DIVISION OF COMPUTER SCIENCE

The Oberon-2 Language and Environment

Audrey Mayes
Mary Buchanan

Technical Report No.190

March 1994

The Oberon-2 Language and Environment

Audrey Mayes and Mary Buchanan

March 25, 1994

Contents

1 Introduction 3
2 The Oberon-2 language 3
2.1 Program structure and system execution 4
22 Modules 4
23 Importlist. 4
2.4 Exported featureso 5
2.5 Types . . e 5
2.5.1 Basictypes e 5
2.5.2 Structured types Lo 5
2.5.3 Extended types o 7

2.6 Scope Rules 7
2.6.1 General scoperule 7
2.6.2 Additional scoperules 8

2.7 Type compatibility and assignment 9
2.7.1 Record assignment oL 10
2.7.2 Pointer assignment 0oL 10
2.7.3 Type tests and type guards 11

2.8 Procedures 12
2.8.1 Proper procedures and function procedures 13
2.8.2 Procedure types 14
2.8.3 Type-bound procedures 15

2.9 Message Recordso oo 17
The Oberon-2 Environment 20
3.1 Accessing thesystem, 20
3.2 Viewers P 21
3.3 Basic interaction commandso oL 21
3.4 Introduction to the system 23
3.5 Exiting from the system 24
3.6 Writing and Editing files 24
3.6.1 Creating afile 25
3.6.2 Selecting and copying text 25
3.6.3 Deleting text oL 26
3.6.4 Undoing commands 26

3.7 Compilation 26
3.8 Other system commands, 27
3.9 Directorieso 27
3.10 Printing 28
3.11 Runtime errorso 28
3.12 Definition modules oo 29

1

4 Conclusions
A Definition Modules

B Example Modules

29

31

32

1 Introduction

This report provides an introduction to the Oberon-2 language. The language
is supplied as part of the Oberon-2 system which consists of a compiler and
some library modules embedded in their own environment. The embedding
of a language in its own environment means that it is necessary for program-
mers to learn the environment as well as the language. For this reason, a brief
introduction to the environment is given in section 3.

The Oberon-2 language was originally designed as part of a project to de-
velop an object-oriented operating system and as such permits object-oriented
programs to be implemented. The main features of the language are described
in section 2.

2 The Oberon-2 language

Oberon-2 is a general purpose, procedural language which evolved from Modula-
2 via Oberon. In common with its ancestor languages Oberon-2 has strong data
typing and separately compilable modules.

The process of evolution from Modula-2 involved adding facilities to permit
an object-oriented style of programming as well as the removal of some of the
less essential features [1]. The most significant additional feature present in
Oberon is type extension which permits the construction of new types from
existing ones. Oberon-2 extends the original Oberon facilities with type-bound
procedures. These are used to associate procedures with record types. Both of
these new features are explained in sections 2.5.3 and 2.8.3.

A major objective, during the development of Oberon, was to keep the lan-
guage simple, concise and free from superfluous constructs which would add to
the complexity of either the language or the compiler. In order to reduce com-
plexity some Modula-2 features were omitted. The omitted features include the
separately compilable definition module, opaque types, subranges, enumerated
types and variant records. The functionality of the variant record has been
retained by the introduction of type extension.

The remainder of this section explains the constructs and facilities of the
Oberon-2 language. The language is described with reference to Appendix B.
This contains two modules which illustrate the basic constructs of Oberon-2.
The lines of the code in the appendix have been numbered for ease of reference
in the text. Line numbers are not used in Oberon-2. More information can
be obtained from the reference guide for programmers which is available in the
Oberon-2 system.

2.1 Program structure and system execution

A program in Oberon-2 consists of a group of interacting modules. The system
does not have a main driver module or main procedure. Any procedure which
does not require parameters can be used to drive the program. This makes it
possible to have several points of access into a system. It is also possible for one
program to instantiate other systems by calling a procedure.

2.2 Modules

The unit of compilation is the module. A module consists of
e an import list
e a collection of type, constant, variable and procedure declarations
e a sequence of statements.

The module construct is also used for information hiding. The module
defines the scope of global variables and type names. Variable and type names
must be exported explicitly if they are to be imported by other modules. The
exported names form the interface of the module. A module’s interface can
contain the interface for more than one type. The types Person and Customer
could be declared in a single module, in which case, the module interface would
encompass the interface to both these types.

2.3 Import list

The IMPORT list names all the modules which contain procedures or types
used by the current module. For example:

2 IMPORT Out, In;

The list shows that the whole module is imported not just specific features
from a module. The required features are accessed by using the dot notation as
shown below.

43 Out.String(‘‘ the name assigned to person is’’);

The reason for importing the whole module is said to be that it is preferable
to qualify each occurrence of an identifier explicitly [1]. A side effect of the
explicit qualification is that the compiler is simplified.

It is possible to declare an alias for a module name in the import list. In the
above example the imported modules could be declared as:

IMPORT O:= Qut,I := In;

The features from the module Out would then referenced as O .featurename.
For example Out.String would be referenced as 0.String. This facility
might be useful to emphasise the name of a procedure or type rather than its
declaring module. Modules are said to be clients of modules named in the
import list.

2.4 Exported features

Features which are to be exported are marked with symbols. An asterisk after
a type name, procedure name or variable name marks that feature for export.

10 PROCEDURE (p : Person) AssignName* (n : ARRAY OF CHAR);

This export mark means that other modules have read and write access to
the feature. Read only access can be granted by the - mark:

6 name - : ARRAY 32 OF CHAR;

The export marks are required because Oberon-2 does not have a separate
definition module.

2.5 Types

Oberon-2 provides eight basic types and several constructs to allow the pro-
grammer to define structured types.

2.5.1 Basic types

Five of the basic types are numeric types. These numeric types are related by
a set hierarchy.

LONGREAL D REAL D LONGINT D INTEGER D SHORTINT

This set hierarchy gives compatibility of a smaller type with a larger type.
For example, an integer variable can be assigned to a variable of type real. The
other basic types are CHAR, BOOLEAN and SET. The type SET is restricted
to sets of integers.

2.5.2 Structured types

A structured type can be implemented as an array, a record or a pointer to
an array or record. Pointer types in Oberon-2 can only be used with records
and arrays. Records and pointers to records are used to implement the object-
oriented concept of a class. Classes have procedures (methods) as well as data
associated with them. The Oberon-2 mechanisms for associating procedures
with data are explained in sections 2.8.3, 2.8.2 and 2.9.

ot

The elements of an array must all be the same type but the fields of a
record may be different types. The declaration of arrays, records and pointers
in Oberon-2 is very similar to their declaration in Modula-2. In Oberon-2, arrays
always have a lower bound of 0 so array declarations only need to specify the
number of elements in an array. For example,

34 s : ARRAY 32 OF CHAR;

Record declarations have to mark the fields to be exported. In order to
export any fields of a record, the record itself must be exported, see scope rules
in section 2.6. For example, in the declaration of PersonDesc, the record type
is exported even if a client module is not expected to declare variables of this
type. It is usual to declare pointers to records rather than instances of the
record itself. The reasons for this are explained in sections 2.7 and 2.8.1. In this
example, client modules would be expected to declare variables of type Person.

PersonDesc* = RECORD
name — : ARRAY 32 OF CHAR;
address —-: ARRAY 32 OF CHAR;
telNo - : INTEGER;

END (*RECORD*) ;

© 00 N O O;

Record declarations can be empty. For example,
Message = RECORD END.

The empty record declaration is used in conjunction with type extensions
which are described in the next section.]

The type declaration below shows that person has been implemented as a
pointer type. In this example, a record of type personDesc is bound to the
pointer.

4 Person* = POINTER TO PersonDesc;

It is necessary to dereference a pointer in order to access the variable. The
usual method is to use

pointerName”.field.
Oberon-2 allows this to be abbreviated to

pointerName.field
unless the field contains a pointer type. In this latter case, the field must be
dereferenced by ~.

2.5.3 Extended types

Extended types were introduced into the language to allow new types to be
based on existing types. Such types implement the object-oriented concept of
inheritance. Any record type can be extended. An example of type extension
can be seen below. The name of the record type being extended is declared after
the keyword RECORD and is enclosed by round brackets. If, as is shown in the
example, the record type being extended is declared in a different module, the
type name must be prefixed with the module name.

58 Customer* = POINTER TO CustomerDesc;

59 CustomerDesc* = RECORD (Persons.PersonDesc)
60 overdraftCeiling - : REAL;
61 END (*RECORD*);

In the example modules, both type Person and type Customer are imple-
mented as pointers. Type Person points to a record of type PersonDesc. Type
Customer points to a record which is an extension of type PersonDesc. The re-
lationship between the record types pointed to is extended to the pointer types.
Type Customer is therefore an extension of type Person.

If, as in the example modules, an extended record is declared in a separate
module, it inherits all the fields of the base type but can access only the exported
features. It cannot access the hidden fields or change read-only features. This
is because a module has only one interface - defined by its exported features.
Therefore, all client modules have the same access rights to a module’s features.
The inability of an extended type to change a read-only variable declared in its
base type has been shown to cause difficulties [2].

2.6 Scope Rules

Identifiers are either predefined or are declared within a program. An identifier
can refer to its associated object in those parts of the program for which its
declaration is in scope.

2.6.1 General scope rule

The scope of a declaration extends from the point of declaration to the end of the
block to which the declaration belongs. A block may be a record, a procedure or
a module. For example, a local variable declared within a procedure is in scope
for that procedure alone and a global variable declared within a module is in
scope for all procedures in the module. If a procedure declares a local variable
with the same identifier as a global variable, then the global variable is not in
scope within the procedure. This use of local identifiers has the advantage that
it is not necessary to know the names of all global identifiers. Local variables

are only in existence while a procedure is being executed whereas a module’s
global variables exist until the module is unloaded from the system.

Procedures can be nested and the same scope rules apply. Hence if a nested
procedure declares a variable with the same identifier as a surrounding proced-
ure, then only the nested variable is in scope in the nested procedure. A nested
procedure can use a variable declared in an outer procedure provided the nested
procedure does not redeclare the variable.

There are no scope rules for nested modules since these are not permitted
in Qberon-2.

2.6.2 Additional scope rules

1. Record types

Field identifiers, for example name: ARRAY 32 OF CHAR, are in scope
within:

e the record definition itself,

e field designators referring to elements of record variables.
For example, since p: PersonDesc designates a record, p.name is a
field designator which denotes the name field of p. The field identifier,
name, is in scope wherever p is in scope in its declaring module.

2. Pointer types

If an identifier is declared as T: POINTER TO T1, then the identifier T1
can be declared after the declaration of T provided that they are both
declared within the same block. This is known as forward referencing.

3. Type-bound procedures

Type-bound procedures, see section 2.8.3, are globally visible within the
declaring module but from a client module perspective are considered to
be part of the record to which they are bhound.

4. Exported identifiers

Identifiers within the global scope of a module may be exported. Expor-
ted identifiers may be used in any module which imports the declaring
module. To use an exported identifier it is necessary to qualify the iden-
tifier by prefixing the identifier with the name of the declaring module.
For example, Persons.Person denotes the identifier Person in a module
importing the Persons module.

If an exported identifier is declared as a pointer to a record, then the
scope rules for record fields require that the record is also exported. For
example, in the Persons module the export of Person necessitates the
export of PersonDesc

TYPE Person* = POINTER TO PersonDesc;
PersonDesc* = RECORD ...

2.7 Type compatibility and assignment

Oberon-2 bases its type compatibility rules for structured types on name equi-
valence with the exception of open arrays and procedure types. In both these
cases, a form of structural equivalence is used, Examples of this include, for
open arrays, that any array of characters is compatible with an open array of
characters and, for procedure types, that procedure types with the same formal
parameter list and return type are compatible. Procedure types are described
in section 2.8.2.

The set hierarchy of numeric types gives an alternative basis for type com-
patibility. This is based on inclusion, for example

SHORTINT is type compatible with INTEGER, LONGINT etc.

Type compatibility is used to determine assignment compatibility. In gen-
eral, for a variable of type T1 to be assignment compatible with a variable of
type T2, the types must either be the same or type T1 must be included in T2.

The general type compatibility rules must be modified to allow assignment
of extended records. The modification ensures that an extended type is type
compatible with its base type. For example, Customer is an extension of type
Person so Customer is type compatible with Person. Type compatibility governs
the assignment compatibility of variables so the following sequence of statements
is valid.

VAR p : PersonDesc;
¢ : CustomerDesc;

BEGIN

END.

The effect of such an assignment depends on whether the variables being as-
signed are records or pointers. The difference is explained in the following sec-
tion and is one of the reasons for using a pointer to a record for implementing
objects instead of using the record type itself, as mentioned in section 2.5.2.

copied
name [m - s s name
address [—mmmm -y address
telNo < T T telNo
overdraft ceiling [7777 cannot be copied into p,
so "lost”
Figure 1: Assignment of Records
2.7.1 Record assignment
When the structures involved in the assignment, p := c, are records, the values

of the fields are copied from ¢ into p. The variable ¢ is an instance of type
CustomerDesc so contains one more field than p which is an instance of type
PersonDesc. The extra field cannot be copied and so is ‘lost’ in the assignment
to p. The original variable, c, still contains the value. This is shown in Figure
1.

When a record type is used as a variable (VAR) parameter to a procedure,
the address of the variable is passed not the value. The effect of an assignment
is then the same as pointer assignment.

2.7.2 Pointer assignment

Pointer variables contain the address of the actual structure. It is the address
value that is changed by the assignment statement. If the assignment p : = ¢
refers to pointer types, any extra fields are not lost. This is shown in figure 2.
The extra fields are not accessible via the base variable because the language
has static type checking. The variable p is declared to be of type Person. This
means that its static type is Person. Consider the following statement sequence.

10

________________ c
—_~ = 2220 T =
name name
address address
telNo telNo
overdraft ceiling [< - -0t not lost but inaccesible via p

Figure 2: Assignment of Pointers

VAR
p : Person;
¢ : Customer;

n : REAL;
BEGIN
p :=c¢ (*a valid assignment*)
n := p.overdraftCeiling; (* invalid - type Person does not

contain this field#)

END.

The sequence is invalid because p has a static type Person so, during compil-
ation, it does not have a field called overdraftCeiling. The assignment statement
p := ¢ results in p pointing to a variable of type Customer giving p the dy-
namic type Customer. Therefore, at run time, the variable p has the extra field
of its extended type. Oberon-2 provides a method to make use of this fact. The
method uses type tests or type guards to provide dynamic type checking.

2.7.3 Type tests and type guards

Type tests and type guards are used to check the dynamic type of a pointer
variable or of a formal VAR parameter of a record type. A type test for the
above example takes the form

p IS Customer

11

and asserts that p has the dynamic type Customer or an extension of type
Customer. After this type test, it is possible to access the fields added by type
Customer or to assign a base type variable to an extended type variable. If, at
run time, p does not have the dynamic type Customer, the result is undefined,
so the type test should be part of an IF statement. For example:

IF p IS Customer THEN
n := p.overdraftCeiling;
END(*IFx);

A type guard performs a similar function. The required dynamic type is named
in round brackets after the variable name. For example,

n := p(Customer).overdraftCeiling;

The two dynamic type checking mechanisms described above apply to small
regions of the program. A regional type guard was added to the language to
make the code clearer to read. For example,

WITH
p : Person DO (* some lines of code specific to
Person variables*)
| p : Customer DO (* some lines of code specific
to Customer variables*)
ELSE (* code to deal with unexpected type.*)

END

Type tests and guards are used during the processing of heterogeneous data
structures in order to discriminate between the various types of element. They
are also used to discriminate between different types of messages. Messages are
described in section 2.9.

Type guards cannot be used to test the type of a record field to discriminate
between various extensions of the field type.

2.8 Procedures

Procedures can take several forms in Oberon-2. These forms are proper pro-
cedures, function procedures and type-bound procedures. It is also possible to
declare procedure types. Instances of procedure types are procedures. Proced-
ure types and type-bound procedures can both be used to associate procedures
with records in order to implement the objects required for object-oriented pro-
gramming.

12

2.8.1 Proper procedures and function procedures

These types of procedure have exactly the same form and options as their
Modula-2 counterparts. These procedures can have local variables, a return
type and be nested inside other procedures. The return type of a function
procedure must be a simple type or a pointer type. It cannot be an array or
record type. This is another reason for using pointers instead of record types
for implementing as mentioned in section 2.5.2.

Proper procedures and functions are bound to the module in which they are
declared. They are not syntactically related to the record type on which they
operate.

The following code gives an example of a proper procedure declaration.

18 PROCEDURE AssignTelNo*(p : Person; i : INTEGER);

19 BEGIN
20 p.telNo := i;
21 END AssignTellNo;

Procedures declared in this way are statically type checked and statically
bound to instances of the type. It is not possible to redefine a function or
proper procedure.

The following line of code shows how to make a call to such a procedure.

42 AssignTelNo(a,4763);

If this procedure is used by a client module, the procedure name must be
prefixed by the module name. The above procedure call would then take the
form: :

Persons.AssignTelNo(a,4763);

The type compatibility rules allow this procedure to be called with a variable
of type Customer as the actual parameter instead of a variable of type Person.
The call takes the form:

80 Persons.AssignTelNo(b,4763);

The developer needs to know the name of the module which declared the
base type in order to used this type of procedure. The programmer may have
difficulties locating the procedure declaration when a deep hierarchy of types is
developed.

13

2.8.2 Procedure types

The definition of a procedure type declares the parameter list and result type, if
any, of the procedure. As stated previously (section 2.7), procedure types with
the same signature, that is the same formal parameter list and result type, are
compatible. Any procedure with a compatible signature can be assigned to a
variable of a procedure type.

Procedure types can be assigned to the fields of a record type. The values
of these fields define the operations which can be applied to variables of that
record type. The Person type in Appendix B could have been implemented as
follows:

TYPE
Person = POINTER TO PersonDesc;
PersonDesc =RECORD
name : ARRAY 32 OF CHAR;
address : ARRAY 32 OF CHAR;
telNo : INTEGER;

assignName,assignAddress :
PROCEDURE (p : Person; s : ARRAY 32 of CHAR);

assignTellNo :
PROCEDURE (p : Person; n : INTEGER);

print : PROCEDURE (p : Person);
END;

Actual procedures must be assigned to the procedure fields in the procedure
which creates a new instance of the type. All fields of the record of a base type
are inherited by extended types. Any extensions of type Person would inherit
the print field and hence the ability to print themselves. Clearly, this print
method would not suffice if extra fields need to be printed in the extended type.
The print method could be redefined as follows:

o Write a procedure to print customer. This cannot be called print because
this conflicts with the print field inherited from type Person.

e Write a procedure which creates a new instance of type Customer and
assigns the new procedure to the print field.

The following example illustrates how these steps can be used to redefine
the print method for type Customer. The type Customer is assumed to be the
same as the one declared in Appendix B.

14

PROCEDURE printCustomer(c : Person);
BEGIN
WITH ¢ : Customer
(* A type guard is needed to prevent the wrong
class(!) of person being printed.*)

DG
(*Code to print the fields of a customer variable.*)
END;

END printCustomer;

PROCEDURE newCustomer : Customer;

VAR
c : Customer;

BEGIN
NEW (c);
c.print := printCustomer;
RETURN c;

END newCustomer;

The redefined method for print is then invoked when a variable Lias the dy-
namic type Customer. The use of procedure types provides static type checking
and dynamic binding of methods to variables but, as can be seen below, they
are not as easy to use as type-bound procedures.

2.8.3 Type-bound procedures

Type-bound procedures were included in the language to provide a simple mech-
anism for the dynamic binding of procedures to variables. These procedures are
bound to the record type not to an individual instance of the type and so are
the equivalent of Eiffel routines or C++ class functions. Extensions of a type
inherit all the type-bound procedures. The form of a type-bound procedure
declaration is shown below.

10 PROCEDURE (p : Person) AssignName* (n : ARRAY OF CHAR);

11 BEGIN
12 COPY (n,p.name);
13 END AssignName;

A variable of the type to which the procedure is bound is declared before
the name of the procedure. Procedure parameters are enclosed in brackets after
the procedure name as usual. Within the procedure, the fields of the variable
are explicitly referenced using the dot notation, see line 12.

Type-bound procedures give static type checking and dynamic binding of
the procedure to the specific instance of the type.

The following line of code shows how to invoke such a procedure.

78 b.AssignName(‘ ‘Audrey’’);

The required type-bound procedure is uniquely identified by the variable
name and the procedure name because type-bound procedures are considered
to be part of their record type.

Comparing this call with the call to a proper procedure, shows that the
proper procedure needs to be identified by the module in which it is declared
and the procedure name whereas the type-bound procedure call requires just
the variable name and the procedure name.

If required, inherited type-bound procedures can be redefined to make them
applicable to the new class, but the formal parameters must remain the same. It
is possible to invoke a base type’s version of a redefined type-bound procedure
by appending * to the procedure call. A redefined type-bound procedure is
shown below,

66 PROCEDURE (c : Customer) Printx*;

; 67 BEGIN

3 68 c.Print~; (* accesses Print procedure in the base type*)
69 Out.Real(c.overdraftCeiling,8);
70 Out.Ln;

71 END Print;

Dynamic binding ensures that the correct version of a type-bound procedure
is invoked if the dynamic type of a variable is an extension of its base type. Static
type checking ensures that the procedure is available.

Type-bound procedures are also used to define the required behaviour in
abstract classes. The following example of defining abstract type-bound pro-
cedures is taken from a book describing Oberon [3]. The example module im-
plements a graphics editor. All figures will need to display common behaviour
such as draw and move. The procedures for the common behaviour must be

16

declared in the base module. The type-bound procedures to define the above
behaviour are shown below.

PROCEDURE (f: Figure) Draw#; END Draw;

PROCEDURE (f: Figure) Move*(dX,dY : INTEGER); END Move;

The shape specific modules are expected to define the abstract behaviour
inherited from the base type. The compiler does not check that these behaviours
have been implemented so it is suggested that the abstract procedure should
declare a call to the predeclared procedure HALT. This causes the program to
terminate if a programmer has forgotten to implement an abstract procedure.

2.9 Message Records

Message records are a development of procedure types and are a third means of
providing dynamic binding.

The implementation of message records involves several stages and requires
a combination of three features which have been explained earlier. The three
features are type-extension (section 2.5.3), procedure types (section 2.8.2) and
type guards (section 2.7.3).

The type declaration given in section 2.8.2 is repeated here and is used to
explain the implementation of message records.

TYPE
Person = POINTER TO PersonDesc;
PersonDesc =RECORD
name : ARRAY 32 OF CHAR;
address : ARRAY 32 OF CHAR;
telNo : INTEGER;

assignName,assignAddress :
PROCEDURE (p : Person; s : ARRAY 32 of CHAR);

assignTellNo :
PROCEDURE (p : Person; n : INTEGER);

print : PROCEDURE (p : Person);
END;

It can be seen from the above example that the signatures of the procedure
types all declare an instance of the type Person as a formal parameter. This
commonality is exploited by message records. Message records are implemented

17

as procedures which take two formal parameters. The first parameter is a vari-
able of the type receiving the message, in this example p of type Person. The
second parameter is a record. The fields of the record contain the data (extra
parameters) required by the procedure. All the above procedure fields can be
replaced by one procedure field which is usually called handler. The signature
of the procedure is:

PROCEDURE (p: Person; m: Message)

The following code shows the resulting record declaration.

TYPE
PersonDesc = RECORD
name :ARRAY 32 OF CHAR;
address :ARRAY 32 OF CHAR;
telNo : INTEGER;
handler : PROCEDURE (p : Person; m : Message);
END;

The type Message is declared as an empty record. Any operation which is
required to be available on a particular type is declared as an extension of this
base type. The parameters required by the operation are declared as fields of
the extended record. Using Person as an example, the declarations would be:

TYPE Message = RECORD END;
assignName = RECORD(Message)
n : ARRAY 32 OF CHAR;
END;

assignTelNo = RECORD(Message)
i : INTEGER;
END;

assignAddress = RECORD(Message)
a : ARRAY 32 OF CHAR;
END;

print = RECORD (Message)
END;

A procedure with the same parameters as the handler field is written to
implement the various messages. For the above example the procedure might
be :

18

PROCEDURE personHandler (p :Person; VAR m : Message);

BEGIN
WITH (*regional type guardk)
m(assignName) DO
| m(assignTelNo) DO ...
(* plus any other message types*)
END;
END personHandler;

The final stage is to write the procedure required to create a variable of type
person with the correct handler installed. For example,

PROCEDURE newPerson : Person;

VAR p : Person;

BEGIN
NEW (p);
p.handler := personHandler;
RETURN p;

END newPerson;

The personHandler procedure can be declared in a different module to the
type Person. The static type checking system checks that only procedures with
the correct signature are assigned to the handler and that all the implemented
messages are valid extensions of the declared base type, Message. However, it
is not possible for the type checking mechanism to ensure that only messages
which appear in the handler implementation are sent to a variable. It is possible
therefore that a message to display overdraftCeiling could be sent to a variable
of type Person above. This could cause the system to crash unless an ELSE
statement is included in the handler procedure.

It can be seen above that this method of implementing methods is more
complicated than using type-bound procedures or procedure types. Another
disadvantage of this method of implementation is the incomplete static type
checking available for messages. The main advantage of implementing methods
by message records is the flexibility gained by declaring the handler in a different
module to the type.

19

3 The Oberon-2 Environment

The dynamic model of the Oberon-2 system consists of a single process which
repetitively interprets commands. Commands are parameterless procedures;
they are the executable components of the language and are considered to be
atomic actions. If a parameterless procedure P is exported from a module M,
the command denoted by M.P can be activated from the shell of the operating
system. When M.P is invoked, the module M is dynamically loaded (unless it
is already in memory), P is executed and when it terminates, M remains loaded
thereby saving the global state of M. When P or any other command of M is
subsequently invoked, it acts on the saved state. In order to unload M from
memory, deliberate action must be taken as described in section 3.11.

Commands cover a wide spectrum of actions including quitting the system
and compiling a module. The system has been designed to enable users to write
their own commands thereby tailoring the system to their own requirements.

In contrast to many interactive programs, commands avoid direct dialogs
with the system user. Since the original Oberon language was designed for the
implementation of an operating system, user input was not initially required.
Consequently, Oberon does not have library modules providing procedures for
input from the keyboard apart from the module Input which enables characters
to be read from the keyboard. In order to input strings, it is necessary to write
one’s own procedures which can use the read character procedure. Data can
be read from files and this is the more usual way of inputting data. The Input
module also enables mouse clicks to be detected and, somewhat surprisingly
perhaps, it enables the current system time to be accessed.

It might have been expected that Oberon-2, intended as a general purpose
language, would provide more extensive library modules for user interaction
than the original Oberon but this is not the case.

3.1 Accessing the system

Oberon-2 is available at the University of Hertfordshire on the SPARC work-
stations. SPARC-Oberon (TM) 2.7 (copyright ETH Zurich) covers both the
programming language and the system.

In order to access the system, it is necessary to have an account on the work
stations with access to X11-Windows. The following two lines should be added
to the login file:

set path = (/usr/local/Oberon $path)
setenv OBERON .:/usr/local/Oberon/X11:/usr/local/Oberon

The system can now be accessed via X-Windows by typing in the command

oberon. To run Oberon in the background, postfix the oberon command with
an ampersand.

20

The screen will be divided into two vertical columns or tracks. The left
hand track is the user track and the right hand one is the system track. Both
tracks may contain viewers. A viewer is a thin-framed rectangular area on the
screen which can display any kind of data. At the top of the system track is
the System.Log viewer. When a command is executed its success or failure
is reported in the System.Log viewer. At the bottom of the system track
is the System.Tool viewer which contains edit, compile, browser and system
commands.

3.2 Viewers

Viewers have a header in the form of a title-bar. The title-bar contains the
viewer title and a menu in the form of comimands. The title of a viewer is the
name of the opened file. The menu commands automatically refer to their own
viewer. For text viewers, menu commands are included from the System tool
package and the Edit tool package. For example, System.Copy opens a new
viewer displaying the same text, System.Grow enables the viewer to grow to
the full size of the screen and FEdit.Store stores the text on file. System.Close
removes the viewer, without saving the contents, or shrinks the viewer to its
normal size if invoked after a call to System.Grow. To execute a command,
place the cursor over the command and press the middle mouse button.

Viewers may be moved by pointing to the title-bar with the cursor, holding
down the left mouse button and moving the cursor up or down.

Viewers have scroll bars up their left hand sides. To scan up and down a
viewer, move the cursor into the scroll bar. To scroll forward, press the left
mouse button, move the cursor down and release the button when the line of
text which you wish to be the top line is underlined. Alternatively, move the
cursor to the line of text which you want at the top and click the left mouse
button. ‘ '

To view the beginning of the text, click the right mouse button anywhere in
the scroll bar. It may be necessary to repeat this for a large file.

A small horizontal line in the scroll bar indicates the current position of the
text display. To move this, click the middle mouse button in the scroll bar at
the desired location.

3.3 Basic interaction commands

Before introducing the system itself, a few comments on the use of the three
button mouse and on the caret and the cursor are in order.

The cursor has the form of an arrow and is used to identify the location at
which mouse clicks will be received. The caret is triangle shaped and locates
the position at which text will be input.

21

To place the caret:
1. Move the cursor to the desired position in the text
2. Click the left mouse button.

Commands are defined as parameterless procedures and are activated by
clicking the middle mouse button. Any data that is required during the execu-
tion of a command is obtained from files or viewers. If two texts are selected,
the wrong one may be accessed resulting in unexpected data entry.

If a command is given a | as a postfix, then the command will apply to a
file which has been highlighted. For example, if a file Person.Mod is highlighted
then middle clicking on the command Edit. Open 1 will open the file Person.Mod.

If a command is followed by an asterisk, *, then the command will apply to
a viewer which has been marked with a star marker.

To set the star marker:

1. Place the caret in the viewer by clicking the left mouse button when the
cursor is in the viewer

2. Press the F1 key on the keyboard.

For example, if the Person.Mod file has been opened and the star marker set
in its viewer, then the file could be printed by middle clicking on the command
Edit. Print *, Further information on printing is given below in section 3.10.

A summary of the mouse commands is shown below:

Mouse button commands

Left button - set caret
Middle button -~ execute commands
Right button - select text

Sometimes it is necessary to interclick a mouse button. To do this, press
and release the button while holding down another button or maybe two other
buttons. Three common operations involving more than one mouse button are
shown below:

22

Interclick mouse button commands

Hold left button - copiles any previously
Interclick middle button selected text when
left button released

Hold right button - copies the newly
Interclick middle button selected text
Hold right button - deletes selected text

Interclick left button

There is a general rule that any mouse-controlled operation that is currently
underway can be cancelled by interclicking the unused mouse buttons.

3.4 Introduction to the system

At the top of the System.Tool viewer is a welcome to Oberon message followed by
the information that an introduction to SPARC-Oberon is available by clicking
the middle mouse button on the command Write. Open. This command appears
to be rather fragile and sometimes results in a system violation. If this should
happen, the problem can often be solved by logging in to a different SPARC
workstation! Most work stations have succeeded with the Write. Open command
at some time.
The “hello world” program
The “hello world” program can be accessed by:

1. Highlighting the words hello. Mod using the right mouse button

2. Clicking on the Edit.Open command using the middle mouse button.

The program and instructions to use it will appear in a viewer in the user track.

To set the star marker:

1. Place the caret in the hello.mod viewer by clicking the left mouse button
when the cursor is in the viewer

2. Press F1 on the keyboard.

23

To compile the program:

1. Middle click on the command Compiler. Compile * \ s in the System.Tool
viewer.

The command Compiler. Compile * compiles text in a viewer marked with a
star marker. The extension \ s is an option which generates a new symbol file.
Other options are available and can be accessed by opening the Compiler.Tool.

To run the program:

1. Middle click on hello world

The “hello world” message will appear in an Out.Text viewer, not in the
System.Log viewer as mentioned in the instructions listed in the “hello world”
program. Instruction 6 is out of date since it refers to the library module
InOut. This has now been split into two modules, In and Out. All system
output appears in the Out.Text viewer. If this viewer is closed, the program
does not open it again. In order to view the output, the file must be reopened.

To open a new viewer:
1. Type the command Oui.Open (anywhere)
2. Middle click on Out.Open. ‘

3.5 Exiting from the system
At the bottom of the System viewer will be found the command !/System. Quit.
To exit from the system:

1. Delete the “”
2. Middle click on System. Quat.

3.6 Writing and Editing files

Editing tools are listed in the System track in the System.Tool viewer at the
bottom right of the screen. A selection of commands is immediately available.
To get others it is necessary either to open one of the editor tools, Edit.Tool or
Write. Tool, to display the commands or to type the commands directly into a
viewer.

Only a few basic editing commands are outlined below. A more extensive
list of such commands can be found in the Oberon Guide which is available on
the system.

To access the guide:

1. Select Write. Tool by highlighting it using the right mouse button

24

2. Middle click on System.Open 1.

The file is named OberonGuide.text.

3.6.1 Creating a file

To open a new file:

1. Write a filename between the Edit.Open command and the T symbol.
(Note that upper and lower case letters are distinct.)

e For a text file, the filename should have a .Text extension

e For a program source file, a .Mod extension.
2. Click the middle button on the Edit. Open command to open the file.

A new viewer with the filename as title will appear. Place the caret before
entering text; the caret is not placed automatically. It is particularly important
to invoke the Edit.Store command before closing the viewer as there is neither
automatic saving on closing nor a reminder to save. If a viewer is inadvertently
closed without saving, the situation may be retrieved by invoking the command
System. Recall which opens the most recently closed viewer. This must be done
before the end of the session.

The FEdit.Store command saves the file in the current directory. Directories
can be changed without closing files so it is possible for the current dirctory not
to be the one from which the file was opened. If this is the case, a file save will
result in another copy of the file and the up to date version may not be in the
expected directory. If the latest version of a file is not in the expected directory,
it 1s worth searching for it in other directories.

Text viewers opened via Edit. Open do not provide automatic line-breaking.
Write. Open does have automatic line-breaking but seems to have other problems
associated with it such as a tendency to produce a system violation.

Once Edit.Store has been invoked, the saved file is in formatted form not
text form. As a result, the file cannot be accessed using Unix commands such
as emacs or more; all editing must be done via the Oberon system. To save
files as text only, invoke the command WriteTools.StoreAscit. This is another
fragile command.

3.6.2 Selecting and copying text

To select text:
1. Move the cursor to the beginning of the text

2. Hold the right mouse button down and drag the selection to the end.

25

To copy the selected text, place the caret as above but interclick the middle
mouse button while still holding the left mouse button down. The selected
text will be copied to the caret’s position. If the caret is already in the correct
position, while selecting text with the right mouse button pressed, interclick the
middle mouse button. When the right button is released, the selected text will
be copied to the caret position.

3.6.3 Deleting text

If the left mouse button is interclicked before releasing the right mouse button
but after the whole of the required text is selected, the text will be deleted when
the right button is released. (The command can be undone before releasing the
right button by interclicking the middle button.)

3.6.4 Undoing commands
To undo any interclick operation, click the third button while holding down the
primary button. The FEdit. Recall command in the System.Tool viewer inserts
the most recently deleted text at the position of the caret.
3.7 Compilation
To compile a program:

1. Place the cursor in the program viewer

2. Press the F1 key on the keyboard. This sets the star marker.

3. Middle click on the command Compiler.Compile * \ sin the System.Tool
viewer.

The result of the compilation is shown in the log viewer in the system track at
the top right of the screen. Errors are listed together with their position in the
source code.

To locate the error positions:
1. Display the source program
Mark its viewer by placing the cursor in the viewer and pressing F1

Select the required position number in the system viewer

W N

Invoke Edit.Locate in the program viewer menu bar.

The cursor is then moved to the correct position in the source program.

A list of error codes can be obtained by accessing OberonErrors.text in
System.Tool via the Edit. Open command.

26

3.8 Other system commands

A few other generally useful commands are listed below.

e A list of all the commands exported by a compiled module can be obtained
by executing the command System.ShowCommands < Module name> . It
is immaterial whether the module name inserted after
System.ShowCommands has an extension or not.

e The global data of a module can be displayed by executing the command
System.State <Module name>. The module name used in this command
should not include the .Mod extension.

o The Oberon process can be stopped and its state preserved by invoking
the command System.Suspend. It is quite easy to suspend the system acci-
dentally. This can be avoided by prefixing the System.Suspend command
with a !. The ! must be deleted before one can invoke the command.

e To execute bourne shell Unix commands, invoke System. Ezecute followed

by the desired command; for example System. Ezecute pwd, System. Fzecute
ls.

e The screen can be refreshed (redrawn) using Control L.

e The command System. Quit kills the Oberon process and removes tempor-
ary files including unsaved source files.

3.9 Directories

In the system track can be found the command System. Directory |. Below this
command are file types as follows: '
* ,Mod *.Text #*.Tool *.Bak *.0bj *.Sym

To list all the .Mod files in the directory, highlight * Mod using the right
mouse button and middle click on System. Directory |. To open a displayed file
such as Person.Mod, highlight the file name with the right button and middle
click on Edit. Open.

The command System. ChangeDirectory ../ can be used to go back a level in
the directory hierarchy.

It is possible to customise the system viewer. For example, all your dir-
ectories can be listed when entering the system. To do this, type the names of
the directories you wish to access after the System.ChangeDirectory T command
and save using Edit.Store. To change to one of these directories, highlight it
and middle click System.ChangeDirectory . It is important that system tool
changes are saved in the home directory, so that this file is accessed when the
Oberon system starts up.

27

3.10 Printing

The print commands produce postscript output which is unsuitable for sending
to the lineprinter. Postscript output is in “Adobe minimal conformat” which is
useful for utility programs such as ghostview which work on postscript files.

If the work station is linked to sol, then amend the command Edit. Print Ip
filename in Edit.Tool to Edit. Print lw filename which directs a file to the laser
printer. If the work station is not linked to sol, it is necessary to amend the
Edit. Print command to Edit. Print none |.

There are three ways to print a file:

1. Highlight the filename

Invoke Edit. Print none |

2. Insert the filename after none

Invoke the command Edit. Print none filename |

3. Replace the | with a *
Mark the viewer with a star using the F1 key
Click on Edit.Print none *.

Invoking the command Edit. Print none causes an Oberon.Printfile.ps to be
created. This can be printed from a sol window on the workstation by typing
lpr -Plw Oberon.Printfile.ps in the directory from which the Edit. Print
none was invoked. Obviously this file will be overwritten by subsequent calls to
the Edit. Print command. To save a .ps file, copy the Oberon.Printfile.ps before
invoking Edit. Print again.
If the Write editing tool is working, then you can also print from it using
Write. Print in the same way as Edit. Print. '

3.11 Runtime errors

After successfully compiling a series of modules, the following run-time error
may appear in the log viewer: <Module name 1> imports <Module name 2>
with a bad key.

A module key represents the version of the module’s interface. The above
message means that Module name 1 was compiled importing a newer version of
Module name 2 than the version of Module name 2 which is currently in memory.
The command System.ShowModules can be executed to see which modules are
currently loaded. An old version of a module can be removed by executing the
command System. Free <module name>.

Whenever a module is changed and recompiled, the old version should be
removed using System. Free since the new version is not automatically loaded.

28

3.12 Definition modules

Oberon-2 does not have separately compilable definition and implementation
modules. However, a definition module can be generated automatically from
a compiled module using the Browser tool. The command Browser.ShowDef |
can be found in the System.Tool viewer.

To obtain the definition module for a file, highlight the file name, such as
Person.Mod, and middle click on Browser.ShowDef 1.

The definition modules for the Person.Mod and Customer.Mod modules are
shown in Appendix A.

4 Conclusions

The Oberon-2 language provides all the features required for it to be considered
an object-oriented language. These features are

e encapsulation— provided by the modules and the ability to declare records
with procedure fields,

e inheritance— provided by record extensions,

e polymorphism— provided by the type compatibility rules and the ability
to dynamically bind code to procedure calls,

e object identity— the ability for more than one object to have the same
values of state variables.

Oberon-2 is designed to be a small, simple language. The simplicity includes
using conventional terms such as record and instance instead of class and object
and record extension instead of inheritance.)

The rules applied to record extensions enforce the concept of strict inher-
itance. An extended record type is always a subtype of its base record type
because programmers cannot change the parameters required by a procedure
and cannot change the export status of features.

It is possible to declare many types in a single module which allows flexibility
to programmers. It is also possible to declare two types in one module but
only export one of them for use outside that module. This allows a type to
be composed of instances of hidden types. However, the hidden type is not
available for reuse which is one of the benefits of object-orientation.

The simplicity of the language imposes restrictions on the developer. Oberon-
2 permits only one interface to a module which means that a type can also only
have one public interface. There is no mechanism to allow derived types to ac-
cess hidden fields in the base type. This restriction can also reduce reusability.

Generic types are not a necessary feature of object-oriented languages but
they do provide commonly used abstractions. The absence of generic types from
Oberon-2 results in the need for repetitive coding.

29

Oberon-2 does provide one object-oriented feature which is not available in
some other languages. It is possible to have many different starting points in a
single system because a main program is not needed.

The Oberon environment is not very easy to use. In particular, the need to
deliberately reload modules when they are recompiled is tiresome. Other fea-
tures which are not completely satisfactory are the fragility of the Write. Open
editing command, the lack of library modules for user interaction and the ab-
sence of automatic file saving. When inputting data via highlighted text in a
viewer, the need to check that unwanted text is not also highlighted can prove
frustrating. In addition, the mouse commands are somewhat unusual.

To summarise, Oberon-2 provides the features necessary for object-orientation
in as simple a way as possible. This simplicity is masked by the effort required
to come to terms with the Oberon environment.

References

[1] N. Wirth. From Modula to Oberon. Software - Practice and experience, 7
1988.

[2] Libero Nigro. On the type extensions of Oberon-2. ACM SIGPLAN Notices,
28(2), 1993.

[3] Martin Reiser and Nicholas Wirth. Programming in Oberon. Addison-Wesley
Publishing Company, New York, 1992.

30

A Definition Modules

DEFINITION Persons;

TYPE
Person = POINTER TO PersonDesc;
PersonDesc = RECORD
name-: ARRAY 32 OF CHAR;
address-: ARRAY 32 OF CHAR;
telNo—-: INTEGER;

PROCEDURE (p: Person) AssignAddress (a: ARRAY OF CHAR);
PROCEDURE (p: Person) AssignName (n: ARRAY OF CHAR);

PROCEDURE (p: Person) Print;
END ;

PROCEDURE AssignTelNo (p: Person; i: INTEGER);
PROCEDURE Test;

END Persons.

DEFINITION Customers;
IMPORT Persons;

TYPE
Customer = POINTER TO CustomerDesc;
CustomerDesc = RECORD (Persomns.PersonDesc)
overdraftCeiling-: REAL;

PROCEDURE (c: Customer) AssignOverdraftCeiling (i:

PROCEDURE (c: Customer) Print;
END ;

PROCEDURE Test;

END Customers.

31

REAL);

B Example Modules

(*Oberon-2 reserved words are in upper case.*)

1 MODULE Persons;

2 IMPORT Out, In;

3 TYPE

4 Person* = POINTER TO PersonDesc;

5 PersonDesc* = RECORD

6 name - : ARRAY 32 OF CHAR;
7 address - : ARRAY 32 OF CHAR;
8 telNo - : INTEGER;

9 END (*RECORD*) ;

10 PROCEDURE (p : Person) AssignName* (n : ARRAY OF CHAR);
11 BEGIN

12 COPY (n,p.name);
13 END AssignName;

14 PROCEDURE (p : Person) AssignAddress* (a : ARRAY OF CHAR);
15 BEGIN

16 COPY (a,p.address);
17 END AssignAddress;

18 PROCEDURE AssignTelNo* (p : Person; i :INTEGER) ;
19 BEGIN

20 p.tellNo := i;
21 END AssignTelNo;

32

22

23
24
25
26
27
28
29
30

31

32
33
34
35

36
37
38

PROCEDURE (p : Person) Printx;

BEGIN
Out.String(p.name);
Out.Ln;
Out.String (p.address);
Out.Ln;
Out.Int(p.tellNo,6);
Out.Ln;

END Print;

PROCEDURE Test*;

VAR
a : Person;
s : ARRAY 32 OF CHAR;
n . INTEGER;
BEGIN
In.Open;
In.String (s); (% takes the name

from the screen - not from the keyboardx)

39
40
41
42

43
44
45
46
47
48
49
50
51

52

63

NEW(a);

a.AssignName(s);
a.AssignAddress(""B220");
AssignTelNo(a,4763);

Out.String("the name assigned to person is '");
Out.String(a.name);

Out.Ln;

Out.String("the address assigned to person is "),
Out.String(a.address);

Out.Ln;

Out.String('"the phone number assigned to person is ');
Out.Int(a.telNo,6);

Out.Ln;

p.Print;

END Test;

33

54 END Persons.

Results of running the test procedure.
Persons.Test Audrey

the name assigned to person is Audrey
the address assigned to person is B220
the phone number assigned to person is 4763
Audrey
B220
4763

55 MODULE Customers;

56 IMPORT Persons, QOut;

57 TYPE

58 Customer* = POINTER TO CustomerDesc;

59 CustomerDesc* = RECORD (Persons.PersonDesc)
60 overdraftCeiling - : REAL;
61 END (*RECORD*);

62 PROCEDURE (c: Customer) AssignOverdraftCeiling* (i : REAL);
63 BEGIN

64 c.overdraftCeiling := i;
65 END AssignOverdraftCeiling;

66 PROCEDURE (c : Customer) Print*;

67 BEGIN

68 c¢.Print~{};

69 Out.Real(c.overdraftCeiling,8);
70 Out.Ln

71 END Print;

34

72 PROCEDURE Testx*;

73 VAR

74 a : Persons.Person;

75 b : Customer;

76 BEGIN

77 NEW(b);

78 b.AssignName("Audrey");

79 b.AssignAddress('"B220");

80 Persons.AssignTelNo(b, 4763);
81 b.AssignOverdraftCeiling(1.0);
82 NEW(a);

83 a = b;

84 a.Print;

85 END Test;

86 END Customers.

Results of running test procedure.
Customers.Test

Audrey

B220
4763
1.0E+00

35

