
 

Abstract High capacity associative memory models with

dilute structured connectivity are trained using naturalistic

bitmap patterns.  The connectivity of the model is chosen to

reflect the local spatial continuity of the data.  The results

show that the structured connectivity gives the networks a

higher effective capacity than equivalent randomly diluted

networks.  Moreover the locally connected networks have a

much lower mean connection length than the randomly

connected network.  It is shown that a small amount of

additional connectivity can correct any neurons that fail to

train.

Index Terms Associative Memory, Neural Network,

Dilution, Capacity.

I. INTRODUCTION

High capacity associative memory models can be

constructed from networks of perceptrons, trained using the

normal perceptron training procedure.  Such networks have

a capacity much higher than that of the standard Hopfield

network, and in fact their capacity is related to the capacity

of a single perceptron.  A perceptron with N inputs can

learn 2N random unbiased (not correlated) patterns, giving

a capacity 2, but this capacity is increased beyond 2 if the

training set is correlated [1].  This implies that a Hopfield

network of N units, when trained using Perceptron learning,

will have also have a capacity of 2.  These improvements in

capacity are matched by improvements in the performance

of the networks as associative memories: the attractor basin

size of trained patterns is increased.

In this paper we are interested in networks with diluted

connectivity, where an individual perceptron is connected

to only a fraction of the other perceptrons in the network.

Diluting these networks on a random basis causes the

capacity to fall in a roughly linear way with the fraction of

connections removed [2].

In diluted networks a perceptron only sees a particular

fragment of the training set, namely that part that comes

from its connected units.  We are interested in whether

characteristics of certain types of training data can be

exploited by diluting the network connectivity in a definite,

structured way.  In particular we investigate whether

networks with a specific pattern of reduced connectivity

can give enhanced performance with naturalistic, bitmap

training patterns with inherent spatial continuity.

Sections II, III and IV describe the Network Dynamics,
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Network Topology and Training Procedure respectively.

Sections V and VI discuss the effect that correlation in the

data may have on capacity and the correlations that are

present in our data.  Sections VII and VIII give the results

and Section IX concludes.

II. NETWORK DYNAMICS

All the high capacity models studied here are

modifications to the standard Hopfield network. The net

input, or local field, of a unit, is given by: hi = wijS j
j i

where S is the current state and wij  is the weight on the

connection from unit j to unit i. The dynamics of the

network is given by the standard update:  S i = (hi) , where

 is the heaviside function.  Unit states may be updated

synchronously or asynchronously.  Here we use

asynchronous, random order updates.  A symmetric weight

matrix and asynchronous updates ensures that the network

will evolve to a fixed point.  If a training pattern µ  is one

of these fixed points then it is successfully stored, and said

to be a fundamental memory.  A network state is stable if,

and only if, all the local fields are of the same sign as their

corresponding unit, equivalently the aligned local fields,

hiSi , should be positive.

III. NETWORK TOPOLOGY

Associative memory models based on the Hopfield

architecture are usually fully connected, so that any spatial

relationship between the units in the network is irrelevant.

Here, however, we arrange the units in the network into a

two dimensional grid, as in a two dimensional SOM [3].

The reason for this choice is that this structure matches the

correlation in the two dimensional data sets used (see

Section VI).  This introduces a topology on the units in the

network that can be used to define a distance between any

two units in the network.  We use square neighbourhoods

(as is normally the case in a SOM), so that the 8-units in the

immediate square around a unit are defined to be at unit

distance from that unit, as shown in Figure 1.  We say that

the network has structured connectivity with d = 1 if every

unit is connected to every other unit at distance 1 and no

others, and has structured connectivity with d = 2 if every

unit is connected to every other unit at distance of not more

than 2, and so on.  Note that this is a symmetric connection

strategy.  Wraparound on the grid is not used, so that the

edge units have fewer connections than the inner units.  For

comparison purposes we also use networks with random

diluted connectivity, so that a random proportion of

connections are removed prior to training.
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Figure 1.  A small network in which neighbourhood connectivity has been

established at a distance (d) of 1.  Connections are shown for two neurons

as an example.

IV. TRAINING

The networks are trained using a modification of the

normal perceptron training rule that ensures symmetric

weights [1].  The algorithm is:

Begin with zero weights
Repeat until all local fields are correct

 Set state of network to one of the 
p

 For each unit, i, in turn:

 Calculate hi
p

i
p.  If this is less than T

   then change the weights to unit i
   according to:

    j i  w ij = wij +
i
p

j
p

N
 w ji = w ji +

i
p

j
p

N

Where 
p

 denotes the training patterns, and T is the

learning threshold which here has the value of 0.  All

weights on removed connections are fixed at zero

throughout.

V. CAPACITY RESULTS FOR PERCEPTRON NETWORKS

A perceptron with N inputs can learn up to 2N random

patterns, and as the correlation in the training set increases

so does the capacity of the perceptron.  Imposing symmetry

on the weights, in a network of perceptrons, does not affect

this maximum capacity [4]: even with uncorrelated training

sets capacity may be greater than 2N.  This occurs when

correlated subsets of the training set have correlated outputs

[5].  So, for example, if pairs of the training set are

correlated and have the same output then the training set is

more likely to be learnable.  Put simply, if similar patterns

have the same label then a perceptron is more likely to be

able to learn the classification.  The increasing capacity is

shown in Figure 2.  As the normalized pair wise overlap  of

training patterns with the same output increases to its

maximum of one then the capacity approaches four.

Figure 2.  The capacity of a perceptron as the pair wise normalized overlap

of training patterns with the same output, is varied (x-axis).  With zero

pair wise overlap the normal capacity of 2 is shown, but as overlap

increases so does the capacity, approaching a limiting value of 4.  Taken

from Lopez et al [5].

VI. TRAINING SETS USED

Two sets of training patterns, representing reasonably

naturalistic images were created. All the generated patterns

were 400 bits, 20 by 20 bitmap images, with black as –1

and white as +1.  The geometric data uses solid geometric

shapes placed at random within the 2-dimensional grid.

Each image has four random shapes taken from: triangles,

squares or circles.  Shapes may overlap but are clipped if

they overrun an edge.  The character data consists of alpha-

numeric bitmaps.  Examples from these data sets are shown

in Figure 3.

Figure 3.  Example bitmaps from the geometric (above) and character

training sets.

The geometric data set is roughly unbiased (bias, the

proportion of +1’s, is 0.52), whereas the character data has

a bias of 0.2, since the image is mainly the black

background (-1).  Both sets have the desired characteristic

of within pattern spatial continuity.  This can be seen in the

mean local correlation of the images, for different

neighbourhood sizes, see Tables 1 and 2.  For both data sets



the correlation of individual bits with their neighbours

decreases as that neighbourhood is increased.

TABLE I.

MEAN LOCAL CORRELATION FOR THE GEOMETRIC IMAGES

Neighbourhood Size, d Mean Local Correlation

1 0.89

2 0.83

3 0.77

4 0.72

5 0.68

Full Grid 0.5161

TABLE II.

 MEAN LOCAL CORRELATION FOR THE CHARACTER IMAGES

Neighbourhood Size, d Mean Local Correlation

1 0.87

2 0.78

3 0.74

4 0.71

5 0.70

Full Grid 0.68

VII. FAILED NEURON RESULTS

The networks used here are highly diluted, for example

in networks with structured connectivity at d = 1 (units

connected to those in an immediate square neighbourhood

only) each unit is connected to no more than 8 other units,

and corner units are connected to only 3 other units.  So

with any training set it is very likely that some units will

fail to train.  We therefore report the number of units that

fail to train at a given loading and expect this figure to be

lower for networks with structured connectivity than for

those with the same level of random connectivity.  The

network is trained for 1000 epochs, well beyond the

number of epochs normally required for convergence at the

kind of loadings we use here.  The number of units that

have failed to converge at this point is counted.

A. Geometric Data

Figure 4 shows how the number of neurons that fail to

train increases with the loading on the network.  For

comparison the results for networks with equivalent levels

of random connectivity are also shown in Figure 5. The

randomly connected networks show the expected pattern.

The capacity of such networks should be about 2n where n

is the number of inputs for each perceptron.  So that for the

random network with a mean connection per neuron of just

under 8 (equivalent to the d = 1 structured network) most

units should fail with about 16 patterns – a loading of

16/400 or 0.04.  However the structured network shows a

very different pattern at this level of connectivity with a

roughly linear increase in failed neurons as the loading

increases, but no sudden jump in the failure rate.

Remarkably the d = 3 network (each unit having roughly 40

inputs) has a very low failure rate throughout the loading

range – up to 100 patterns.  The equivalent randomly

connected network has more than half the units failing to

train with 75 patterns in the training set (loading = 0.1875).
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Figure 4.  Failed neuron count against increasing pattern load for networks constructed with structured connectivity at levels of 7.41, 21.09, 39.96, 63, and

89.25 mean connections per neuron (corresponding to d = 1, d = 2 etc) and trained using geometric data.  Mean values over 5 runs at each loading are

given.
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Figure 5.  Failed neuron count against increasing pattern load for networks constructed with random connectivity trained with using geometric data.  The

level of mean connections per neuron was the same as that for the structured connectivity. Mean values over 5 runs.
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Figure 6.  Failed neuron count against increasing pattern load for networks constructed with structured connectivity trained using character data.  Mean

values over 5 runs.
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Figure 7.  Failed neuron count against increasing pattern load for networks constructed with random connectivity trained using character data.  Mean

values over 5 runs.



B. Character Data

The character data is biased and so the capacity of an

individual perceptron should here be higher than for the

unbiased geometric data.  However the dramatic benefit of

structured local connectivity is even more apparent here,

see Figures 6 and 7.  Once again the d = 3 network shows

very low failure rate across all loadings and even the d = 2

network has less than 25% failures at the top loading of

0.25 (100 patterns).

VI11 DEALING WITH THE FAILED NEURONS

Of course a network in which a number, albeit small, of

neurons fail to learn the training data is not satisfactory.  To

deal with these units we simply add additional, random,

connectivity.  Since the probabilty that a perceptron will

fail to learn decreases as the number of inputs increases

(assuming fixed loading), we can deal with these units by

giving them additional connections.  The specific method

we employ is to train the network with normal local

connectivity.  For each unit that has failed to learn its

training set, an additional, symmetric connection is added

between it and a randomly chosen target.  Any unit with

changed connectivity is now retrained.  The process is

repeated until all units have successfully learnt their

training set.

Figure 8 shows the resulting level of connectivity at

different loadings and for different neighbourhoods for the

geometric data.  It is apparent that only the d = 1 networks

required significantly more connections to learn the

training sets as the loading increased.  In fact the

connectivity required to learn 100 patterns (loading of 0.25)

in the d = 1 network was at least twice the original level, so

that more than half the connections had been added after

initial training.  The actual number of additional

connections needed to learn at a loading of 0.25 is shown in

Table 3.

TABLE III.

THE MEAN ADDED CONNECTIVITY PER NEURON NEEDED TO

LEARN 100 PATTERNS (LOADING 0.25) FOR 5 DIFFERENT

NEIGHBOURHOODS.  AVERAGES OVER 5 RUNS

d Added Connectivity

1 13.535

2 4.078

3 0.663

4 0.422

5 0.22

Figure 9 gives the storage efficiency, the ratio of patterns

stored to the mean connections per neuron, for the various

networks, at different loadings, once again using the

geometric data.  It can be seen that the d = 1 network is

consistently the most efficient of the networks at all

loadings.  Efficiency decreases as the neighbourhood

increases. Results for the Character data show a very

similar pattern.
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Figure 8.  Mean connections per neuron is plotted on the vertical axis as the loading increases on the horizontal axis.  Five different neighbourhoods are

shown, from d = 1, the lowest line, up to d = 5.
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Figure 9.  The storage efficiency of the 5 different neighbourhoods at varying loadings.  The vertical axis is the ratio of patterns stored to the mean

connections per neuron.  The horizontal axis shows increasing loading.

IX. DISCUSSION

Much natural data shows spatial and/or temporal

continuity and this aspect of the data could be exploited by

an engineered or evolved system – artefactual or natural.

Here we have shown that a simple associative memory

model, a network of perceptrons, can exploit the local

correlation present in simple bitmap images.  The effective

capacity (tolerating a small number of failed units) of the

networks with structured connectivity is much better than

those with an equivalent number of random connections.

A significant further benefit of the locally connected

networks should also be noted.  The mean connection

length is obviously much lower in these networks.  For

example the d = 1 network has mean connection length of

1, whereas the randomly connected network in a 20 by 20

grid has a mean connection length of about 9.3. This has

significance for any physical instantiation of these

networks.

For the small number of units that fail to train a small

amount of additional connectivity is shown to correct the

problem.  In fact only the d = 1 networks required a

significant amount of additional connectivity.

A more important problem with the idea of locally

structured connectivity is that the pattern

correction/completion behaviour of the network can be

adversely affected.  The recall process may get stuck in

patterns with large subdomains of errors [7].  The

subdomain may not have enough distal input to overcome

its locally stable configuration.  This issue may be

addressed by introducing further random connectivity and

the results of doing this are promising [6, 8].

In summary this paper has described how structured

local connectivity can increase the effective capacity of an

associative memory when dealing with spatially continuous

data and can produce large savings in the length of

connections required.
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