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1 Introduction

It is well known since the seminal work of Bena, Polchinski and Roiban [1] that classical

superstring theory on AdS5 × S5 admits infinitely many conserved charges. It was subse-

quently shown in [2] that it also has infinitely many conserved charges in involution, thereby

establishing the complete classical integrability of the theory. But more importantly, the

result of [2] shows that the Poisson bracket of its Lax matrix is of the general form identi-

fied in [3, 4] which is parameterized by two matrices r and s. The presence of the matrix

s is responsible for the non-ultralocality of this integrable field theory and makes it very

problematic to define a corresponding lattice Poisson algebra. Indeed, this serious obstacle

has so far precluded the use of the standard Quantum Inverse Scattering Method [5–7] for

investigating the quantum integrability of the AdS5 × S5 superstring theory. In light of

this shortcoming, the continued string of impressive developments in this field over the past

several years (see for instance the review [8]) relied on the implicit assumption of quantum

integrability in order to make use of the methods of factorized scattering theory [9].

However, in the case of symmetric space σ-models, we have shown in [10] how the

situation may be improved by alleviating their non-ultralocality. This can be seen as a

generalization of the first steps of the Faddeev-Reshetikhin procedure [11], developed for

the SU(2) principal chiral model, to the case of symmetric space σ-models. Indeed, the
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key advantage of the alleviation procedure is that it enables to write down a quadratic

lattice Poisson algebra. The procedure can be broken down into three parts. The first

part is achieved by purely algebraic means. It consists in modifying the Poisson bracket

of the phase space variables of the theory in such a way that the Poisson bracket of its

Lax matrix simplifies greatly. Specifically, although the latter is still non-ultralocal, the

kernel of the new matrix s is independent of spectral parameters. Because of this, the

Poisson bracket of the Lax matrix can be regularized as in [12] and leads to a well de-

fined lattice Poisson algebra of the general quadratic form in [13, 14]. We shall refer to

such a non-ultralocality as being mild. Note that, by construction, the modified Poisson

bracket is compatible with the original one. The second part of the procedure concerns

the degeneracy of the modified Poisson bracket whose Casimir functions need to be deter-

mined and fixed. Indeed, in the spirit of the Faddeev-Reshetikhin procedure, the purpose

of the alleviation is to reproduce the dynamics of the σ-model with respect to the modified

Poisson bracket. However, since the latter is degenerate, only a reduction of the dynamics

may be reproduced. As shown in [10], this reduction coincides exactly with the Pohlmeyer

reduction [15] of the symmetric space σ-model. The resulting reduced dynamics is that

of the symmetric space sine-Gordon model, the Lagrangian formulation of which is given

by a gauged Wess-Zumino-Witten model with an integrable potential [16]. The last part

of the procedure consists in showing that the modified Poisson bracket and corresponding

Hamiltonian coincide with the canonical Poisson bracket and Hamiltonian stemming from

this action.

In view of the possible generalization of the results of [10] to semi-symmetric space

σ-models, in [17] we already investigated directly the canonical structure of the semi-

symmetric space sine-Gordon model obtained by Pohlmeyer reduction of the AdS5 × S5

superstring [18, 19]. We have shown that the corresponding non-ultralocality is only mild

and have given the corresponding lattice Poisson algebra for the discretized Lax matrix.

The questions addressed in the present article are the following. Firstly, does the alleviation

procedure extend to the AdS5 × S5 superstring theory? Secondly, is this procedure also

deeply connected with the Pohlmeyer reduction? We will find that the common answer to

both questions is affirmative.

The plan of this article is the following. In section 2, we modify the Poisson bracket of

superstring theory on AdS5 × S5 using a simple generalization of the technique presented

in [10] to the semi-symmetric space F/G, where the Lie (super)algebras respectively asso-

ciated with F and G are f = psu(2, 2|4) and g = so(4, 1) ⊕ so(5). Applying the procedure

of [10] simply requires identifying the quartet of algebraic data characterizing the integra-

bility of the AdS5 × S5 superstring at the Hamiltonian level. This quartet is composed of

a loop algebra, the Hamiltonian Lax matrix of [2, 20], an R-matrix and an inner product.

These elements have already been identified in [21] and therefore the modified Poisson

bracket is obtained by a straightforward and direct application of [10], namely by changing

the inner product.

Much like in the symmetric space σ-model setting, it turns out that most of the

constraints of the AdS5 × S5 superstring are Casimir functions of the modified Poisson

bracket. It is therefore natural to set their values to zero. Although some of the constraints

– 2 –



J
H
E
P
1
0
(
2
0
1
2
)
0
6
1

of the AdS5 × S5 superstring do not correspond to Casimirs, they may also be put to zero

in a natural way. Even after setting all of the constraints to zero, the modified Poisson

bracket is still degenerate. All fields take values in f but describing the remaining Casimirs

requires lifting one field to G. Remarkably, it turns out that these Casimirs correspond to

gauge fixing conditions used in the Pohlmeyer reduction of the AdS5×S5 superstring [18].

We thus set their values accordingly. Details are given in section 3.2. After summarizing

the situation in section 3.3, we discuss the reduced theory in section 3.4. First of all, the

resulting reduced equations of motion are exactly as in [18] and exhibit a HL ×HR-gauge

invariance where HL,R ≃ [SU(2)]4. However, they are not Hamiltonian with respect to

the modified Poisson bracket but this is remedied by partially fixing the HL ×HR-gauge

invariance to the diagonal subgroup.

We then show that these Hamiltonian equations of motion coincide with those asso-

ciated with the fermionic extension of the G/H gauged WZW model with an integrable

potential as given in [18]. This canonical analysis is presented in section 4.

We conclude by some remarks. There are three appendices. Appendix A contains

the table of the modified Poisson bracket. Appendix B recalls some important algebraic

properties which are used many times throughout this article. Appendix C contains details

of the derivation of the Hamiltonian.

2 Mildly non-ultralocal Poisson bracket

The starting point of the procedure requires identifying the quartet of algebraic data which

encodes the integrable structure of the AdS5 × S5 superstring at the Hamiltonian level.

This has been done in [21]. For completeness we briefly recall this here and refer the

reader to [10] for details regarding the present section. The first element of this quartet

is the twisted loop algebra f̂σ defined as follows. One starts from the Lie superalgebra

f = psu(2, 2|4). As a vector space, it admits a decomposition into a direct sum ⊕3
n=0f

(n) of

eigenspaces of a Z4-automorphism σ satisfying σ4 = id. We denote by g the Lie algebra

f(0) = so(4, 1)⊕ so(5) and by G the corresponding Lie group. The twisted loop algebra f̂σ

is then the subalgebra of the loop algebra f̂ = f ⊗ C((λ)) consisting of elements X(λ) ∈ f̂

which are invariant under the automorphism σ̂ of f̂ defined by σ̂(X)(λ) = σ[X(−iλ)]. The
second element has been presented in [2, 20] and is the Hamiltonian Lax matrix L(λ) of

the theory. Its expression in terms of the phase space variables (A(i),Π(i)) reads

L(λ) = A(0) +
1

4
(λ−3 + 3λ)A(1) +

1

2
(λ−2 + λ2)A(2) +

1

4
(3λ−1 + λ3)A(3)

+
1

2
(1− λ4)Π(0) +

1

2
(λ−3 − λ)Π(1) +

1

2
(λ−2 − λ2)Π(2) +

1

2
(λ−1 − λ3)Π(3) . (2.1)

The next element needed is the R-matrix. It is the standard one defined by R = π≥0−π<0

where π≥0 and π<0 are the projections of f̂ onto the subalgebras f⊗CJλK and f⊗λ−1
CJλ−1K

respectively. The last element is given by the twist function ϕ(λ) = 4λ−1φ(λ), where the

function φ(λ) obtained in [21] reads, up to an irrelevant overall factor,

φ(λ) =
λ4

(1− λ4)2
.
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The twist function uniquely specifies the twisted inner product on f̂σ, which is defined for

two elements X and Y of f̂σ by computing the residue

(X,Y )φ = resλ=0dλ
4

λ
φ(λ)〈X(λ), Y (λ)〉 (2.2)

where 〈·, ·〉 is a non-degenerate invariant graded symmetric bilinear form on f.

The last two elements of the quartet (̂fσ,L, R, ϕ), namely the R-matrix and the twist

function ϕ together determine the Poisson bracket of any two functions of the Lax matrix

L. For linear functions of L this reads

{L1(σ),L2(σ
′)} = [R12,L1(σ)]δσσ′ − [R∗

12
,L2(σ)]δσσ′ + (R12 +R∗

12
)δ′σσ′ . (2.3)

Its non-ultralocality stems precisely from the twist function ϕ and the fact that R is not

skew-symmetric with respect to (2.2) but instead satisfies

R∗ = −ϕ̃−1 ◦R ◦ ϕ̃ 6= −R ,

where ϕ̃ denotes multiplication by ϕ(λ). Finally, as explained in [10], one can recover

the Poisson brackets of the fields (A(i),Π(i)) appearing in the Lax matrix (2.1) by taking

adequate functions of the Lax matrix. The result is

{A(i)
1
(σ), A

(j)
2

(σ′)} = 0 , (2.4a)

{A(i)
1
(σ),Π

(j)
2

(σ′)} =
[
C

(i 4−i)
12

, A
(i+j)
2

(σ)
]
δσσ′ − δi+jC

(i 4−i)
12

∂σδσσ′ , (2.4b)

{Π(i)
1
(σ),Π

(j)
2

(σ′)} =
[
C

(i 4−i)
12

,Π
(i+j)
2

(σ)
]
δσσ′ , (2.4c)

where the Kronecker symbol δi+j is equal to one if i+j = 0 (mod 4) and vanishes otherwise.

Here C
(i 4−i)
12

is the projection onto f(i) ⊗ f(4−i) of the quadratic Casimir C12.

The alleviation procedure proposed in [10] now consists in making the following simple

change in the above quartet of data

(̂
fσ,L, R, 4λ−1φ

)
−→

(̂
fσ,L, R, 4λ−1

)
,

where the factors of 4 are introduced for later convenience. In particular, the new quartet

has the same Lax matrix as (2.1) but a modified Poisson bracket. The latter is still non-

ultralocal as a result of the R-matrix still not being skew-symmetric

R∗ = −λ̃ ◦R ◦ λ̃−1 6= −R ,

where λ̃ denotes multiplication by λ. However, this non-ultralocality is mild in the sense

that the symmetric part s = 1
2(R+R∗) of R is a projection onto the constant part f(0) of the

twisted loop algebra f̂σ [10]. The Poisson brackets between the various phase space fields

may be obtained from the new data along the lines of [10]. The resulting non-vanishing

Poisson brackets are given in appendix A.

The advantage of having a mild non-ultralocality is that the corresponding Poisson

bracket (2.3) can be obtained as the continuum limit of a lattice Poisson bracket constructed
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as follows. An extra piece of data, disappearing in the continuum limit, is a solution α

of the modified classical Yang-Baxter equation on g. In terms of this, the lattice Poisson

bracket reads

{Ln
1
,Lm

2
} = a12Ln

1
Lm
2
δmn − Ln

1
Lm
2
d12δmn + Ln

1
b12Lm

2
δm+1,n − Lm

2
c12Ln

1
δm,n+1 ,

where the matrices a, b, c and d satisfy the conditions of [13, 14] and are given explicitly

by [12]

a12 = (r + α)12 , b12 = (−s− α)12 , c12 = (−s+ α)12 , d12 = (r − α)12 ,

with r = 1
2(R−R∗) the skew-symmetric part of the R-matrix.

3 Modified Poisson bracket and Pohlmeyer reduction

Having defined a new Poisson bracket on the phase space of the AdS5 × S5 superstring,

the aim of the present section will be to describe the original dynamics with respect to it.

After recalling the Hamiltonian dynamics of the AdS5 × S5 superstring with respect to its

original Poisson bracket (2.4), we will show that the modified Poisson bracket is degenerate

so that it can only be used to reproduce a reduction of the original dynamics. It will turn

out that the Pohlmeyer reduction is essentially forced upon us by the specific form of the

Casimirs.

3.1 Original dynamics

To recall the Hamiltonian dynamics of the AdS5×S5 superstring we closely follow the ref-

erence [20]. The phase space is parameterized by the fields (A(i),Π(i)) and the Hamiltonian

is given by a linear combination of all the first-class constraints, namely

H =

∫
dσ

[
ρ++T+++ρ

−−T−−−Str(k(3)K(1))−Str(k(1)K(3))−Str
(
(A(0)+ℓ)C(0)

)]
, (3.1)

where the notation is as follows. We have defined

T++ = T++ − Str
(
A(1)C(3)

)
, T±± = Str

(
A

(2)
± A

(2)
±

)
,

T−− = T−− + Str
(
A(3)C(1)

)
, A

(2)
± =

1

2

(
Π(2) ∓A(2)

)
.

The full set of constraints are

C(0) ≡ Π(0) ≈ 0 , (3.2a)

C(1) ≡ 1

2
A(1) +Π(1) ≈ 0 , (3.2b)

C(3) ≡ −1

2
A(3) +Π(3) ≈ 0 , (3.2c)

T±± ≈ 0 . (3.2d)
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The constraint C(0) is associated with the G-gauge invariance while (3.2d) are the Virasoro

constraints. All these constraints are first-class while the other constraints C(1) and C(3)

are partly first-class and second-class. One can extract the following first-class constraints

K(1) = 2i
[
A

(2)
− , C(1)

]
+

and K(3) = 2i
[
A

(2)
+ , C(3)

]
+
,

which generate κ-symmetry transformations. Finally, the arbitrary functions ℓ, ρ++, ρ−−,

k(1) and k(3) are Lagrange multipliers associated with the first-class constraints.

The equations of motion for the variables (A(i),Π(i)) following from the Hamilto-

nian (3.1) with respect to the Poisson bracket (2.4) are, up to terms proportional to the

constraints,

∂τA
(0) − ∂σ(A

(0)+ ℓ)− [A(0)+ ℓ, A(0)] = (ρ++ + ρ−−)

(
1

2
[A(2),Π(2)] + [A(1), A(3)]

)

− [A(1), Q(3)]− [A(3), Q(1)] , (3.3a)

DτA
(1) −Dσ

(
ρ++A(1) +Q(1)

)
= (ρ++ + ρ−−)[A(3), A

(2)
+ ]− [A(2), Q(3)] , (3.3b)

DτA
(2)
+ −Dσ

(
ρ++A

(2)
+

)
= [A(1), Q(1)] , (3.3c)

DτA
(2)
− +Dσ

(
ρ−−A

(2)
−

)
= −[A(3), Q(3)] , (3.3d)

DτA
(3) +Dσ

(
ρ−−A(3) −Q(3)

)
= (ρ++ + ρ−−)[A(1), A

(2)
− ]− [A(2), Q(1)] , (3.3e)

where the covariant derivatives are defined as

Dτ = ∂τ − [A(0) + ℓ, ] and Dσ = ∂σ − [A(0), ] .

Here we have also introduced the fields1

Q(1) = i[A
(2)
+ , k(1)]+ and Q(3) = i[A

(2)
− , k(3)]+ . (3.4)

The remaining field equations may be deduced from equations (3.3) by using the con-

straints (3.2b) and (3.2c). The equations of motion (3.3) are of course invariant under the

gauge transformations, which is reflected by their dependence on arbitrary functions of σ

and τ .

3.2 Casimirs of the modified Poisson bracket

In order to determine whether the dynamics (3.3) can be reproduced in terms of the

modified Poisson bracket given in appendix A, we first need to identify the Casimirs of the

latter. Indeed, it will only be possible to reproduce a reduction of the original dynamics

where these Casimirs have been set to constants.

To begin with, C(0) is an obvious Casimir of the modified Poisson bracket. Since it

corresponds to a constraint of the superstring, the value of this Casimir is set to zero. It

1The fields Q(1) and Q(3) correspond to the fields Q1− and Q2+ appearing in the Lagrangian formula-

tion [18]. A consequence of their definitions (3.4) and of the Virasoro constraints (3.2d) is that they are

solutions of the algebraic equations [A
(2)
+ , Q(1)] = 0 and [A

(2)
−

, Q(3)] = 0. See also the related analysis in [20].
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then follows that C(3) is also a Casimir whose value we similarly set to zero. One then finds

that A
(2)
+ becomes a Casimir. This quantity is therefore fixed to a constant by imposing

2A
(2)
+ = µ+T

where µ+ ∈ R is a constant and T is a fixed element of f(2). But in order for the Virasoro

constraint Str(A
(2)
+ A

(2)
+ ) = 0 to be satisfied, T has to be taken such that StrT 2 = 0. We

shall choose2 the same T as in [18]. Its definition and the fact that it induces a Z2-grading

of f, denoted f[0] ⊕ f[1], are recalled in appendix B, along with the definitions of some other

matrices used below.

Now consider the two remaining constraints of the AdS5×S5 superstring, namely C(1)

and T−− = Str(A
(2)
− A

(2)
− ). Contrary to the previous constraints, these are not Casimirs of

the modified Poisson bracket. However, their only non vanishing Poisson brackets are

{C(1)
1

(σ), A
(0)
2

(σ′)}′ = −1

2
[C

(13)
12

, C(1)
2

(σ)]δσσ′ , (3.5a)

{T−−(σ), A
(3)(σ′)}′ = −1

2
[A

(2)
− (σ), C(1)(σ)]δσσ′ . (3.5b)

It follows from (3.5a) that any Hamiltonian function will preserve the constraint C(1) = 0

with respect to the modified Poisson bracket. Another way to phrase this is to note that the

set of functionals on phase space which vanish when C(1) does, forms a Poisson ideal. We

may therefore restrict ourselves to the Poisson subspace defined by C(1) = 0. In practice,

this also means that one can take A(1) as the only dynamical field belonging to f(1) and

identify Π(1) with −1
2A

(1) through equation (3.2b). Furthermore, equation (3.5b) shows

that T−− is a Casimir of the modified Poisson bracket on the subspace defined by C(1) = 0,

whose value we set to zero. Finally, one introduces a field g(σ, τ) taking values in G and a

function µ−(σ, τ) through

2A
(2)
− = µ−g

−1Tg . (3.6)

Specifically, the polar decomposition theorem [18, 22] allows us to write 2A
(2)
− = g−1(µ−T+

µ̃−T̃ )g. The vanishing of the Casimir T−− then requires that either µ− = 0 or µ̃− = 0.

However, T̃ being conjugate to T by an element of G (see appendix B) equation (3.6) can be

taken without loss of generality. We are then led to consider the quantity Str(A
(2)
− A

(2)
− W ) =

−1
2µ

2
−. It is easily checked that, on the subspace just defined this quantity is a Casimir

function of the modified bracket and should be put to a constant. Therefore µ− is a

constant and the situation is thus as in [10].

However, this is not the end of the story as there exist two more Casimirs. Indeed,

consider the projection A(1)[0] of A(1) to the subalgebra f[0]. We have

{A(1)[0]
1

(σ), A
(1)
2

(σ′)}′ = −1

2
[C

(13)[00]
12

, A
(2)
+2

]δσσ′ = −1

4
µ+[C

(13)[00]
12

, T2]δσσ′ = 0 ,

as any element of f[0] commutes with T (see appendix B), and where C
(13)[00]
12

denotes the

projection onto f(1)[0] ⊗ f(3)[0] of C
(13)
12

. All the other Poisson brackets with A(1)[0] either

2As pointed out by one of the referees, another choice of T , living in su(2, 2), is possible but it will not

be studied here.
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vanish as well or are proportional to C(1), which in practice has the same consequence.

In other words A(1)[0] is a Casimir. This is a nice result as it corresponds to one of the

gauge fixing conditions for the κ-symmetry considered in [18]. The other condition will also

be encountered shortly. In order to describe it explicitly we first need to lift the Poisson

brackets of A
(2)
− to the field g. This lifting is done as follows. The only non-vanishing

Poisson bracket of A
(2)
− is

{A(2)
−1

(σ), A
(0)
2

(σ′)}′ = −1

2
[C

(22)
12

, A
(2)
−2

]δσσ′ .

This may be lifted using (3.6) to a Poisson bracket for g which reads

{g1(σ), A(0)
2

(σ′)}′ = −1

2
g1(σ)C

(00)
12

δσσ′ ,

with all the other Poisson brackets of g vanishing. Next, the only non-vanishing Poisson

brackets of A(3) are

{A(3)
1

(σ), A
(0)
2

(σ′)}′ = −1

2
[C

(31)
12

, A
(3)
2

(σ)]δσσ′ ,

{A(3)
1

(σ), A
(3)
2

(σ′)}′ = −1

2
[C

(31)
12

, A
(2)
−2

(σ)]δσσ′ .

Considering the combination gA(3)g−1, a short computation leads to

{(gA(3)g−1)1(σ), A
(0)
2

(σ′)}′= 0 , (3.7a)

{(gA(3)g−1)1(σ), (gA
(3)g−1)2(σ

′)}′= −1

2
[C

(31)
12

, (g2A
(2)
−2
g−1
2

)(σ)]δσσ′ = −1

4
µ−[C

(31)
12

, T2]δσσ′ .

(3.7b)

As in the case of A(1)[0] above this shows that (gA(3)g−1)[0] is a Casimir, which exactly

corresponds to the other gauge fixing condition for κ-symmetry considered in [18].

3.3 Pohlmeyer reduction

Let us summarize the situation so far. We have shown that the modified Poisson bracket

given in appendix A can be consistently restricted to the constraint surface of the AdS5×S5

superstring defined by (3.2). But this restriction is still degenerate and the form of its

Casimirs naturally led us to impose the following further conditions

2A
(2)
+ = µ+T and 2A

(2)
− = µ−g

−1Tg (3.8a)

along with

A(1)[0] = 0 and (gA(3)g−1)[0] = 0 . (3.8b)

These are exactly the gauge fixing conditions imposed in the Pohlmeyer reduction of the

AdS5×S5 superstring [18]. In other words, the modified Poisson bracket naturally restricts

to the reduced phase space of the Pohlmeyer reduction of the AdS5 × S5 superstring. It is

easy to check that the gauge fixing conditions (3.8) are preserved under the dynamics if

ρ++ = 1 , ρ−− = 1 , Q(1) = 0 , Q(3) = 0 , ℓ(σ, τ) ∈ h . (3.9)

– 8 –
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These equations are also partial gauge fixing conditions imposed in [18], to which we refer

the reader for further detail.

The remaining degrees of freedom are g, A(0), A(1)[1] and (gA(3)g−1)[1] and their non-

vanishing Poisson brackets read

{g1(σ), A(0)
2

(σ′)}′ = −1

2
g1(σ)C

(00)
12

δσσ′ , (3.10a)

{A(0)
1

(σ), A
(0)
2

(σ′)}′ = −1

2
[C

(00)
12

, A
(0)
2

(σ)]δσσ′ +
1

2
C

(00)
12

∂σδσσ′ , (3.10b)

{A(1)[1]
1

(σ), A
(1)[1]
2

(σ′)}′ = −1

4
µ+[C

(13)
12

, T2]δσσ′ , (3.10c)

{(gA(3)g−1)
[1]
1
(σ), (gA(3)g−1)

[1]
2
(σ′)}′ = −1

4
µ−[C

(31)
12

, T2]δσσ′ . (3.10d)

3.4 Reduced equations of motion

Next, we implement the reduction conditions (3.8) together with (3.9) on the equations of

motion (3.3) in turn. For the equation (3.3a) of A(0) we find

∂−A
(0) − ∂σℓ− [ℓ, A(0)] =

1

2
µ+µ−[g

−1Tg, T ] + 2[A(1), A(3)] , (3.11)

where ∂± = ∂τ ± ∂σ. Equation (3.3d) can be lifted to an equation of motion for g, exactly

as in the bosonic case, to give

A(0) =
1

2

(
− g−1∂+g − ℓ+ g−1ℓ̃g

)
, (3.12)

where the arbitrary function ℓ̃ takes values in h. On the odd graded part of f, the equa-

tion (3.3b) for A(1) yields

∂−A
(1) = [ℓ, A(1)] + µ+[A

(3), T ] . (3.13)

As for the equation of motion (3.3e) of A(3), using (3.12) it may be rewritten as

∂+(gA
(3)g−1) = [ℓ̃, gA(3)g−1] + µ−[gA

(1)g−1, T ] . (3.14)

Note that the projections of equations (3.13) and (3.14) to f[0] are both trivial, therefore

we shall implicitly assume their restrictions to f[1] from now on.

The equations of motion (3.11)–(3.14) admit right and left gauge invariances. The

right invariance corresponds to those g-gauge transformations that preserve the reduction

conditions. They act as

δA(0) = ∂σαR + [αR, A
(0)] , δA(1) = [αR, A

(1)] , δA(3) = [αR, A
(3)] , (3.15a)

δg = −gαR , δℓ = ∂−αR + [αR, ℓ] , (3.15b)

where αR(σ, τ) ∈ hR. There is also a left invariance which appears as a result of the lifting

to G. It acts only on the fields g and ℓ̃ as

δg = αLg and δℓ̃ = ∂+αL + [αL, ℓ̃] , (3.16)

with αL(σ, τ) ∈ hL.
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To obtain equations of motion that are Hamiltonian, one needs to partially gauge fix

this HL ×HR-gauge invariance to the diagonal subgroup. To do this, we introduce

J = ∂σgg
−1 + gA(0)g−1. (3.17)

A short computation shows that J satisfies the following equation of motion

∂+J = ∂σ ℓ̃+ [ℓ̃, J ] +
1

2
µ+µ−[T, gTg

−1] + 2g[A(1), A(3)]g−1,

and has the following Poisson brackets

{J1(σ), g2(σ′)}′ =
1

2
C

(00)
12

g2(σ)δσσ′ ,

{J1(σ), A(0)
2

(σ′)}′ = 0 ,

{J1(σ), A(1)
2

(σ′)}′ = 0 ,

{J1(σ), (gA(3)g−1)2(σ
′)}′ = 0 .

With the help of this field J we may now write the generator of the gauge transforma-

tions (3.15) and (3.16) explicitly as follows

2

∫
dσ Str

[
αL

(
J +

1

µ−

[
gA(3)g−1, [T, gA(3)g−1]

])
−
(
A(0) − 1

µ+

[
A(1), [T,A(1)]

])
αR

]
.

We therefore fix the part of the gauge invariance with parameters related through αL =

−αR by imposing the partial gauge fixing condition

J [0] +
1

µ−

[
gA(3)g−1, [T, gA(3)g−1]

]
= A(0)[0] − 1

µ+

[
A(1), [T,A(1)]

]
. (3.18)

The residual gauge transformations that preserve this condition are the diagonal trans-

formations for which αL = αR. Moreover, condition (3.18) is preserved by the dynam-

ics (3.11)–(3.14) provided the arbitrary functions ℓ and ℓ̃ are restricted as

ℓ− ℓ̃ = −A(0)[0] − J [0] +
1

µ+

[
A(1), [T,A(1)]

]
− 1

µ−

[
gA(3)g−1, [T, gA(3)g−1]

]
. (3.19)

Equations (3.18) and (3.19) can be rearranged into the equivalent set of equations

ℓ =
1

2
(ℓ+ ℓ̃)−A(0)[0] +

1

µ+

[
A(1), [T,A(1)]

]
, (3.20a)

ℓ̃ =
1

2
(ℓ+ ℓ̃) + J [0] +

1

µ−

[
gA(3)g−1, [T, gA(3)g−1]

]
. (3.20b)

In other words, after imposing the condition (3.18), the equations of motion no longer

depend on the pair of arbitrary functions ℓ and ℓ̃ but only on their sum ℓ + ℓ̃. This is a

reflection of the fact that the equations of motion are invariant only under the diagonal

gauge transformations.
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To implement the partial gauge fixing conditions (3.18) at the level of the equations

of motion we simply need to substitute the relations (3.20) for ℓ and ℓ̃. The equations of

motion (3.13) and (3.14) for the fermionic fields respectively yield

∂−A
(1) = −µ+[T,A(3)] +

[
1

2
(ℓ+ ℓ̃)−A(0)[0] +

1

µ+

[
A(1), [T,A(1)]

]
, A(1)

]
, (3.21a)

∂+(gA
(3)g−1) = −µ−[T, gA(1)g−1]

+

[
1

2
(ℓ+ ℓ̃) + J [0] +

1

µ−

[
gA(3)g−1, [T, gA(3)g−1]

]
, gA(3)g−1

]
. (3.21b)

For the equation of g we first combine equations (3.12) and (3.17) to get

∂τgg
−1 + J + g(A(0) + ℓ)g−1 = ℓ̃ .

Then substituting both expressions (3.20b) and (3.20a) into this equation we end up with

∂τg = −gA(0)[1] − J [1]g − g

(
1

2
(ℓ+ ℓ̃) +

1

µ+

[
A(1), [T,A(1)]

])

+

(
1

2
(ℓ+ ℓ̃) +

1

µ−

[
gA(3)g−1, [T, gA(3)g−1]

])
g (3.22)

Finally, the equation of motion (3.11) can be rewritten as

∂τA
(0) = ∂σA

(0)[1] + ∂σ

(
1

2
(ℓ+ ℓ̃) +

1

µ+

[
A(1), [T,A(1)]

])
+

1

2
µ+µ−[g

−1Tg, T ]

+

[
1

2
(ℓ+ ℓ̃)−A(0)[0] +

1

µ+

[
A(1), [T,A(1)]

]
, A(0)

]
+ 2[A(1), A(3)] (3.23)

where again we have made use of (3.20a).

4 Link with semi-symmetric space sine-Gordon theory

The goal of this section is to establish that the Poisson brackets (3.10) and the con-

straint (3.18) coincide with the result of the canonical analysis of the AdS5 × S5 semi-

symmetric space sine-Gordon theory, defined as a fermionic extension of the G/H gauged

WZW with a potential term [18]. In order to make the identification complete, we also indi-

cate the corresponding Hamiltonian which generates the equations of motion (3.21), (3.22)

and (3.23).

We shall perform the canonical analysis of the action defined in [18] which reads

S =
1

2

∫
dτdσ Str(g−1∂+gg

−1∂−g) +
1

3

∫
dτdσdξǫαβγ Str(g−1∂αgg

−1∂βgg
−1∂γg)

−
∫
dτdσ Str(B+∂−gg

−1 −B−g
−1∂+g + g−1B+gB− −B+B−)

+
1

2

∫
dτdσ Str

(
ψ(3)[T,D+ψ

(3)] + ψ(1)[T,D−ψ
(1)]

)

+

∫
dτdσ

(
µ2 Str(g−1TgT ) + µ Str(g−1ψ(3)gψ(1))

)
, (4.1)
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where the notation is as follows. Firstly, we take ǫτσξ = 1. The fields g, ψ(1) and ψ(3)

respectively take values in G, f(1)[1] and f(3)[1], while B± = B0 ±B1 are gauge fields taking

values in h. Finally, the covariant derivatives are defined by D± = ∂± − [B±, ]. We recall

the start of the canonical analysis from the results of [17]. The phase space is parametrized

by the fields (g,JL, ψ
(1), ψ(3)) where JL takes values in g, and the non-vanishing Poisson

brackets are

{g1(σ),JL2(σ
′)}′ = g1C

(00)
12

δσσ′ , (4.2a)

{JL1(σ),JL2(σ
′)}′ = [C

(00)
12

,JL2]δσσ′ + 2C
(00)
12

∂σδσσ′ , (4.2b)

{ψ(1)
1

(σ), ψ
(1)
2

(σ′)}′ =
[
T2, C

(13)
12

]
δσσ′ , (4.2c)

{ψ(3)
1

(σ), ψ
(3)
2

(σ′)}′ =
[
T2, C

(31)
12

]
δσσ′ , (4.2d)

together with the gauge fields (B0, B1) and their conjuguate momenta3 (P0, P1). There are

four constraints,

χ1 = P0 and χ2 = P1 , (4.3a)

χ3 = J [0]
R + 2B1 −

1

2

[
ψ(3), [T, ψ(3)]

]
, (4.3b)

χ4 = J [0]
L + 2B1 +

1

2

[
ψ(1), [T, ψ(1)]

]
(4.3c)

where we have defined

JR = −2∂σgg
−1 + gJLg

−1.

To achieve the comparison with the previous section, we first put strongly to zero the set

of second-class constraints χ2 and χ3. In addition, we fix the gauge invariance generated

by the first-class constraint χ1 by imposing the condition B0 = 0. All this is done by intro-

ducing the corresponding Dirac bracket and by explicitly eliminating the variables (B1, P1)

and (B0, P0). In particular, the elimination of B1 is realized using the definition (4.3b) of

χ3 to make the replacement

B1 → −1

2
JR

[0] +
1

4

[
ψ(3), [T, ψ(3)]

]
. (4.4)

The result of this procedure is a straightforward generalization to the case at hand of the

result obtained in [23]. The Dirac brackets for the remaining fields (g,JL, ψ
(1), ψ(3)) are the

same as their Poisson brackets. We are left with the single constraint χ4 which according

to the rule (4.4) becomes

χ4 = J [0]
L − J [0]

R +
1

2

[
ψ(1), [T, ψ(1)]

]
+

1

2

[
ψ(3), [T, ψ(3)]

]
. (4.5)

3Their Poisson bracket is canonical, i.e. {B01(σ), P02(σ
′)}′ = C

(00)[00]
12

δ
σσ

′ and similarly for B1 and P1.
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The corresponding Hamiltonian is computed in appendix C and reads

H ′ =

∫
dσ Str

[
1

4

(
JL

[1]JL
[1]+JR

[1]JR
[1]
)
− 1

2
ψ(3)[T, ∂σψ

(3)]+
1

2
ψ(1)[T, ∂σψ

(1)]−µ2g−1TgT

− µg−1ψ(3)gψ(1)− 1

16

[
ψ(3), [T, ψ(3)]

][
ψ(3), [T, ψ(3)]

]
− 1

16

[
ψ(1), [T, ψ(1)]

][
ψ(1), [T, ψ(1)]

]

− 1

4
JL

[0]
[
ψ(1), [T, ψ(1)]

]
+

1

4
JR

[0]
[
ψ(3), [T, ψ(3)]

]
+ λχ4

]
(4.6)

where λ is a Lagrange multiplier.

In summary, the phase space of the AdS5 × S5 semi-symmetric space sine-Gordon

theory may be parametrized by the fields (g,JL, ψ
(1), ψ(3)) with Poisson brackets given

in (4.2) and subject to the first-class constraint (4.5). So we are now in a position to

give the sought dictionary between section 3 and the present section. As suggested by the

notation, the field g and the constant matrix T are the same in both sections, whereas the

remaining fields and parameters are related by

JL = −2A(0), JR = −2J ,

ψ(1) =
2

√
µ+

A(1)[1], ψ(3) =
2

√
µ−

(gA(3)g−1)[1], (4.7)

µ = −√
µ+µ− , λ = −1

2
(ℓ+ ℓ̃) .

One can check that there is perfect agreement, firstly between the Poisson brackets (4.2)

and (3.10), secondly between the constraints (4.5) and (3.18), and lastly between the

equations of motion generated by the Hamiltonian (4.6) and the equations of mo-

tion (3.21), (3.22) and (3.23).

5 Conclusion

Let us start by answering the questions which motivated this work as mentioned in the

introduction. We have shown that the alleviation procedure, as developed in [10] for

symmetric space σ-models, extends smoothly to the case of the AdS5 × S5 superstring.

Moreover, we have found that in this context as well the procedure is tightly linked with

Pohlmeyer reduction.

An important point we wish to stress concerns the rigidity of the alleviation procedure.

Indeed, at every stage of the procedure there is essentially no freedom. To begin with, the

introduction of the modified Poisson bracket is guided by the requirement that its non-

ultralocality be only mild. This places severe restrictions on the choice of inner product

entering the definition of the Poisson bracket. Subsequently, the degeneracy of the modified

Poisson bracket and the specific form of its Casimirs basically compel us to restrict attention

to the phase space of the Pohlmeyer reduction of the AdS5×S5 superstring. The complete

procedure therefore leads us very naturally from the AdS5 × S5 superstring theory to the

associated semi-symmetric space sine-Gordon theory.

By comparison with our previous work [10] where we were not considering a string the-

ory, let us briefly recall that in the context of the AdS5×S5 superstring theory, Pohlmeyer
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reduction corresponds to a reduction of gauge degrees of freedom. The reduction therefore

still describes the dynamics of all the physical degrees of freedom of the original AdS5×S5

superstring. Of course, in the bosonic setting the same interpretation holds if, say, for the

σ-model on Sn we consider instead a string theory on R× Sn (see for instance [18, 24]).

One could of course take the canonical structure of the AdS5 × S5 superstring and

consider its own restriction to the reduced degrees of freedom. In the context of the

AdS5 × S5 superstring, this problem has been addressed first in [25] and later in more

details in [26, 27]. It turns out that the induced Poisson structure is non-local. This is in

stark contrast with the restriction of the modified Poisson bracket to the reduced degrees

of freedom as presented in this article. Indeed, the latter is both local and has the property

that the corresponding Poisson bracket of the Lax matrix is mildly non-ultralocal.

Evidently, the equivalence between the original AdS5 × S5 superstring and the theory

with the modified Poisson bracket describing the Pohlmeyer reduction of the AdS5 × S5

superstring is only classical at this stage. Whether or not this equivalence persists at the

quantum level is likely to be a rather delicate issue.4 Indeed, the corresponding statement

for the SU(2) principal chiral model in [11] requires a subtle change of vacuum from the

reference state of the Bethe ansatz to the physical ground state given by the Dirac sea of

Bethe roots. To further this program, the next challenge would be to find the quantization

of the quadratic lattice Poisson algebra of the Lax matrix as described in [17].
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A Modified Poisson bracket

We reproduce below the modified Poisson bracket, which is mildly non-ultralocal. The

only Poisson bracket, which involves a derivative of the Dirac δ-function is

{A(0)
1

(σ), A
(0)
2

(σ′)}′ = −1

2
[C

(00)
12

, A
(0)
2

+
1

2
C(0)
2

]δσσ′ +
1

2
C

(00)
12

∂σδσσ′ .

4However, note that what makes the AdS5 × S5 superstring special [18] from the point of view of the

Pohlmeyer reduction is the fact that conformal invariance holds also at the quantum level.
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The complete list of all the other non-vanishing Poisson brackets is

{A
(0)
1

(σ), A
(1)
2

(σ′)}′ = −
1

4
[C

(00)
12

, C
(1)
2

]δ
σσ

′ , {A
(0)
1

(σ), A
(2)
2

(σ′)}′ = −
1

2
[C

(00)
12

, A
(2)
−2

]δ
σσ

′ ,

{A
(0)
1

(σ), A
(3)
2

(σ′)}′ = −
1

2

[

C
(00)
12

, A
(3)
2

+
1

2
C
(3)
2

]

δ
σσ

′ , {A
(1)
1

(σ), A
(1)
2

(σ′)}′ = −
1

2
[C

(13)
12

, A
(2)
+2

]δ
σσ

′ ,

{A
(1)
1

(σ), A
(2)
2

(σ′)}′ = −
1

4
[C

(13)
12

, C
(3)
2

]δ
σσ

′ , {A
(1)
1

(σ), A
(3)
2

(σ′)}′ = −
1

4
[C

(13)
12

, C
(0)
2

]δ
σσ

′ ,

{A
(2)
1

(σ), A
(2)
2

(σ′)}′ = −
1

4
[C

(22)
12

, C
(0)
2

]δ
σσ

′ , {A
(2)
1

(σ), A
(3)
2

(σ′)}′ = −
1

4
[C

(22)
12

, C
(1)
2

]δ
σσ

′ ,

{A
(3)
1

(σ), A
(3)
2

(σ′)}′ = −
1

2
[C

(31)
12

, A
(2)
−2

]δ
σσ

′ , {A
(0)
1

(σ),Π
(1)
2

(σ′)}′ = −
3

8
[C

(00)
12

, C
(1)
2

]δ
σσ

′ ,

{A
(0)
1

(σ),Π
(2)
2

(σ′)}′ = −
1

2
[C

(00)
12

, A
(2)
−2

]δ
σσ

′ , {A
(0)
1

(σ),Π
(3)
2

(σ′)}′ = −
1

4

[

C
(00)
12

, A
(3)
2

+
1

2
C
(3)
2

]

δ
σσ

′ ,

{A
(1)
1

(σ),Π
(1)
2

(σ′)}′ =
1

4
[C

(13)
12

, A
(2)
+2

]δ
σσ

′ , {A
(1)
1

(σ),Π
(2)
2

(σ′)}′ =
1

4
[C

(13)
12

, C
(3)
2

]δ
σσ

′ ,

{A
(1)
1

(σ),Π
(3)
2

(σ′)}′ =
3

8
[C

(13)
12

, C
(0)
2

]δ
σσ

′ , {A
(2)
1

(σ),Π
(1)
2

(σ′)}′ =
1

8
[C

(22)
12

, C
(3)
2

]δ
σσ

′ ,

{A
(2)
1

(σ),Π
(2)
2

(σ′)}′ =
1

4
[C

(22)
12

, C
(0)
2

]δ
σσ

′ , {A
(2)
1

(σ),Π
(3)
2

(σ′)}′ = −
1

8
[C

(22)
12

, C
(1)
2

]δ
σσ

′ ,

{A
(3)
1

(σ),Π
(1)
2

(σ′)}′ =
1

8
[C

(31)
12

, C
(0)
2

]δ
σσ

′ , {A
(3)
1

(σ),Π
(2)
2

(σ′)}′ = −
1

4
[C

(31)
12

, C
(1)
2

]δ
σσ

′ ,

{A
(3)
1

(σ),Π
(3)
2

(σ′)}′ = −
1

4
[C

(31)
12

, A
(2)
−2

]δ
σσ

′ , {Π
(1)
1

(σ),Π
(1)
2

(σ′)}′ = −
1

8
[C

(13)
12

, A
(2)
+2

]δ
σσ

′ ,

{Π
(1)
1

(σ),Π
(2)
2

(σ′)}′ = −
1

8
[C

(13)
12

, C
(3)
2

]δ
σσ

′ , {Π
(1)
1

(σ),Π
(3)
2

(σ′)}′ = −
3

16
[C

(13)
12

, C
(0)
2

]δ
σσ

′ ,

{Π
(2)
1

(σ),Π
(2)
2

(σ′)}′ = −
1

4
[C

(22)
12

, C
(0)
2

]δ
σσ

′ , {Π
(2)
1

(σ),Π
(3)
2

(σ′)}′ = −
1

8
[C

(22)
12

, C
(1)
2

]δ
σσ

′ ,

{Π
(3)
1

(σ),Π
(3)
2

(σ′)}′ = −
1

8
[C

(31)
12

, A
(2)
−2

] δ
σσ

′ .

B Additional Z2-grading

Besides the Z4-grading of f introduced in section 2, throughout the article we make extensive

use of an additional Z2-grading of f [18]. We list here its definition and main properties.

We follow the conventions of [18] with regards to the Lie superalgebra psu(2, 2|4).
Defining the matrix

T =
i

2
diag(1, 1,−1,−1, 1, 1,−1,−1) , (B.1)

it can be used to define a Z2-grading f = f[0] ⊕ f[1] by setting

f[0] = {M ∈ f | [T,M ] = 0} , f[1] = {M ∈ f | [T,M ]+ = 0} . (B.2)

The projectors onto the respective spaces in (B.2) are given by

M [0] = −[T, [T,M ]+]+ and M [1] = −[T, [T,M ]] . (B.3)

Note that f[0] = Ker(adT ) and an alternative characterization of f[1] is given by f[1] =

Im(adT ). This leads at once to Str(f[0]f[1]) = 0.

The subspace f(2)[0] is two dimensional, and defining the matrix

W = diag(1, 1, 1, 1,−1,−1,−1,−1) ,

it is spanned by T and T̃ =WT . The matrix T̃ is conjugate to T by an element of G [22].
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C Derivation of the Hamiltonian

In this appendix we derive the Hamiltonian (4.6) governing the dynamics of the AdS5×S5

semi-symmetric space sine-Gordon theory, after eliminating the constraints χ2, χ3 explicitly

and gauge fixing the invariance generated by χ1.

The Hamiltonian obtained from the action (4.1) by Legendre transform reads

H ′ =

∫
dσ Str

[
1

4

(
JL

2 + JR
2
)
− 1

2
ψ(3)[T, ∂σψ

(3)] +
1

2
ψ(1)[T, ∂σψ

(1)]

− µ2g−1TgT − µg−1ψ(3)gψ(1) + JR(B0 +B1)− JL(B0 −B1) + 2B2
1

+
1

2
ψ(3)

[
T, [(B0 +B1), ψ

(3)]
]
+

1

2
ψ(1)

[
T, [(B0 −B1), ψ

(1)]
]]
. (C.1)

One can use the definitions (4.3b) and (4.3c) of the constraints χ3 and χ4 to rewrite this as

H ′ =

∫
dσ Str

[
1

4

(
JL

2 + JR
2
)
− 1

2
ψ(3)[T, ∂σψ

(3)] +
1

2
ψ(1)[T, ∂σψ

(1)]− µ2g−1TgT

− µg−1ψ(3)gψ(1) +B0(χ3 − χ4) +B1(χ3 + χ4 − 2B1)

]
. (C.2)

We may add to the Hamiltonian density a term proportional to the square of any constraint

since this has no effect on the dynamics along the constraint surface. Adding −1
4 Str(χ

2
4),

the last two terms in (C.2) may then be rewritten as

B0(χ3 − χ4) +B1(χ3 + χ4 − 2B1)−
1

4
χ2
4 = (B0 +B1)χ3 −B0χ4 −

(
1

2
χ4 −B1

)2
−B2

1 .

As explained in section 4, we may impose the constraint χ3 = 0 strongly by introducing

a Dirac bracket for the constraints χ2 and χ3. Using the explicit expression (4.3c) for χ4

we have 1
2χ4 − B1 = 1

2JL
[0] + 1

4

[
ψ(1), [T, ψ(1)]

]
. We should then also replace B1 by the

expression in (4.4). Putting all of this together we obtain the Hamiltonian governing the

dynamics of the remaining fields

H ′ =

∫
dσ Str

[
1

4

(
JL

[1]JL
[1]+JR

[1]JR
[1]
)
− 1

2
ψ(3)[T, ∂σψ

(3)]+
1

2
ψ(1)[T, ∂σψ

(1)]−µ2g−1TgT

− µg−1ψ(3)gψ(1)− 1

16

[
ψ(3), [T, ψ(3)]

][
ψ(3), [T, ψ(3)]

]
− 1

16

[
ψ(1), [T, ψ(1)]

][
ψ(1), [T, ψ(1)]

]

− 1

4
JL

[0]
[
ψ(1), [T, ψ(1)]

]
+
1

4
JR

[0]
[
ψ(3), [T, ψ(3)]

]
−B0χ4

]
. (C.3)

One can check that it preserves the constraint χ4. At this point there remains two gauge

invariances generated by the first-class constraints χ1 and χ4. We therefore add to the

Hamiltonian density the linear combination Str(v0χ1 + λχ4) where v0 and λ are Lagrange

multipliers. We fix the invariance generated by χ1 by imposing the condition B0 = 0.

Preserving this constraint requires v0 = 0 and we arrive at the Hamiltonian (4.6).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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