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1 Introduction

The Quantum Inverse Scattering Method (QISM) [1–3] provides a very general and success-

ful framework for establishing and studying the quantum integrability of a broad class of

(1+1)-dimensional quantum field theories. Yet despite its formidable success, a significant

number of important quantum field theories which are believed to be quantum integrable

have so far resisted its application. Some well known examples are the principal chiral field

model and the symmetric space σ-model. What distinguishes these theories is that they

violate one of the key assumptions behind the QISM, known as ultralocality. In fact, the

difficulty in dealing with these so called non-ultralocal theories is already apparent classi-

cally. Indeed, the requirement of ultralocality classically means that the Poisson bracket of

the Lax matrix with itself does not depend on derivatives of the Dirac δ-function. When

this assumption fails, the computation of the Poisson bracket of the monodromy matrix

becomes plagued with ambiguities. Attempting to fix these ambiguities leads to a bracket

that doesn’t satisfy the Jacobi identity [4, 5]. And although a proof of classical integrabil-

ity is still possible in this case, the lack of a well defined Poisson bracket of monodromies

severely hinders the introduction of an integrable lattice discretization for these models.

For the SU(2) principal chiral model, however, the situation is slightly better. Indeed,

in 1986, L. Faddeev and N. Reshetikhin put forward an interesting proposal in [6] for

circumventing the problem of non-ultralocality in this model. The first step taken in [6]

was to replace the problematic non-ultralocal Poisson brackets by ultralocal ones. In doing

so, the Hamiltonian also needs to be modified in order to reproduce the classical dynamics

of the SU(2) principal chiral model. As a matter of fact, the new ultralocal Poisson brackets

turn out to be degenerate, which means that they can only be used to reproduce a reduction

of the original dynamics where the Casimirs have been set to constants. Nevertheless,

given this classically equivalent description of the model in terms of an ultralocal Poisson

structure, it could be quantized within the QISM.

It is natural to ask whether such a method can be generalized to other non-ultralocal

models as well. Indeed, if this were possible, the Faddeev-Reshetikhin procedure may

provide a consistent way of treating more general non-ultralocal theories and fitting them

into the general scheme of the QISM. The purpose of this article is to initiate such a

program by generalizing the first steps of the Faddeev-Reshetikhin procedure to the case

of symmetric space σ-models. Specifically, we shall propose a modification of the Poisson

brackets and Hamiltonian of these models in the spirit of [6] which will lead to a well

defined lattice Poisson algebra.

The first task of determining the modified Poisson brackets is a kinematical one. As we

shall see, unlike the case of the principal chiral model, it won’t be possible to completely

do away with the non-ultralocality in the Poisson brackets of coset σ-models. It will

nevertheless be possible to alleviate their non-ultralocality in the following sense. It was

shown by M. Semenov-Tian-Shansky and A. Sevostyanov in [7] that there exists a natural

non-ultralocal Poisson structure on these models which, after regularization, does admit

an integrable lattice discretization of the general form identified in [36, 37]. We shall refer

to this special form of non-ultralocality as being mild. Our generalization of the Faddeev-

– 2 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
9

Reshetikhin modification of the Poisson bracket will therefore be to replace the original

non-ultralocal Poisson structure by this milder non-ultralocal one.

The second task of determining the corresponding Hamiltonian is a dynamical one.

Just as for the SU(2) principal chiral model [6], it turns out that the modified Poisson

brackets are degenerate. Since the corresponding set of Casimirs will necessarily remain

constant in time, this means that we can only reproduce a reduction of the original dynam-

ics. Quite remarkably, the specific form of the Casimirs of the modified Poisson brackets

leads naturally to performing a Pohlmeyer reduction [8] of the symmetric space σ-model. In

other words, the equations of motion that we shall be able to reproduce using the modified

Poisson brackets are precisely those of the Pohlmeyer reduction of the original σ-model. In

fact more is true. Recall that the equations of motion obtained by this reduction identify

with those of a symmetric space sine-Gordon theory [9–16], the Lagrangian formulation

of which corresponds to a gauged Wess-Zumino-Witten model with an integrable poten-

tial [17] (see also [18, 19]). An important result of the present work is that the canonical

Poisson brackets associated with this latter model [20] precisely coincide with the alleviated

non-ultralocal Poisson brackets of the coset σ-model. In particular, this shows indirectly

that the non-ultralocality of gauged WZW models with an integrable potential is mild.

The plan of this article is as follows. After a short reminder of the problem of non-

ultralocality and its formulation within the R-matrix approach [21–24], in section 2 we

recast the initial step of the Faddeev-Reshetikhin procedure in a general algebraic frame-

work that enables a systematic and practical determination of the new Poisson brackets.

This is achieved by first generalizing the Faddeev-Reshetikhin Poisson brackets to the prin-

cipal chiral model on a generic Lie group before extending these ideas to symmetric space

σ-models. In particular, we show in both cases that these modified Poisson brackets are

compatible with the original ones.

In section 3, we discuss the dynamics of the coset σ-model with respect to the new

Poisson brackets. We show that fixing the values of all the Casimirs of these degenerate

brackets amounts to doing a Pohlmeyer reduction of the σ-model. As usual, the reduced

field equations have separate left and right gauge invariances which have to be partially

fixed to the diagonal gauge invariance before the model can be described in the Hamiltonian

framework. The resulting dynamics and Poisson brackets of the reduced fields are those of

a gauged WZW model with a potential term. Finally, we also write down the Lax matrix

of the reduced model.

Section 4 is devoted to the first step towards discretization. Following [7], we give an

integrable lattice discretization of the Poisson brackets as in [36, 37]. The construction

uses an arbitrary solution of the modified Yang Baxter equation on a finite dimensional

Lie algebra. The Poisson bracket of the Lax matrix on the lattice are given, from which we

deduce the regularized Poisson bracket of the monodromy matrix. Taking the continuum

limit we then find that the former bracket correctly reproduces the Poisson bracket of the

Lax matrix of the continuum theory.

Finally, some comments, a conclusion and some outlooks are gathered in section 5.

For general notations we refer the reader to the appendix.
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2 Generalizing the Faddeev-Reshetikhin bracket

2.1 Setup of the procedure

2.1.1 Problem with non-ultralocality

To begin with let us briefly recall what is meant by non-ultralocality in classical integrable

field theory and why this property leads to a severe obstacle for quantization. Consider

a classical integrable field theory on the circle whose field content is specified by a Lax

matrix L(σ, λ). We let σ ∈ S1 be a parameter on the circle and λ ∈ C be the so called

spectral parameter. It is well known [5] that a fairly general form of the Poisson bracket

of L(σ, λ) with itself which will guarantee complete integrability of the theory is1

{L1(σ, λ),L2(σ
′, µ)} =

[
r12(λ, µ),L1(σ, λ) + L2(σ, µ)

]
δσσ′

+
[
s12(λ, µ),L1(σ, λ)− L2(σ, µ)

]
δσσ′ + 2s12(λ, µ)δ

′
σσ′ . (2.1)

Throughout we let δσσ′ denote the Dirac δ-function and set δ′σσ′ = ∂σδσσ′ . The theory

is then said to be ultralocal if s12 = 0 and non-ultralocal otherwise. In particular, non-

ultralocal theories are characterized by the presence of the δ′σσ′ term in (2.1).

A standard approach to quantizing an integrable field theory [1–3] begins by intro-

ducing a lattice regularization to handle the UV divergences of the quantum theory. To

discretize the classical integrable field theory, we start by breaking up the circle at a finite

set of points σn ∈ S
1, n = 1, . . . , N . The lattice Lax matrix Ln(λ) is then defined to be

the parallel transporter from the site σn to the next site σn+1, namely

Ln(λ) = P←−exp

∫ σn+1

σn

L(σ, λ)dσ.

By using the Leibniz rule one can reduce the computation of the Poisson bracket between

Ln(λ) and Lm(µ) to a double integral involving the Poisson bracket (2.1). When dealing

with ultralocal theories for which s12 = 0, the substitution of (2.1) into this double integral

is unambiguous and leads to the following ultralocal lattice algebra

{Ln
1
(λ),Lm

2
(µ)} =

[
r12(λ, µ),L

n
1
(λ)Lm

2
(µ)

]
δmn, (2.2)

where δmn is the Kronecker symbol. The quantization of the lattice algebra (2.2) constitutes

the starting point for the QISM.

However, when s12 6= 0, the presence of the δ′σσ′ term in (2.1) leads to ambiguities

when evaluating the double integral, the reason being that the Poisson bracket of parallel

transporters is not well defined whenever any two of their end-points coincide [5]. As a

result, in the case of a generic non-ultralocal theory, the Ln(λ) do not have well defined

Poisson brackets.

1For later convenience we have departed from the usual convention by changing the overall sign of s12.
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2.1.2 Algebraic formulation

In order to generalize the Faddeev-Reshetikhin procedure it will be essential to isolate the

root of non-ultralocality. In view of this it is extremely useful to phrase the latter in a

somewhat abstract setting [21]. In this setting, the integrable field theories we shall be

considering are associated with a set

(̂f,L, R, ϕ), (2.3)

where f̂ is a loop algebra, the Lax matrix L is a map from S1 to f̂ and R is an R-matrix,

i.e. an element of End f̂ satisfying the modified classical Yang-Baxter equation (mCYBE)

on f̂

∀X,Y ∈ f̂, [RX,RY ]−R
(
[RX, Y ] + [X,RY ]

)
+ ω[X,Y ] = 0 (2.4)

with ω = 1. Equation (2.4) ensures (for any value of ω) that the so called R-bracket,

defined by

[X,Y ]R = [RX, Y ] + [X,RY ] (2.5)

is a Lie bracket on f̂. The last input in (2.3) is a formal Laurent series ϕ(λ) ∈ C((λ)), called

the twist, specifying an inner product on f̂. Fixing a non singular invariant inner product

〈·, ·〉 on f, the latter is defined in terms of ϕ by taking the following residue

(X,Y )ϕ = resλ=0 dλϕ(λ)〈X(λ), Y (λ)〉, (2.6)

for any X,Y ∈ f̂. This is sometimes referred to as the twisted inner product on f̂.

The Poisson brackets (2.1) of the corresponding integrable field theory can now be

expressed in terms of the data (2.3) as follows. We equip the space C∞(S1, f̂), to which L

belongs, with the following inner product and cocycle,

((X ,Y))ϕ =

∫

S1

dσ(X (σ),Y(σ))ϕ, ωϕ(X ,Y) =

∫

S1

dσ(X (σ), ∂σY(σ))ϕ. (2.7)

The Poisson bracket between any two functions f, g of the Lax matrix can then be written as

{f, g}(L) =
((
L, [Rdϕf, dϕg]+ [dϕf,R dϕg]

))
ϕ
+
(
ωϕ(Rdϕf, dϕg)+ωϕ(dϕf,R dϕg)

)
. (2.8)

The subscript ϕ on the differential is used to indicate that dϕf(L) is defined relative to the

inner product (2.7), in other words

((
X , dϕf(L)

))
ϕ
=

d

dt

∣∣∣∣
t=0

f(L+ tX ).

This Poisson bracket is merely the Kostant-Kirillov bracket on the central extension of

C∞(S1, f̂), defined by the cocycle ωϕ, associated with the R-bracket (2.5). To bring it to a

more recognizable form comparable with (2.1) we restrict attention to linear functions f, g

of L ∈ C∞(S1, f̂) and use tensor notation. Letting R∗ denote the adjoint of R with respect

to (2.6) one finds

{L1(σ),L2(σ
′)} = [R12,L1(σ)]δσσ′ − [R∗

12
,L2(σ)]δσσ′ + (R12 +R∗

12
)δ′σσ′ . (2.9)
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We refer the reader for instance to [24] for details but simply note here that the term

in δ′σσ′ comes precisely from the cocycle ωϕ. The Poisson bracket (2.9) is then identified

with (2.1) if we define the matrices r12 and s12 to be the kernels of the skew-symmetric

and symmetric parts of R respectively,

r =
1

2
(R−R∗) and s =

1

2
(R+R∗). (2.10)

It is apparent from (2.10) that ultralocal theories correspond to the situation where the

R-matrix is skew-symmetric with respect to the inner product, i.e. R∗ = −R.

As we will see below, on an abstract level the procedure of [6] consists in keeping the

same loop algebra, Lax matrix and R-matrix but changing the inner product in such a

way that R∗ = −R with respect to the new inner product. This has the desired effect of

replacing the problematic non-ultralocal Poisson bracket of the Lax matrix of the SU(2)

principal chiral model by an ultralocal one. When expressed in terms of the dynamical

fields, this latter Poisson bracket corresponds precisely to the modified bracket of [6]. In

fact, we will show this more generally by working with the principal chiral model on a

generic Lie group. We then generalize these ideas to symmetric space σ-models.

2.2 Principal chiral model

2.2.1 Original bracket

We start by identifying the set (̂f,L, R, ϕ) in the case of the principal chiral model on a Lie

group F . The first element is simply the loop algebra f̂ = f⊗C((λ)) of formal Laurent series

with coefficients in f = Lie(F ). In terms of the usual components (j0, j1) of the current j

taking values in f, the Lax matrix of the principal chiral model is given by

L =
1

1− λ2
(j1 + λ j0). (2.11)

Next, the R-matrix is defined by choosing a pair of complementary subalgebras of f̂. In

the obvious notation we let

f̂≥0 = f⊗ CJλK, f̂<0 = f⊗ λ−1
C[λ−1],

and similarly for f̂>0 and f̂≤0. Let π≥0, π<0, π>0 and π≤0 be the projections of f̂ onto these

respective subalgebras. For later purposes let us also introduce the projection π0 onto the

constant subalgebra f ⊂ f̂. The standard R-matrix can now be defined as

R = π≥0 − π<0. (2.12)

Finally, the inner product (2.6) on f̂ is given by the following choice of twist

ϕ(λ) = 2

(
1−

1

λ2

)
. (2.13)

As a result of this twist, the R-matrix (2.12) is not skew-symmetric. Indeed, the adjoint

R∗ of R can be computed explicitly as

resλ=0 dλϕ(λ)
〈
R
(
X(λ)

)
, Y (λ)

〉
= resλ=0 dλ

〈
π≥0

(
X(λ)

)
− π<0

(
X(λ)

)
, ϕ(λ)Y (λ)

〉
,

= resλ=0 dλ
〈
X(λ), π<0

(
ϕ(λ)Y (λ)

)
− π≥0

(
ϕ(λ)Y (λ)

)〉
,

= −resλ=0 dλϕ(λ)
〈
X(λ), ϕ(λ)−1R

(
ϕ(λ)Y (λ)

)〉
,

– 6 –
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from which we deduce that

R∗ = −ϕ̃−1 ◦R ◦ ϕ̃, (2.14)

where ϕ̃ denotes the multiplication by ϕ(λ).

The expression (2.8) is very useful if one wants to derive the Poisson brackets of the

currents from those of the Lax matrix. Indeed, consider x ∈ f. Then λx is in f̂ and we have

((L,− 1

2
λx · δσ))ϕ = −

∫

S1

dσ′ δσσ′ resλ=0 dλ
ϕ(λ)

1− λ2
〈
j1(σ

′) + λj0(σ
′), 1

2
λx

〉
= 〈j1(σ), x〉.

We define then two linear functions for any x ∈ f as

j0σ,x : L 7→ ((L,− 1

2
x · δσ))ϕ = 〈j0(σ), x〉, j1σ,x : L 7→ ((L,− 1

2
λx · δσ))ϕ = 〈j1(σ), x〉. (2.15)

In particular, since these functions are linear we have

dϕj
0
σ,x = − 1

2
x · δσ and dϕj

1
σ,x = − 1

2
λx · δσ.

We can now extract the Poisson brackets of the fields j0, j1 from (2.8). For instance,

〈{j01(σ), j12(σ
′)}, x1y2〉12 = {j0σ,x, j

1
σ′,y}(L),

= 1

4

(
L, [R(x), λy] + [x,R(λy)]

)
ϕ
δσσ′

+ 1

4

((
R(x), λy

)
ϕ
+
(
x,R(λy)

)
ϕ

)
δ′σσ′

= 1

2

(
L, λ[x, y]

)
ϕ
δσσ′ + 1

2

(
x, λy

)
ϕ
δ′σσ′

= −〈j1(σ), [x, y]〉 δσσ′ − 〈x, y〉 δ′σσ′ .

The bracket {j0, j1} follows from this computation since x, y ∈ f are arbitrary. The remain-

ing brackets {j0, j0} and {j1, j1} are obtained in a similar way and altogether we recover

the Poisson brackets of the principal chiral model

{j01(σ), j02(σ
′)} = [C12, j02(σ)]δσσ′ , (2.16a)

{j01(σ), j12(σ
′)} = [C12, j12(σ)]δσσ′ − C12δ

′
σσ′ , (2.16b)

{j11(σ), j12(σ
′)} = 0. (2.16c)

2.2.2 Ultralocal bracket

The non-ultralocality of the model is a consequence of the fact that its R-matrix (2.12) is

not skew with respect to the inner product (2.6) with the twist (2.13). Indeed, R does not

commute with ϕ̃ and therefore

R∗ = −ϕ̃−1 ◦R ◦ ϕ̃ 6= −R.

However, it is also clear that R would be skew if we had used the twist function ϕ′ = 1

instead of (2.13). This corresponds to choosing the rational inner product on f̂

(X,Y )rat = resλ=0 dλ 〈X(λ), Y (λ)〉. (2.17)

– 7 –
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Therefore, a natural prescription for obtaining an ultralocal model is simply to replace the

twisted inner product (2.6) by the rational inner product (2.17) while keeping everything

else identical. In particular we don’t modify the underlying loop algebra f̂, we keep the

same Lax matrix L and we don’t even change the R-matrix!

Since the R-matrix (2.12) is skew-symmetric with respect to the inner product (2.17),

the last term in (2.8) vanishes, leaving

{f, g}′(L) = ((L, [Rd1f, d1g] + [d1f,R d1g]))rat. (2.18)

To find the resulting Poisson bracket expressed in terms of the fields j0 and j1 themselves

we must first find how to extract these from the Lax connection. The analogues of the

linear functions (2.15) in the present case read

j′0σ,x : L 7→ ((L, λ−2x · δσ))rat = 〈j0, x〉, j′1σ,x : L 7→ ((L, λ−1x · δσ))rat = 〈j1, x〉.

It is now straightforward to compute for example

〈{j01(σ), j12(σ
′)}′, x1y2〉12 = {j′0σ,x, j

′1
σ′,y}

′(L) = −2〈j1(σ), [x, y]〉 δσσ′ .

The other brackets between the fields can be computed similarly and the result reads

{j01(σ), j02(σ
′)}′ = 2[C12, j02(σ)] δσσ′ , (2.19a)

{j01(σ), j12(σ
′)}′ = 2[C12, j12(σ)] δσσ′ , (2.19b)

{j11(σ), j12(σ
′)}′ = 2[C12, j02(σ)] δσσ′ . (2.19c)

Up to an irrelevant overall factor of 2, this is exactly the modified Poisson structure of

Faddeev-Reshetikhin introduced in [6] in the context of the SU(2) principal chiral model.

Here we have rederived the same brackets for an arbitrary Lie group F by following the

simple prescription

(̂f,L, R, ϕ) −→ (̂f,L, R, 1). (2.20)

2.3 Symmetric space σ-model

2.3.1 Original bracket

The phase-space of a Z2-graded coset σ-model is parametrized by the two gradings of the

field A = A(0) +A(1) and its canonically conjugate momentum P = P (0) +P (1), where the

gradings of the Lie algebra Lie(F ) = f = f(0) ⊕ f(1) are defined as the eigenspaces of an

involution σ : f→ f with σ2 = id. The Lax matrix of the model reads [25]

L = A(0) + 1

2
(λ−1 + λ)A(1) + 1

2
(1− λ2)Π(0) + 1

2
(λ−1 − λ)Π(1), (2.21)

where Π = ∂σP − [A,P ]. To describe the algebraic structure of the model we introduce the

twisted loop algebra f̂σ. This is the subalgebra of the loop algebra f̂ consisting of elements

X(λ) which are invariant under the automorphism σ̂(X)(λ) = σ[X(−λ)]. Concretely,

we have2

f̂σ =
⊕

n

f(n) · λn.

2The number of terms with n negative is arbitrary but finite. Also, in this formula and in the rest of

this article, an integer between parenthesis is only considered modulo 2. Thus, (n) is (0) or (1), depending

on the parity of n.

– 8 –
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We denote by f̂σ<0 = f̂<0 ∩ f̂σ the subalgebra of f̂σ for which the direct sum is restricted to

n < 0, and similarly for f̂σ≤0, f̂
σ
>0, f̂

σ
≥0. By abuse of notation we shall denote the restriction

of the respective projections π<0, π≤0, π>0 and π≥0 to f̂σ by the same symbol. The twisted

loop algebra inherits the decomposition f̂σ = f̂σ<0 ∔ f̂σ≥0 from f̂ so that we may use the

R-matrix as in (2.12). We also endow f̂σ with a twisted inner product [26]

(X,Y )ϕ = resλ=0
dλ

λ
φ(λ) 〈X(λ), Y (λ)〉, φ(λ) =

4λ2

(1− λ2)2
.

Notice that we have extracted an explicit factor of λ−1 from the twist function ϕ(λ) =

λ−1φ(λ) so that the remaining twist φ(λ) is invariant under λ 7→ −λ.

To extract the Poisson brackets of the fundamental fields A(i) and Π(i) from (2.8) in

this case we consider the following linear functionals

a(1)σ,x : L 7→ ((L, 1
4
(λ−3 − λ−1)x(1) · δσ))ϕ = 〈A(1)(σ), x(1)〉,

π(1)σ,x : L 7→ ((L, 1
4
(3λ−1 − λ−3)x(1) · δσ))ϕ = 〈Π(1)(σ), x(1)〉,

a(0)σ,x : L 7→ ((L, 1
4
(λ−4 − λ−2)x(0) · δσ))ϕ = 〈A(0)(σ), x(0)〉,

π(0)σ,x : L 7→ ((L, 1
2
(2λ−2 − λ−4)x(0) · δσ))ϕ = 〈Π(0)(σ), x(0)〉.

In terms of these we can compute for instance,

〈{A
(0)
1

(σ),Π
(0)
2

(σ′)}, x
(0)
1
y
(0)
2
〉12 = {a(0)σ,x, π

(0)
σ′,y}(L)

= −〈A(0)(σ), [x(0), y(0)]〉 δσσ′ − 〈x(0), y(0)〉 δ′σσ′ .

Performing similar calculations, altogether we find exactly the Poisson brackets of the

symmetric space σ-model, namely

{A
(i)
1
(σ), A

(j)
2

(σ′)} = 0, (2.22a)

{A
(i)
1
(σ),Π

(j)
2

(σ′)} = [C
(ii)
12
, A

(i+j)
2

(σ)] δσσ′ − δij C
(ii)
12
δ′σσ′ , (2.22b)

{Π
(i)
1
(σ),Π

(j)
2

(σ′)} = [C
(ii)
12
,Π

(i+j)
2

(σ)] δσσ′ . (2.22c)

2.3.2 Mildly non-ultralocal bracket

Guided by our algebraic reformulation in (2.20) of the Faddeev-Reshetikhin modification

of the Poisson bracket, we would like to obtain a similar prescription in the case at hand

for symmetric space σ-model.

Since the R-matrix of the model is of the same form as in the principal chiral model

case, naively one might try to replace the twisted inner product by the rational inner

product also in the present case. However, the latter vanishes identically on f̂σ. Indeed,

the quantity 〈X(λ)Y (λ)〉 in (2.17) is a function of λ2 and therefore has vanishing residue.

We are thus forced to use the simplest non-degenerate inner product on f̂σ, which is the

trigonometric one,

(X,Y )trig = resλ=0 dλλ
−1〈X(λ), Y (λ)〉. (2.23)
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This corresponds to the choice of twist function ϕ′(λ) = λ−1. So our prescription for

modifying the Poisson bracket is simply

(̂fσ,L, R, λ−1φ) −→ (̂fσ,L, R, λ−1).

In particular, we keep the same R-matrix which isn’t skew-symmetric with respect to the

trigonometric inner product. Therefore the new Poisson bracket is still non-ultralocal! This

is in sharp contrast with the Faddeev-Reshetikhin prescription for principal chiral models.

However, as we will explain in section 4, it turns out that although the new bracket is

still non-ultralocal, it is not plagued with the same problems as the original non-ultralocal

bracket. In particular, this better behaved non-ultralocal Poisson structure admits a lattice

discretization. We refer to this special type of non-ultralocality as being mild, to be defined

more precisely in section 4. This observation leads to a natural generalization of the

Faddeev-Reshetikhin procedure.

To extract the Poisson brackets of the fields A(i) and Π(i) we proceed as usual and

consider the linear functionals

a′(1)σ,x : L 7→ ((L, (λ+ λ−1)x(1) · δσ))trig = 〈A(1)(σ), x(1)〉,

π′(1)σ,x : L 7→ ((L, (λ− λ−1)x(1) · δσ))trig = 〈Π(1)(σ), x(1)〉,

a′(0)σ,x : L 7→ ((L, (1 + λ−2)x(0) · δσ))trig = 〈A(0)(σ), x(0)〉,

π′(0)σ,x : L 7→ ((L,−2λ−2x(0) · δσ))trig = 〈Π(0)(σ), x(0)〉.

Using these expressions we can explicitly compute the Poisson brackets between the various

fields A(i) and Π(i). For instance,

〈{A
(0)
1

(σ), A
(0)
2

(σ′)}′, x
(0)
1
y
(0)
2
〉12 = {a′(0)σ,x , a

′(0)
σ′,y}

′(L)

= 〈2A(0)(σ) + Π(0)(σ), [x(0), y(0)]〉 δσσ′ + 2〈x(0), y(0)〉 δ′σσ′ .

Similarly all the other Poisson brackets can be computed. The final result for all the

brackets reads

{A
(0)
1

(σ), A
(0)
2

(σ′)}′ = −[C
(00)
12

, 2A
(0)
2

(σ) + Π
(0)
2

(σ)]δσσ′ + 2C
(00)
12

δ′σσ′ , (2.24a)

{A
(0)
1

(σ), A
(1)
2

(σ′)}′ = −[C
(00)
12

, A
(1)
2

(σ) + Π
(1)
2

(σ)]δσσ′ , (2.24b)

{A
(0)
1

(σ),Π
(0)
2

(σ′)}′ = 0, (2.24c)

{A
(0)
1

(σ),Π
(1)
2

(σ′)}′ = −[C
(00)
12

, A
(1)
2

(σ) + Π
(1)
2

(σ)]δσσ′ , (2.24d)

{A
(1)
1

(σ), A
(1)
2

(σ′)}′ = −[C
(11)
12

,Π
(0)
2

(σ)]δσσ′ , (2.24e)

{A
(1)
1

(σ),Π
(0)
2

(σ′)}′ = 0, (2.24f)

{A
(1)
1

(σ),Π
(1)
2

(σ′)}′ = [C
(11)
12

,Π
(0)
2

(σ)]δσσ′ , (2.24g)

{Π
(0)
1

(σ),Π
(0)
2

(σ′)}′ = 0, (2.24h)

{Π
(0)
1

(σ),Π
(1)
2

(σ′)}′ = 0, (2.24i)

{Π
(1)
1

(σ),Π
(1)
2

(σ′)}′ = −[C
(11)
12

,Π
(0)
2

(σ)] δσσ′ . (2.24j)

Note that only the Poisson bracket of the field A(0) with itself is non-ultralocal.
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2.4 Compatibility of the Poisson brackets

It turns out that for both the principal chiral model and symmetric space σ-model consid-

ered above, the new Poisson bracket {·, ·}′ is compatible with the original one {·, ·}, in the

sense that any linear combination u {·, ·}′ + v {·, ·} is also a Poisson bracket.

To explain the origin of this property, we restrict ourselves to the case of the principal

chiral model. We have shown that the original Poisson bracket is associated with the data

(̂f,L, R, ϕ), with ϕ given by (2.13), through the formula (2.8). However, an equivalent

set of data producing the same bracket through (2.8) is (̂f,L, R ◦ ϕ̃−1, 1). Indeed, the

Poisson bracket (2.8) can be rewritten purely in terms of the rational inner product and

corresponding cocycle provided we use the twisted R-matrix Rϕ−1 = R ◦ ϕ̃−1 instead of R.

Note that Rϕ−1 also satisfies the mCYBE (2.4) but with ω = ϕ−2. Explicitly we have

{f, g}(L) =
(
(L, [Rϕ−1d1f, d1g] + [d1f,Rϕ−1d1g])

)
rat

+
(
ωrat(Rϕ−1d1f, d1g) + ωrat(d1f,Rϕ−1d1g)

)
.

Comparing the Poisson bracket of the principal chiral model in this form to the Faddeev-

Reshetikhin one given by (2.18), we see that the Faddeev-Reshetikhin procedure (2.20)

equivalently reads

(̂f,L, Rϕ−1 , 1) −→ (̂f,L, R, 1).

Now it is well known [27] that given an R-matrix R, for any q ∈ C((λ)) the R-bracket

associated with R and R ◦ q̃ are compatible. Therefore, taking q = ϕ−1 in the present case

we conclude that the Poisson brackets (2.8) and (2.18) are compatible.

Likewise, in the case of a symmetric space σ-model, the generalized Faddeev-

Reshetikhin procedure can be understood as

(̂fσ,L, R, λ−1φ) ∼ (̂fσ,L, Rφ−1 , λ−1) −→ (̂fσ,L, R, λ−1).

Note that in the case of a twisted loop algebra such as f̂σ, the conclusion about compatibility

of the R-brackets associated with R and R ◦ q̃ remains valid provided we use a q ∈ C((λ))

such that q(λ) = q(−λ). In particular we may take q = φ−1, from which the desired

compatibility follows.

3 Dynamics and Hamiltonian

Having made the choice of the Poisson bracket (2.24), and following the method used by

Faddeev and Reshetikhin as given in [6], we now study the dynamics of the symmetric

space σ-model on F/G where G is the Lie group corresponding to g = f(0) and determine

which reduction of the field equations may be obtained in a Hamiltonian framework.

3.1 Original dynamics and gauge invariance

Let us start by recalling the expression for the Hamiltonian of the F/G coset σ-model. The

theory is conformally invariant at the classical level and the components of the stress-energy
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tensor are3

T±± = − 1

4
Tr

(
A

(1)
± A

(1)
±

)

where A
(1)
± = Π(1) ∓A(1). In terms of these the Hamiltonian reads

H =

∫
dσ

(
T++ + T−− +Tr

(
A(0)Π(0)

)
+Tr

(
ℓΠ(0)

))
.

The field Π(0) is the constraint associated with the coset gauge invariance. Its Lagrange

multiplier ℓ takes values in g. The term Tr
(
A(0)Π(0)

)
has been taken into account in order to

be consistent with the analysis of [25] on the Hamiltonian Lax connection. By construction,

the constraint Π(0) is preserved by the dynamics generated by the Hamiltonian H. The

equations of motion for the other variables (A(0), A
(1)
± ) are, up to terms proportional to the

constraint Π(0),

∂−A
(0) = − 1

2
[A

(1)
+ , A

(1)
− ] + ∂σℓ+ [ℓ, A(0)], (3.1a)

∂−A
(1)
+ = [ℓ, A

(1)
+ ], (3.1b)

∂+A
(1)
− = −[A

(1)
− , 2A(0) + ℓ] (3.1c)

where ∂± = ∂τ ± ∂σ. The fact that the dynamics depends on the arbitrary function ℓ

of σ and τ is a reflection of the gauge invariance generated by the constraint Π(0). The

corresponding gauge transformation of the fields reads

δA(0) = [αR, A
(0)] + ∂σαR,

δA
(1)
± = [αR, A

(1)
± ],

δℓ = ∂−αR + [αR, ℓ]

(3.2)

with αR a function taking values in g. The index R is used to emphasize that we are

considering a right coset F/G. Note that a direct consequence of the equations of motion

is that

∂∓Tr
[(
A

(1)
±

)n]
= 0. (3.3)

3.2 Casimirs of the new Poisson bracket and Pohlmeyer reduction

Before attempting to reproduce the above dynamics in terms of the modified Poisson

bracket (2.24), we first need to identify the Casimirs of the latter. Indeed, since these

quantities will necessarily remain constant in time with respect to (2.24), we shall only

be able to reproduce a reduction of the original dynamics where the same quantities have

been set to constants.

The field Π(0) is an obvious Casimir of (2.24). Since it is a constraint of the symmetric

space σ-model, it is natural to set the value of this Casimir to zero. Next, we have

{A
(0)
1

(σ), A
(1)
−2

(σ′)}′ = −2[C
(00)
12

, A
(1)
−2

(σ)]δσσ′ , {A
(1)
1

(σ), A
(1)
−2

(σ′)}′ = 0,

{Π
(0)
1

(σ), A
(1)
−2

(σ′)}′ = 0, {Π
(1)
1

(σ), A
(1)
−2

(σ′)}′ = 0.

3We have taken the relation between the inner product and the trace of the product in some represen-

tation to be 〈A,B〉 = −Tr(AB). This leads to a positive inner product when F is compact.
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This implies that the quantities Tr
[(
A

(1)
−

)n]
are also Casimirs of this Poisson bracket. The

existence of these other Casimirs is the first sign that one will have to perform a Pohlmeyer

reduction of the coset σ-model. Equation (3.3) shows that the densities Tr
[(
A

(1)
−

)n]
are

chiral in the original model and may therefore be set to constants. However, in order

to do this reduction in a consistent manner, one must take into consideration the fact

that these quantities are not all independent (see for instance [28, 29]). We follow the

references [18, 19]. The number of independent quantities corresponds to the rank of F/G,

which is defined to be the dimension of the maximal abelian subspaces of f(1). For instance,

in the case of Sn or AdSn this dimension is one. This is however not the end of the story

as there is a further simplification. Indeed, when Π(0) = 0, the only non-vanishing Poisson

brackets in (2.24) are

{A
(0)
1

(σ), A
(0)
2

(σ′)}′ = −2[C
(00)
12

, A
(0)
2

(σ)]δσσ′ + 2C
(00)
12

δ′σσ′ , (3.4a)

{A
(0)
1

(σ), A
(1)
−2

(σ′)}′ = −2[C
(00)
12

, A
(1)
−2

(σ)]δσσ. (3.4b)

This implies, in particular, that A
(1)
+ is yet another Casimir. At this stage it is clear that

we face exactly the same situation as in the Pohlmeyer reduction. We shall therefore fix

the value of each Casimir to coincide with the value of the same quantity in the Pohlmeyer

reduced coset σ-model.

Let a be a maximal abelian subspace of f(1). We fix the value of the Casimir A
(1)
+

by setting

A
(1)
+ = µ+T+, (3.5)

where T+ ∈ a and µ+ ∈ R are constant.4 Within the scheme of the Pohlmeyer reduction,

condition (3.5) is the result of two separate steps (see for instance [18, 19]). The first one

corresponds to imposing the partial gauge fixing condition A
(1)
+ (σ, τ) = µ+(σ, τ)T+. The

fact that this is a valid partial gauge fixing condition follows from the polar decomposition

theorem.5 The second step consists in fixing the on-shell chiral function µ+(σ, τ) to a

constant using a holomorphic conformal transformation, which corresponds to a partial

reduction of conformal symmetry.

The adjoint action AdT+ of the element T+ ∈ a defines a decomposition of f. We shall

denote it as f = f[0] ⊕ f[1] where

f[0] = Ker
(
AdT+

)
and f[1] = Im

(
AdT+

)
,

which satisfy [f[0], f[0]] ⊂ f[0] and [f[0], f[1]] ⊂ f[1]. We define hR = g[0] and let HR ⊂ G be the

corresponding Lie subgroup which consists of elements commuting with T+. For instance,

in the case of Sn = SO(n + 1)/SO(n) we have HR ≃ SO(n − 1). We immediately see

from (3.1b) that the stability of condition (3.5) under time evolution requires [T+, ℓ] = 0,

i.e. ℓ ∈ hR or equivalently ℓ = ℓ[0]. Likewise, it then follows from (3.2) that the residual

gauge transformations preserving (3.5) are such that αR ∈ hR.

4In the case of AdSn, it is possible to choose a T+ that would correspond to the vanishing of the

components T++ of the stress-energy tensor. We do not consider this case here.
5The polar decomposition theorem is only valid when the group G is compact. An extension of this

theorem to the case of anti-de Sitter spaces may be found for instance in [19].
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Next, we pick another element T− ∈ a. As for T+, this element defines its own de-

composition of f along with a Lie algebra hL = g ∩ Ker(AdT−
) and its corresponding Lie

subgroup HL ⊂ G of elements commuting with T−. Sticking to our general strategy we

have to fix the values of all the Casimirs Tr
[(
A

(1)
−

)n]
. Introducing a new field g taking value

in G through the use of the polar decomposition theorem, this may be done by setting

A
(1)
− = µ−g

−1T−g. (3.6)

From the point of view taken in this article, the fact that A
(1)
− is related by the ad-

joint action of g to a constant matrix µ−T− comes from the necessity to fix the Casimirs

Tr
[(
A

(1)
−

)n]
. From the point of view of the Pohlmeyer reduction, the equation (3.6) is

reached by using conformal invariance, or an extension of conformal invariance in the case

where the dimension of a is bigger than 1. In both cases, however, consistency of (3.6)

with the dynamics is ensured by the fact that the Casimirs Tr
[(
A

(1)
−

)n]
are chiral densities.

However, g is clearly not uniquely defined by (3.6). Indeed, the transformation

g → hL g, (3.7)

where hL is a HL-valued function, leads to the same A
(1)
− .

In the following we shall restrict to the case where there exists an automorphism ι of

the algebra f which relates T− and T+ as T+ = ι(T−), and with the following properties

ι(f(i)) ⊂ f(i), i = 0, 1 and Tr (ι(M)ι(N)) = Tr (MN) , M,N ∈ f. (3.8)

In particular, the automorphism ι relates the right algebra hR with the left algebra hL,

hR = ι(hL).

3.3 Lifting to G

3.3.1 Poisson brackets

At this point the phase space is parametrized by g and A(0) taking values in G and g

respectively. We therefore need to lift the Poisson brackets (3.4) to the pair of fields

(A(0), g). To avoid clutter, in the rest of this section we suppress superscripts corresponding

to the Z2-grading, i.e. we write A ≡ A(0), A− ≡ A
(1)
− and

{A−1(σ), A−2(σ
′))}′ = 0, (3.9a)

{A−1(σ), A2(σ
′)}′ = 2[C

(00)
12

, A−1(σ)]δσσ′ . (3.9b)

The first Poisson bracket (3.9a) is clearly satisfied if we let {g(σ), g(σ′)}′ = 0. Consider

now the second Poisson bracket (3.9b). Using the relation, following from (3.6),

{A−1(σ), A2(σ
′)}′ =

[
A−1(σ), g1(σ)

−1{g1(σ), A2(σ
′)}′

]
, (3.10)

we observe that (3.9b) is satisfied if we introduce the following Poisson bracket

{g1(σ), A2(σ
′)}′ = −2g1(σ)C

(00)
12

δσσ′ .
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The complete set of Poisson brackets between the fields g and A therefore reads

{g1(σ), g2(σ
′)}′ = 0, (3.11a)

{g1(σ), A2(σ
′)}′ = −2g1(σ)C

(00)
12

δσσ′ , (3.11b)

{A1(σ), A2(σ
′)}′ = −2[C

(00)
12

, A2(σ)]δσσ′ + 2C
(00)
12

δ′σσ′ . (3.11c)

This is precisely the canonical Poisson brackets of the WZW model with group G

(see e.g. [20]).

3.3.2 Reduced original dynamics

The equations (3.1a) and (3.1c) that remain after imposing (3.5) and (3.6) are

∂−A
[0] = ∂σℓ+

[
ℓ, A[0]

]
, (3.12a)

∂−A
[1] = − 1

2
µ+µ−

[
T+, g

−1T−g
]
+

[
ℓ, A[1]

]
, (3.12b)

∂+A− = −
[
A−, 2A+ ℓ

]
. (3.12c)

Here we have extracted the components of (3.1a) along f[0] and f[1] using the properties of

these spaces and the fact that ℓ ∈ hR. These equations of motion are invariant under the

infinitesimal gauge transformations

δA[0] = [αR, A
[0]] + ∂σαR, (3.13a)

δA[1] = [αR, A
[1]], (3.13b)

δℓ = ∂−αR + [αR, ℓ], (3.13c)

δg = αLg − gαR =⇒ δA− = [αR, A−] (3.13d)

where the functions αR and αL take values in hR and hL respectively. Next, we lift the

equation of motion (3.12c) to an equation of motion for g. Using the property ∂+A− =

[A−, g
−1∂+g], we find [

T−, ∂+gg
−1 + g

(
2A+ ℓ

)
g−1

]
= 0.

This shows that the equation of motion for g is

∂+gg
−1 + g

(
2A+ ℓ

)
g−1 = ℓ̃, (3.14)

where ℓ̃ is an arbitrary function taking value in the subalgebra hL ⊂ g. Its presence

reflects the appearance of the left gauge invariance (3.7) upon introducing the phase space

field g to replace A−. The equation (3.14) is invariant under the complete set of gauge

transformations (3.13) provided that the function ℓ̃ transforms as

δℓ̃ = ∂+αL + [αL, ℓ̃]. (3.15)

In other words, ℓ̃ behaves as a gauge field for the gauge invariance under the left group

HL. For later use, let us write down the expression of A coming from equation (3.14)

A = 1

2

(
g−1ℓ̃g − g−1∂+g − ℓ

)
. (3.16)

We shall need, in particular, the projection of this equation to hR

A[0] = 1

2

(
−ℓ+ (g−1ℓ̃g − g−1∂+g)

[0]
)
. (3.17)

– 15 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
9

3.3.3 Gauge invariances and anomalies

We are now ready to look for a functional which generates the infinitesimal gauge trans-

formations (3.13) on the phase space fields g and A in terms of the Poisson bracket (3.11).

This is easily found to be

1

2

∫
dσTr

(
αLJ −AαR

)
(3.18)

where the current J is defined by

J = ∂σgg
−1 + gAg−1. (3.19)

Indeed, a simple computation leads to the following Poisson brackets

{J1(σ), g2(σ
′)}′ = 2C

(00)
12

g2(σ)δσσ′ ,

{J1(σ), A2(σ
′)}′ = 0.

The second equation means that gauge transformations with parameter αL do not act on

the field A, as it should be, but only generate a left multiplication on g. Furthermore, the

current J satisfies

{J1(σ), J2(σ
′)}′ = 2[C

(00)
12

, J2(σ)]δσσ′ − 2C
(00)
12

δ′σσ′ . (3.20)

At this stage we have field equations which possess a gauge invariance with gauge group

HL×HR, the infinitesimal gauge transformations of which are respectively generated by the

field J restricted to hL and the field A restricted to hR. However, neither of these generators

have first class Poisson brackets, as is apparent from (3.20) and (3.11c). This is just a

reflection of the well-known fact that left and right isometries of the Wess-Zumino-Witten

model cannot be freely gauged [30]. However, we also know that a diagonal subgroup of

left and right isometries may be gauged. In our case, we indeed find that the combination

ι(J) − A of the left and right generators has first class Poisson brackets. Using (3.20)

and (3.11c) along with the properties (3.8) of the automorphism ι, we get

{ι(J1(σ))−A1(σ), ι(J2(σ
′))−A2(σ

′)}′ = 2
[
C

(00)
12

, ι(J2(σ))−A2(σ)
]
δσσ′ . (3.21)

Before looking for a Hamiltonian formulation of the field equations (3.12a), (3.12b)

and (3.14), we will thus be led to partially fix the gauge invariance. In this process we shall

need the following expression for the part of ι(J) lying in hR, which is easily established

using the field equation (3.14) and the definition (3.19),

ι(J)[0] = 1

2

(
ι(ℓ̃)− ι(gℓg−1 − ∂−gg

−1)[0]
)
. (3.22)

3.4 New Hamiltonian

3.4.1 Partial gauge fixing on equations of motion

A short calculation shows that the field J transforms under the gauge transforma-

tions (3.13) as

δJ = ∂σαL + [αL, J ]. (3.23)
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We are going to fix the part of the gauge invariance characterized by the relation

ι(αL) = −αR. Under such gauge transformations, using (3.13a) and (3.23), we find

the transformation

δ(ι(J)−A) = −2∂σαR − [αR, (ι(J) +A)]

We take as partial gauge condition

(ι(J)−A)[0] = 0. (3.24)

This leaves a gauge invariance where the left and right transformations are now related by

ι(αL) = αR.

Let us note that the equation (3.24) comes out as a partial gauge fixing condition in our

study of the field equations, and that it will also play the role of a constraint generating

the remaining gauge invariance in the Hamiltonian framework that will soon be described.

The last step before determining the Hamiltonian is to work out the consequences of the

constraint (3.24). Starting from the definition (3.19) of J and using the equations of

motion (3.12a), (3.12b) and (3.14) for A and g we derive the equation of motion for J to be

∂+J = ∂σ ℓ̃+
[
ℓ̃, J

]
− 1

2
µ+µ−

[
gT+g

−1, T−
]
.

Combining this with the equation of motion (3.12a) for A[0], we find that the con-

straint (3.24) is preserved by the dynamics if

ι(ℓ̃) = ℓ+ 2ι(J)[0]. (3.25)

Using the equations (3.17) and (3.22), the gauge constraint (3.24) and its dynamical con-

sequence (3.25) may equivalently be written as the set of two equations

ℓ = ι
(
gℓg−1 + ∂−gg

−1
)[0]

, (3.26a)

ι(ℓ̃) =
(
g−1ℓ̃g − g−1∂+g

)[0]
. (3.26b)

Finally, using the expression (3.16) for the field A enables us to rewrite the second order

field equations (3.12a) and (3.12b) as

[
∂− − ℓ, ∂+ + g−1∂+g − g

−1ℓ̃g
]
= µ+µ−

[
T+, g

−1T−g
]
. (3.26c)

The equations of motion (3.26) coincide with the equations of motion of a G/H gauged

WZW model with a potential, where the asymmetric coset G/H is defined as

G/H = G/
[
g ∼ hLgι(h

−1
L ) | hL ∈ HL

]
.

Making the comparison for instance with [19], we see agreement with equations (3.40)-

(3.41) there provided we identify the variables A± there as A+ = −ℓ̃ and A− = −ℓ.
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3.4.2 Hamiltonian

At last we are ready to describe the above dynamics on the phase space parametrized by

the fields A and g with respect to the Poisson bracket (3.11), taking into account the first

class constraint (3.24). It is easy to check that the Hamiltonian is given by

H ′=

∫
dσTr

(
− 1

4
ι(J)[1]ι(J)[1] − 1

4
A[1]A[1] + 1

2

(
ℓ+A[0]

)(
ι(J)[0] −A[0]

)
+ 1

4
µ+µ−g

−1T−gT+
)
.

(3.27)

Indeed, its Poisson brackets with g and A are, up to terms proportional to the con-

straint (3.24),

{H ′, g}′ = ℓ̃g − gℓ− Jg − gA, (3.28a)

{H ′, A}′ = ∂σA+ ∂σℓ+ [ℓ, A]− 1

2
µ+µ−[T+, g

−1T−g]. (3.28b)

Here we have introduced ℓ̃ through the equation ι(ℓ̃) = ℓ+2A[0] which is equivalent to (3.25)

and made use of the properties (3.8) of the automorphism ι. The first equation gives the

Hamiltonian form of (3.14) after substituting the definition (3.19) of J , and the second

equation is equivalent to the Hamiltonian form of (3.12a) and (3.12b). Let us finally note

that the Hamiltonian (3.27) is consistent with the result (3.23) of [20].

3.4.3 Lax pair

Recall from section 2 that by definition the generalized Faddeev-Reshetikhin model has the

same Lax matrix L(λ) as the original theory. In its expression (2.21) for coset σ-models,

we can of course replace the Casimirs Π(0), A
(1)
+ by their chosen values and A

(1)
− by its

expression (3.6) through which g is defined. This has no effect on the Poisson bracket of

L(λ), which is therefore of the form (2.1) with r12 and s12 given explicitly later in (4.5).

Thus, we have6

L(λ) = A(0) + 1

2
λ−1µ−g

−1T−g − 1

2
λµ+T+.

The expression for the temporal componentM of the Lax pair similarly reads [25]

M(λ) = A(0) + ℓ− 1

2
λ−1µ−g

−1T−g − 1

2
λµ+T+.

The zero curvature equation {H ′,L}′ = ∂σM + [M,L] is equivalent to the Hamiltonian

equations of motion (3.28).

The upshot of this section is that the field theory obtained from the F/G coset σ-model

through the generalized Faddeev-Reshetikhin procedure is nothing but the one correspond-

ing to the G/H gauged WZW action with an integrable potential. This also means that

we have automatically obtained the r/s-matrices associated with the Lax matrix of these

latter models. In particular, their non-ultralocality is mild.

Another key point is that even though we have made a reduction, the Poisson brack-

ets (3.11) on the reduced phase space is still perfectly local. The reason being that the

reduction conditions of section 3.2 are Casimirs of the Poisson brackets (2.24). This is

6Here we restore the superscript notation corresponding to the grading f = f(0) ⊕ f(1).

– 18 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
9

in sharp contrast with the result of applying a similar reduction to the canonical Poisson

brackets (2.22) of the σ-model, where the corresponding Poisson brackets on the reduced

phase space turn out non-local. For the S2 σ-model this has been worked out in [31] and

references therein. In the case of string theory on AdS5 × S
5, this was first studied in [32]

and then in more detail in [33, 34].

4 Towards a lattice discretization

We have seen in the previous sections that a Faddeev-Reshetikhin type model could also

be defined for coset σ-models. The important novelty in this case, however, is that the

modified bracket (2.24) is also non-ultralocal. At first glance it might therefore seem that

this new Poisson bracket is of no improvement compared to the original one. Indeed,

the motivation for attempting to generalize the Faddeev-Reshetikhin approach to the case

at hand was to try and do away with the problematic non-ultralocal terms occurring in

the original brackets of the coset σ-model. Yet as we will show in the present section

following [7], the non-ultralocality of the new bracket (2.24) is mild compared to that of

the original Poisson bracket of the coset σ-model. In fact, quite remarkably, it turns out

that with this milder form of non-ultralocality one is able to write down a corresponding

well defined regularized lattice Poisson algebra which reduces to the non-ultralocal bracket

of the Lax matrix in the continuum limit.

4.1 Generalized Gauss decomposition

As can be inferred from the form of the Poisson bracket (2.8) between functions of the Lax

matrix, the non-ultralocality of our model stems from the fact that its R-matrix, defined

as in (2.12), is not skew-symmetric with respect to the inner product at hand (2.23).

Nevertheless, the crucial property which will ultimately enable us to discretize the Poisson

bracket of Lax matrices corresponding to (2.24) is that the R-matrix only fails to be

skew-symmetric on a finite-dimensional subalgebra of the full twisted loop algebra f̂σ [7].

Specifically, the symmetric part of the R-matrix is a projection onto this subalgebra. In

this case we say that the non-ultralocality of the resulting model is mild.

In order to describe the skew-symmetric and symmetric parts of R with respect

to (2.23), consider the following generalized Gauss decomposition

f̂σ = f̂σ<0 ∔ g∔ f̂σ>0. (4.1)

Recall the definitions of the projections π<0, π0 and π>0 from section 2. In terms of these,

we may write the R-matrix (2.12) as R = π>0 + π0 − π<0 while its skew-symmetric and

symmetric parts respectively read

r = 1

2
(R−R∗) = π>0 − π<0, s = 1

2
(R+R∗) = π0. (4.2)

To see this, remember that the adjoint of the R-matrix with respect to the inner prod-

uct (2.23) is

R∗ = −λ̃ ◦R ◦ λ̃−1. (4.3)
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Now the subspaces f̂σ<0, g and f̂σ>0 respectively satisfy

λ−1̂fσ<0 ⊂ f̂<0, λ−1g ⊂ f̂<0, λ−1̂fσ>0 ⊂ f̂≥0.

Then decomposing any X ∈ f̂σ as X = X<0 +X0 +X>0 according to (4.1) we have

R(λ−1X>0) = π≥0(λ
−1X>0) = λ−1X>0 = λ−1π>0(X>0) = λ−1R(X>0),

R(λ−1X0) = −π<0(λ
−1X0) = −λ−1X0 = −λ−1π0(X0) = −λ−1R(X0),

R(λ−1X<0) = −π<0(λ
−1X<0) = −λ

−1X<0 = −λ
−1π<0(X<0) = λ−1R(X<0).

Now combining this result with (4.3) we see that the restriction of R to the subspace

f̂σ<0 ∔ f̂σ>0 is skew-symmetric whereas its restriction to g is symmetric, from which (4.2)

follows.

Now let α ∈ End g be any skew-symmetric solution of mCYBE (2.4) on g, with ω = 1.

In particular −α is also a solution. It is straightforward to check by a direct calculation

that the operators

r ± α = diag(−1,±α, 1) ∈ End f̂σ

where the diagonal decomposition is relative to (4.1), are both skew-symmetric solutions

of mCYBE on f̂σ. In other words we have

[(r ± α)X, (r ± α)Y ]− (r ± α)
(
[(r ± α)X,Y ] + [X, (r ± α)Y ]

)
+ [X,Y ] = 0, (4.4a)

for any X,Y ∈ f̂σ. It is important to stress that r itself is not a solution of mCYBE.

Furthermore one can also easily check that the matrices s±α satisfy the following relations

with r ± α,

[(s± α)X, (s± α)Y ] = (s± α)
(
[(r ± α)X,Y ] + [X, (r ± α)Y ]

)
. (4.4b)

Again we stress that if we set α = 0 these relations no longer hold.

One can write down explicit kernels for the operators r± α and s± α as follows. The

kernels for the projection operators π<0, π0 and π>0 respectively read

π<0
12

(λ, µ) =
∞∑

m=1

(µ
λ

)m

C
(mm)
12

, π0
12
(λ, µ) = C

(00)
12

, π>0
12

(λ, µ) =
∞∑

m=1

(
λ

µ

)m

C
(mm)
12

.

It then follows that the kernels of the r/s matices in (4.2) are [26]

r12(λ, µ) =
µ2 + λ2

µ2 − λ2
C

(00)
12

+
2λµ

µ2 − λ2
C

(11)
12

, s12(λ, µ) = C
(00)
12

. (4.5)

4.2 Lattice algebra

A standard way of constructing an integrable lattice discretization of a field theory on the

circle is as follows. Recall that the zero curvature equation arises as the compatibility

condition of the following auxiliary linear system

∂σψ = Lψ, ∂τψ =Mψ. (4.6)
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To discretize the spacial direction we replace the first equation by its discrete counterpart.

This means breaking up the circle at a finite set of points σn ∈ S1, n = 1, . . . , N and

considering the value of ψ only at these points by defining ψn = ψ(σn) ∈ F̂
σ, where F̂ σ is

the loop group corresponding to f̂σ. The lattice Lax matrix Ln is then defined to be the

parallel transporter from the site σn to the next site σn+1, namely

Ln = P←−exp

∫ σn+1

σn

L(σ)dσ.

The spacial discretization of the auxiliary linear system (4.6) then takes the following form

ψn+1 = L
nψn, ∂τψn =Mnψn, (4.7)

where the second equation is obtained by evaluating the last equation of (4.6) at σn. We

note here that Ln takes value in F̂ σ whereasMn still takes value in f̂σ.

An important object in the continuum theory is the so called monodromy matrix T ,

defined as the parallel transporter around the full circle. It can be recovered on the lattice

by multiplying all the lattice Lax matrices as

T = LN . . .L1. (4.8)

The importance of this object stems from the fact that its spectral invariants Tr(T p)

generate integrals of motion of the continuum theory.

Having defined the lattice Lax matrices Ln, the next step would be to determine their

pairwise Poisson brackets. Unfortunately, recall from section 2.1.1 that when dealing with

a non-ultralocal theory, the presence of δ′σσ′ terms in the Poisson algebra of the continuum

Lax matrix L(σ) prevents us from computing this directly. We therefore ask the reverse

question, namely: does there exist a Poisson bracket {Ln
1
,Lm

2
}′ satisfying all the necessary

properties? First of all, this Poisson bracket should certainly be anti-symmetric and satisfy

the Jacobi identity, i.e.

{Ln
1
,Lm

2
}′ = −{Lm

2
,Ln

1
}′ and {Lm

1
, {Ln

2
,Lp

3
}′}′ + cycl. = 0,

for m,n, p = 1, . . . , N . Secondly, after requiring the Leibniz rule to hold, the resulting

Poisson bracket of the monodromy matrix T should be such that the integrals of motion

are in involution. This means that

{Tr(T p),Tr(T q)}′ = 0, (4.9)

for any positive integers p and q. The general quadratic Poisson algebra satisfying these

requirements has been identified in [36, 37]. However, the Poisson bracket between Ln

and Lm should also reduce to the original Poisson algebra (2.1) in the continuum limit.

Remarkably, it turns out that such a Poisson bracket does exist in the present case [7, 35].

It can be defined in terms of the matrices r ± α and s± α as follows

{Ln
1
,Ln

2
}′ = (r + α)12L

n
1
Ln
2
− Ln

1
Ln
2
(r − α)12, (4.10a)

{Ln
1
,Ln+1

2
}′ = Ln+1

2
(s− α)12L

n
1
, (4.10b)

{Ln
1
,Lm

2
}′ = 0, |n−m| ≥ 2. (4.10c)
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It has been shown in [7, 35] that (4.10) is the unique algebra satisfying the above require-

ments. We refer the reader to [7, 35] for details and will content ourselves here with showing

that the algebra (4.10) does indeed satisfy all the desired properties. First of all, we note

that this is a well defined algebra [36, 37]. In particular, anti-symmetry follows using the

(skew-)symmetry properties of r, s and α, and it satisfies the Jacobi identity by virtue of

the relations (4.4) [36, 37]. Next, using the Leibniz rule to compute the Poisson bracket of

two monodromy matrices (4.8) we find

{T1, T2}
′ = (r + α)12T1T2 − T1T2(r − α)12 − T1(s+ α)12T2 + T2(s− α)12T1. (4.11)

In deriving this relation, to cancel many terms we make essential use of the trivial but

important fact that (r + α)12 + (s − α)12 = (s + α)12 + (r − α)12. Recall also that we

are assuming periodic boundary conditions. It is now easy to deduce from (4.11) that the

involution property (4.9) holds.

Finally, we must show that (4.10) reduces to the correct continuum algebra of Lax

matrices we started with when the lattice spacing goes to zero [7, 35]. For this we note

that the lattice algebra (4.10) can equivalently be written as a single equation

{Ln
1
,Lm

2
}′ = (r + α)12L

n
1
Lm
2
δmn − L

n
1
Lm
2
(r − α)12δmn

− Ln
1
(s+ α)12L

m
2
δm+1,n + Lm

2
(s− α)12L

n
1
δm,n+1. (4.12)

In order to take the continuum limit of this equation we write Ln = 1+∆L(σn) +O(∆2)

where ∆ = σn+1 − σn is the lattice spacing. Substituting this into (4.12) and working to

lowest order in ∆ gives

{L1(σn),L2(σm)}′ =∆−1[r12,L1(σn) + L2(σm)]δmn

+∆−1L2(σm)s12δm,n+1 +∆−1s12L1(σn)δm,n+1

−∆−1L1(σn)s12δm+1,n −∆−1s12L2(σm)δm+1,n

−∆−1α12L2(σm)(δm+1,n − δmn) + ∆−1L2(σm)α12(δmn − δm,n+1)

+ ∆−1α12L1(σn)(δmn − δm,n+1)−∆−1L1(σn)α12(δm+1,n − δmn)

−∆−2α12(δm,n+1 − 2δmn + δm+1,n)−∆−2s12(δm+1,n − δm,n+1).

In the continuum limit ∆ → 0 we let σn = σ, σm = σ′ and make use of the following

identities

∆−1δmn → δσσ′ ,

∆−1(δm+1,n − δmn) ∼ ∆δ′σσ′ → 0,

∆−2(δm+1,n − 2δmn + δm,n+1) ∼ ∆δ′′σσ′ → 0,

∆−2(δm+1,n − δm,n+1)→ −2δ
′
σσ′ .

Note also that all the O(1) terms in the above algebra vanish in this limit since they are

multiplied by some δmn which effectively goes like ∆δσσ′ . Taking ∆→ 0 we therefore arrive

at the following continuum algebra

{L1(σ),L2(σ
′)}′ = [r12,L1(σ) + L2(σ)]δσσ′ + [s12,L1(σ)− L2(σ)]δσσ′ + 2s12δ

′
σσ′
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which is precisely the Poisson algebra (2.1) of the Lax matrix L(σ). In particular, we notice

that all dependence on the matrix α disappears in the continuum. Nevertheless, without

α the lattice algebra we wrote down does not correspond to a well defined Poisson bracket

of the Ln’s.

For consistency we should also check that the Poisson bracket of two parallel trans-

porters with distinct end-points agrees with its direct computation since the latter is un-

ambiguous [5]. Specifically, consider the product of lattice Lax matrices on successive sites

T I,J = LILI−1 · · · LJ+1LJ ,

for any I > J . This object is merely the parallel transporter from σJ to σI+1. The

Poisson bracket

{T I,J
1
, TK,L

2
}′

when all four I, J , K, L are distinct may then be computed in two different ways: either

using the lattice algebra (4.10) or by a direct computation. One may check that the result

of the lattice calculation is independent of α and moreover it agrees with the result of

the direct computation. This therefore shows that the matrix α only enters the Poisson

brackets of parallel transporters which would otherwise be ill-defined.

The lattice algebra (4.10) is to be compared to its ultralocal counterpart (2.2). From

the way the s-matrix appears in (4.10b) it is clear that non-ultralocality manifests itself on

the lattice by the fact that neighbouring lattice Lax matrices no longer Poisson commute.

Note that the Poisson algebra (4.10) is precisely of the general quadratic abcd-type discussed

in [36, 37] if we let

a12 = (r + α)12, b12 = (−s− α)12, c12 = (−s+ α)12, d12 = (r − α)12.

5 Comments and conclusion

In this article we have generalized the first steps of the Faddeev-Reshetikhin procedure to

symmetric space σ-models. Many comments come to mind.

To begin with let us go back to the case of the principal chiral model on a Lie group

G. As we showed in section 2.2.2, for this model it is possible to completely rid the Poisson

brackets of their non-ultralocality. The next step would then be to determine the new

Hamiltonian. Following [6] this can be achieved by defining two functions PS and PT that

act, with respect to the ultralocal Poisson brackets, as spatial derivative on S = j0+j1 and

T = j0 − j1 respectively. Although explicit expressions for PS,T can be obtained locally

in terms of Darboux coordinates, these are less important at the quantum level where the

operators PS,T are replaced by corresponding shift operators on the lattice. It might there-

fore be possible to also generalize the Faddeev-Reshetikhin procedure to a generic principal

chiral model, even without having explicit classical expressions for the operators PS,T .

It is however possible to proceed differently by treating the principal chiral model on G

as a symmetric space σ-model on G×G/Gdiag, where Gdiag denotes the diagonal subgroup.

The work presented here may then be applied directly to this case, yielding the G/U(1)r

gauged WZW model with a potential where r is the rank of g. These models are known

– 23 –



J
H
E
P
0
8
(
2
0
1
2
)
0
1
9

as homogenous sine-Gordon models [38–42]. In particular, the case of the principal chiral

model on SU(2) corresponds to the SU(2)/U(1) gaugedWZWmodel with a potential, which

upon gauge fixing the U(1) invariance gives the complex sine-Gordon theory [8, 43–45].

An immediate drawback of this approach to treating the principal chiral model is that

one departs from the analysis of [6] since the non-ultralocality is not completely removed.

However, one advantage of proceeding in this way is that contrary to the case above, the

action of these theories is explicitely Lorentz invariant. Furthermore, this puts the principal

chiral model and the symmetric space σ-model on the same footing since the alleviation of

non-ultralocality corresponds in both cases to a Pohlmeyer reduction.

Of course, the equivalence between the generalized Faddeev-Reshetikhin model defined

in this article and the original symmetric space σ-model is restricted for the moment to the

classical level. Any statement about the possible fate of this equivalence at the quantum

level would be premature. In fact, this issue is already rather delicate for the lattice

magnetic model defined in [6]. The quantization of this model by means of the Bethe ansatz

describes excitations over the reference state, whereas the physical ground state is obtained

by filling in the Dirac sea of Bethe roots. The claim made in [6] is that taking the classical

limit around this physical ground state reproduces the non-ultralocal Poisson structure of

the SU(2) principal chiral model. We refer the reader to the original article [6] as well as [46]

and the more recent article [47] for tests of this claim. To proceed along the lines of [6]

in the present case, the next challenge will be to explicitly construct a lattice model. The

first step in this direction consists in writing the quantum lattice algebra corresponding

to (4.11) which should be a quadratic algebra of the type discussed in [36, 37]. In this

context, it would be desirable to investigate the connection with the so called lattice WZW

model (see the set of lectures [48]) and Kac-Moody algebra introduced in [49, 50].

Independently of whether the program of generalizing the Faddeev-Reshetikhin pro-

cedure can be brought to its completion, an important byproduct of our work concerns

the non-ultralocality of generalized sine-Gordon models. Although we have shown it in an

indirect way, a prominent result of this article is that the non-ultralocality of such models,

viewed as gauged WZW models with an integrable potential, is mild. To illustrate the

significance of this result, let us focus on the complex sine-Gordon model as an example.

When viewed as a gauged SU(2)/U(1) WZW model plus a potential, the non-ultralocality

of this model is mild. However, if we gauge fix the U(1) invariance then we obtain the

complex sine-Gordon action

∫
dσdτ 1

2

(
|∂µψ|2

1− g2|ψ|2
−m2|ψ|2

)
.

For this action, the situation is completely different since the non-ultralocality of the corre-

sponding Poisson structure is no longer mild and the associated r and s matrices are in fact

dynamical [5]! This suggests that it may be preferable to try to discretize these theories at

the level of the gauged WZW model with an integrable potential. This is reminiscent of the

study in [51, 52] of the S-matrix of the complex sine-Gordon model, where the quantum

counterterm added in [53–55] at one loop in order to maintain factorized scattering has a

natural gauged WZW origin.
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One important motivation for the present work is of course related to the AdS/CFT

correspondence [56–58] between superstring theory onAdS5×S
5 andN = 4 superconformal

Yang-Mills theory (see [59] for a review). Since the non-ultralocality of the superstring on

AdS5×S
5 is a major obstacle to quantizing this theory, it would certainly be very appealing

if the Faddeev-Reshetikhin procedure could generalize to this context as well. In view of

this one should start by extending the analysis presented here to semi-symmetric space σ-

models. In fact, it has already been shown in [24] that the r/s structure of the superstring

on AdS5×S
5 uncovered in [60] has an algebraic origin which fits precisely into the R-matrix

approach. This is exactly the right framework to proceed along the lines presented here.

The analogue of the Poisson brackets (2.24) in this case is under investigation.
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A Notations

In this appendix we define some notations which are used throughout the text.

Given an operator O acting on f̂, its kernel O12 relative to the twisted inner prod-

uct (2.6) is defined by

(OX, Y )ϕ = (O12, Y ⊗X)ϕ, ∀X,Y ∈ f̂.

The kernel O∗
12

of the adjoint operator O∗ is then simply given by O21.

When writing Poisson brackets in tensor notation we make use of the tensor Casimir

C12. It can be defined as the kernel of the identity operator id ∈ End f with respect to the

inner product 〈·, ·〉 on f. In other words it is defined by the following property

〈C12, x2〉2 = x1,

for any x ∈ f. It is easy to check that it satisfies the property [C12, x1 + x2] = 0. The

corresponding property for any group element g ∈ F reads

g1g2C12 = C12g1g2.

When f is equipped with an involution σ : f→ f such that σ2 = id, this induces a direct

sum decomposition f = f(0)⊕ f(1) into eigenspaces of σ. By the homomorphism property of

σ, this Z2-grading has the property that

[f(i), f(j)] ⊂ f(i+j).

We shall always assume that the inner product 〈·, ·〉 on f respects the grading, in the sense

that 〈x(0), y(1)〉 = 0 for any x(0) ∈ f(0) and y(1) ∈ f(1). In this case the tensor Casimir can

be decomposed as C12 = C
(00)
12

+ C
(11)
12

where C
(ii)
12
∈ f(i) ⊗ f(i).
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