number of initial states (e.g. Rummery and Niranjan, 1994, Pasemann, 1997) 

so that the system can experience all possible states within a small amount of time. 

But the most common practice with Q-learning in many related robot applications is 

to use long pre-training sessions until a plausible state of the system has been 

achieved (e.g. Nicolescu et al., 2006, Calinon and Billard, 2006). By using rules such 

as Q-learning, one can be confident that the final outcome of the system will be closer 

to the ideal function but there is little evidence to support its improvement in the 

performance of the early learning stage and the time of learning compared to the 

proposed linear reward-inaction. For reinforcement learning, unexpected states remain 

unlearnt and when the system steps into such a state, the system relies on random 

moves to start the learning. To experience almost every possible state becomes the 

prerequisite for a reinforcement network to provide acceptable performance. 

However, it is unrealistic for the proposed human-following scenario. 

Reinforcement learning lacks the ability to produce appropriate outputs for 

novel states based on previous learning. Such an ability is known as generalisation. It 

is essentially the process of approximating a function by estimating the relation 

between the input and output space given limited examples from the true target 

function. Networks that can generalise only need to experience a limited number of 

states to conclude a possible outcome for unlearnt states. The system then is no longer 

described as sets of finite state and action collections but as a continuous function 

relating the position of the robot to the actions. A widely used learning algorithm for 

neural networks, error backpropagation, is known to be able to generalise with the 

given sample points acting as teacher, i.e. training data. However, recalling the 

summary of the problem modelled here from Schaal (1997) at the beginning of this 

chapter, such training data don’t exist in the model used in this thesis. 

Researchers have been studying possible improvements of generalisation of 

reinforcement learning (e.g. Sutton, 1996, Boyan and Moore, 1995, Ackley and 

Littman, 1990). However, because the basic reinforcement learning rule doesn’t 

generalise, researchers have to introduce the generalisation into the system by 

compromising some factors of the system, typically the learning speed. That is to say, 

by introducing generalisation into reinforcement learning, it produces an even lengthy 

training process as the reinforcement needs longer learning time than usual to produce 

a generalisation. This is acceptable for those research projects because most of their 
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projects are carried out in offline learning scenarios. However, the learning speed can 

not be compromised in our scenario. 

Generalisation is an important and attractive feature for many robot learning 

tasks. In social learning, generalisation provides the ability to conduct behaviours in 

novel situations based on previous experience. Therefore, in the next chapter we will 

explore and investigate the alternative of building an online learning network that 

generalises and overcomes the absence of training data, based on a well studied neural 

network structure: the multilayered feedforward network. 
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Chapter 5 Multilayered Feedforward Networks 
using Online Backpropagation 

In Chapter 4 we have studied one of the possible learning algorithms for the 

autonomous learning behaviour, reinforcement learning. It aims to find the most 

appropriate location to follow the human through reasonable paths, according to 

human feedback. The reinforcement algorithm chooses a set of discrete states, with a 

set of discrete actions. Through learning, the reinforcement system establishes a 

discrete map between the state and action sets. By rewarding and penalising actions 

based on the feedback to the system, an approximation of the true mapping between 

the states and the actions can be expected. For a close approximation, however, a 

large number of states and actions are needed. Large state and action sets generate 

unfeasible initial outputs because the system has to rely on random firing neurons for 

a long time and the time to converge will be long. Therefore, in order to produce an 

acceptable performance, reinforcement learning needs to experience all states of the 

system repeatedly. Reinforcement learning lacks the ability to generalise. 

Generalisation is a frequently mentioned term in autonomous learning, which refers to 

the system’s ability to estimate the output of novel untrained states based on given 

examples. With non-experienced states remaining unlearnt in a reinforcement 

network, the long period of random firing and slow convergence is unavoidable. 

However, for a reliable online learning system to control the movement of the robot, it 

is necessary for the learning system to provide a plausible control policy fast enough 

in its initial training for a real using-while-learning operation. 

Instead of finding a discrete mapping between the quantised input and output 

spaces, an alternative is to approximate the true mapping between the state space, X, 

and action space, A, by assuming that differentiable function exists, which is close 

enough to the true relation between the two spaces: AX →　:µ . For a neural network 

that defines a system function, AX →:~µ , it is possible to build it up as an 

approximation to µ  to a satisfactory degree online, given some sample data from the 

true relation, µ , during the operation. One such learning algorithm for a neural 
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network working in this manner is backpropagation proposed by Hecht-Nielsen 

(1989), and now sometimes is more specifically referred to as first order error 

gradient descent backpropagation (Battiti, 1992). 

Backpropagation learning has been widely adopted across a wide range of 

engineering applications. It is attractive because of its ability to act as a universal 

function approximator (Hornik et al., 1988). Although most of the applications in the 

literature are based on offline function approximation, its online learning ability has 

been introduced into many research projects, typically in control system applications 

(e.g. Zhao et al., 2002, Chen, 1990, Ahmed et al., 1995). However, few examples 

were found in literature applying backpropagation to a robot behaviour that learns by 

interaction with the human. The challenge of using this learning algorithm in the 

proposed HRI model is finding the error measurements of the system outputs. 

Because the human preference is unknown to the system, the desired system outputs 

that have to be used to measure the system error can’t be collected. The learning of 

this scenario, therefore, has been investigated mainly using reinforcement learning, as 

reviewed in the previous chapter. This chapter will propose a novel online learning 

method to enable backpropagation learning for the robot behaviour in the HRI 

scenario, so that the system can benefit from the advantage of generalisation.  

In the remainder of this chapter, Section 5.1 reviews the backpropagation 

algorithm and the structure of multilayered feedforward neural networks. Section 5.2 

proposes the online training data selection method to form the system error 

measurement during operation. Section 5.3 introduces the proposed online 

backpropagation algorithm and neural network structures. Section 5.4 demonstrates 

the simulation results of the system and provides a deep analysis of the system 

performance. Section 5.5 is a short conclusion of the study in the chapter and opens 

the issues for further investigation in Chapter 6. 

5.1 Introduction of Error Gradient Descent Backpropagation 
and Multilayered Feedforward Neural Networks 

Error gradient descent backpropagation is one of the fundamental learning rules in 

neural networks. Its preliminary form was discovered by Bryson and Ho (1969), and 

Werbos (1988). Its modern formula was proposed by Hecht-Nielsen (1989), who also 

proved the convergence of the learning algorithm. The backpropagation algorithm 
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was originally proposed for a classic branch of neural networks, now known as 

multilayered feedforward neural networks, a useful overview of which has been given 

by Bebis (1994). Backpropagation has also been used in other forms of neural 

networks that were developed later such as recurrent neural networks for closed-loop 

systems (e.g. Stroeve, 1998, Sutton, 1990, Steil, 2005). Recurrent networks are 

mainly used for time-related mapping, where the current state of the system is 

expected to be related to some or all previous states. In other words, the system is 

non-Markov. Keeping the Markov assumption (see Section 3.2), the multilayered 

feedforward neural network is an appropriate choice. 

In the work of Hecht-Nielsen, he not only refines the backpropagation 

algorithm but also proposes the modern connectionism of the multilayered 

feedforward network. It is a neural network with a hierarchical design consisting of 

fully interconnected layers of neurons. The structure of the multilayered feedforward 

neural network is shown in Figure 5-1. 

 

Figure 5-1 The architecture of the multilayered feedforward neural network. It consists of one layer of input 
units, one layer of output units and several layers of hidden units. The adjustable weights are 
associated with all connections between neurons. Each non-input neuron has an adjustable threshold, 
or bias, represented by an adjustable connection with unit input. 

In general, a multilayered feedforward neural network contains one input 

layer, one output layer and several layers in between, called hidden layers. All 

neurons are fully connected to the neurons in the previous and next layers, if there are 

any. Each non-input neuron has a connection with unit input, called bias or threshold. 

Given a set of examples known as training data that specify some sample inputs and 
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their desired outputs, the backpropagation rule adjusts the weights of the network 

autonomously. Through this adjustment, the system function is able to converge to an 

approximation of the target function to an arbitrary degree of accuracy. 

Based on Hecht-Nielsen’s proposal of backpropagation, in a multilayered 

feedforward network, wij(k) is the weight of the connection between ith neuron in jth 

layer and kth neuron in )1( −j th layer. Define  )]()2()1([ T
1j-ijijijij n, w, , ww L≡w that 

denotes the weight vector of the ith neuron in jth layer, and 

 )]()2()1([ T
1j-ijijijij n, x, , xx L≡x  to be the input vector of the neuron, where nj-1 is the 

number of the neurons in layer j-1. Let jijijij by +=   T xw , known as the net value of the 

neuron, where bj is the weight of the bias connected to the ith neuron of jth layer. The 

output of the neuron is a transition of the net value: 

 )( ijij yfz =   , (5-1) 

where f(.) is known as the activation function. Early research on backpropagation and 

neural learning (e.g. Hopfiled, 1984, Grossberg, 1982, Williams, 1983) advocated the 

activation function to be a sigmoid function, and it has been adopted ever since. The 

choice of activation function has now widened to a series of sigmoid-type functions 

(Huang and Babri, 2000, Menon et al., 1996).  

For the input layer, the activation function is linear and it has no input 

connections with adjustable weights. It actually serves simply as the memory for input 

vectors and sometimes researchers prefer not to call it a layer of the system. For the 

sake of clarity, when the number of layers of multilayered feedforward networks is 

mentioned in this thesis, it always assumes that the input layer is numbered as layer 

one. 

According to Hecht-Nielsen, the aim of updating of the weights is to adjust the 

function presented by the network autonomously so that a certain performance 

function is minimised. The performance function is a measurement of the difference 

between the system outputs and the desired outputs for the given examples. The 

training data set is a collection of examples of some sample inputs and corresponding 

desired outputs of the target function, µ . The error function, E, is calculated so that 

the system works in a least square manner: 

 ])()[(
2
1 ∑ −⋅−= ztztE   , (5-2) 
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where z is the system output vector and t is the corresponding vector of desired 

targets.  

The system weights are assigned small random numbers initially. In 

backpropagation, the adjustment of the weights should be proportional to the descent 

of the system error gradient. Given that the weight matrix of the jth layer 

 ][ 21 jnjjj j
, ,, WWWW L≡ , it should be updated as: 
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where 0≥η  is the learning rate, Ej is the performance function of the jth layer, and 

 ][ T
21 jnj , y,, yy L≡y . Ej is unknown except for the output layer as the expected 

output for hidden neurons can’t be decided. Thus δ is introduced to backpropagate as 

the system error through the hidden layers, the value of which is: 
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where h is the total number of layers and z& is the vector that consists of the 

derivatives of each element in vector z. 

The autonomous learning of the network is achieved by updating the weights 

based on the selected performance function, E. However, the proposed HRI model 

lacks the measurement of system error performance. The training data set doesn’t 

exist because human preference, which is presented by the reward surface, is 

unknown to the learning system and the desired outputs of the system, i.e. the 

preferred robot movements by the human, can’t be pre-collected. Thus collecting 

training data is a prior condition for the construction of a multilayered feedforward 

neural network. A novel process of collecting useful data to form a set of training data 

online is therefore proposed. 

5.2 Training Data Selection 

Human feedback is used to rank the performance of the robot’s movements while 

operating. Based on human’s responses, it is possible to collect a set of moves that 

have achieved positive feedback from the user. Positive feedback doesn’t mean the 

robot has made the best possible move. However, if the system is trained by these 

data, its performance can be expected to improve. A better performing system is then 
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able to collect data that are closer to the ideal human preference. The data then further 

refine the system performance. In such a way, it is possible to base this behaviour on 

backpropagation learning online without prior training data. 

For the social positioning behaviour here, the system state space, P, is the 

space that contains all possible positions of the robot relative to the human. The input 

for the system in the proposed model is the instantaneous robot position P∈p . The 

output of the system, )(~ pµ , is the expected action of the robot at the next time 

instance, which is assumed to be carried out exactly at this stage (see Section 3.2). 

The action is in the form of an expected displacement. The system transition is 

therefore: 

 )(~1 kkk ppp µ+=+   . (5-5) 

The reward measurement, )()( 1 kkk rrR pp −=∆ + , is essentially the same as  

Equation (4-1). 0>∆ kR  means that the current move )(~ kpµ  receives the human’s 

approval. Though it may not be the best move, if pk+1 is the best rewarded place that 

the robot has achieved so far by making a move from position pk, it is sensible to train 

the system with the input pattern pk and desired output )(~ kpµ . Because the learning 

of the system improves the moves, the chance of better movements happening at pk 

exists, which can replace the old training data. In this way, the data selecton and 

system learning enhance each other through time. 

Thus the system output that has received the greatest increase in reward up to 

the current time at each position is taken as the target for training with the current 

input pattern. To store the collected training data in a finite amount of memory, a 

discrete state set PP ⊂ˆ  is used which presents the position space in 60×60 states 

with fixed intervals between them. We define ]1 ,0[ˆ:)ˆ( →∆ Pptr  to be the best reward 

measurement collected by making a move at state p̂ , and AP →ˆ:)ˆ(ptµ   

to be the action that acquired that reward measurement. Initially, 

P∈∀==∆ ppp ˆ:  ]0 ,0[)ˆ(  ,0)ˆ( T
ttr µ . After data are collected, a trainable input-target 

data pattern is formed as )}ˆ(  ,ˆ{ pp tµ . ∆rt is used to validate if new data patterns are 

better and should replace the existing ones. The primary updating rule of the training 

data collection is: 

if )ˆ( k
t

k rR p∆>∆ : 
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where P̂ˆ ∈kp  is the closest state to position pk. 

If 0<∆ kR , we have 0)()( 1 <−+ kk rr pp  or, equivalently, 0)()( 1 >− +kk rr pp . 

It suggests that going from pk to pk+1 is not an appropriate move. However, if the 

robot were moving backwards, from pk+1 to pk, it would experience an increase in the 

reward. If pk is the best rewarded place that the robot has achieved by taking a move 

from pk+1, pk is a trainable pattern with a desired movement, )(~  1 kpµ×− . Thus: 

if )ˆ(1 1+∆>∆×− k
t

k rR p : 
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(5-7) 

Equation (5-7) is considered as the secondary means of data selection because, as the 

learning progresses, moves that cause ∆Rk to be negative happen less frequently and 

the collection of training data is mostly the duty of Equation (5-6). The rule stated by 

Equation (5-6) and (5-7) updates the training data when a change of the reward score 

happens, i.e. 0≠∆ kR . As a result, the states located in the flat surface won’t have any 

training data selected. But, because the backpropagation is able to generalise 

reasonable outputs for untrained states based on the learnt examples, an overall 

control policy for the robot can be expected after effective training. 

5.3 Online Backpropagation Learning 

5.3.1 Neural Network Structure 

It is evident that the size of the network is a significant factor that affects the rate of 

convergence (Gao and Yang, 2003). The optimal number of hidden layers and 

neurons has been a common topic of discussion in the literature. Unfortunately, no 

formula or hard criteria have been proposed to determine the optimal size of the 

network. Existing approaches propose repeated experiments with statistical 

comparison to find out the best size for offline learning (Kim and Yum, 2004), 

typically signal noise ratio analysis (e.g. Khaw et al., 1995, Yang and Lee, 1999). But 

these methods are targeting the best convergence of offline learning, the results of 
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which are difficult to apply in the online learning here without a constant set of 

training data. 

With no practical methods to decide the best network scale beforehand, the 

most common practice among existing online learning in engineering applications is 

to adopt a middle-sized network for a learning task whose target is known not to be 

too complex. The size of those networks is normally no more than 10 hidden neurons 

in each hidden layer and with 1 or 2 hidden layers (e.g. Zhao et al., 2002, Chen, 1990, 

Ahmed et al., 1995). Considering the importance of the speed of learning in a using-

while-learning operation, we chose a network with one hidden layer with 10 neurons. 

A successful system requires, however, that the number of hidden neurons is 

enough to map the target function. In order to have a small network, it is useful to 

simplify the learning target for each network so that the system can learn fast and 

successfully. The method proposed is to separate the system into two networks, one 

for the movement in the x direction and one for the y direction in the human 

coordinate frame. The movements in x and y are orthogonal therefore separating them 

is mathematically plausible. Because the hidden neurons in each network are then 

only responsible for satisfying one output rather than compromising between two 

outputs, smaller sized networks are possible, as the two outputs no longer need to 

share the hidden neurons. The simulation in Section 5.4 will prove that this is an 

effective and sufficient configuration. 

5.3.2 Backpropagation Learning  

Using the data selection method, the backpropagation learning can be performed. The 

selected system performance function is the sum of squared error: 
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where P̂ˆ ∈p  is the closest state to the input position p in system memory, and scalar 

K is the limit of the robot speed. The speed limit K is taken to be 500 mm/s. It is a 

safe robot speed in a social environment and a robust range for the motor controller 

(details in Chapter 7.4). The error function is normalised because the output of the 

neural network belongs to the range [-1, 1]. The activation function for the hidden 

layer in our system is: 
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where +ℜ∈α  is a constant. α decides the width of the slope in the tanh function. 

Researchers, such as Dundar (1998), have reported that different settings of activation 

function affect the learning of the network. The tanh function is used because the 

output of our system is bipolar. In the research of Gao and Yang (2003), they argue 

that 0.3 is likely to be an effective value for α giving a reasonable slope under a 

similar setting of the network. This value is adopted in our network. 

A common practice for offline backpropagation learning rules is to use a 

learning rate that decreases through time (Patterson, 1996), in order to improve the 

convergence. It is inappropriate in the online learning here as the training data set 

keeps updating and any trainable data can be new. Thus the significance of learning is 

not marked by the time indices but by the novelty of the training pattern, which is 

associated with the error performance of the system: higher novelty leads to worse 

error performance. Therefore, the learning rate is calculated online based on the mean 

of system performance: 
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where m is the number of error measurements, e is the natural logarithm constant, 
+ℜ∈H  is the learning rate limit and β is a constant specifying the speed of the 

descent of the learning rate relative to the decrease in system errors. β is 0.8 in the 

simulations, which gives a reasonable change of learning rate when 
m
Ea  falls in [0, 4]. 

m
Ea  is bounded in [0, 4] because the network output is limited in [-1, 1], decided by 

the tanh function. 

5.4 Simulations and Analysis 

The simulation system is the same as the one used in Chapter 4 except that the 

reinforcement learning behaviour is replaced by the backpropagation learning 

behaviour. This section demonstrates general results of the system behaviour and 

provides an in-depth analysis of its operation, under the scenario of locating the 

appropriate position in the human coordinate frame based on the reward feedback. 
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The training was carried out in a pattern-by-pattern basis. The data used in this section 

will be selective and representative. The complete system performance history of all 

the system operations mentioned in this section is located in Appendix I. 

5.4.1 Simulation Results 

The first simulation trains the system with a reward surface that contains one peak and 

a large flat surface. Because the training data are collected online, it is important for 

the system to have enough useful feedback from early operations. Therefore, the first 

3 walks start on the reward slope and the robot starts at random points afterwards. For 

each walk, the system operates for 400 steps regardless of its failure or success at the 

end of the walk, which provides a fixed time window for the analysis. The system 

parameters and structure are as discussed in Section 5.3. Some walks of the system 

are shown in Figure 5-2. The weights of the system are randomly initialised before the 

start and they will not be reinitialised in the same simulation. Incremental 

backpropagation training was practiced.  

 

Figure 5-2 The walks produced by the online learning multilayered feedforward networks with backpropagation. 
The target reward surface has one reward peak and a large flat surface. The ● marks the starting point 
of the robot and ♦ marks the ending/stabilising point of the robot. The numbers indicate the index of 
the walk in the operation. 
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The demonstrated walks have shown that later walks have a clear 

improvement over early ones in terms of the paths that they generate. It is promising 

that the system is able to direct the very early walks to the goal. The walks that start 

on the flat surface also locate the goal correctly. This demonstrates the system’s 

ability to generalise. Such generalisation is based on the reward surface, in that the 

walks are trying to follow the steepest gradient of that surface. The 30th walk in 

Figure 5-2 is a good example of the effect. Instead of going directly to the reward 

peak, the path given by the 30th walk is obviously following the gradient of the reward 

slope. 

It is shown in Figure 5-2 that the first walk ends before the goal is reached. 

This is because the 400-step time limit has been reached. Given long enough time for 

the system, under the scenario set up for this simulation, failure is rare and might only 

happen if the robot starts at the edge of the reward slope and heading in the wrong 

direction with a very small velocity at the very first walk. In this situation, the robot 

can only collect one set of training data with a small value before it enters the flat 

surface. Because both the values of the system output and the training data are small, 

the error measurement is small and so are the weight adjustments. The robot will then 

go out of the map before it can turn back. 

Normally after 40-50 walks, further learning causes little observable 

improvement in the system performance. Although the system learns based on the 

reward surface, its direct learning outcome is actually the expected displacement at 

the next time index for each position in the map. The system function,  

AP →× :~ 22µ , is a continuous 4-dimensional surface. Surveying a set of positions in 

the map and their outputs, the system function can be illustrated as Figure 5-3, as a 

quantised discrete illustration of the 4-dimensional mapping.  

Figure 5-3 demonstrates the generalisation of the system clearly. No training 

data can be collected in the flat surface, but a reasonable set of movements have been 

produced. It can be seen that a reasonable movement surface has a good similarity to 

the gradient of the reward surface in the regions in which the non-zero reward 

gradient exists. The integration of the system output, therefore, can indicate the 

system’s recognition of the reward surface, and it will be worthwhile to compare it 

with the reward surface to evaluate of the system’s behaviour. 
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Figure 5-3 The multilayered feedforward system performance after 30 walks of online operations: the arrows 
indicate the system output speed vector of the movements at sample positions. 

Integrating the movement surface with finite difference integration1, the 

reward surface implied by the system output after 30 walks is shown in Figure 5-4(b) 

with a comparison with the reward surface in Figure 5-4(a).  

The integrated output surface has been normalised into the range [0, 1]. It has 

to be noticed that for data that don’t contain constant gradient, such as the system 

outputs here, the integration algorithm here can only work in a least square sense and 

a certain bias may exist in the outcome. Therefore, the integrated output surface can 

only serve as a point of reference but not an accurate system measurement. Figure 

5-4(c) and (d) show the reward surface and the integrated surface of the system 

outputs over the map. The similarity of the reward surface and the integrated output 

surface can be seen clearly through the contour plot of the two. In the contour plot of 

the integrated surface, the generalisation of the system in the flat surface appears to be 

a reasonable expansion of the reward slope.  

                                                 
1 The integrating function is an inverse of gradient function in MATLAB and the source code locates at 

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9734&objectType=scoreDetails. 
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(a)The contour simulated reward surface (b)The contour of integrated system output surface 

  
(c) The reward surface (d) The integrated system output surface 

Figure 5-4 The reward surface underlined by the learning system after 30 walks with a comparison to the reward 
surface that represents the human’s feedback. 

 

However, the surface plots of the two, Figure 5-4(c) and (d), appear to give a 

visual difference. This is only because the generalised flat surface area in the 

integrated output surface has such a steep gradient and the gradient in the original 

reward slope area is too small to show a contrast. The integrated output surface 

provides no flat area and stretches the slope of [0, 1] smoothly over the whole map. In 

Figure 5-4(b), it can be seen that the slope is similar to the reward slope in the 

integrated surface within the contour line 0.98. 

Figure 5-5 is the integrated surface above the plane: z=0.98, which shows the 

integrated surface near the area of the original reward slope. A strong similarity with 

the original surface is then illustrated. Generally speaking, the integrated system 

output surface is clearly a smooth surface with the same trend of gradient and similar 

cross sections as the reward surface. 
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Figure 5-5 The integrated output surface near the original reward slope area, which has a similar shape to the 
reward surface with a different scale of gradient. 

5.4.2 System Analysis 

For an online system, it is necessary to observe its performance during operation. The 

widely used criterion of error performance will be superficial for the proposed system 

because the training data are collected and improved online as the learning progresses. 

Thus the errors are measured under different targets at different times. A set of 

observations therefore must be used to give a full view of the system operation. The 

following observations will be used in the discussion in this section:  

System outputs 

A successful system is expected to maintain zero outputs at the goal. These 

reflect the system movements and its stability; 

Reward feedback 

A learnt system should have a fast increase of the reward and the ability to 

maintain the top reward score. These provide an indicator of robot position as well as 

the quality of the learning; 

Mean of Squared Errors (MSE) 

As the training data are updated during the operation of the system, the value 

of MSE here thus should not be interpreted as a system performance measurement but 
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the change of MSE can still be helpful to explain system behaviours. A steep change 

of MSE reflects a big adjustment of the system weights and a successful system is still 

expected to have a fast descent and a good convergence of MSE. This is the most 

commonly used system measurement;  

Training data updates  

These give information about the size of the training data set as well as the 

behaviour of training data selection. 

 

Appendix I has the complete data of these measurements of the simulations in 

this chapter. For a clearer view of the operation, we will selectively choose the most 

representative parts from the time axis for analysis. The early walks are worth careful 

analysis because the system is building the performance from scratch. Figure 5-6 

shows the observation in the first five walks. In Figure 5-6, it can be seen that the first 

walk ended before the system stabilised and the reward feedback didn’t reach the top 

score. As discussed in the previous section, this is because all walks are regulated to 

400 steps for a clearer comparison. It can be seen that at the end of the first walk, the 

system output has the trend of stabilising and the reward feedback is clearly rising. 

The reward history in Figure 5-6, shows that the first walk experiences 

decreases of the reward feedback at the beginning, which means the robot was going 

away from the goal and the training data collection is therefore working on the 

secondary rule as shown in Equation (5-7). But the system manages to steer into the 

right direction after learning for a few steps and the reward value rises as the robot 

approaches the goal. The system performance after the second walk of the system has 

been successful because all walks stabilise, and the reward stays at the top value. This 

means that the system only used one walk to build a weight basis that provides a 

correct general direction for the robot. Learning is then supported by new data. The 

fast learning of the system is again demonstrated. In the MSE figure, there is a faster 

descent of the error in the first walk than in other walks. The system demonstrates the 

ability to learn fast during early operations. 
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Figure 5-6 The data and measurements of the first five walks of the system based on the reward surface with one 
reward peak and a large area of flat surface. 
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In MSE, although every measurement is made from different targets as the 

training data are updating, the general trend of fast descending still demonstrates the 

system’s ability to adapt. The fact that the error measurements keep dropping even 

when the new training data arrive proves that the system has been altered in the early 

walks to match the feature of the reward surface. 

In the plot of training data in Figure 5-6, grey bars indicate the time indices at 

which training data are updated. It can be seen that the number of training data values 

rises every time the training data set is updated, which means the system is collecting 

new data throughout the first five walks. If the training data are updated and the 

reward feedback is falling, the system works on the secondary rule of training data 

selection as Equation (5-7). Otherwise, the training data selection is working with the 

rule presented by Equation (5-6). It can be seen that, in the first walk, the steep 

change of the MSE is associated with a large number of training data updates, where a 

wide grey bar and a steep slope in the size of training data set can be found. To collect 

a sufficient number of training data patterns is important for the system building in the 

early walks. It is shown in Figure 5-6 that the first walks updated training data more 

times than the later walks. Comparing it with the reward feedback figure, it can be 

seen that about half of the training data are collected through Equation (5-7) and the 

other half through Equation (5-6). It is then evident that the learning of the system in 

the early stages has been supported by both rules proposed in training data selection. 

The proposed training data selection method therefore appears to be effective. When 

the system progresses to later walks, the reward doesn’t drop anymore and the 

training data are then selected by Equation (5-6). 

For an online system, the long-term system behaviour is also worth 

investigating. Although the system has appeared to be learning fast and successfully 

in the early operations, it doesn’t ensure the system’s stability in long term. Figure 5-7 

shows the system performance during the 30th to 40th walks.  

In Figure 5-7, the output and the reward history of the system show that the 

system performs well. However, it is noticeable that both systems appear to have a 

small oscillation while trying to stabilise. The oscillation exists because, rather than 

map the reward peak as a small flat area as it is in the reward surface, the neural 

networks recognise the peak as one single point in the map, which can be seen clearly 

in the integration of the output surface in Figure 5-5.  
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Figure 5-7 The data and measurements of the 30th to 40th walk of the system based on the reward surface with 
one reward peak and a large area of flat surface 
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The peak of the reward surface is actually another flat surface providing no 

training data and the recognition of the peak is based on the system’s generalisation. 

In practice, it is rare for the robot to stop at the exact peak point for the system and 

thus the robot normally oscillates around it in the simulation. The magnitude of the 

oscillation is less than 5mm, which is 1% of the output limit. It is a high frequency 

and low amplitude oscillation that is unlikely to have observable effects on the robot 

motor system.  

In the training data history, there are times that the number of training data 

remains the same but its contents are updated. These are the efforts of the training 

data collection method to replace the old training data with better-rewarded moves. It 

can be noticed that if the reward feedback rises, the training data are updated. In the 

selected reward surface here, the reward rises when the robot steps into the reward 

slope. It is expected that the entry is through a different point with possibly slightly 

different movements every time. Therefore, there can always be some data worth 

being updated on entry to the reward slope. 

The MSE of Y-network is clearly stabilising. The MSE changes in X-network 

are at a very low value scale that can only trigger small weight adjustments. The 

difference between the two MSEs indicates that X-network is under more pressure to 

learn than the Y-network. This is because the reward slope is longer in width than 

height, which gives more responsibility to X-network to provide a correct recognition 

of the reward slope. By separating the movements of two directions into two 

networks, one network avoids compromising the performance of the other. The use of 

two networks has therefore demonstrated an advantage. 

Although the MSE of X-network at the 40th walk appears to be rising, 

introduced by the new data collected at the start of the walk, it stabilises later with a 

value less than 10-4, the details of which can be found in Appendix I. The MSE of the 

Y-network maintains a value of approximately 10-3. As it has been mentioned that 

only the stabilisation of convergence is the interest of investigation here and the exact 

value of the convergence is not an appropriate performance measurement. In this 

simulation, the system has demonstrated a very promising ability of  

using-while-learning in the scenario of locating the appropriate position to follow a 

person. 
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5.5 The Capabilities of the System 

The system studied in this chapter uses multilayered feedforward neural networks 

with backpropagation. Two networks have been employed, each of which is 

responsible for one Cartesian axis in the 2-dimensional human reference frame. The 

training is based on the error backpropagation proposed by Hecht-Nielsen (1989). 

Because the model provides no prior training data, an online training data collection 

method is proposed. The error measurement function is thus based on the training data 

collected and the learning rate is adjusted dynamically, based on the error 

measurements. 

Compared to the learning speed of over 2000 walks in the reinforcement 

network studied in Chapter 4, the backpropagation learning has shown distinctive 

advantages. It learns much faster than the reinforcement network, where only one 

walk has been used to produce a generally correct direction map. After about 40 

walks, the system has generated the whole map well, providing better paths than the 

reinforcement network after 2000 walks. The system outputs have shown the 

advantage of being able to generalise with limited training data. The analysis of the 

system with multiple measurements has shown a plausible using-while-learning 

system behaviour. 

However, the results in this chapter are only based on the reward surface with 

a simple feature, one reward peak. It is unreasonable to conclude that the human 

preference will always be like this, as has been discussed in Chapter 3. It is sensible to 

believe under certain scenarios or with certain individuals, the reward surface can be 

more complex. In the next chapter, the study will investigate the system behaviour in 

a reward system with more complex features. It will target potential issues that still 

need to be considered regarding the complexity of the interaction. The study will 

propose the idea of adaptive and reactive learning, based on which a novel 

improvement will be introduced: a multilayered feedforward system trained with two 

learning threads. 
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Chapter 6 Online Backpropagation with Two 
Learning Threads: Adaptive and 
Reactive Learning 

Chapter 5 studied one possible solution to the problem of online learning to find a 

preferred spatial location via human feedback. This process used a multilayered 

feedforward network trained with error backpropagation. Simulations have 

demonstrated the system’s ability to learn fast during online operation as well as to 

generate reasonable policy to control the movement of the robot. The ability to 

generalise removes the need for lengthy pre-training existing in reinforcement 

learning studied in Chapter 4, and the fast learning speed secures the system’s 

acceptable performance in the initial learning stage. The simulation in Chapter 5 has 

demonstrated the system’s ability to function regardless of the degree of learning as 

well as the ability to improve the performance as the operation progresses. In the 

simulation scenario used in Chapter 5, the system is using-while-learning. 

However, the results in the previous chapter only supported the system’s 

ability to work with a simple reward surface, limiting human preference to a simple 

reward slope. It is not convincing that human preference will always be such a simple 

map. In this chapter, therefore, the study will investigate the system’s performance 

with a complex reward surface, target the issues revealed by the simulation results, 

and raise the discussion of two types of learning threads: adaptive and reactive 

learning. It will then propose a novel modification of the backpropagation learning 

strategy, which will increase the flexibility of the online learning system and enable 

the system to operate smoothly with complex human preferences. Further simulations 

will then be presented to support the using-while-learning ability of the updated social 

positioning behaviour when faced with a complex reward surface. 

This chapter consists of 5 sections. Section 6.1 explains the complexities of 

learning that haven’t been discussed in Chapter 5, and introduces one scenario that 

involves such complexities. The system studied in Chapter 5 is re-tested in the 

proposed new scenario and the analysis concludes that the system needs 
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improvement. The concepts of adaptive and reactive learning are then introduced. 

Section 6.2 proposes the learning algorithm of reactive learning. Section 6.3 identifies 

and analyses the effects of adaptive and reactive learning by short comparative 

simulations, and proposes the system that is trained with both types of learning. 

Section 6.4 tests the modified system in the scenario introduced in Section 6.1 and the 

analysis supports the system’s ability of using-while-learning in a more complex 

scenario. Section 6.5 presents our interactive simulations that allow the human to give 

feedback to the system, where the learning system faces a more difficult and dynamic 

situation than other simulations. Finally Section 6.6 concludes our findings in this 

chapter and summarise the capabilities of the updated social positioning behaviour. 

6.1 Analysis with a Complex Reward Surface 

The simple reward surface that has been studied in the previous learning systems only 

has one reward slope. A complex reward surface however may contain multiple 

reward slopes to reflect the complexity of a human mind or the environment. Because 

the learning is explorative, meaning that the robot only learns based on what it has 

experienced, a constant complex reward map can introduce the issue of learning new 

features during operation. Although it has been assumed that the reward surface 

remains consistent in each individual, there are still situations in which the human 

provides new information about the reward surface, which has not previously been 

learnt by the robot.  

6.1.1 The Complex Learning Scenario 

When the human’s preference has multiple features, there is a good chance that the 

movement of the robot will be regionally clustered. Therefore the system function 

generalised by the positioning behaviour can only reflect the features of the human’s 

preference in the limited region that the robot has experienced. If the robot is then 

exposed to a new part of the map, the system may have to readjust its function if the 

human preference in the new region doesn’t match the system function generalised by 

the data collected in previous region. When the human’s preference in the new region 

is totally different, this adjustment can be as large as learning something totally new. 

The following discussion in this section aims to analyse the system’s performance 

when facing the challenge of learning new features online while the system is also 
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required not to alter its learnt useful knowledge and not to lose the ability of  

using-while-learning 

Considering a normal office corridor with a width of about 2 meters, it can be 

easily observed that people usually walk on one side of the corridor. If someone walks 

with his right side against the wall, he can only ask the robot to follow at some point 

in the upper plane of the human coordinate frame (see Figure 6-1(a)). When the 

human is walking with his left side against the wall, the robot can only move in the 

lower plane and can’t move into the peak mapped by the previous walks. The human 

has to pick another position on his right hand side for the follower. In this situation, 

the reward surface of the human has two reward peaks. The human can only direct the 

robot to one of the two, the one that locates on the current half of the plane in which 

the robot is moving. Figure 6-1 gives an example of the human’s reward surface in 

such a situation. This reward surface will be used throughout Sections 6.1 to 6.4. 

 

(a) the contour plot of the reward surface (b) the surface view of the human preference 

Figure 6-1 Reward surface with two reward peaks. The width (Y-axis) of the reward map is assumed to be twice 
the width of the corridor. When the human is walking at one side of the corridor, his actual 
preference is the corresponding half of this reward surface. 

After the system has been used on one side of the map for a period of time, it 

will be well developed to recognise one peak of the map. Our research is interested in 

how the system responds when the human suddenly walks on the other side of the 

corridor and places the robot on the other half of the map. When the system operates 

on one side of the map, no training data pattern exists to reflect the feature of the other 

half of the reward surface. The output over the other half of the surface is therefore 

based on the generalisation of the backpropagation. When the robot is placed on the 

other half of the map, the training data collected based on the human’s feedback 

directs the robot to the other peak that has not been learnt by the positioning 
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behaviour. The robot then needs to work against its previous knowledge and to 

change the system to recognise the new peak in the reward surface. This adjustment 

of the system is also expected to be quick enough to be a part of the  

using-while-learning operation.  

Compared to the reward surface used in Chapter 5, in addition to the number 

of peaks, the flat areas in Figure 6-1 are also organised differently. Figure 6-1 has no 

smooth reward slope but sparse gradients. Rather than one big flat area, Figure 6-1 

has many narrow flat areas spreading through out the map. This means there is no 

longer a need to restrict the starting point of the robot. But it also means that the 

system can’t have as many training data patterns as there are at the beginning of the 

learning in Chapter 5. This is another challenge faced by the learning system. 

6.1.2 Simulation of Learning a New Feature 

A simulation was formed in the situation described in previous section. The system 

was first simulated with only upper half of the map available. At first, 40 walks were 

performed in this situation as this is about the time length for the proposed learning 

system to develop a mature performance, based on our observation in the previous 

chapter. Then the robot was placed in the lower half of the map for the next 20 walks. 

Each walk was still limited to be 400 steps and the starting points of the robot were 

selected randomly within the assigned half of the map. The full data of this simulation 

can be found in Appendix II. Figure 6-2 gives some examples of the walks during this 

operation. 

In Figure 6-2, we can see that the first walk failed because the robot went out 

of the map, in which case it could have hit the wall in practice. The simulation 

continued anyway and the system managed to turn the robot around but it still didn’t 

manage to steer the robot into the reward peak. This shows that collecting fewer 

training data patterns during early learning has clearly added more pressure for the 

system to remain using-while-learning. Nevertheless, this improved as the operation 

progressed and more data were collected. Further walks shown in Fig 6-2 at the upper 

map are successful. The walks in the lower half of the map are the history of the robot 

movements in the later 20 walks. The 41st and 42nd walks were the first two walks in 

the later 20 walks. Neither walk achieved the goal. We can see that the speed of 

learning had decreased while the system attempted to learn new features. Later walks, 
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the 52nd and 58th one, were struggling at the local minimum outside the desired peak. 

The system obviously didn’t reach the desired performance during the later 20 walks. 

 

 

Figure 6-2 Some walks of the system simulation with backpropagation learning (as in Chapter 5) and two 
reward peaks. The ● marks the starting point of the robot and ♦ marks the ending/stabilising point of 
the robot. The numbers indicate the index of the walk in the operation. 

 

Figure 6-3 shows the system output surface after the 40th and 60th walks. From 

the integrated output surface in Figure 6-4(a), it can be seen that other half of the map, 

where the robot has no access, has a generated output surface directing the robot to 

the peak that the robot has experienced. For convenience of reference, in the 

remainder of this chapter, this peak will be referred to as the upper peak of the reward 

surface shown in Figure 6-1. The other reward peak will be referred to as the lower 

peak. In Figure 6-4(b) we can see that the system has changed to create the lower 

peak but from Figure 6-3(b) we know that the location of the lower peak is not 

correct. 



Chapter 6 – MLFF Network with two Learning Threads 

Autonomous Learning of Appropriate Social Distance by a Mobile Robot 69 

 

(a) System output surface after 40 walks 

 

(b) System output surface after 60 walks 

Figure 6-3 The system output surface after 40th walk and 60th walk in the simulation with backpropagation 
learning (as in Chapter 5) and two reward peaks. 
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(a) Integrated system output after 40 walks (b) Integrated system output after 60 walks 

Figure 6-4 The contour plot of the integrated system output surface after 40th walk and 60th walk in the 
simulation with backpropagation learning (as in Chapter 5) and two reward peaks. 

Figure 6-5 contains the system measurements during the later 20 walks. In 

order to have a comparative view of the impact of the change of the environment, the 

data in Figure 6-5 start with the 39th walk, the last walk on the upper half of the 

reward surface. This walk has stabilised outputs as well as converged error 

performance. The record from the reward history shows that it was a successful walk. 

It can be seen that in the following two walks, the system had a sudden increase in the 

system error performance. This was because the new training data didn’t match the 

output surface of the system, which indicated that the robot was experiencing a 

situation that was different from the learnt information.  

A much larger oscillation is shown in the Y-output than X-output. This is 

because the position of the new peak is different from the learnt peak only in its y 

coordinate. The system appears to have difficulty in stabilising its performance on the 

new reward peak, the lower peak. The reward history shows that the system 

experienced a number of failures and that it eventually formed a local minimum near 

the lower peak as the robot converged at the position with a reward value of 0.9 rather 

than 1. It is clear that the system proposed in Chapter 5 lacks the ability to react to 

changes in the reward surface. In a using-while-learning online system, this can cause 

a set of walks to fail during the middle of the operation. Even if the human preference 

offers a certain degree of consistency, it is still important for a social learning system 

to be equipped with the ability to react to sudden changes in the environment. 
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Figure 6-5 The system measurements for the later 21 walks in the simulation with backpropagation learning (as 
in Chapter 5) and two reward peaks. The first walk is the last walk on the upper half of the reward 
surface. 
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6.1.3 Adaptive Learning 

The classic backpropagation algorithm proposed by Hecht-Nielsen (1989), normally 

has a slow convergence. The speed of learning for backpropagation has been widely 

discussed in the literature (e.g. Battiti, 1992, Hsin et al., 1992, Ahmed et al., 1995, 

Chen, 1990). This, however, can’t be taken out of the context of the nature of training 

introduced by those research projects. It has to be noticed that those studies are mostly 

based on offline learning by the network. Backpropagation in multilayered 

feedforward networks usually has a large set of training data to describe the features 

of the target function. Under such a scenario, the systems with classic 

backpropagation normally experience a very low rate of convergence. Many 

proposals have then been recognised to be helpful for offline learning using 

backpropagation (e.g Foresee and Hagan, 1997, Naimin Zhang et al., 2006). However, 

when the network is explorative and is working online with the proposed online 

training data collection, the situation is different.  

In the proposed system, it is obvious that when the system starts to collect 

training data it can at most collect one pattern of training data at each step. The 

number of training data patterns increases through time. The initial training of the 

system therefore is only based on a very small number of training data patterns. The 

neural network approximates the target function by finding the best fit among all 

training data in a least square sense. Because the learning starts with a few patterns of 

training data, the best fit among the data is easy for the system to find and the 

decrease in error at an early stage is therefore guaranteed to be fast. Further collected 

training data support the learning outcome of the early stage, so the system only has 

small adjustments to make while the initial decrease appears to be stabilising. This 

reveals why the system can work in a using-while-learning basis in Chapter 5 using 

classic backpropagation learning. 

The system error measurement of the simulation increased in the previous 

section when the system was exposed to the new feature of the reward surface, at 

which point the system was required to find a new best fit among a larger set of data. 

The set consists of a large amount of old training data supporting the upper peak and a 

few new training data patterns supporting the lower peak. This is the reason that the 

forming of the new lower reward peak is not as quick as the forming of the upper 

reward peak at the early stage of learning. In the simulation in Chapter 5, the system 
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develops a correct foundation when the scale of the training data set is small. When 

the set gets larger, only minor tuning is needed. However, when the robot faces new 

features after the system has been running for a while, the system has to re-adjust 

itself based on the large set of training data. The weakness of backpropagation during 

offline learning then has similar effects on the online learning here as well. It has a 

slow rate of convergence.  

It can be seen in the error measurements in Figure 6-5(d) and Figure 6-5(e) 

that the system error decreases slowly. When the robot faces the new feature, the 

number of new training data patterns is very small compared to the existing training 

data. Therefore only a small part of the weight adjustment is based on the existence of 

the new peak. Hence the error falls slowly and the forming of the new lower peak is 

difficult.  

One of the possible directions is to increase the learning rate to enhance the 

convergence of the system. However, this action is risky. A large learning rate and 

large system adjustment destroys the system’s performance on generalisation.  

Foresee (1997) points out in his research of backpropagation learning that continuous 

steep adjustments of weights can eventually lead to an unsmooth output surface and a 

failed system generalisation. A small learning rate also contributes to the convergence 

of the system. Although the rate of converge can be slow, the system can converge to 

a good level of error and can stabilise well. The focus of the learning with small 

weight adjustments is adaptation that, in this thesis, refers to the objective of 

providing a smooth and well generalised surface based on all the training data 

collected through time. We thus refer the learning method used in Chapter 5 as 

adaptive learning in this thesis. This system relies on successful generalisation from 

the adaptive learning to complete the walk successfully and the walk fails otherwise. 

It is then unwise to simply increase the learning rate of the adaptive learning. 

Rapid adjustment of weights is only needed in this system when the system is 

facing new features. Any new training data that may introduce a new feature must be 

the most recent experience of the robot. Therefore, a new focus of learning can be set 

to give higher adjustment based on the most recent training data. This is equivalent to 

making the system learn on a local error descent basis, meaning that the training data 

of this learning thread will only imply a local piece of the error surface. The aim of 

the learning is then to force the system make steeper adjustments based on recent data 

so that, if any features are new, the system reacts to them quickly and successfully, 
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even when a successful generalisation of the whole map has not yet been achieved. 

However such steep adjustments should only be applied during a short time period 

when there are new features, in order to avoiding risking the system’s generalisation. 

Compared to the adaptive learning, the learning thread with the focus on newly 

selected training data is referred to as reactive learning in this thesis. 

6.2 Reactive learning 

The objective of reactive learning is to enable the system to respond to the human 

feedback faster so that the robot walks in the right direction by following the recent 

feedback without relying on the generalisation of the whole map. In such a way, the 

system reacts to a new feature of the environment quickly and lowers the risk of 

failing walks before the system can successfully recognise all the features described in 

the, possibly large, training data set collected online. 

In order to achieve high reactivity, the system needs to adjust itself quickly to 

the local circumstances, namely the local gradient of the error surface. The local 

gradient is reflected by the sum of system error performance on the most recent 

training data selected from the current path, through which the robot is moving. These 

data only cover a short time slice from the present. Thus at any time k, the training 

data set for reactive learning is }:)]ˆ(,ˆ{[ ktckt
t

t
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of the selected time window, µt(.) is the training data memory as introduced in  

Section 5.2, and p̂  is the closest state to the input vector, p, in the memory. The error 
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where α is a constant that is 0.2 throughout the simulation and the value is empirically 

justified, µ~ (.) is the system function and p is the system input vector. 

The learning minimises the errors of the local training data t
rE . This learning 

is fast in that the number of training data patterns engaged is small and an even faster 

speed of learning can be achieved by using a larger learning rate, compared to the 

adaptive learning. It is still important to adjust the learning rate, rη , as in  

Section 5.3.2: 
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where +ℜ∈rH  is the learning rate limit and β is a constant specifying the speed of 

the descent of the learning rate relative to the decrease in system errors. The value of 

β is 0.2 throughout the simulations in this thesis so that high error measurements will 

be assigned with a much larger learning rate than low error measurements. rH  is 0.5 

throughout the simulations. 

The next step of our study in the following sections is to further identify the 

possible roles of each learning thread and to propose a possible way to combine the 

benefits of the two types of learning. 

6.3 The Effects of Reacting and the Combination of Learning 

The purpose of this section is to identify the impact of reactive learning on the system 

as well as to propose and justify a way of combining reactive and adaptive learning. 

The methodology of this section is to test the system’s performance with different 

learning threads from identical initial conditions and to compare the results of the 

simulations. Three simulations will be demonstrated in the reminder of this section: a 

system with adaptive learning, a system with reactive learning and a system with both 

learning threads. The way of training the system with both learning methods together 

will be discussed later in Section 6.3.3. All simulations use neural networks with the 

same initial weights, which are the system from Section 6.1 after its 40th walk and 

have been trained to recognise the upper peak of the reward surface only. The 

corresponding training data set is used to initialise the training data set of the 

simulations. The system output surface of the initial networks is as shown in  

Figure 6-3(a). 

The chosen start position for the simulations is [-700, -1300]mm, which is  

[-14,-26] on the map shown in the following of this section. This position is chosen 

because it is close to lower peaks but it is on a direct path towards the upper peak 

based on previous learning. Thus the system has to respond fast to the feedback to 

recognise the lower peak. Because the initial movements of the robot are expected to 

follow the initial system output surface and go towards the upper peak passing 

through the lower peak, it is guaranteed that some training data indicating the 
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existence of the lower reward peak can be collected. Each simulation takes one walk, 

i.e. 400 steps. 

6.3.1 System A: Adaptive System 

The simulation results of the system using adaptive learning only in the environment 

stated above are shown in Figure 6-6 and Figure 6-7. It can be seen that this walk 

failed as the robot couldn’t recognise the lower peak in time. The route shown in 

Figure 6-6 doesn’t demonstrate obvious efforts by the system to adjust to the lower 

peak.  

 

Figure 6-6 The walk produced by System A. The system uses adaptive learning only. The system is facing the 
new lower reward peak for the first time with the knowledge of the upper pre-learnt from 40 previous 
walks. * marks the starting point. 
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Figure 6-7 System output surface of System A after the walk. The system uses adaptive learning only. The 
system is facing the new lower reward peak for the first time with the knowledge of the pre-learnt 
upper peak from 40 previous walks. 

In the output surface after this walk, as shown in Figure 6-7, it can be seen that 

the system is in the process of forming a new peak as a minimum area appears right 

above the lower peak. However this process was not acting fast enough and the walk 

therefore failed. Nevertheless, the advantage of adaptive learning is also 

demonstrated. While trying to map the new feature in the environment, the part of the 

previous generalisation of the system, which has no conflict with the new features, 

has been well preserved. This enables the system to maintain the previous knowledge 

correctly while learning new features. Calculating the difference between the upper 

output surface of Figure 6-7 and Figure 6-3 (a), the MSE vector between the two 

surface is [1.35×10-5, 4.9×10-4]. We will use this measurement in the following 

sections to compare the system’s ability to maintain the previously learnt knowledge, 

where a low MSE vector denotes a better ability to retain the learnt knowledge as it 

means the difference of the recognition of the upper reward surface of the current 

system and the initial system 

6.3.2 System R: Reactive System 

This simulation runs with the system using reactive learning only. Having mentioned 

that a system with a large learning rate and small coverage of the general features in 

the training data can be risky, the simulation results of the walk in Figure 6-8 

demonstrate such risk as well as the advantage of reactive learning. The reactive 

learning windows length, c, is 10 steps and the system was trained pattern by pattern. 

 

Figure 6-8 The walk produced by System R. The system uses reactive learning only. The system is facing the 
new lower reward peak for the first time with the knowledge of the pre-learnt upper peak from 40 
previous walks. * marks the starting point. 
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The first turn point in the path of the robot indicated the first recognition of the 

new peak. The system then made an appropriate turn at the second point. However, 

the robot failed to stay at any position. The movements of the robot are always 

heading to the nearest minimum that the system forms. The oscillation thus shows that 

the system was constantly forming new minima without being able to converge to any 

of them. This is a common result and a risk of using a large learning rate. Although 

the general trend of the system adjustment can be correct and steep, it lacks the ability 

to converge and generalise a smooth surface. In the output surface shown in  

Figure 6-9, it can be seen that the reactive learning has corrupted the initial output 

surface much more than the adaptive system. The MSE vector between the upper half 

of Figure 6-9 and Figure 6-3(a) is [1.13×10-4, 1.5×10-3], which is about ten times 

larger than the results from System A in previous section. Although reactive learning 

has shown a very fast reaction to the new features of the environment, its destructive 

effects on the system generalisation is obvious. The learning didn’t converge. The 

system oscillated with a large magnitude. Reactive learning lacks the ability to 

generalise and converge. 

 

Figure 6-9 System output surface of System R after the walk. The system uses reactive learning only. The 
system is facing the new lower reward peak for the first time with the knowledge of the pre-learnt 
upper peak from 40 previous walks. 
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6.3.3 System A-R: System that is Both Adaptive and Reactive 

Reactive learning is responsive but the large learning rate and training on local data 

generalise poorly in the scale of the whole map, on which the movement in the flat 

surface relies. When the network has shifted the learning into minimising the local 

error performance, it doesn’t stabilise to any output surface and it doesn’t optimise or 

generalise either. Therefore, it is necessary to combine the advantages of reactions 

and adaptations in such a way that they both contribute to the system to fulfil our 

objectives of using-while-learning. 

6.3.3.1 The Training Process 

Mixed learning exists in the literature. Some research projects, such as the research of 

Blanchard (2005), mainly focus on different learning rates at different time scales. 

However, it requires a timetable to specify the degree/type of learning. The proposed 

learning scenario, in this thesis, is online. The human preference and training data can 

change at any time, the network may have to continue to learn indefinitely or shut 

down the learning at any time. It is very hard to compose such a timetable. Other 

relevant applications from researchers such as Huang (2005) focus on hybrid learning 

with multiple criteria. They are mostly used to aid the system convergence by 

introducing additional cost criteria. 

 

Figure 6-10 The routine of training the social positioning behaviour system, using adaptive, reactive learning 
threads and training data selection. 

We propose a novel approach where two independent learning threads 

manipulate the same network together. Figure 6-10 suggests a possible way to 

combine the two learning threads in one network by training the system with the two 
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learning threads in order. Each learning thread runs one epoch at every system step. 

The training thus consists of three procedures: the adaptive learning, the reactive 

learning and the training data selection. They are organised as shown in Figure 6-10 

in order to process the learning properly. 

The proposed training routine in Figure 6-10 trains the network with both 

learning threads in turn. The order in which the two threads were organised didn’t 

show any observable effects on the learning outcome in our tests. This routine is built 

for online learning. When the human feedback is received, the training data are 

selected where possible. Although the learning threads have been assigned to run in a 

certain order, because the learning rate of the two learning approaches are controlled 

by different error measurements, a dynamic shift of the control of the system is 

expected, more details of which are discussed later in Section 6.3.4. 

6.3.3.2 The Simulation of One Walk 

The walk of the system with both learning threads is shown in Figure 6-11. From the 

path of the robot, it is clear that the system recognised the new feature quickly and 

correctly. 

 

Figure 6-11 The walk produced by System A-R. The system uses both reactive and adaptive learning. The system 
is facing the new lower reward peak for the first time with the knowledge of the pre-learnt upper 
peak from 40 previous walks. * marks the starting point. 

The new minimum of the system appeared when the robot was at the first turn 

point, similar to the reactive system. After a second correction at the second turn point 

of the path, the system found the new reward peak and the upper peak showed no 

obvious change. The output surface after the walk is shown in Figure 6-12.  

The MSE vector between the upper half of initial output surface in  

Figure 6-3(a) and the same area of the system output here is [1.35×10-5, 4.9×10-4]. 

This MSE value is exactly the same as the MSE vector between the adaptive system 
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in Section 6.3.1 and the initial system studied. This can mean that the upper half of 

the output surface here is very close to the upper half given by System A: the adaptive 

system. As a matter of fact, the MSE vector between output of, System A, and this 

system at the upper half of the output surface is only [9.9×10-6, 1.3×10-4]. This means 

that the system has maintained the adaptive learning’s generalisation while 

introducing the reactive learning thread. It is then obvious that, when the system is 

equipped with both adaptive and reactive learning threads, the system has the ability 

to react quickly to the new features of the environment as well as to converge and 

generalise well. 

 

Figure 6-12 System output surface of System A-R after the walk. The system uses both reactive and adaptive 
learning. The system is facing the new lower reward peak for the first time with the knowledge the 
pre-learnt upper peak from 40 previous walks. 

6.3.4 Comparative Analysis 

In this part of Section 6.3, we will carry out a comparative analysis of the 

measurements of the three system simulations above. The purpose of the following 

analysis is to understand and contrast the different functions of the two types of 

learning and, more importantly, to understand how the two learning threads cooperate 

and control the system learning. 
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Figure 6-13 A comparison of the system measurements. Three systems: system with adaptive learning only, 
system with reactive learning only, and system using both learning threads are presented. The 
measurements describe the first walk facing the new peak where the old peak is recognised correctly 
by the system weights prior to the simulation. 

Figure 6-13 gives the comparison of the network outputs and feedback history 

of the three simulations, on which our further discussion of system behaviours during 

the operation is based. It can be seen in Figure 6-13 that before time point t1, all three 
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systems performed in a similar way, which was following the initial system output 

surface. At time t1 the reward feedback of all three systems dropped. This drop 

happened when the robot went through the lower peak and moved out of it. New 

training data that advised against the previous knowledge of the network started to be 

collected at this point. The learning of the three systems then started to function 

actively and the differences between the three systems began to emerge. 

System A 

Despite the arriving of the new training data and the decrease in the reward, 

System A didn’t have any obvious adjustment in the outputs. Its reward feedback kept 

dropping as the robot was moving away from the lower peak and heading towards the 

upper peak that is the peak previously recognised by the system weights. The reward 

feedback of this system started to increase around the 200th step. This indicates that 

the robot was in the region of the upper peak. It is then obvious that the system is 

merely acting based on its previous knowledge and no efficient adjustment has been 

made because of the exposure of the new reward peak. 

The adjustment of the system offered by adaptive System A was the smallest 

among the three but it had shown some efforts to slow down the robot around time t2, 

though it didn’t stop the robot moving away from the new peak. The outputs of 

System A change gradually and the MSE of System A was increasing slowly. These 

indicated that adaptive learning can only make the system adjustments to the new 

features slowly. This adjustment was not enough to steer the robot towards the new 

peak. Thus System A failed to achieve the goal in this walk and showed its inability to 

be using-while-learning in the simulation. 

System R 

After the new data were collected after t1, System R had obvious adjustments 

of the outputs, trying to stop the robot from moving further in the wrong direction. 

These adjustments were based on the new training data but were against some of the 

existing data. As a result, the system MSE of System R increased significantly. 

System R, using reactive learning only, showed a much quicker response to 

the change of the reward surface than System A. Actually, System R had the steepest 

adjustment of the system output and therefore was the first to alter its way back to the 

lower peak shortly after t2. However, it showed no sign of slowing down because the 
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new incoming data supported the current system performance and the reactive 

learning offered little adjustment of the system. The system went out of the lower 

peak at t3. Although System R re-entered the lower peak again soon, as it can be seen 

in the reward history, it had had little adjustment to slow down the robot while it was 

in the lower peak. It then went out of the peak soon after t4. It can be seen from the 

system outputs that the reactive learning responded immediately trying to turn the 

robot back. 

This huge overshoot of System R resulted in a large oscillation in the system 

output, as it is shown in Figure 6-13(a). From the reward history, it can be seen that 

the robot was going in and out of the lower peak many times. The MSE of System R 

increased significantly at the start of the walk when the robot stepped into the lower 

peak but MSE didn’t decrease when the system progressed. On the contrary, the MSE 

kept increasing. The output oscillation and the increasing MSE then clearly suggest 

that System R, with reactive learning only, can react to the change of the environment 

fast but can’t stabilise the system. System R learns fast but can’t converge, which is 

hardly acceptable for the requirement of using-while-learning. 

System A-R 

After the new data were collected after t1, System A-R had adjustments of its 

outputs similar to System R to stop the robot from moving in the wrong direction. A 

similar increase in MSE was also present. The magnitude of the system adjustment by 

System A-R was much stronger than System A but smaller than System R. After t2, 

the reactive learning in System A-R was also strongly stimulated by the data it 

collected on learning the lower peak at t3. It had the problem that the system didn’t 

slow down the robot in time, similar to System R, and the system went out of the peak 

again. The speed of the robot changes more slowly than System R because the 

adjustment made by the reactive learning thread was compromised by the adaptive 

learning thread. System A-R re-entered the lower peak after t3. The training data 

collected at this entry again stimulate the reactive learning where the robot started to 

move faster and the system MSE increased. 

Soon after t3, System A-R drove the robot out of the desired peak as well. The 

reactive learning thread was as effective as System R because the system changed the 

gradient of the output immediately, trying to turn the robot back. The training data 

collected at this point provided final stimulation to the reactive learning. After this 
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reactive adjustment, the system found the weights fitting both the existing training 

data and the new ones. This was the reason that the descent of the MSE became steep. 

The correct lower peak was then recognised by System A-R as the robot soon entered 

the correct peak at t4 and started to stabilise itself. The entry to the peak this time had 

no impact on MSE because the new data matched the existing system function, 

meaning that the reactive learning was not strongly stimulated. Therefore the MSE 

didn’t increase. After t4, System A-R started to stabilise the robot at the peak and 

managed to do so at step 270. 

6.3.5 Overview of Systems’ Performance 

System A in this simulation has shown clearly that the adaptive learning adjusts the 

system slowly. Recalling the simulation in Chapter 5 and Section 6.1.2, the only case 

where the adaptive learning can alter the system fast is the start of the learning where 

the size of training data set is very small and the system has not been well developed. 

The training of the adaptive learning is a compromise among all the existing data. 

This prevents its adjustment to favour any regional cluster of data. In this way, a good 

generalisation of the system can be achieved eventually. However, as a  

using-while-learning system, it also means it will be difficult for adaptive learning to 

act fast to the new features in the environment, which are started as small regional 

clusters of new training data. 

Compared to System A, the network behaviour of System R is at the other end 

of the scale. Opposed to the adaptive learning, the reactive learning only favours a 

small regional cluster of data, the newest data in a given window length. The initiative 

of introducing this learning is to make the system react fast to the change of the 

environment, where the changes are represented by the new training data that trigger 

high system errors. In this section, the reactive learning has demonstrated its ability to 

alter the system function quickly. System R turned the robot into the lower peak 

shortly after it was discovered. However, the system failed to stabilise and started 

large oscillation. Because the adjustment of the reactive learning was so large, it 

constantly overshot. Large learning rates and constant steep adjustments of weights 

have a high risk of unsmooth system function and a low potential for good 

generalisation. It can be understood that such risk is even higher when the reactive 

learning overlooks the majority of the training data. 
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System A-R is a combination of System A and System R. In the system output 

history, it is clear that the change of the system made by System A-R is larger than 

adaptive learning and smaller than reactive learning. Because the system has both 

learning threads, they compromise with each other. When the data pattern presenting 

new features first comes in, the reactive leaning adjusted the system in a different 

direction from the adaptive learning. The system was mainly controlled by the 

reactive learning as it has a stronger adjustment of the system than adaptive learning. 

But the adaptive learning still worked towards the general best fit over all training 

data and discounted the dominant effects of reactive learning. In the simulation, the 

adaptive learning always regained the control of the system quickly when the robot 

moved to a flat area where no training data were available and reactive learning lost 

effect. In the error performance of System A-R, the steep change of error performance 

is always associated with dominant reactive learning. When the gradient of MSE is 

small, the adaptive learning has more effect in the system. This switch of dominance 

continued until step 70 when new data didn’t cause the MSE to increase, meaning that 

the data were supported by the system function. By that time, the reactive learning 

stopped being strongly activated by new data and the adaptive learning took over the 

system entirely. The system then switched from the phase of adjusting to the phase of 

tuning. 

6.4 The Complete Simulation Using Two Learning Threads 

The simulation here is then a re-test of the learning scenario in Section 6.1.1. The 

introduction of the reactive learning thread is expected to improve the problem of 

learning revealed by Section 6.1 on a previous learning system so that the social 

positioning behaviour can adjust itself correctly and quickly when facing the new 

feature of the reward map to produce a feasible using-while-learning performance.  

The positioning system with two learning threads was first operated with the 

map restricted to the upper half only for 40 walks. Then the robot was placed as the 

lower half of the map for 20 walks. Appendix III gives the full simulation history and 

measurements for this simulation. Figure 6-14 gives some examples of walks during 

the simulation. The reactive learning window length is 10 steps. 
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Figure 6-14 Some walks of the system simulation with both adaptive and reactive learning. The system faces the 
new lower peak after 40 walks of learning on the upper half of the map. 

In Figure 6-14, it can be seen that the first walk of the system started near the 

position where the adaptive system in Section 6.1 started. But this walk here was 

successful because the reactive learning had stronger adjustment of the system. In the 

lower half of the map, where the last 20 walks are located, we can see that the system 

successfully changed the direction of the robot’s movement at the beginning at the 

41st walk with a clear reactive adjustment. Although this walk ended right beside the 

range of the lower peak, the system found the peak in the next walk. Later walks 

shown in Figure 6-14 are successful. Figure 6-15 shows the system measurements for 

this simulation. 

From the system performance, it can be seen again that introducing the 

reactive learning with adaptive learning doesn’t damage the system’s generalisation 

and stability. The oscillation at the end of 40 walks is still only about 1% of the output 

range. Comparing the system response with Figure 6-5, it can be seen that with 

reactive learning, the system actually forms the correct output surface faster as can be 

seen in the reward feedback history.  
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Figure 6-15 The system measurements of the simulation with system using both adaptive and reactive learning. 
The system faces the new lower peak after 40 walks of learning on the upper half of the map. The 
measurements show a total of 60 walks. 
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The reactive learning is triggered by the new incoming training data and the 

error measurements of those data. It then can be noticed that the steeper changes of 

the error measurements are associated with the updates of the training data. However, 

the learning will naturally switch the reactive learning down when the system has well 

developed weights so that even the most recent collected data are supported by the 

system output surface and thus give small errors. In that case, reactive learning has 

little adjustment of the system weights and the adaptive learning therefore will have 

larger effects on the adjustment of the learning system because it is engaged with 

more training data. Also, when the training data are not updating, reactive learning 

doesn’t have any effect at all. 

When the system finished 40 walks, the robot was then placed in lower half of 

the map. The system then runs in the lower half map for 20 walks. It is evident from 

Figure 6-15 that the system with both learning threads reacts to the change of the 

environment well and fast. Only two walks ended up with a local minimum near the 

goal and it recovered shortly in the next walk. From the output of the Y-network, it 

can be seen that the system doesn’t suffer from the oscillation problem anymore. It 

can be noticed from the reward feedback history that the system has successfully 

recognised the direction of the new peak. Comparing the error performance of the 

system with the one in Section 6.1.1, it is clear that after the robot started in the lower 

half of the map, with the aid of reactive learning, the error drops down quickly, where 

the previous system’s error performance barely falls at all. The difference in the speed 

of reacting to the new feature of the environment can also be illustrated by comparing 

the first walk in the lower half of the map of the systems with and without reactive 

learning. With reactive learning, the system adjusted the movements of the robot with 

a stronger force. The final output surface of the system in Figure 6-16 proves that 

introducing the reactive learning doesn’t influence either the system’s ability to 

generalise or the system’s recognition of the existing reward peak. 
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Figure 6-16 Output of the system using both reactive and adaptive learning, which faces two reward peaks in the 
reward surface. 

Figure 6-17 is the integrated system output surface. Compared to  

Figure 6-4(b), the lower half of the integrated output surface has a clear and defined 

peak presenting the lower peak of the reward surface. 

 

Figure 6-17 Integrated output surface of the system using both reactive and adaptive learning which faces two 
reward peaks in the reward surface. 

The introduction of an extra reactive learning thread focusing on the local 

descent of the error surface has clearly given the system the benefit of reacting to the 

new changes of the environment quickly and contributes to the learning speed of the 
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system. It has then satisfied the requirement of the proposal of using-while-learning 

behaviour for the social positioning task. 

6.5 Teaching the Robot: An Interactive Game 

The simulation in Section 6.4 has demonstrated the system’s using-while-learning 

ability. The fast learning and good generalisation have been seen when the system 

faces the problem of learning new features on the top of the previously learnt 

knowledge. However, the reward surface built for the simulation may not include all 

the complexities that a human might introduce. 

While humans are involved, there are two major issues that previous 

simulations didn’t cover. Firstly, when and where they choose to provide trainable 

information, e.g. a change of the reward value, is unknown. This means the flat area 

in the reward surface becomes dynamic. Secondly, how many levels of feedback the 

human will use effectively is unknown. The use of different levels of feedback, i.e. 

reward steps, is essential for the training data selection to filter the best movement of 

the robot so far for training. Fewer reward steps will affect the quality of the training 

data selected and then influence the learning of the system. 

In order to investigate the ability of the proposed learning system under those 

problems, we introduce this interactive simulation where the human interacts with a 

simulated robot. There are only two levels of reward values available for the human to 

use, which is the minimum number of reward steps possible to rank the performance 

of the robot. The interacting system is designed to allow users to input their feedback 

using the mouse. Because the MATLAB GUI is not able to give the users a visual 

impression of human following, we introduced the simulator to the users as an 

interactive game in which the users were asked to teach the robot to get to certain 

position through a certain path in the human coordinate frame. A GUI interface, as 

shown in Figure 6-18, has been designed so that the human can interact with the 

simulated robot. 

While interacting with the robot, the user can stop the simulation at any time 

when they feel satisfied by pressing any key on the keyboard. The trace of the robot 

movements is not visible to the user so that they judge based on their feelings without 

any mathematical aid. People were asked to teach the robot to move and stay at a 

certain point in the map through a certain path by clicking the mouse. 
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Figure 6-18 The GUI interface for the interacting game with the virtual robot. + shows the centre of the map, * 
marks the start points of the robot and ○ is the moving robot. 

6.5.1 Further Modification of the Learning System 

In this interface, the user can penalise the robot by clicking the left key or reward it by 

clicking the right key. This means that feedback input of the system is ∆Rk with only 

three possible values: -1, 0 and 1. When to give feedback depends on the user. Our 

investigations show that users are more willing to comment on the movement of the 

robot rather than its position. 

In the previous training data selection method, the value of ∆Rk marks the 

degree of the gradient in the reward surface. The validation of better training data is 

based on a greater value of |∆Rk|. However, here, ∆Rk only has three values. The 

training data at time k thus is modified as:  

if 1=∆ kR : 

 )(~)ˆ( kk
t pp µµ =   , (6-3) 

if 1−=∆ kR : 

 )(~1)ˆ( 1 kk
t pp µµ ×−=+   . (6-4) 

The use of ∆rt(.) is not needed because there are too few feedback levels. 
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6.5.2 Results of Interaction Tests 

Three people participated in the test. We found it common that users initially had 

difficulties interacting with the robot. Their feedback tended to be much noisier than 

the previous training data from a fixed reward surface. The main difficulty the users 

first encountered was that they panicked when the robot seemed to stop at a wrong 

location, which means that the system had converged into a local minimum. Their 

feedback then became chaotic and no effective learning could be established. 

However, after a few interactions with the robot, the users started to get used to the 

interaction and become patient. They realised that after some feedback data have been 

given, the robot may need a moment to adjust its movement. 

 

 

Figure 6-19 The test results of a user who has been familiar with the interaction and tried to teach the robot to 
follow at the left behind. 
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Figure 6-19 is the result of one test after a user became familiar with the 

interaction. He was trying to teach the robot to get to approximately [-1000, 1000] 

mm, i.e. [-20.20] in the map. Figure 6-19(a) is the first walk of the robot and Figure 

6-19(b) shows the results after 2 more walks, where the user felt no feedback was 

necessary. Rather than reward it frequently, users appeared to reward it when it was 

making progress or improvement, partly because they found it is easier to teach the 

robot this way. When they thought the robot has fully learnt what they want, they 

would stop giving feedback. Figure 6-19(c) shows the system performance after the 

robot has learnt fully after 5 walks. 

In the next test, we investigated the system’s performance in the case that the 

human’s preference changed while the robot had previously learnt knowledge. In 

Figure 6-19(c), we can see that the robot learnt to take the shortest routes in the map 

to reach the goal. The user then was asked to change the preference so that robot 

didn’t head to the goal directly but went around through certain path. This is similar to 

the human-following case in which certain people don’t like the follower to go across 

their front or back. Figure 6-20 shows the interaction results. This interaction is based 

on the system shown in Figure 6-19(c). The system was initialised with the weight 

basis and the training data set from the end of previous simulations demonstrated in  

Figure 6-19. In Figure 6-20(a), we can see that the robot managed to learn from the 

human though a small difference between the human’s expectations exists. However, 

the system result in Figure 6-20(b) shows a reasonable adaptation. 

 

Figure 6-20 The test in which the user changes the preference in the interactive experiments. 
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Figure 6-21 The test of a difficult preference with no previous weight basis, where the gradient of the reward 
surface is not a direct line towards the goal. 

Figure 6-20(b) expresses a mapping that is more complex than Figure 6-19(c). 

Thus, is the system able to learn effectively in such a situation without the basis of 

Figure 6-19(c)? In third experiments, the user was trying to teach the robot to rich a 

point in the lower half of the map by going around the central point, where the system 

started with initial random weights. Figure 6-21 shows the results of the learning. 

Figure 6-21(a) demonstrates the first walk and Figure 6-21(b) is the second one. 

Figure 6-21(c) is the system performance after the user stated that he was happy with 

the robot’s movement. The system shows the ability to learn effectively. 

The interactions have been successful when the users got used to the way of 

interacting with the robot and a reasonable learning of the system has then been 

established. However, in Figure 6-19(a) as well as Figure 6-21(a) and (b), we can see 

that the robot needed a long time to learn the action to stop at the goal location. But 

the robot still manages to learn it in a reasonable amount of time (normally around 

2000 steps in the first walk) if the human keeps sending feedback. Once it is learnt, 

the system performs well. 
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After the tests, the statistics show that the average feedback rate of users is 

about 8.4%, which means the human inputs feedback on 8.4 out of 100 steps. 2.4 

steps of these 8.4 steps of feedback are rewarding and 6.0 steps are penalising. The 

human inputs can be described as sparse, noisy and uncertain. But the system shows 

the ability to adapt in such a situation and the interactions were then successful when 

the user felt happy with the robot’s movement by not giving feedback anymore. 

In this simulator, the human only has two usable feedback levels: ‘good’ or 

‘bad’. This is a very difficult situation for the system, as it provides no options to filter 

or validate better training data. This has greatly reduced the efficiency of the training 

data selection and the quality of the selected data is very low. When more levels of 

feedback are involved, which will be the case in the real robot experiments, the use of 

∆rt(.), will be then available again. Thus a better performance of the system can be 

expected. 

6.6 Capabilities of the Learning System 

In this chapter, a proposal of the modification of the learning system studied in 

Chapter 5 has been introduced. The initiative of this proposal is to secure the system’s 

ability of using-while-learning when the environment and the human preference 

become more complex. The challenge recognised in this chapter is for the system to 

learn new features while retaining learnt knowledge and to maintain a low tolerance 

of failure, as required by using-while-learning systems. The study discussed two 

different learning methods: the adaptive learning that generalises well but converges 

slowly and the reactive learning that converges fast but generalises poorly. By 

combining these two learning threads into one learning system, the research 

successfully achieved a system that converges very fast while maintaining a good 

generalisation ability so that the system can learn new features at any point in the 

operation. Our argument has then been supported by our simulations. The interactive 

simulations we presented demonstrated the feasibility of adopting the system in real 

interactions with human. 

From Chapter 3 to Chapter 6, we have studied the model and the learning 

system for social positioning behaviour. A complete using-while-learning system with 

a novel and effective framework has been proposed. Extensive simulations in a wide 

range of situations have been presented, the results of which supported the using-
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while-learning ability of the proposed system. In the next chapter, therefore, we will 

discuss some of the key issues in the embodiment of the robot, the hardware, and the 

control platform we built for the social positioning behaviour to be completely 

implemented in the future. 
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Chapter 7 The Mobile Robot Control System 

In Chapters 3 to 6, we developed the social positioning behaviour and proposed an 

autonomous online learning system for it. The behaviour has then been tested in 

simulations, and robust results were presented. In this chapter, we study the mobile 

robot control system that can implement the social positioning behaviour on the robot. 

The control system not only focuses on implementing the existing behaviour but also 

aims to build a platform into which further behaviours can be incorporated. This 

offers freedom to extend the system to includemultiple behaviours. The basic 

structure of the control system is shown in Figure 7-1. 

 

Figure 7-1 The mobile robot control structure of the interactive robot system. The solid arrows mark the data 
flow and the dashed arrows mark the system execution sequence in the computer control system. 

The robot control system consists of three major components: the robot 

hardware, the computer interfaces and the control software. Section 7.1 introduces the 

hardware system and the embodiment of the robot. The human position sensor will 

also be discussed. Section 7.2 introduces the interfacing of the system between its 

software control system and the hardware. Section 7.3 introduces the structure of the 

software control system. Section 7.4 analyses the kinematics of the system. Finally, 
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Section 7.5 demonstrates the system’s ability to control the robot by describing a 

sequence of experiments using a pre-learnt social positioning behaviour.  

7.1 The Pioneer 2 Robot and the Human Position Detector 

The robot used in this research is a Pioneer 2DX mobile robot. It is equipped with two 

DC motor wheels and a ring of sixteen ultrasonic rangefinders. The robot’s physical 

dimensions and its top console deck are shown in Figure 7-2. 

 

Figure 7-2 The physical dimension and top console deck of Pioneer II mobile robot (source: Manual of Pioneer II 
and Peoplebot, v11) 

The Pioneer 2 operating system used in our research is version 1.P. The robot 

has a group of built-in controllers for motor and sensor control. The motor controller 

implements a control algorithm for the robot wheels and it has been suggested by the 

manufacturer not to bypass this controller. Appendix IV gives more details of the 

onboard controllers. 

The social positioning behaviour is based on measuring the relative pose of the 

robot and the human. Previous research has proposed many possible methods to 

measure the position of a human using range sensors such as sonar and lasers, most of 

which are based on statistical and probabilistic methods (e.g. Thrun et al., 2001, 

Bueno and Kragic, 2006, Arulampalam et al., 2002). The ultrasound sonar detectors 

on the Pioneer 2, however, are not well-suited to this purpose. Besides the noisy input, 

it is difficult to use range detectors to distinguish which object is the human who is 

currently involved in the HRI, as the environment can have many moving objects in 

the background. In other words, the robot has no means to identify the human leader 

using range sensors. Sekmen et al. (2002) have proposed using Passive Infrared (PIR) 
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detectors for human detection. The overlapping sensing ranges of multiple PIRs 

divide the space into several regions. People in different regions will trigger a 

different set of PIRs. This technique, by recording the combination of triggered PIRs, 

can not only detect moving people but also estimate their distance. In our efforts to 

reproduce a similar system, a set of PIRs, KC7783R, were used. Each KC7783R 

covers a region approximately 60o wide with a 2 m radius. However, after the PIRs 

were mounted on the robot, they gave an unacceptably noisy response. The KC7783R 

is built to be most sensitive at the peak length of the human radiation spectrum. 

Unfortunately, we found that many objects have a similar radiation spectrum peak 

length. The problem becomes more serious when the radiators in the environment are 

turned on. Therefore, these PIRs were felt to be unlikely to be a reliable method for 

detecting human movement.  

Thus, the current research considers detectors that can be attached to the target 

human, and which can give a direct measurement of the position of the human relative 

to the robot. The research uses a GameTrakTM motion sensor to complete the position 

measurement. The GameTrakTM sensor was originally marketed as a game console 

controller. It is designed to detect the hand movements of the player so as to control 

the game in an interactive manner. The sensor is shown in Figure 7-3. It consists of 

two identical detectors, each of which has a flexible wire that can be attached to the 

human. The wire is connected to the sensor through a rotational base. The outputs of 

the detector will give readings to identify the exact position of the point attached to 

human. Only one detector has been used for human position measurement. The 

outputs of the sensor range from 0V to 5V, where the outputs are all zero for 

maximum measurements and all 5V for minimum measurements. By using ten-bit 

quantisation in the robot I/O, the device offers a resolution of approximately 2 mm. 

Appendix V gives the details of the model of the device. 

This device can provide the position of the human relative to the robot, 

denoted by the vector q. It should be noticed that q is the human position vector in the 

robot coordinate frame. However, the required input data for the social positioning 

model is the robot position vector, p, in the human system (see Section 3.2). The 

transformation between the two vectors is discussed in Section 7.4. 
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Figure 7-3 Top view of GameTrakTM motion senor with comments on the components. 

7.2 The Computer Interface 

The communication between the computer and the robot’s on board control system 

can be established through the COM port by calling ARIA functions. ARIA is the 

class of functions introduced by the manufacturer for interfacing to Pioneer robots. 

ARIA is compatible with most major computer languages but the manual 

recommends VC++ 6.0 for highest efficiency. 

However, ARIA objects can only be called from console applications in  

VC++ 6.0. In order to provide more operability and user-friendliness to the control 

program, only a simple console core application was created to enable effective 

communication between the computer and the robot. A Windows GUI based control 

application, which contains the computer control system, was then built on the top of 

the VC++ interfacing program in VB 7. VB was chosen to give a shorter development 

cycle. 

7.3 The Computer Control System 

As shown in Figure 7-1, the computer control system consists of seven elements: 

clock, sampler, data formatter, behaviours, coordinator, controller and public data 

array. The clock controls the system working frequency. During each working cycle, 

the sampler, the data formatter, the behaviours, the coordinator and the controller all 
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execute in sequence as shown by the dashed arrows in Figure 7-1. Each function 

block doesn’t communicate directly with other functions but stores data into a public 

data array, to which each function has access. The only exception is the 

communication between the sampler and the data formatter. The functions are not run 

in parallel in order to minimise the system overheads so that a higher working 

frequency can be achieved from the computer system. As each function visits the data 

in a certain order, the data access does not need to be scheduled. 

In order to decide the system working frequency, the first concern is the 

control of the motors of the robot. A high enough frequency has to be used for robust 

control. The research uses 10 Hz. However, another concern is that 10 Hz is a high 

frequency relative to the speed of the movements of a human and a robot in a normal 

office environment. The observable change of their postures within 0.1 second is 

small and can be easily covered by noise. Therefore, the system computation selects a 

time window with a certain length. At any time instance, the robot and human actions 

are computed based on movements within this time window, as detailed in Section 

7.4. At any time instance, behaviours that require sensor readings at the previous 

sample point in the computation model use the data that date back the whole time 

window length instead. In this manner, robustness is ensured in both the control and 

the computation. 

When the system clock triggers a thread, the sampler is the first function to be 

executed. Its responsibility is to read the data from the robot system, including the 

motor speed and sensor data, by calling the VC++ console application. The sampler 

will then pass the data directly to the data formatter, where the raw sensor data will be 

modelled and necessary data transformations will be calculated. The processed data 

will then be stored into the public data array and the sampler will enable the 

behaviours. The behaviours are initialised by visiting the public data array to access 

their input data and they subsequently store their results into the public data array. 

The next function in the process line is the coordinator. It will combine the outputs of 

all behaviours into one desired target for robot movement. The behaviours that will be 

implemented in the experiments in Section 7.5 are social positioning and emergency 

stop, and the coordinator’s task here is therefore to decide whether the outputs of 

emergency stop need to override the outputs of social positioning. After the desired 

robot movements have been stored into the public data array, the controller is the last 

function to run. It calculates the control signal for the robot, based on the desired 
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target position and then calls the VC++ console application to send the command to 

the robot system. 

In the computations of the system, however, it has to be noticed that the 

measurement of the human position is based on the local robot coordinate frame, 

which rotates. Therefore human position vectors read at different time instances can’t 

be used in the same computation directly because all vectors are observed from 

different coordinate frames. Global coordinates can’t be measured directly as there is 

no global positioning sensor. Therefore, the kinematics of the system during operation 

have to be analysed for the purposes of global system tracking and coordinate 

normalisation as well as for computing human movements, the details of which is 

located in Appendix VI. 

7.4 Experiments 

In order to test the accuracy of the system measurements, experiments were carried 

out with a stationary human. 

In these experiments, the robot was assigned a set of pre-defined movements 

and the aim of the experiments was to test if the system could correctly interpret the 

raw data from the sensor as well as tracking the relative movements of the human and 

the robot. The time window length in the experiments was 5, the value of which has 

been empirically justified. Figure 7-4 displays the results of two of these experiments, 

in which the measurements of the human positions are expected to be stationary. The 

human measurements however appears to be a small cluster of points. The range of 

the cluster is about 300 mm, which gives a measurement error of ± 150 mm. This is 

less than half of the width of the robot and is considered to be acceptable. 

In the next experiment, a pre-learnt social positioning behaviour was installed 

into the system. The controlling methods were as discussed in Appendix VI. The 

results are shown in Figure 7-5, in which the robot doesn’t learn and faces right 

initially, and the human stays still and faces right. The robot follows the learnt 

positioning surface correctly in Figure 7-5. The true movement of the robot is 

illustrated in the global view of the system, Figure 7-5(a). The jerkiness of the 

movement in Figure 7-5(b) is introduced by the measurement errors of the human 

position as the robot movements in the human reference frame are actually the 

difference between the robot and human positions in the global frame (Figure 7-5(a) ). 
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Figure 7-4 System measurements tracking with pre-define robot movements and stationary a human. The robot 
starts at the origin of the coordinates. 
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Figure 7-5 System experiments with pre-learnt social positioning behaviour and a stationary human where the 
robot is not allowed to move backwards. (a): the true movement of the robot. (b) the movement 
relative to human. The robot starts at the origin of the coordinates. 
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Figure 7-6 System experiments with pre-learnt social positioning behaviour and a stationary human, where the 
robot is allowed to move backwards. The robot is moving backwards throughout. (a): the true 
movement of the robot. (b) the movement relative to human. The robot starts at the origin of the 
coordinates. 
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It can be see that the robot has to go through a long distance to turn around. 

This distance is long because the control signal has been scaled down to ensure robust 

control of the rotation. A simple and reasonable way to improve this situation without 

modifying the control algorithm is to allow the robot to move backwards. 

Let k
df s∠=θ . The control signals are updated differently from Equation (VI -11) in 

Appendix VI when 
2
πθ > : 
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where cω is 0.5. When 
2
πθ ≤ , the formula is the same as Equation (VI -11). The 

experiment that allows the robot to move backwards is shown in Figure 7-6. The 

robot is moving backwards throughout the experiments shown in Figure 7-6.  It can 

be seen that the movements of the robot remain correct without the large turning 

around at the beginning, which improves the efficiency of the adjusting of robot’s 

position and achieves the goal in shorter time. 

The results of the experiments have clearly shown the system’s ability to 

control the robot by using a learnt social positioning behaviour. After the 

accomplishment of this task, the robot platform is ready for further development to 

introduce the human feedback device and other behaviours to enable the robot to 

finish a comprehensive human-following task. The core of the human-following task 

is the social positioning behaviour that has been intensively studied in this thesis. The 

 using-while-learning behaviour combined with other research results on human 

feedback devices (e.g. Triesch et al., 2006, Pacchierotti et al., 2006, Mitsunaga et al., 

2005, Nakauchi, 2002, Roy and Pentland, 2002) and other robot behaviours (e.g. 

Hoffmann, 2004, Song-Yee et al., 2000, Breazeal, 2000) from the literature make 

further development towards a more comprehensive human-following task possible. 

However, what has been revealed by the study of this social positioning behaviour 

goes beyond the proposed HRI scenario. In the next chapter, we will discuss the 

generalisation of our study after a summary of the contributions of this thesis. 
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Chapter 8 Conclusion and Future Work 

This thesis is devoted to solving the problem of an autonomous learning of social 

positioning behaviour that is the core interactive behaviour to accomplish the human 

following task. After the review of the context of the research in Chapter 2, the main 

challenge of this thesis has been identified as the design of a using-while-learning 

system that can be trained using human feedback to position the robot correctly 

according to the human’s preferred social distance. 

The social positioning behaviour has been modelled as a transition among 

system states that are the position of the robot relative to the human. The preference 

of the human is represented by a surface among the system states: the reward surface. 

The objectives of the learning system are to determine the desired transitions among 

states and to locate the goal state based on a reward surface that is unknown until the 

system operates, as concluded in Chapter 3. After a review of the two possible ways 

of learning in Chapter 2, Chapter 4 describes the research into forming the social 

positioning behaviour with reinforcement learning. By introducing the secondary 

scoring surface and neighbour learning into reinforcement learning, the system learns 

successfully. But reinforcement learning can’t avoid lengthy random firing and it 

can’t learn states that the system has not experienced, which does not satisfy the high 

requirement of using-while-learning in a social environment. Chapter 5 therefore 

investigates an alternative: the multilayered feedforward network with error 

backpropagation. A novel online training data selection method has been proposed to 

enable the learning from human feedback. With a dynamic learning rate based on the 

error performance, the system produces promising results in simulations with a simple 

reward surface. Chapter 6 therefore places the system in a more complex scenario, 

where more features of the human preference can be explored during the operation. It 

reveals the need for the system to react faster to the environment. This research 

suggests the idea of adaptive and reactive learning and proposes the new approach of 

training the system with both learning threads online. The two threads have different 

learning rate controls and learning targets. Extensive simulations have been presented 

to support the fitness of the new learning system and a thorough set of measurements 
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have been used to understand the using-while-learning operation of the system. After 

concluding the learning investigation with a successful human-computer interactive 

experiment, a much more difficult scenario than the previous simulations, the thesis 

goes on to discuss issues related to implementing the proposed behaviour in an 

embodied mobile robot. Chapter 7 targets most commonly encountered problems 

when designing a mobile robot control system: the hardware and sensors, the 

interfaces, and the software system. The kinematics of the robot have also been 

analysed and experiments have been presented using a Pioneer 2DX robot to perform 

a learnt social positioning behaviour. 

The research has been presented in two international conferences (Wang and 

Lee, 2006a, 2006b). This chapter aims to summarise our work and to highlight its 

contributions and possible generalisations. Section 8.1 describes our major 

contributions to knowledge and summarises them into a more general framework. 

Section 8.2 discusses other possible applications that can benefit from our work. 

Section 8.3 lays out the further possible research directions that our work can follow. 

8.1 Summary of Contributions: The Using-While-Learning 
Framework 

A summary of the major contribution of this thesis can be stated as the proposal of a 

novel explorative using-while-learning framework for a mobile robot social 

positioning behaviour in completing a human following task. This framework is set 

up to meet the following features of a social positioning behaviour: 

Explorative learning of an unknown target 

The system has to work in an explorative manner. The target function to which 

the system is expected to adapt is unknown beforehand, which prevents pre-

training. The information of the target function can only be collected while the 

system is operating and learning. The features of the target function can only 

be revealed if the system has explored certain parts of the environment, and 

the system faces the challenge of learning newly explored features during the 

online learning operation. 
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No trainable error measurements 

There are no desired outputs of the system thus the error performance can’t be 

measured. The only information available is a performance index that ranks 

how good the system performance is. This means the error measurements-

based learning strategy can not be used directly. 

Need for generalisation: 

It is impossible for the system to experience all possible states in a short time 

of operation. In order to function reasonably rather than rely on random 

outputs, it has to have the ability to generate reasonable outputs based on 

learnt knowledge. That is the ability to generalise. 

 

The proposed using-while-learning framework is based on a multilayered feedforward 

neural network using backpropagation learning. The framework has three main 

components: 

The training data selection 

Because there is a lack of trainable data and the information available online is 

not error performance but a performance index, we proposed this method in 

Chapter 5 to enable the framework to convert online information into training 

data during the operation. This is based on recording the history of the system 

operations that achieve good feedback and interpreting the operations that 

receive negative feedback. This method improves the quality of the training 

data during the learning so that the learning outcome is improved. This 

component enables the online learning using multilayered feedforward neural 

networks. 

Adaptive and reactive learning 

The multilayered feedforward neural networks use backpropagation with two 

learning threads operating: the adaptive learning and the reactive learning. The 

adaptive learning learns all the training data and reactive learning learns only 

new training data in a given time window. Both learning rates are controlled 

by the system’s error performance and the error of reactive learning is 
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weighted by time. This component learns and ensures that the online learning 

outcome is usable. 

System measurements 

Because the training data set keeps updating during the operation, error 

measurement is not enough to evaluate the system’s performance. A full set of 

standards that can provide assessment of the system’s ability have been 

introduced. This component provides an effective method to monitor and 

evaluate the online the learning operation. 

 

The main properties and advantages of this framework include: 

1. The training data selection and the learning enhance each other during 

operation, which is the foundation of the framework’s ability to work 

online. It enables the error backpropagation learning that gives the 

social behaviour the ability to generalise. 

2. The adaptive learning provides the advantage of good generalisation 

and convergence, while the reactive learning provides the advantage of 

a fast learning speed, so that the system is truly using-while-learning. 

3. The two learning threads switch the control of the network 

dynamically so that reactive learning dominates when the system 

encounters new features. When the system faces no new features, as 

the reactive learning is not strongly active, adaptive learning has the 

control of the system and tunes the performance. 

 

This using-while-learning framework forms the core of this thesis and is the 

main outcome of this research. The analysis provided though Chapters 5 and 6 and 

their comparison to Chapter 4 has clearly demonstrated the advantages of adopting 

this using-while-learning framework in the social positioning behaviour. However, 

from a higher perspective, the social positioning represents a large group of systems 

for which, previously, researchers found it difficult to construct a feasible using-

while-learning controller. Introducing this using-while-learning framework opens a 

huge possibility for many other problems that remain highly motivated. In the next 

section, therefore, we will discuss the generalisation of this framework and explore its 

possible application to other research problems. 
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8.2 The Generalisation of the Research and Possible 
Applications 

Although this thesis is built upon the scenario of social positioning, a wide range of 

applications in HRI or in general control systems can benefit from the proposed 

using-while-learning framework. It is easy to see that the two learning threads can be 

used in any learning system that uses multilayered feedforward neural networks as 

long as the training data are fed online. But, most importantly, by describing the 

training data selection method in a more general form, many well studied problems 

can have a promising alternative because a lack of desired system output is a common 

feature in many of these applications. 

8.2.1 General Description of the Using-while-learning Framework 

The training data selection method is the foundation of this using-while-learning 

framework. Here we revisit the method that was presented in Chapter 5 so that the 

basic requirement of adopting this method can be revealed. Chapter 5 points out that 

if p is the robot position and µ~ (.) is the system function, the system has following 

state transition: 

 )(~1 kkk ppp µ+=+   . (8-1) 

The reward function is r(pk). Define ∆Rk=r(pk+1)-r(pk). Let P̂  be the quantised space 

of P, the system state space, and A be the system action/output space. Also define 

]1,0[ˆ:)ˆ( →∆ Pptr  to be the best reward measurement collected by making a move at 

state p̂ , and AP →ˆ:)ˆ(ptµ  to be the action that acquired that reward measurement. 

Initially, P∈∀==∆ ppp ˆ:  ]0,0[)ˆ(  ,0)ˆ( T
ttr µ . After data are collected, a trainable 

input-target data pattern is formed as )}ˆ(  ,ˆ{ pp tµ . The system selects the training data 

as follows: 

if )ˆ( k
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where P̂ˆ ∈kp  is the closest quantised state to position pk. 

if )ˆ(1 1+∆>∆×− k
t

k rR p : 
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The primary rule (8-2) is recording the history of successful operations achieving 

positive feedback and the secondary rule (8-3) is interpreting the operations with 

negative feedback into trainable patterns. Both play a significant role in the learning. 

Now, consider a general control system has the control value defined on space 

Y , for which we can define a state space X  such that: 

 YX ∈∈= yxxyx     ),,(g&  . (8-4) 

The state transition can be written in the discrete form: 

 ),(1 xyxx gkk +=+   . (8-5) 

Then the training data selection method is applicable if a reward function 

ℜ⊂→ MMX   ,:r  and the function ),( xxy &h=  are known. g(.), however, does not 

need to be known to execute the training data selection routine. The training data 

selection rule is: 

if )ˆ( k
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where kx̂  is the closest quantised state to state xk. 

if )ˆ(1 1+∆>∆×− k
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(8-7) 

In the social positioning system, )(~ py µ= , px = , ypxxx === &&&),(h . For any 

system that fits into this model, the aim of the learning system is to estimate the 

relation YX →:µ  so that the best reward value from the reward function can be 

achieved by following the steepest gradient defined on the reward surface. The peak 

of the reward surface is the desired state for the system to converge and stabilise on. 

For many systems, the desired system output is unknown but a reward function over 

the system states is much easier to find. As the reward function is defined upon 

system states that have to be explored during operation, the system can also benefit 

from online operation of two learning threads. 
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8.2.2 Possible Applications 

8.2.2.1 A HRI Application: Passing Human 

Robot positioning has become an attractive and interesting field in HRI, where 

researchers have realised that early positioning methods such as conventional obstacle 

avoidance (e.g. Laue and Röfer, 2005, Ge and Cui, 2000, Koren and Borenstein, 

1991) and navigation (e.g. Jetto et al., 1997, Demirli and TRurksen, 2000, Aitkenhead 

and McDonald, 2004) are not enough because social positioning needs to take the 

human factor into account. This thesis has identified the limitations of using 

predefined human preference models in the social positioning behaviour. Such 

limitations largely apply to other positioning behaviour in HRI as well. One typical 

positioning behaviour that has been widely researched is the behaviour of passing a 

human. For the majority of the literature in this topic, one psychological model has 

been commonly used, as has been reviewed in Chapter 2 and 3. 

Although social scientists have had strong evidence to support the general 

shape of the reward surface of a human while someone is passing them, the size and 

the shape of it remain highly variable among individuals. As listed in our previous 

studies in Chapter 2, Figure 8-1 is the most widely used preference model for passing 

a human. 

 

Figure 8-1 Human preference of spatial distance zones in the scenario of a robot passing a human. It generally 
describes how the human feels about an agent regarding the distance and position between them 
(Pacchierotti et al., 2006) 

The desired position for passing a human will depend on both the general 

human preference and the dimensions of the environment. Pacchierotti (2006) has 

researched different passing distances in different situations. Thus the methods 
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proposed in previous literature (as studied in Chapter 2) lack the generality to offer an 

adaptive solution so that the robot can freely operate in a dynamic environment with 

different humans. The using-while-learning framework proposed in this thesis can 

benefit the passing human behaviour in a similar way to the social positioning 

behaviour. 

As a positioning problem, it has a very similar structure to the social 

positioning system. The only difference will be the shape of the reward surface. As 

the learning system is independent of the reward surface, the using-while-learning 

framework can be applied to passing human behaviour directly in the same way it has 

been executed in social positioning system. The difference, depending on the 

scenario, can be that the outcome of the passing human behaviour is an aggregate of 

the preference of many people whereas the social positioning is defined by one user. 

8.2.2.2 A Control Application: Pole Balancing 

In Section 8.1, the using-while-learning framework has been presented in a more 

general form. This allows our work to be applied not only in position-related HRI 

applications but many general adaptive control applications. A well studied control 

problem is pole balancing. Being a commonly used model, it has been well studied 

within the area of conventional control methods as well as some offline based 

learning methods (e.g. Pasemann, 1997, Riedmiller, 2005, Atkeson, 1994, Doya, 

1996). However, employing a using-while-learning controller to balance a pole 

remains a less studied aspect. Our work has the potential to fill this gap. Using 

balancing one pole with a cart as an example, the kinematicsare as follows: 

 

Figure 8-2 The kinematics of balancing a pole by a cart (Schaal, 1997) 

Define T],,[ x&&θθ=x . In the pole balancing case, we can define function g(.) that 

satisfies: 

 ),( xx Fg=&    . (8-8) 
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From the discussion in Section 8.2.1, it can be seen that g(.) does not to be 

known for training data selection. All we need is to find h(.). It is known that the 

system in Figure 8-2 satisfies following function (Ogata, 1996): 

 θθθθ sincos)(),( 2&&&&&& mlmlxmmFh c −++==xx . (8-9) 

The target is to position the system in to the goal state T]0,0,0[=x . Adapted 

from the reinforcement learning reward used by Schaal (1997), the reward function 

can be a weighted distance from the system states to the goal state: 

 

5.13
25.125.0121)(

222 xr
&& ++

−=
θθx  . 

(8-10) 

The aim of the online controller thus is to estimate the desired function 

F=)(xµ  so that the pole is balanced, i.e. the system remains in the top rewarded 

state, following the steepest gradient of Function (8-10). The reward function (8-10) 

allows the training data to be updated through the training data collection rule (8-2). 

Because the state transition (8-8) exists, Equation (8-9) allows the secondary rule of 

training data selection, rule (8-3), to be applied. Thus the using-while-learning 

framework has a promising potential to solve the online control of the pole balancing 

problem. 

8.3 Future Research Directions 

The using-while-learning framework has provided a promising solution for online 

explorative learning problems, which form a large part of the growing interest in 

adaptive systems. It has successfully solved the social positioning problem in this 

thesis. Furthermore it opens some attractive directions for future research. 

8.3.1 The Online Learning Study 

The proposal to use both adaptive and reactive learning is largely applicable in  

real-time learning where more data becomes available as learning progresses. This 

proposal is motivated by the high learning speed requirement in a real-time learning 

system where using-while-learning is necessary. Noticing that the learning algorithm 

is based on classic error backpropagation, it would be useful to investigate whether 

this learning can benefit from other learning acceleration techniques proposed in the 

literature. Although most of the methods proposed in existing research operate offline 
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and show their advantages in long-term training, using two learning threads is able to 

enhance their effects and has the possibility to make them have an early impact on 

learning. 

This can open many research topics, such as, adding the popular momentum 

(e.g. Naimin Zhang et al., 2006) or high order error gradient backpropagation (e.g. 

Battiti, 1992) into the learning. These two methods have been widely used in many 

learning applications but their effects with two learning threads in a using-while-

learning scenario are yet to be revealed. However, it has caught our attention that both 

methods mentioned here as well as many other discussions of the acceleration of 

backpropagation learning aim to avoid error local minima. The risk of experiencing 

error local minima in the proposed using-while-learning-frame hasn’t been 

investigated in this thesis, although the simulations weren’t observed to suffer from 

this problem. One of our preliminary discussions (Wang and Lee, 2006b) has pointed 

out that, because two learning threads have different learning targets, they experience 

different local minima. This may significantly reduce the risk of the system being 

trapped into an error local minimum as this needs the two learning threads to have the 

same minimum, which rarely occurs other than at the global minimum. The system’s 

potential risk of suffering local minima and the feasibility of enhancing the system to 

avoid error local minima are interesting and attractive future research topics. 

8.3.2 The Generalisation Study 

In Section 8.2.1 we concluded that the using-while-learning framework is applicable 

if the following conditions are true: 

• a control system can define a state transition in the form of equation (8-4) or 

(8-5); 

• some reward function can be defined over the state space, typically the 

weighted distance to the goal state as equation (8-10); 

• h(.) is known. 

It is essential to use the state transition (8-5) and h(.) so that the training data 

collection rule (8-7) stands. The state transition must be defined so that if an action of 

the system leads to a state shift having negative effects on the reward, the opposite 

action can be found and used as training data. Our study in Chapter 5 and 6 has shown 

that both training data collection rule have contributed to the learning of the system. 
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However, it is obvious that for any system with a reward function defined on 

the state space, rule (8-6) is always true because it is simply a recording of system 

history without interpretation. Thus for systems either that are hard to linearise or that 

have an unknown h(.) the system can still collect training data through rule (8-6). If 

this rule gives enough training data, the using-while-learning framework still works. 

Therefore, an attractive direction of research will be to find possible ways of 

modelling the system so that the system’s dependency on the interpretation rule is 

reduced or minimised. Many directions are worth looking into for this purpose, such 

as deferent ways of modelling the system’s state transition or different ways of define 

reward surface. Or, from another perspective, a faster learning that can train the 

system effectively with fewer data, where even current model can work without the 

interpretation rule. 

As an online learning system that is independent from its learning target, the 

using-while-learning frame has a promising potential to be expanded into a wide 

range of practical and theoretical problems that provides only limited desired system 

target and requires strict online operation. 
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Figure I-1 All walks of the simulation of the online backpropagation learning system with reward surface having one reward peak and 
wide flat area 
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Figure  I-2 The system outputs and the reward history of the simulation of the online backpropagation learning system with reward surface having one reward peak and wide flat area 
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Figure  I-3 The MSE and training data updates of the simulation of the online backpropagation learning system with reward surface having one reward peak and wide flat area 
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Figure II-1 All walks of the simulation of the online backpropagation learning system with reward surface having two reward peaks. The system operates in 
the upper half of the map for 40 walks and then operates at the lower half in 20 walks. 
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Figure  II-2 The system outputs and the reward history of the simulation of the online backpropagation learning system with reward surface having one reward peak and wide flat area 
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Figure  II-3 The MSE and training data updates of the simulation of the online backpropagation learning system with reward surface having one reward peak and wide flat area 
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Figure III-1 All walks of the simulation of the system using two learning threads with reward surface having two reward peaks. The system operates in the 
upper half of the map for 40 walks and then operates at the lower half in 20 walks. 
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Figure  III-2 The system outputs and the reward history of the simulation of the system using two learning threads with reward surface having one reward peak and wide flat area 
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Figure III-2 The MSE and training data updates of the  simulation of the system using two learning threads with reward surface having one reward peak and wide flat area 
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Appendix IV  Onboard Controllers 
There are three embedded on-board controllers provided by the manufacturer. They 

are: motor/power controller, sensor controller and system microcontroller. 

Because the control of the DC motor wheels of the robot is a regular task 

involved in controlling mobile robots, a pre-built controller has been included in the 

micro control system for the controlling of the motor wheels. The control law of the 

mobile robot wheels is normally complex and has been discussed a lot in the literature 

(e.g. Jiang, 1997, Shima, 2003, Sun, 2005). The on-board motor controller has 

provided a pre-built law that enables a robust performance of the robot in low and 

middle speed ranges, where Section 7.4 gives more details. It has been advised by the 

manufacturer that users do not by-pass this controller for a robust enough 

performance in regular use, unless absolutely necessary.  

The sonar controller manages the sonar array of the robot and provides a pre-

built sonar model as well. It controls the sonar operations as well as transforms the 

raw sonar readings into rage readings. No extra modelling therefore is needed. 

The system microcontroller is the core of the Pioneer 2 operating system. Both 

sonar and motor controllers are controlled by this microcontroller. It can communicate 

with computers allowing the robot to be supervised by external programmes. The 

system I/O is provided through a 9-pin DSUB serial port. The data package can be 

readable to computer programming languages through the interpretation of the ARIA 

class provided by the manufacturer. The system has reserved system I/O for optional 

accessories from the manufacturer such as ultrasound sonar, laser detector, robot arm 

or camera. For other customised accessories, they can only be connected to the system 

through user I/O expansion. 

The user I/O expansion is a 20-pin IDC socket on the microcontroller board. It 

supplies 8 general-purpose digital I/O ports and 5 A/D converter ports. In our 

research, the human detector is connected to this user I/O using three of its A/D ports. 
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Appendix V Model of Human Detecting Device 
The device has two detectors. The outputs of each detector include the reading of the 

length of the wire, dl, and two readings from the rotational base related to the wire’s 

spatial angles, dx and dy. The three outputs are connected through three A/D ports in 

user I/O expansion on the Pioneer 2 DX microcontroller, each of which provides a 

ten-bit quantisation of its signal. 

The sensor is mounted on the deck at the top of the robot as shown in  

Figure 7-3. The centre of the detector is placed at the centre of rotation of the robot. 

The exact position of the point of attachment can be calculated through the reading of 

the detector. However, the GameTrak sensor only offers a limited range of freedom of 

the wire holder within the ring of the base holder. This means that in the majority of 

cases during operation, the holder will be caught up on the edge of the base holder as 

illustrated in Figure V-2. 

 

Figure V-1 GameTrakTM motion senor outputs 
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Figure V-2 shows the geometry of the detector during operation in the case 

that the wire holder has reached the edge of the base holder. In the social positioning 

behaviour model, the system is studied in the x-y plane, the top-down view. 

Therefore, the aim here is to compute the shadow of the wire on x-y plane, which is 

denoted as q, the human position vector in robot system (see Section 3.2).  

Let q∠  denote the angle of vector q. Through Figure V-2, the angle of q can 

be decided by following equation: 

 )512 ,512atan2( -d-d yx=∠q  (V-1) 
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In Figure V-2, as ABC∠  is expected to be very small, l is approximated as: 
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where g is the transition between the measurements of the wire length and the 

quantised digital output of the detector. GameTrak doesn’t publish its data sheet for 

 

Figure V-2 Geometry of GameTrakTM motion senor 
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public use therefore the decision of the transition was determined through 

experiments.  

 

Figure V-3 The relation of the detector outputs and actual measurements in wire length 

Sampling a set of wire lengths, the relation between the quantised detector 

length outputs and the actual wire length measurements is shown in Figure V-3. In 

Figure V-3, the data fit into the line y=3[(1024-x)-13]. Therefore: 

 ]13)1024[(mm3)( −−×= xxg  (V-4) 

The height from the attachment point on the human to the ground, hhuman, and 

the height of the robot, hrobot, as shown in Figure V-2, will be pre-measured. Thus, the 

distance from the human to the robot, ||q||, is: 

 2
robothuman

2222 )( hhlhl −−=−=q  (V-5) 

where h is the difference between the height of the pre-measured attachment point and 

the height of the robot. Therefore vector q is: 

 )]sin(),[cos( qqqq ∠∠⋅=  (V-6) 

It has been measured that the length of the cap, lcap, is 70mm, the length of the holder 

in quantised value, dholder, is 8 and the height of the robot hrobot is 300mm. 
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Appendix VI  The Kinematics Model 
The variables that are available directly from the robot system are the instantaneous 

robot translational speed v and rotational speed ω. The human detector also gives the 

human position, q, in the current robot coordinate frame. However, in order to 

complete the human-following task, there are three more variables which need to be 

deduced: the robot position in the human reference frame, p; the human displacement 

sh and robot displacement sr, for the given time window. The derivation of these 

variables, based on the robot kinematics, is the aim of the analysis of this section. This 

section will also calculate the control signal for the robot movements. 

There are three frames of reference involved in the current study: the global 

reference frame, the robot reference frame and the human reference frame. In the 

robot reference frame the robot is considered to be still and always facing along the 

positive x axis. It is the reference frame of all sensor readings. In the human reference 

frame the human is considered to be still and always facing along the positive x axis. 

The human reference frame is where the social positioning model is based.  

In the majority of the literature, kinematics are discussed in the global 

coordinate frame. An illustration of the positions of the robot and human at time steps 

k and u is shown in Figure VI-1. We use prime to denote the measurements of a 

vector in the global frame. 

 

Figure VI-1 The geometry of the human-following kinematics in global frame of reference. It illustrates the 
relation of the positions of the human and the robot at two time instance k and u. 

In Figure VI-, it is obvious that we have the following equation: 
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However, there is no global localisation facility in the system. The measurements of 

vectors in Equation (VI-1) are therefore unknown. Also, because the position reading 

of the human, q, is located in robot coordinate frame, and the analysis of the 

kinematics of the mobile robot takes place in the robot reference frame, the rotation of 

the robot itself has to be taken into account during the calculation of the global 

vectors. If we redraw the situation of Figure VI- in the frame of robot reference, 

Figure VI- is produced. From this point on, unless otherwise specified, all the vectors 

mentioned in this section are measured in the robot’s coordinate frame. 

 

Figure VI-2 The relation of the human movements in the robot reference frame at two time indices. 

As shown in Figure VI-2, the difference between the readings qk and qu is 

caused by the movements of the robot, the human and the rotation of the frame of 

reference from time index u to k. Because the reference system rotates during the 

process, the calculation of the vectors is not correct unless they are all undertaken 

with their observations from the same coordinate frame. We use qu|k to denote the 

observation of vector qu in at time index k in the same reference frame. For 

convenience, write qu|u as qu, and qk|k as qk. The rotation of the reference frame will 

have the effect of an opposite of rotation of a vector so that: 

 uk kkk
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where ku→α  is the angle difference of the coordinate from time index u to k and T is 

the rotational matrix: 
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Therefore, from Figure VI-, it can be seen that: u
r

u
h

u
u

k ssqq −+=| . Equivalently: 
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In order to derive the human displacement sh from Equation (VI-4), the human 

displacement can be written as: 

 kkk u
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uku
h ||| sqqs +−=   . (VI-5) 

From Equation (VI-5), it can be seen that the displacement of the robot, sr, is 

needed for the calculation. The instantaneous translational and rotational speed 

readings are given by the robot system. The common assumption adopted in most 

research concerning the kinematics of a wheeled mobile robot is a unicycle movement 

in short time length. We use the approximation Freda and Oriolo (2007) adopted in 

their research. The displacement of the robot between two adjacent time indices can 

be approximated as following: 
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and the total displacement over the time window k-u is: 
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Equation (VI -8) then provides the robot displacement over the time period. The 

vector q is given by the human detector as discussed in Section 7.1. Another 

transformation needed is to derive the robot position, p, relative to the human 

coordinate frame from the vector q. The robot position vector p in the human frame 

can be found through: 

 )(T kk qp −= β     , (VI -9) 

where β is the angle difference between the human and robot coordinates, as shown in 

Figure VI-. Because the orientation of the human can’t be detected, we assume that 

the human always faces the direction of his or her displacement. Therefore β at time 

index k, is: 

 )|( ku
hs∠=β    . (VI -10) 
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The social positioning behaviour produces the desired robot displacement in 

the human reference frame. The controlling of the robot is however based on the robot 

system. The inputs to the motor controller of the robot are the translational speed v 

and the rotational speed ω. The desired translational speed vd and the desired 

rotational speed ωd of the robot thus are: 
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where f is the system frequency, cv and cω are scaling factors, and k
ds  is the behaviour 

output vector measured in the robot frame. That is: 

 )(~ kk
d ps µβ ×Τ= −    , (VI -12) 

where )(~ kpµ  is the social positioning behaviour output, the desired robot 

displacement in the next time index measured in the human reference frame. 

The onboard motor controller is at its most reliable at low and medium speeds. 

Large errors can be introduced when the control signal vd and ωd are too high. 

Therefore the value of both variables will be scaled down by the scaling factors to 

ensure robust control of the robot. The value of rotational scalar cω is to ensure the 

rotational velocity is no larger than 
4
π rad/s-1. This practical limitation was discovered 

by experimental tests. Because ωd∈[-π, π], 
4
1

=ωc . 
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Figure VI -3  The translational speed control profile of the robot. It assigns the robot speed based on the 
desired robot speed calculated from the behaviour output. 

The value of the translational scalar is based on profiling. Figure VI - shows 

the translational speed profile. Our tests showed that within the limit of 500 mm/s the 

system is generally robust. But because rotational speed and translational speed are 

not independent, we also found that the system controls the rotational speed better 

when the translational speed is low. Therefore the translational speed has been scaled 

down even when it is lower than 500 mm/s. This speed profile scales down the 

translational speed heavily when the desired speed is small in order to ensure the 

steering of the robot is correct near the reward peak because a small desired speed is 

normally expected near the reward peak. Generally speaking, scaling the speed down 

below the desired target introduces a time delay for the robot movements, for the sake 

of robustness. The experiments in Section 7.5 show that this trade-off is acceptable 

and worthwhile. 

 




