
A Parallel Pipelined Processor with Conditional Instruction
Execution

Rod Adams and Gordon Steven
Division of Computer Science

Hatfield Polytechnic
College Lane

Hatfield
Herts ALl0 9AB

UK

Abstract

In a recent paper by Smith, Lam and Horowitz [1] the concept of 'boosting' was
introduced, where instructions from one of the possible instruction streams
following a conditional branch were scheduled by the compiler for execution in the
basic block containing the branch itself. This paper describes how code from both
instruction streams following a conditional branch can be considered for execution
in the basic block containing the branch. Branch conditions are stored in Boolean
registers and all instructions are conditionally executed based on the value in a
Boolean register. The two instruction streams can therefore be executed on
complementary values of the same Boolean register.

1. Introduction

HARP (the HAtfield R_isc lJrocessor) [2,3] is a parallel pipelined RISC processor currently
being developed at Hatfield Polytechnic. The major aim of the HARP project is to develop a
.processor which will execute non-scientific programs at a sustained instruction execution rate
m excess of one instruction per cycle.

This goal will be achieved by the simultaneous development of the processor architecture and
an optimising compiler. The compiler's role is to schedule independent instructions for a set of
parallel pipelines provided by the processor. The compiler detects independent short
RISC-type instructions which can be executed in parallel and packs them into long instruction
words. The processor fetches these long instruction words from an instruction cache and
passes the component short instructions independently through the multiple pipeline structure.

In HARP all instructions are executed conditionally. This conditional execution is used to
increase the amount of realisable parallelism in general purpose code. For example, it allows
instructions from both instruction streams following a conditional branch to be moved or
copied into the basic block containing the branch instruction. Conditional execution is made
possible by using Boolean registers to hold the result of a compare instruction. The two
Instruction streams can then be executed conditionally on complementary values of the same
Boolean register.

This paper outlines the major ideas behind the HARP concept. Section two of this paper
expounds the HARP approach to the production of a parallel pipelined RISC processor, while
section three briefly introduces the major features of the HARP architectural model [4]. The
main section, section four, discusses how the compiler makes use of conditional instruction
execution to schedule additional instructions in parallel. Finally, in section five, a brief
comparison is given between conditional execution and the instruction boosting scheme
proposed in the paper by Smith, Lam and Horowitz [1].

135

2. The HARP Approach

Unlike most other LIW (Long Instruction Word) processors, HARP aims to exploit the
low-level parallelism available in systems programs and general purpose computations.
Floating-point calculations and heavily iterated loops are less important in general purpose code
than in scientific applications. In scientific applications the critical factor which determines
execution time is the interval between the start of successive loop iterations, whereas in general
purpose computations the major barrier to improved instruction throughput is the limited
parallefism available within basic code blocks.

Other investigations [5-8] suggest that the potential for parallelism within basic blocks is
limited to an average of no more than two instructions per execution cycle. Parallelism is
limited by the data dependencies between instructions and by the short length of basic blocks.
As a result HARP alms to improve performance by minimising the latency between pairs of
dependent instructions. Furthermore, the HARP compiler increases the potential for parallel
instruction execution by overlapping the execution of instructions from distinct basic blocks
and merging separate basic blocks into single units.

Work at Hatfield is being carried out using a small research compiler which takes a simple
block structured language with Modula-2 syntax and compiles it into HARP code. The
compiler output is verified using a simulation of the HARP model written in the hardware
description language, ELLA [9]. Results from a variety of benchmarks are being used to
finalise the specification of a HARP VLSI processor chip containing four pipelines, which is
being designed in collaboration with the Division of Electrical Engineering.

3. Summary of the Prototype Chip (i H A R P)

In contrast to most RISC pipelines there is no load delay. The use of an ORed indexing
addressing mechanism [10,11] allows data loaded from the data cache in one instruction to be
used directly as an operand in an immediately following one. It also allows the number of
pipeline stages to be reduced from five to four. In HARP conventional condition codes are
replaced by a group of Boolean flags or registers which record the results of specific
comparisons. Branch instructions then test one of the Boolean registers.

3.1 The ORed Indexing Addressing Mechanism

HARP has two addressing modes, register indirect plus index, and register indirect plus offset.
The address units compute memory addresses by ORing the two address components. In
order to use this mechanism, the compiler must ensure that the OR operation is equivalent to an
addition. For example, to access a local variable on the stack an offset must be added to the
stack pointer.

I.D R20, offset (SP)

The compiler attempts to ensure that the stack pointer always contains a multiple of a power of
two and that the offset is always less than that power of two. As long as this is the case the
stack pointer and offset will never have any non-zero bits in common and so can be safely
ORed together to achieve an addition.

3.2 The Instruction Execution Pipeline

Data dependencies between instructions constitute a major obstacle to high instruction
throughput in all architectures.

136

HARP therefore uses a steamlined four-stage pipeline and unrestricted register bypassing to
allow operands computed or loaded by one long instruction to be used by instructions in the
immediately following long instruction. A two instruction branch architecture is also used to
reduce the branch delay to one cycle.

The ORed indexing addressing mechanism allows memory addresses to be made available at
the end of the Instruction Decode stage of the pipeline and so allows the ALU and Memory
Reference operations, which often represent two stages of a pipeline, to be combined into one
stage. Hence HARP has the following four stage pipeline [12].

IF
RF

ALU/MEM

WB

Fetch long instruction from instruction cache
Instruction decode & Register Fetch
Calculate branch addresses in PC unit
OR memory address components in address units
AIM operation or Boolean operation
Memory Reference
Write Back

Five stage pipelines, such as the MIPS-X pipeline [13,14], incur a load delay of one cycle.
Other four stage pipelines have a two-cycle Load with the address being calculated in one cycle
and the data accessed in the second cycle. The HARP pipeline has a one-cycle Load instruction
(providing a cache hit occurs), and it eliminates the load delay as the following diagram
illustrates.

IF RF ALU/MEM WB
--> data available

No Delay Slot. here and bypassed
to=->

IF RF ALU/MEM WB

3.3 Boolean Registers and Branching

Boolean registers remove the resource bottleneck of a single condition code register and
increase the opportunities for producing parallel code. The Boolean registers allow all
instructions to be conditionally executed, with each short instruction independently testing one
of the Boolean registers. Testing B0 - which contains a value representing logical FALSE - is
used to ensure sequential instruction execution when required. Conditional execution allows
basic blocks to be merged and considerably eases the problem of filling branch delay slots.

Branch instructions test a specific Boolean register. An unconditional branch, BRA, is
provided at assembly language level and implemented by testing B0. A branch to subroutine
instruction, which saves the return address in a general purpose register on procedure entry, is
also provided. A 'move register to PC' instruction reverses this operation on procedure exit.

Branch instructions which cause a pipeline to stall or be flushed have a major impact on
pipeline efficiency. The cost of a branch instruction, in terms of the total number of cycles
taken, depends on the choice of branch architecture and the pipeline structure [15]. In a two
instruction branch sequence the result of a test or compare instruction is stored in a register, or
in flags, and the result is then used by a separate branch instruction. Single instruction
branches specify the operands to be compared, the branch condition and the branch address in
one instruction.

HARP uses a two instruction branch mechanism. Relational or Boolean instructions return a
value to a Boolean register which is then tested by a subsequent branch instruction. Using a

!37

two instruction branch sequence results in a branch delay of one cycle.

The two instruction branch sequence was chosen because

• using two instructions rather than one is less significant in a parallel architecture,

• a separate compare instruction can be scheduled independently in any instruction slot
preceding the branch,

• the result of the comparison is made explicitly available in a Boolean register.

The final point is crucial in HARP since the Boolean registers are also used to provide
conditional instruction execution.

4. Conditional Execution of Instructions

HARP does not have conventional condition codes but instead provides a set of one-bit
Boolean registers. The contents of these registers are directly manipulated by the Boolean
instructions and are also tested by the conditional branch instructions. The Boolean registers
are used to implement conditional instruction execution. All short instructions, including the
conditional branch instructions and the jump to subroutine instruction, may be conditionally
executed. Execution depends on the value contained in the Boolean register specified in the
instruction. For example

TB1 SUB R15, R16, R17 * if Boolean register B 1 contains the value TRUE
• R15 := R16- R17

HARP's instruction timings [4] allow a Boolean value computed in one instruction to control
the execution of an immediately following instruction.

While the appropriate unit in computational, relational and Boolean instructions will always
compute a result during the execution of the instruction, the final register write back cycle is
only enabled if the execution condition is met. In the case of a memory access instruction, a
data cache cycle is not initiated if the execution condition fails. Finally, in the case of a branch
instruction both the execution condition and the branch condition must be true for the branch to
be taken.

HARP's conditional instruction execution facility is a generalisation of a mechanism provided
on the Acorn ARM. On ARM all instruction execution is controlled by conventional
conditional codes, which are optionally set by computational instructions [16,17].

The compiler uses conditional execution to make full use of the branch delay slot in the
compiled code, by moving or copying code from both successor blocks in a conditional
branch, and to reduce the number of basic blocks, by conditionally executing both branches of
an 'if then else' in parallel.

i

4.1 Filling the Branch Delay Slot

Conditional execution is used to fill branch delay slots with code from both successor blocks.
A major advantage of placing conditionally executed code in the delay slots is that global data
flow analysis is no longer required to determine whether instructions can be safely moved
between basic blocks. The instructions that are moved or copied into the delay slots are only
executed when the attached condition indicates that they would have been executed after the
branch instruction.

138

The principles involved in using conditional execution to produce parallel HARP code can be
illustrated by a simple example.

Loop: LD R2, (SP, R1)
ADD R1, R1, R2
GTS B1, R1, R3
BF B1, Loop
NOP
LD R4, (SP, R1)
ADD R5, R4, R3
<next instruction>

*SP is the stack pointer

*B 1 now contains the branch condition
*Branch if B 1 is FALSE

The code consists of two basic blocks and is only entered at the 'Loop' label. The branch
delay slot is indicated by the NOP instruction.

Code can be moved or copied in parallel with the conditional branch instruction itself (BF B 1,
Loop) and into the branch delay slot by making it conditional on the branch condition - namely
the value in Boolean register B 1.

If the value in B 1 is TRUE then the sequential code will be executed so these two lines of code
can be moved in parallel on the condition TB1 (TRUE B1).

Loop: LD R2, (SP, R1)
ADD R1, R1, R2
GTS B1, R1, R3
BF B 1, Loop;

<next instruction>

TB1 LD R4, (SP, R1)
TB 1 ADD R5, R4, R3

If the value in B 1 is FALSE then the branch will be taken so the code from the branch target
can be copied in parallel on the condition FB1 (FALSE B1).

Loop: LD R2, (SP, R1)
ADD R1, R1, R2

Loop+2: GTS B1, R1, R3
BF B 1, Loop+2;

<next instruction>

TB1 LD R4, (SP, R1); FB1 LD R2, (SP, R1)
TB1 ADD R5, R4, R3; FB1 ADD R1, R1, R2

Note that the code concerned was copied rather than moved since the code fragment shown is
entered at the 'Loop' label. In practice this label is often the target of another jump and the two
lines of code could end up being moved out to another branch slot.

The original code contains seven lines of sequential instructions while the final code contains
five lines of parallel instructions. However, the loop itself has been reduced from five
sequential short instructions to three long instruction words. The final code still consists of
two basic blocks. However, if the top two lines are moved into another block then the final
code fragment would consist of just one basic block.

4.2 Reduc ing the N u m b e r of Basic Blocks

The reduction in the number of basic blocks achieved by conditionally executing a piece of
code involving an 'if the else' can be seen by considering the following code fragment.

139

Else:

Out:

GTS B1, R1, R2
BF B1, Else
NOP
LD R3, (SP, R1)
ADD R1, R1, R3
BRA Out
NOP
LD R4, (SP, R2)
ADD R2, R2, R4
<next instruction>

When conditional execution is used to overlap the basic blocks the code produced is
considerably reduced, partly because the unconditional branch is no longer required.

GTS B1, R1, R2
TB1 LD R3, (SP, R1); FB1 LD R4, (SP, R2)
TB1 ADD R1, R1, R3; FB1 ADD R2, R2, R4
<next instruction>

While the original code had four basic blocks, the final code has only one. Furthermore, the
final code is a fragment embedded in a larger basic block which may now yield further
parallelism.

5. Conditional Execution versus Boosting

Smith, Lam and Horowitz [1] introduce the concept of 'boosting', whereby instructions from
one of the possible instruction streams following a conditional branch are scheduled by the
compiler for execution in the basic block containing the branch itself. The values computed by
these instructions are put into shadow registers until the result of the branch is known. If the
result of the branch is successfully predicted the shadow values are then copied into the
appropriate register in the sequential register file. If the prediction is incorrect the results are
squashed.

The use of conditional execution allows both instruction streams following a conditional branch
to be scheduled in parallel with the branch and its delay slot. Consequently there is a greater
potential for reducing the number of long instructions in a program than could be achieved by
'boosting' a single instruction stream. 'Boosting', on the other hand, allows code from the
chosen instruction path to be moved further up in the basic block than does the method
described in this paper. Our experience has been, though, that basic blocks are quite short -
especially after parallelising the code using conditional execution - so that very little would be
gained by this.

In any larger basic blocks boosting could allow code to be moved substantially ahead of both
the compare and branch instructions. In HARP, since the result of a compare instruction is
held in a Boolean register, the compare instruction itself could be moved up in the basic block
away from the branch instruction. Consequently code could be conditionally executed in
parallel with all the instructions following the compare instruction and not just in parallel with
the branch instruction and its delay slot.

The 'boosting' scheme of Smith et al requires the use of profiling to determine the most-likely
branch path through the program, or some other method of individual branch prediction. If the
branch prediction is incorrect then no advantage is gained. In HARP there is no need to
perform any profiling and the advantages are there whichever branch path is taken.

If profiling is used to predict the outcome of a number of branches in succession, then the

140

boosting scheme can be extended to allow code movement through multiple blocks in a manner
similar to Fisher's trace scheduling [18]. This could not be achieved in HARP, though the
code that is produced by HARP is more compact than that due to boosting.

Finally, HARP only requires a set of single bit Boolean registers to implement conditional
execution, whereas the boosting scheme requires the duplication of the complete register set.

6. Conclusions

This paper has described how the distinctive features of HARP are combined with an
opfimising compiler to increase instruction throughput and to utilise the low-level parallelism
available in general purpose code.

Section three of this paper described the features adopted in HARP to increase instruction
throughput by reducing instruction latency, such as the ORed indexing addressing mechanism,
the compact four-stage pipeline, unrestricted register bypassing and a single branch delay slot.
It also introduced the concept of multiple Boolean registers which are used with great effect to
maxirnise the parallel execution of code by allowing the independent conditional execution of
all short instructions.

Section four described how conditional execution was utilised and illustrated this with
examples. Conditional execution allows the compiler to combine basic blocks and increase the
amount of realisable parallelism. Conditional execution is also fundamental to a delayed branch
scheme which overlaps the execution of instructions from distinct basic blocks. The global
data flow analysis that is needed in order to move instructions between basic blocks in other
implementations is not needed with this scheme. Nor is there any need to perform any sort of
profiling to determine the most-likely branch path through the program as is needed in other
schemes.

The success of the project ultimately depends on how successfully the compiler schedules
instructions in parallel. Initial results are encouraging. Short benchmarks suggest that
instruction scheduling will reduce the instruction count of sequential HARP code by about
55%. This figure corresponds to a reduction of about 45%, if it is assumed that all the branch
delay slots have already been filled. These results require an average of about two short
instruction to be scheduled in every long instruction and suggest that it is realistic to fabricate a
HARP processor chip capable of achieving a sustained instruction execution rate significantly
in excess of one instruction per cycle.

A c k n o w l e d g e m e n t s

The authors gratefully acknowledge the support of the other members of the HARP team. In
particular they would like to thank Sue Gray for her major contribution to the whole HARP
project, Gordon Green for his work on the ELLA simulation and Paul Findlay, Brian Johnson
and Simon Trainis for their work on the design of the HARP processor chip.

They would also like to thank Dr. S. L. Stott, Professor L.C.W. Dixon and J. A. Davis for
their support throughout the HARP project.

The HARP project is supported by S.E.R.C. Research Grant GR/F 88018. Part of this work
was also supported by a S.E.R.C. Research Studentship.

141

References

[1] M.D. Smith, M. S. Lam and M. A. Horowitz, Boosting Beyond Static Scheduling in a
Superscalar Processor, Proc. 17th Ann. Int. Symp. Computer Architecture (1990)
344-354.

[2] G.B. Steven, S. M. Gray and R. G. Adams, HARP: A Parallel Pipelined RISC
Processor, Microprocessors and Microsystems , Vol 13, No 9 (November 1989)
579-587.

[3] R .G. Adams, S. M. Gray and G. B. Steven, Utilising Low Level Parallelism in
General Purpose Code: The HARP Project, to appear in Microprocessing and
Microprogramming.

[4] G.B. Steven and S. M. Gray, Specification of a Machine Model for the HARP
Architecture and Instruction Set, Version 2, Computer Science Technical Report,
HatfitAd Polytechnic (1990).

[5] W.W. Hue and P. P. Chang, Exploiting Parallel Microprocessor Microarchitectures
with a Compiler Code Generator, Proc. 15th Ann. Int. Symp. Computer Architecture,
(June 1988) 45-53.

[6] C.C. Foster and E. M. Riseman, The Inhibition of Potential Parallelism by Conditional
Jumps, IEEE Trans. Comput., Vol C-21, (December 1972) 1405-1411.

[7] C.C. Foster and E. M. Riseman, Percolation of Code to Enhance Parallel Dispatching
and Execution, IEEE Trans. Comput., Vol C-21, (December 1972) 1411-1415.

[8] A.R. Pleszkun and G. S. Sohi, The Performance Potential of Multiple Functional Unit
Processors, Proc. 15th Ann. Int. Symp. Computer Architecture, (June 1988) 37-44.

[9] G.J . Green, Simulation of the HARP Architecture in ELLA, Computer Science
Technical Report, Hatfield Polytechnic (1990).

[10] G. B. Steven, A Novel Effective Address Calculation Mechanism for RISC
Microprocessors, ACM Computer Architecture News, Vol 16, No 4 (September 1988)
150-156.

[11] A. Glew, ORed Indexing, Unpublished Communication from Author, (April 1989).
[12] S.M. Gray, Considerations in the Design of an Instruction Pipeline for a Reduced

Instruction Set Computer, Computer Science Technical Report, No 83, Hatfield
Polytechnic (1988).

[13] P. Chow, MIPS-X Instruction Set and Programmer's Manual, Technical Report No
CSL-86-289, Computer Systems Laboratory, Stanford University, California, USA
(May 1986).

[14] M. Horowitz, P. Chow, D. Stark, R. T. Simoni, A. Salz, S. Przybylski, J. Hennessy,
G. Gulak, A. Agarwal and J. M. Acken, MIPS-X: A 20-MIPS Peak, 32-bit
Microprocessor with On-Chip Cache, IEEE J. Solid State Circuits, Vol SC-22, No 5
(October 1987) 790-799.

[15] S. McFarling and J. Hennessy, Reducing the Cost of Branches, Proc. 13th Ann. Int.
Symp. Computer Architecture, (June 1986) 396-403.

[16] S. Furber, VLSI RISC Architecture and Organization, Marcel Dekker Inc., New York,
(1989).

[17] VL86C010 32-Bit RISC MPU and Peripherals Users Manual, VLSI Technology Inc,
Prentice-Hall, New Jersey (1989).

[18] J.A. Fisher, Very Long Instruction Word Architectures and the ELI-512, Proc. lOth
Ann. Int. Symp. Computer Architecture (1983) 140-150.

142

