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Abstract

This paper presents a novel approach for integrating arrays with access time O(1) into

functional languages. It introduces n-dimensional arrays combined with a type system that

supports hierarchies of array types with varying shape information as well as a shape-

invariant form of array comprehension called with-loop. Together, these constructs allow

for a programming style similar to that of array programming languages such as Apl. We

use Single Assignment C (SaC), a functional C-variant aimed at numerical applications that

is based on the proposed design, to demonstrate that programs written in that style can be

compiled to code whose runtime performance is competitive with that of hand-optimized

Fortran programs. However, essential prerequisites for such performance figures are a shape

inference system integrated in the type system as well as several high-level optimizations. Most

notably of these is With Loop Folding, an optimization technique for eliminating intermediate

arrays.

Capsule Review

To me as a compiler writer, this work is unusually interesting because it transforms scientific

code in ways that have not been considered in high-performance compilers. For example,

because of the single-assignment nature of the language, loop fusion and array contraction

can be done without loop alignment or data liveness analysis. The combination of novel

program transformation and unique language support represents a fundamentally different

alternative to traditional approaches and significantly broadens the opportunities for loop

and array optimization. I believe that this work will find enthusiastic audience in the compiler

community.

1 Introduction

Functional programming languages have several conceptual advantages over im-

perative programming languages, such as referential transparency, Church–Rosser

Property, functions and complex data structures as first class objects. Nevertheless,

they did not yet find a broad acceptance by application programmers outside
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the functional community. The reasons for this situation are manifold and differ

depending on the field of application. Of primary interest in this paper are numerical

applications involving complex operations on multi-dimensional arrays. In this area

dominating aspects for the choice of a programming language are execution speed,

support for concurrent program execution and the potential for code reuse as well

as code maintenance of existing programs. On first sight, functional programming

languages seem to be particularly apt for these demands. The absence of side

effects allows high-level code optimizations to be applied more easily since all

data dependencies are explicit. Concurrently executable subexpressions can be

easily identified and the Church–Rosser Property guarantees determinate results

irrespective of execution orders. Last but not least, the functional paradigm allows

for a higher level of abstraction which usually improves the generality of programs

and thus simplifies reuse and maintenance of existing programs.

However, in contrast to the elaborate support for lists and list operations, support

for arrays with access time O(1) in most functional languages suffers from two

shortcomings: the means for specifying general abstractions over array operations

are very limited, and the apparatus that compiles/executes these specifications

usually lacks suitable optimization techniques for achieving competitive runtime

behavior (Hammes et al., 1997).

In the context of programming languages dedicated to array processing, powerful

means for specifying array operations in an abstract manner have been developed.

Starting out from a mathematical notation for arrays (Iverson, 1962), several so-

called array programming languages such as Apl (International Standards Organiza-

tion, 1984), Nial (Jenkins & Jenkins, 1993), J (Burke, 1996), or K (Kx Systems, 1998)

have evolved, each providing support for so-called shape-invariant programming, i.e.

they allow arrays to be uniformly treated irrespective of their dimensionalities and

their extent within the individual dimensions. Although these ideas have made their

way into imperative languages such as Fortran90 (Adams et al., 1992), Hpf (High

Performance Fortran Forum, 1994), or Zpl (Lin, 1996), functional languages usually

lack such features. Instead, most functional languages support arrays of fixed di-

mensionality combined with a so-called array comprehension construct for operations

on these data structures. Although these operations can be explicitly overloaded by

using type classes (Wadler & Blott, 1989), the dimensionalities of the arrays to which

such operations are applicable remain restricted.

In addition to these specificational shortcomings, the integration of arrays with

access time O(1) into functional programming languages introduces several problems

concerning runtime efficiency.

In fully-fledged functional languages some slowdown is introduced by supporting

functional frills such as partial application, lazy evaluation or dictionary-based

realizations of overloading (Field & Harrison, 1988; Peyton Jones, 1987; Bird &

Wadler, 1988; Reade, 1989; Plasmeijer & van Eekelen, 1993). Besides this loss of

performance (when compared against imperative languages that usually lack such

features), the particular problem of supporting arrays is to avoid superfluous creation

and copying of arrays, often referred to as the ‘aggregate update problem’ (Hudak

& Bloss, 1985; Gopinath & Hennessy, 1989; Baker, 1991).
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Some languages (e.g. ML (Milner et al., 1990) and its derivatives Caml (Leroy,

1997) and OCaml (Leroy et al., 2001)) try to circumvent this problem by introducing

arrays as state-full data structures and array modifications as destructive updates

irrespective of the number of references that exist to them. Although this measure

yields reasonable runtime efficiency, it may introduce side-effects and thus sacrifices

almost all of the benefits of the functional paradigm whenever arrays are involved.

Arrays are no longer first class objects and referential transparency is lost. As a con-

sequence, highly optimizing compilers for such languages have to deal with exactly

the same well-known difficulties concerning the inference of data dependencies as

compilers in the imperative world (Maydan, 1992; Wolfe, 1995; Roth & Kennedy,

1996; Appel, 1998; Allen & Kennedy, 2001).

Languages that support lazy evaluation (e.g. Haskell or Clean) are facing

other intricacies. Whenever strictness can not be inferred statically, it may happen

that several slightly modified versions of an array have to be kept in different

environments, thus leading to (temporary) space leaks. In the context of cons-lists or

quad-trees (Wise, 1985; Wise, 2000) this may not be considered harmful, since parts

of slightly varying data structures often can be shared within the heap. For arrays

with access time O(1) such a sharing is impossible, which in turn renders avoiding

space leaks a performance-critical issue. Even if strictness annotations or high-level

optimizations such as loop fusion (Chakravarty & Keller, 2001) are utilized for

reducing the number of arrays to be kept at runtime, the use of garbage collectors

demands that all operations that modify arrays be implemented non-destructively.

The only way to avoid such copy overhead – when sticking to garbage collection –

is the use of states and state modifications in a functionally clean manner either via

uniqueness types (Achten & Plasmeijer, 1993) or via state monads (Launchbury &

Peyton Jones, 1994). The drawback of this solution is that the statically enforced

single threading re-introduces an imperative programming style through the back

door: array definitions directly correspond to array allocations in the imperative

world, and whenever arrays are used as arguments for more than one modifying

operation they have to be copied explicitly.

A completely different approach is taken with the functional language Sisal

(McGraw et al., 1985). Sisal realizes a call-by-value semantics, and the memory

management of the current compiler implementation is based on reference counting.

At the expense of keeping information about the number of active references at

runtime, this allows to implement array operations destructively whenever possible.

The performance gains easily outweight the administrative overhead for such

reference counters, particularly since elaborate compiler optimizations allow to

reduce this overhead to a minimum (Cann, 1989). To achieve utmost runtime

efficiency, Sisal also foregoes most of the functional frills. Neither higher order

functions, nor partial applications, polymorphism, or dictionary-based overloading

are included in Sisal.1 As a consequence, the Sisal compiler osc 1.3 generates code,

which for some numerical benchmarks (at least in the early 1990s) outperformed

1 This remark relates to Sisal 1.2. Although Sisal2.0 and Sisal90 both support higher order functions,
to our knowledge, compilers for these Sisal dialects were never completed.
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equivalent Fortran programs in a multiprocessor environment (Oldehoeft et al., 1986;

Cann, 1992). This demonstrates impressively that numerical algorithms can indeed

benefit from the functional paradigm in terms of execution speed and suitability for

concurrent execution.

However, the expressive power of Sisal does not stand out very much against

that of imperative languages, such as Fortran, C, and their variants, or, more

recently, Java. In Sisal, arrays are one-dimensional entities only; besides element

selection only a few primitive operations such as boundary inquiries and element

modifications are supported. Arrays of higher dimensionality have to be represented

by nestings of such arrays, which implicitly renders the access times for individual

elements dependent on the array’s dimensionality. The most powerful operation

on arrays is the array comprehension construct of Sisal, the so-called for-loop.

It provides several compound operations such as reductions and scans over array

elements which can be extracted from arrays or nestings of arrays. Despite this

flexibility the expressive power of for-loops is limited by the fact that the level of

nesting, i.e. the dimensionality of the argument arrays is fixed. Array operations

that are applicable to arrays of any dimensionality (as they can be found in array

languages such as Apl or so-called high performance languages such as Fortran90/

Hpf) cannot be defined in Sisal.

This paper proposes a new approach towards integrating n-dimensional arrays

with access times O(1) into functional languages. It is designed to allow for the

specification of high-level array operations comparable to those available in state-of-

the-art array programming languages on the one hand, and to facilitate a compilation

to efficiently executable code with runtimes similar to those of high-performance

imperative languages such as Fortran 90/Hpf, on the other hand.

The programming language of choice is called SaC (for Single Assignment C). It

picks up on the design principles of Sisal but extends it by support for n-dimensional

arrays as well as shape-invariant programming. The major design principles of SaC

are

• a call-by-value semantics,

• direct support for n-dimensional arrays,

• support for shape-invariant array comprehensions,

• a memory management based on reference counting, and

• aggressive high-level optimizations to achieve competitive runtimes.

The kernel of SaC in fact constitutes a no-frills functional variant of C. The

central idea is to stick as close as possible to the syntax of C proper, but to restrict

the set of legal programs in a way that allows to define a simple mapping into the

λ-calculus. The choice of a C-like syntax is motivated by two considerations. First,

it allows programmers with an imperative background to have a smooth transition

into the functional paradigm. Second, it facilitates the compilation process, since it

allows some program parts to be mapped directly to C.

On top of this language kernel, SaC supports n-dimensional arrays as the major

data structure. To achieve a level of abstraction similar to that of array languages
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such as Apl, J or K, all array operations can be specified shape- and thus

dimension-invariantly. As shown in (Scholz, 1998b) it is this particular property

which allows for an array oriented, less error-prone programming style which signifi-

cantly improves program readability and code re-use. Although most other languages

that lack this feature could achieve the same level of abstraction by introducing a

user-defined data type, only genuine support renders effective optimizations possible

(Scholz, 1998a).

Besides extended support for arrays, SaC also incorporates a state of the art

module system with support for data hiding, separated name spaces, separate

compilation as well as interfacing to non-SaC libraries. Based on this module system,

SaC provides facilities for handling states and state modifications in a functionally

sound manner based on uniqueness types. A discussion of these aspects of SaC can

be found in Grelck & Scholz (1995).

The aim of this paper is not only to describe the design of SaC along with

the major compilation techniques that are required for achieving runtime efficiency,

but to motivate the language design, to demonstrate the programming style made

possible by the design, and to show how the design is interwoven with the program

optimizations actually applied.

Section 2 gives an introduction to the core language of SaC. Particular emphasis

is put on the support for arrays and array operations whose introduction is

accompanied by a series of small examples which demonstrate the programming

flavors made possible by these language constructs.

The next two sections are of a more technical nature. They describe the type

system of SaC and a scheme for compiling SaC programs into efficient C code. In

particular, the type system exhibits the strong connection between language design

and optimization techniques in SaC. Although the type system as it is described

in section 3 primarily constitutes a part of the language description, its design is

guided by the intent to use type inference for statically inferring array shapes which

turns out to be a prerequisite for many advanced optimization techniques. The most

challenging design problem in this context is to let shape inference accept all shape

correct programs without making the type system undecidable.

A solution to these conflicting aims is given in section 3. It is based on the idea

to make shapes (and thus shape inference) an optional part of the type system

rather than requiring exact shapes for deciding typeability. This is achieved by the

introduction of a hierarchy of array types accompanied by dynamic type checks

which may be inserted during type inference. As a consequence, the type system

turns out to be ambiguous wrt. the shape information, i.e. the extent to which shapes

are statically inferred does not depend on the type system but on the implementation

of the type inference algorithm actually applied.

Section 4 describes the actual compiler implementation. In the first part of it an

overview of the compilation process is given, including a description of the type

inference algorithm actually applied. The remaining parts of section 4 focus on the

optimization and compilation techniques that relate directly to the design choices

concerning arrays and array operations as introduced in section 2.
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The interplay between language design, programming style, and compilation

techniques is summarized by means of a case study in section 5. It discusses several

different SaC implementations of a numerical benchmark and contrasts them with

an Hpf implementation wrt. programming style and runtime efficiency. Readers who

are primarily interested in the language design and a comparison with languages

such as Hpf may want to first have a look at this section prior to reading the

technical details of sections 3 and 4, as only parts of these sections are required to

follow the expositions made.

Section 6 concludes the paper and points out future research directions.

2 The basics of SaC

This section gives an introduction to the basic design of SaC. It includes just the

bare essentials that are necessary to write useful programs, and then focuses in some

detail on the array concept supported by SaC.

2.1 A functional subset of C

Identifying a functional subset of a classical imperative language such as C

immediately raises the question of what exactly are the essential differences between

the functional and the imperative programming paradigm.

As the semantics of functional languages are based on the λ-calculus (or a

combinatory calculus) (Plotkin, 1974; Barendregt, 1981; Hindley & Seldin, 1986),

program execution may conceptually be considered a process of meaning-preserving

program transformations governed by a set of non-overlapping and context-free

rewrite rules which systematically substitute equals by equals until no more rules

are applicable (Turner, 1979; Kluge, 1992; Plasmeijer & van Eekelen, 1993). Such

context-free substitutions are responsible for two closely interrelated properties. One

is referential transparency which ensures that the value of an expression is solely

determined by the expression itself, irrespective of the context in which it is being

evaluated, the other is the Church–Rosser property which ensures that this value,

apart from termination properties, is invariant against execution orders. Put another

way: functional languages are free of side effecting operations which would violate

these properties.

In contrast, side effects are the very essence of the imperative model, which is

based on the concept of states and step-wise state transformations, i.e. programs are

designed to perform (side) effects on states.

The problem of defining a functional subset of C then obviously boils down to

systematically eliminating side-effects.

The primary source of (intended) side effects in C programs are functions (many

of which should more properly be called procedures). They may not only be used

to compute values but also to effect changes in their calling environments through

assignments made in the function bodies either to global variables or to reference

parameters. Thus, a major step towards turning C into a functional language

simply consists in outlawing global variables and reference parameters, and hence
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Program ⇒ [ FunDef ]
*
Type main ( ) ExprBlock

FunDef ⇒ Type FunId ( [ ArgDef ] ) ExprBlock

ArgDef ⇒ Type Id [ , Type Id ]
*

ExprBlock ⇒ { [ Vardec ]
*
[ Assign ]

*
RetAssign }

| { [ Vardec ]
*
SelAssign RetAssign }

Vardec ⇒ Type Id ;

Assign ⇒ Id = Expr ;

RetAssign ⇒ return ( Expr ) ;

SelAssign ⇒ if ( Expr ) AssignBlock else AssignBlock

AssignBlock ⇒ { [ Assign ]
*
}

Expr ⇒ ( Expr )

| Id ( [ Expr [ , Expr ]
*
] )

| Expr Prf Expr

| Const

| Id

Prf ⇒ + | - | * | / | == | !=

| < | <= | > | >=

Type ⇒ int | float | double | char

Fig. 1. The kernel of SaC.

pointers. As a nice aside, the functions that abide by these restrictions are in fact

(super)combinators since C also outlaws nested function declarations.

Another problem appear to be multiple assignments to local variables declared

inside the bodies (statement blocks) of C functions. However, considering assign-

ments as the equivalent of introducing let-bound variables, multiple assignments to

the same variable may simply be viewed (and treated) as nestings of let constructs

of which each defines a new binding which shadows the preceding one, thus giving

the entire statement block a perfectly functional interpretation.

if-then-else clauses, contrary to often heard arguments, do not pose a problem

either. Functions in which they are top level, making up the entire body, may return

values assigned to any of the local variables defined in both the consequent and

the alternative block. If they are not top level, they may simply be considered (and

actually transformed into) functions (abstractions) of the variables defined in the

surrounding block(s) which are applied to instantiations of these variables.

Likewise, loop constructs may be considered (and transformed into) tail-recursive

functions and, in their syntactical positions, replaced by the respective function

calls. Thus, ruling out global variables and pointers seems to be doing the trick

of extracting from C a computationally complete functional subset which may be

taken as the kernel language of SaC.

Figure 1 shows that part of the kernel language that is relevant for the remainder

of the text.

As in C, SaC programs consist of a sequence of function definitions, the last

of which is a designated function main. The syntax of function headers is also

adapted from C. Function bodies are merely restricted to sequences of assignments

terminated by a return expression and optionally preceded by type declarations for
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variables. The only alternative to such sequences of assignments is a single top-level

if-then-else clause with assignments in the two alternative branches, and a return

expression directly following the if-then-else clause. In contrast to C where the

right hand side of an assignment may contain further assignments, in SaC right-

hand sides of assignments are restricted to expressions, i.e. to arbitrary nestings of

function applications, variables and constants.

It should be noted here that, as a consequence of dropping pointers, this

kernel does not include any non-scalar data structures as they are known from

C. Instead, SaC comes with a high level array concept (to be introduced in the next

section) which is completely compatible with the functional paradigm, i.e. functions

conceptually consume entire argument arrays and produce new result arrays.

2.2 The array concept of SaC

SaC supports the notion of n-dimensional arrays and of high-level array operations

as they are known from array languages such as Apl (Iverson, 1962; International

Standards Organization, 1984), Nial (Jenkins & Jenkins, 1993) or J (Burke, 1996).

As of now, arrays are the sole data structures in SaC; for reasons of uniformity

even scalar values are considered arrays. An array is represented by a data vector

[d0, . . . , dq−1] which contains its elements, and by a shape vector [s0, . . . , sn−1] which

defines its structure, with n and si respectively specifying the number of axes (or

the dimensionality) and the number of elements (or the index range) along the i-th

axis of the array. Data and shape vectors cannot be entirely freely chosen, but must

satisfy the equation q =
n−1∏
i=0

si.

Given these two entities, an n-dimensional array a may in SaC be specified as an

expression of the form

reshape( [s0, ..., sn−1], [d0, ..., dq−1])

where reshape is a built-in primitive, n, q ∈ N0, all si are non-negative integer

values,2 and all dj are atomic (scalar) values of the same type. The special cases of

scalars and vectors may be denoted as

s ≡ reshape([], [s]) , and

[v0, ..., vn−1] ≡ reshape([n], [v0, ..., vn−1])

Subarrays or elements of an n-dimensional array of shape [s0, . . . , sn−1] may be

accessed (or addressed) by index vectors from the set

Liv( [s0, ..., sn−1]) := { [iv0, ..., ivm−1] | 0 � m � n,

0 � iv0 < s0, ... , 0 � ivm−1 < sm−1}

which will be referred to as the set of legitimate index vectors. It should be noted

2 The alert reader may note here that this introduces infinitely many distinct empty arrays that vary in
their non-zero shape components only. For a discussion of the implications of this design decision,
see Jenkins & Glasgow (1989) and Jenkins (1999).
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a000 a001 a004 a010 a014 a024[      ,      , .... ,      ,      , .... ,      , .... ,      , 
a124a100 a101      ,      ,                  .....                  ,      ,
a224a200 a201      ,      ,                  .....                  ,      ,
a324a300 a301      ,      ,                  .....                  ,      ]

[ 4, 3, 5 ]shape vector:
data vector:

a000 a001 a002 a003 a004

a010

a020

a012 a014

a022a021

a013a011

a023 a024

a100 a101 a102 a103 a104

a114

a124a

aa

aa

aa

a

110 111 112 113

120 121 122 123

a a a a a

a

a

200 201 202 203 204

214

224

a a a a a

a

a

300 301 302 303 304

314

324

3D-array

Fig. 2. Representing arrays by shape and data vectors.

here that this definition does not only comprise index vectors with less components

than the dimensionality of the array to be accessed, but it also always includes the

empty index vector.

Let a be an array as defined above and let iv=[iv0, ..., ivm−1]∈ Liv([s0, ..., sn−1])

be a legitimate index vector in a, then an expression a[ iv ] refers to the subarray

reshape([sm, ..., sn−1], [dp, ..., dp+l−1])

where p =
m−1∑
j=0

(
ivj ∗

n−1∏
k=j+1

sk

)
and l =

n−1∏
i=m

si.

The special case m = n specifies selection of individual array elements, as the

index vector [iv0, . . . , ivm−1] refers to the subarray reshape([], [dp]), i.e. to the scalar

value dp.

As an example, figure 2 shows a three-dimensional array with shape and data vec-

tors as given underneath. An index vector of, say [0], refers to the two-dimensional

array shown as the front-most plane of the cube, i.e. the array reshape([3,5],

[a000, . . . , a024]). An index vector of, say [1,0], refers to the second row vector of

the topmost horizontal plane, i.e. the vector reshape([5],[a100, . . . , a104]), and an

index vector of, say [3,0,4], picks the rightmost element of the last row vector in

the topmost horizontal plane, i.e. the scalar reshape([],[a304]).

2.3 Using compound array operations

Similar to other array languages such as Apl or Fortran90, SaC suggests using

so-called compound array operations which apply uniformly to all array elements

or to the elements of coherent subarrays. All these operations are defined shape-

invariantly, i.e. they can be applied to arrays of arbitrary shape and thus to arrays

of arbitrary dimensionality.
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The following introduces the most important compound array operations available

in the standard library of the actual SaC compiler.

Let a and b be SaC expressions that evaluate to arrays, let v be a SaC expression

that evaluates to a vector of non-negative integers, and let iv denote an expression

that evaluates to a legitimate index vector of array a, then the expression

dim( a) returns the dimensionality, i.e. the number of axes, of a;

shape( a) returns the shape vector of a;

sel( a, iv) ≡ a[iv ] returns the sub-array of a selected by iv;

genarray( v, val) returns an array whose shape vector is identical to the concat-

enation of v and shape( val); it’s data vector is composed of repeated copies of

the data vector of val;

modarray( a, iv, val) returns a new array which differs from a in that the

subarray a[iv] is being replaced by the array val, provided that shape( val)=

shape( a[iv]);

take( v, a) returns an array r with shape(r) = v and r[i] = a[i] for all

index vectors i ∈ { [0, ...,0], ..., [v0 − 1, ..., vn−1 − 1] }, provided that [0, ..., 0] �
v= [v0, ..., vn−1] � shape(a) component-wise, otherwise it is undefined;

drop( v, a) returns an array r with shape(r) = [shp0, ..., shpn−1] where shpi =

(shape(a)[i] - v[i]) for all i ∈ {[0], ...,[n-1]}, and r[j] = a[v �+ j] for

all index vectors j ∈ {[0, ...,0], ..., [shp0, ..., shpn−1]} (where �+ denotes element-

wise addition of vectors), provided that [0, ..., 0] � v= [v0, ..., vn−1] � shape( a)

component-wise, otherwise it is undefined;

cat( d, a, b) catenates the arrays a and b along their dth axis if the shapes along

the other axes are identical, otherwise it is undefined.

In addition to these structuring operations, the standard library of SaC also

includes all binary arithmetic, logic and relational (or value-transforming) operations

of C. They are not only applicable to scalar values but also element-wise to argument

arrays, provided both are either of the same non-scalar shape or one of them is a

scalar.

As an example that demonstrates the expressive power of such compound array

operations over explicit nestings of loops that traverse individual array elements

in some suitable order, consider the special case of matrix vector multiplication,

where the matrix contains non-zero elements along three diagonals only, as shown

schematically in figure 3. Here, the three diagonals are located symmetrically to the

main diagonal with a distance of offset elements along the matrix rows. They may

be represented by three vectors d0, d1 and d2. Sparing the multiplications with

the 0 elements outside of the three diagonals, the matrix vector product for each

element of the result vector requires only two or three product terms to be summed

up (cf. right-hand side of figure 3).

A conventional implementation consists of three consecutive for-loops, each of

which modifies a pre-allocated section of the result vector whose elements can in

turn be computed uniformly by the same parameterized arithmetic expression:
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d0offset

d10

d0n-1

d1m-1

d2m-1 vn-1

v0d00

0d2 d20 v0* vm-1d2m-1 * d2 * take( [m], v)

d00 v0* vn-1d0n-1 * d0 * v

d10 voffset* vn-1d1m-1 *m-1 d1 * drop( [offset], v)

x =

0

0

+

+

Fig. 3. Multiplying a sparse matrix with a vector.

{ ..

u = genarray( [n], 0.0);

for( i=0; i < offset; i++)

u = modarray( u, [i], d0[[i]] * v[[i]]

+ d1[[i]] * v[[i+offset]]);

for(; i < n-offset; i++)

u = modarray( u, [i], d0[[i]] * v[[i]]

+ d1[[i]] * v[[i+offset]]

+ d2[[i-offset]] * v[[i-offset]]);

for(; i < n; i++)

u = modarray( u, [i], d0[[i]] * v[[i]]

+ d2[[i-offset]] * v[[i-offset]]);

.. }

The explicit indexing of vector elements in this rather elaborate piece of code

requires the loop boundaries and index offsets to be chosen very carefully, which is

known to be a very error-prone undertaking. Moreover, it is not at all obvious that

the indexing of elements reflects the intended functionality.

This contrasts with a much more concise specification which consequently uses

compound array operations:

{ ..

zeros = genarray( [offset], 0.0);

u = d0 * v;

u += cat( 0, zeros, d2 * take( [m], v));

u += cat( 0, d1 * drop( [offset], v), zeros);

.. }

This code does completely without explicit indexing through vector elements.

Instead, the indexing is hidden inside the overloaded versions of * and +. It also

exposes more clearly the contribution of the three diagonals to the result.

Since * and + both require their arguments to be of the same size, the smaller vec-

tors d2 * take( [m], v) and d1 * drop( [offset], v) have to be prepanded

or appended by vectors of zeros, which introduces some small amount of redundancy

in the specification.
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2.4 The with-loop construct

As illustrated in the preceding subsection, programming array computations can be

made decidedly more concise, comprehensible, and less susceptible to errors using

combinations of compound array operations rather than (nestings of) tailor-made

loops that traverse array elements with specific starts, stops and strides. However,

choosing a set of compound operations which is universally applicable and also

suits different programming styles seems to be a problem that can hardly be solved

satisfactorily. Though several such comprehensive sets have evolved in the course of

developing Apl and other array languages, there are still ongoing discussions about

potential extensions (Lucas, 2001).

Specifying within the language itself new from existing compound operations to

serve the specific needs of a particular application area often turns out to be a very

diffcult undertaking. It usually involves decomposing arrays into sub-arrays, possibly

even down to the level of elements, and re-assembling them in a different form. The

resulting program terms tend to be rather complex, difficult to understand, and to

some extent are often burdened with redundant operations.

An example in kind is the addition of two vectors of different lengths in the SaC

code fragment of the preceding subsection. Since the operator + is only defined on

vectors of the same lengths, vectors of zeros have to be catenated to the smaller

vectors in order to adjust the vector sizes. Without falling back on an element-wise

specification this redundancy can be avoided by a new compound operation

EmbeddedAdd( small, offset, large) which adds the elements of an array small

to the elements of an array large that are within the index range { offset, ...,

offset + shape( small) - 1 }, provided that offset + shape( small) �
shape( large) holds componentwise.

Defining such an operation in a shape-invariant style becomes quite an artful piece

of programming if only the compound operations of the standard SaC library as

defined in the preceding subsection are available. The problem is that for each axis

(dimension) an array of zeros has to be created and subsequently catenated to the

smaller array, which results in a fairly complex specification.

The approach taken in SaC as the way out of this dilemma is to provide some

sufficiently versatile language construct which allows to specify in concise and

efficiently executable form shape-invariant compound operations which are tailored

to the specific needs of some application problem at hand. The construct introduced

for this purpose is a so-called with-loop. It may be considered a generalization

of array comprehensions which, in contrast to those known from other functional

languages such as Haskell, Clean, or Sisal, can be specified in shape-invariant

form. Using with-loops suitable application-specific compound operations (such as

EmbeddedAdd) may be freely defined with little effort and added to the standard

library. Application programs may thus be composed almost entirely of compound

operations, liberating program design from tedious, hard to understand and error-

prone specifications of starts, stops and strides of traversals over index ranges.

The most important benefits come with the implementation of with-loops.

Since they are general enough to define almost all high-level array operations
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Expr ⇒ ...

| with ( Generator ) Operation

Generator ⇒ Bound Rel Id Rel Bound [ Filter ]
Bound ⇒ Expr | .

Rel ⇒ <= | <

Filter ⇒ step Expr [ width Expr ]

Operation ⇒ [ { LocalDeclarations } ] ConExpr
ConExpr ⇒ genarray ( Expr , Expr )

| modarray ( Expr , Expr , Expr )

| fold ( FoldFun , Expr , Expr )

FoldFun ⇒ + | * | Id

Fig. 4. with-loops in SaC.

either directly as with-loop based primitives or as compositions of several such

primitives, all compiler optimizations concerning efficient code generation for array

operations can be concentrated on this single construct. Particularly rewarding in

terms of performance gains is an optimization technique called With Loop Folding.

It completely eliminates in almost all cases the generation of intermediate arrays

between successive value-transforming or (re-)structuring operations. This technique,

which for many application programs tips the performance scale in favor of SaC,

takes full advantage of the referential transparency that comes with the underlying

functional model; it is not generally applicable in the context of imperative array

processing languages such as Fortran90 or Apl.

with-loops consist of a generator part which specifies an index vector set and an

operator part which specifies an operation to be applied to the elements of the index

vector set. They come in three forms which differ from each other with respect to

the operator part, these being

• genarray with-loops which create arrays from scratch;

• modarray with-loops which conceptually produce new arrays from existing

ones and, in doing so, modify their entries or the entries of some subarrays;

• foldarray with-loops which fold by means of some binary operation into

single values expressions computed over the range of indices specified by the

generator part, which in many cases are (but need not be) just the elements of

an array.

The syntax of with-loops is specified in figure 4. with-loops are SaC expressions

preceded by the keyword (or constructor) with followed by the generator and the

operator expressions. The generator defines a set of index vectors by means of

two boundary expressions. They must evaluate to two vectors of identical length

which componentwise specify the maximum and the minimum indices of the index

vector set defined. Depending on its syntactical position, the symbol ‘.’ is used as

short hand for the lowermost or highermost legal index vector of the array to be
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generated/modified by the entire with-loop.3 The generator also includes a step vec-

tor which may be used to define strides larger than one over the index vector range,

and a width vector which may be used to define larger recurring sections to which

the operation part must be applied. Formally, a generator ( l <= iv <= u step s

width w), where l, u, s and w are vectors of length n ∈ N0, defines the index vector set

Gen( l, u, s, w) := {[iv0, ..., ivn−1] | ∀j∈{0,...,n−1} : lj � ivj � uj
∧ (ivj − lj) modulo sj < wj}

The operator part is composed of optional local variable definitions followed by

a constructor expression which defines one of the three with-loop alternatives.

The genarray-constructor expects two arguments. Its first argument specifies the

shape of the result, and the second argument specifies the values of the elements

(subarrays) whose indices are defined by the generator part. It may be parameterized

by the identifier specified in the generator part which stands in for the index vector

in consideration. All other elements are initialized with 0. Thus, a with-loop

with( l <= iv <= u step s width w)

genarray( shp, expr(iv))

computes an array a with

shape( a) := cat( 0, shp, shape(expr(iv)) )

a[iv] :=

{
expr(iv) for iv ∈ Gen(l, u, s, w)

genarray( shape(expr(iv)), 0) otherwise

provided that Gen(l, u, s, w) ⊆ Liv( shp).

The modarray-constructor requires three arguments: an array to be modified, the

actual index vector (usually the identifier of the generator), and the value to be in-

serted into this index position. Again, only the elements (subarrays) that are referred

to by the index vectors of the generator are affected. More formally, a with-loop

with( l <= iv <= u step s width w)

modarray( array, iv, expr(iv))

computes an array a with

shape( a) := shape( array)

a[iv] :=

{
expr(iv) for iv ∈ Gen(l, u, s, w)

array[iv] otherwise

provided that Gen(l, u, s, w) ⊆ Liv( shp) and shape(expr(iv))=shape(array[iv])

for all iv ∈ Gen(l, u, s, w).

Finally, the fold-constructor requires as arguments a binary commutative and

associative fold function, its neutral element, and an expression to be folded over

the index range specified by the generator. Then, a with-loop

with( l <= iv <= u step s width w)

fold( fun, neutral, expr(iv))

3 Note here that the symbol ‘.’ may not be used in the context of foldarray with-loops.
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computes an expression a with

a :=




neutral iff Gen(l, u, s, w) = �
neutral fun expr(iv0) . . . fun expr(ivq−1) otherwise

where {iv0 . . . ivq−1} = Gen(l, u, s, w)

It should be noted here that fun is used in infix notation without any brackets in

order to emphasize that the order in which the expressions are folded is intentionally

left unspecified. This allows for an arbitrary evaluation order to be chosen by the

compiler which, among other advantages, greatly facilitates code generation for non-

sequential execution. However, it is the responsibility of the programmer to make

sure that the fold function is commutative and associative in order to guarantee

deterministic results.

2.5 Defining compound array operations using with-loops

Having with-loops available, a function EmbeddedAdd as introduced in the previous
subsection may be rather elegantly defined as:

double[*] EmbeddedAdd( double[*] small, int[.] offset, double[*] large)

{

res = with( offset <= iv < offset + shape(small))

modarray( large, iv, large[iv] + small[iv-offset]);

return( res);

}

This function merely consists of a single with-loop-construct. It computes an

array that differs from the third argument large only in the index range {offset,
..., offset + shape( small) -1 }. Within this index range the elements of the

first argument small are added to those of the array large. The type declarations

double[*] and int[*] denote arrays of unspecified shape whose elements are of

type double and int, respectively, and int[.] declares a vector of integers.4 The

most important aspect of this specification is its shape-invariance. It is achieved by

defining the result shape and the index vector range of the generator in terms of the

shapes of the argument arrays.

Another example for the expressive power of with-loops can be found in the

standard library of the actual SaC compiler release,5 a generalized version of the

take operation defined in section 2.3:

double[*] take( int[.] v, double[*] a)

{

res = with( . <= iv <= .)

genarray( v, a[iv]);

return( res);

}

4 The full treatment of the SAC type system can be found in the next section.
5 see <http://www.informatik.uni-kiel.de/∼sacbase/>.
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The with-loop used here has an interesting property which may not be obvious

on first glance. Assuming that v is of maximum length, i.e. (shape(v)=[dim(a)]),

the function has exactly the functionality defined in section 2.3.

However, the with-loop also also yields useful results if (shape(v) < [dim(a)]).

Assuming that shape(a) = [ s0 . . . sn−1 ] and shape( v) = [m] < [n], the index

vectors from the interval (0*v <= iv <= v-1) all refer to subarrays of a with

shape [ sm . . . sn−1 ]. In other words, for the missing components of v (wrt. the

dimensionality of a) all elements are selected, i.e.

take( v, a) = take( cat( 0, v, [ sm . . . sn−1 ]), a) .

Since all (re-)structuring and value-transforming primitives introduced in the

preceding subsection (and many more) can be specified as library functions in a

similar way, the only primitives left that must be implemented as built-ins are dim,

shape, sel and reshape.

3 The type system of SaC

As for most statically typed languages, the type system of SaC primarily serves three

purposes. It must be capable of

• statically detecting potential runtime errors that result from applications of

partially defined functions to arguments that are not within their domains,

• supporting the specification of domain restrictions to improve program pro-

gram readability and program extensibility,

• and, last not least, providing argument information that helps to vastly improve

the code generation wrt. runtime efficiency.

The extent to which these objectives are met critically depends on the granularity

of the types available. The more specific the types that are supported the more

detailed analyses can be made by the type system. In the context of arrays and array

operations it is important for the type system to be capable of statically detecting

shape incompatibilities, to restrict function domains to particular argument shapes,

and, most importantly, to generate shape specific code.

The latter is an essential prerequisite for the generation of efficiently executable

code. For instance, if scalars (0-dimensional arrays) cannot be identified statically,

at runtime, they have to be allocated in the heap rather than on the stack,

thus, introducing considerable overhead. Likewise, code generation for with-loops

significantly profits from static knowledge of array shapes. Only if the shapes of the

index vectors of a with-loop are statically known, efficient code consisting of one

loop per dimension can be generated. Otherwise, more generic code is required that

iterates through the components of the index vectors provided by the generator part.

Unfortunately, shape-specific types conflict with the idea of shape-invariant

specifications since they require array types without shape restrictions. To overcome

this problem the type system of SaC introduces for each element type a hierarchy of

array types containing varying levels of shape information: no shape information at

all, information about the dimensionality only, or the exact shape. Based on these

type hierarchies, the type system provides rules for inferring types as specific as

possible.
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Starting from the main function, shape information is propagated from outermost

to innermost. This propagation of shapes requires the types of shape-invariant

functions to be refined whenever an application to statically known shapes is met.

However, this approximation of function types has some subtle limitations. The

problems involved can be demonstrated by means of three simple shape-invariant

functions:

int[*] id( int[*] a)

{

return( a);

}

int[*] dupl( int[*] a)

{

return( cat( 0, a, a));

}

int[*] foo( int[*] a)

{

if( pred( a))

res = a;

else

res = [1];

return( res);

}

where int[∗] refers to integer arrays of arbitrary shape and pred is assumed to be

of type int[∗] → bool.

All three functions expect an integer array a as argument and compute a new one:

id simply returns a, dupl ‘duplicates’ a by catenating it to itself wrt. the outermost

dimension, and foo either returns a or the vector [1], depending on the value of

some predicate function pred applied to a.

In fact, id, dupl, and foo are representatives for three different classes of shape-

invariant array operations which require increasingly elaborate extensions of the

type system to infer result shapes from given argument shapes.

The simplest of these shape-invariant array operations, id, returns arrays of the

same shape as one of their arguments. Hence, support for polymorphism would

suffice to infer exact return shapes. The function dupl is a representative for the

majority of shape-invariant array operations. The shapes of their return values

depend in more complicated ways on argument shapes without being identical to

one of them. Functions such as foo are even worse. Since their result shapes depend

on argument values rather than shapes, it requires dependent types to figure out

exact result shapes at compile time.

Supporting dependent types (Martin-Löf, 1980) as for example done in Cayenne

(Augustsson, 1998) comes at the cost of undecidability on the one hand and the

need for complex type specifications on the other hand. Decidability can only be

regained by restricting the dependent types. Examples for this approach are the

so-called indexed types in Zenger (1998), or the so-called sized types in Hughes

et al. (1996) and Chin & Khoo (2000). The drawback of these solutions is that they

restrict the legal shape dependencies to guarantee termination. Furthermore, much

more complex type specifications are required to successfully type functions such as

dupl or foo, causing specificational redundancy. Another related approach which

faces the same limitations is the shape inference in Fish (Jay & Steckler, 1998).

Though the shape specifications of Fish are not called types or type specifications,

wrt. shape inference, they serve the same purpose and they use the same mechanisms

as dependent types do.
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Type ⇒ ElemType [ [ ShpSpec ] ]
| ElemType

ShpSpec ⇒ Num [ , Num ]
*

| . [ , . ]
*

| *

| +

ElemType ⇒ int | float | double | char | bool

Fig. 5. Array types in SaC.

Since neither a restriction of potential shape dependencies nor complex type

annotations suit the idea of elegant Apl-like specifications well, the approach taken

in SaC is based on a combination of dynamic type checks and a mechanism similar

to multi-parameter type classes with default instances, which at least for functions

of the first two categories (id and dupl) allows exact result shapes to be inferred.

The basic idea is to consider a shape-invariant function definition as a combination

of a class definition and the definition of a default instance of it. During shape

inference, these default instances can be specialized to specific shapes whenever

applications to arrays of known shapes are found.

For some expressions, e.g. applications of foo, this approach fails to infer exact

result shapes though all argument shapes are available. If such expressions serve

as arguments to functions that are defined for a particular shape only, shape

conformity can not be statically guaranteed. In order to prevent the type system from

rejecting such programs, it must support so-called type assertions, which postpone

conformity checks until runtime. In fact, these assertions can be inserted by the type

inference system itself whenever a subtype of an actually inferred type is required

to successfully type a program.

3.1 The hierarchy of array types in SaC

SaC provides for each element type an entire hierarchy of array types which contains

different levels of shape information. The most general type, which primarily is

needed for shape-invariant specifications, does not contain any shape information

at all. More restricted types either prescribe a certain dimensionality or a specific

shape. The syntax of array types in SaC is given in figure 5. An array type consists

of an element type followed by a shape specification. For reasons of compatibility,

not only the element types are adopted from C but the shape specifications for

0-dimensional arrays (scalars) may be omitted as well. If the shape is to be given

precisely, the shape specification simply consists of a shape vector. The components

of such a shape vector may be replaced by wildcards that refer to less specific types.

Arrays of known dimensionality are denoted by vectors of ‘.’ – symbols whose

lengths indicate the dimensionalities. If even the number of dimensions is to be left

unspecified, the dots may be replaced by either a ‘+’ or a ‘*’, indicating arrays of at

least dimensionality one or arbitrary dimensionality, respectively.
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Using � as notation for subtyping the following reflexive and transitive relations

for all element types τ, n ∈ N, s1, . . . , sn ∈ N0 hold:

(scalars) τ ≡ τ[ ] � τ[∗]

(non-scalars) τ[s0, ..., sn−1] � τ[
n︷ ︸︸ ︷., ..., .] � τ[+] � τ[∗]

3.2 The type rules of SaC

The basic type rules of SaC are similar to those of a standard monomorphic type

system (e.g. Reade, 1989). One of the key extensions derives from the differences in

treating variables in C and in SaC. Whereas a variable in C identifies a box whose

value may change at runtime, in SaC, an assignment constitutes a let expression

which introduces a new variable. To allow the programmer to switch between these

two different concepts, the type system restricts the types of identically named

variables within function bodies to have at least a common supertype.

The type environments used to define the type system of SaC consist of tuples

of the form (var :<δ,τ>), where δ denotes the so-called declaration type of an

identifier var, and τ denotes the so-called actual type of var. Modifications of a type

environment A are denoted as

A{v : <δ, τ>} :=

{
A \ {(v : <δ′, σ>)} ∪ {(v : <δ, τ>)} iff ∃(v : <δ′, σ>) ∈ A

A ∪ {(v : <δ, τ>)} otherwise

Furthermore, A� e :τ denotes an assertion that in a type environment A an

expression e has type τ. With these definitions at hand, the basic set of type rules

for SaC can be defined as in figure 6. It includes all rules for constructs that appear

typically in function bodies but not those for user-defined or primitive functions.

Assuming that fType for SaC constants (i.e. homogeneous arrays) computes their

(most specific) type, the basic rules Const, Var, and Return are straightforward.

The VarDec rule makes sure that (i) the declaration of a variable in the beginning

of a function body complies its usage in the remainder of the body, and that

(ii) there is one declaration per identifier at most.

The Let rule realizes the restriction imposed on variables mentioned above.

Whenever there exists a declaration for a variable v in A, i.e. ∃ (v :<δ,σ′>) ∈A, the

type of the expression on the right-hand side has to be a subtype of the declaration

type. Otherwise, a declaration for v is added, assuming the most general type that

includes the type of the actual right-hand side. To do so, a function fBaseType is used,

which computes the element type component of a given SaC type.

The rule for treating conditionals also is straightforward: if typing the two different

branches yields two different result types, they have to have a common supertype

and their least upper bound (flub) serves as overall result type.

The last two rules concern type assertions of the form assert(e, τ). The rule

assert1 ensures that type assertions are accepted if the actual type inferred for

the expression is a supertype of the asserted type. If the inferred type turns out to

be even more specific than the asserted type, the assertion may be eliminated and

type inference may continue with the more specific type (rule assert2).
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Const :
A� Const : fType( Const)

Var :
A� v :τ if (v :<δ,τ>)∈A

Return :
A� e :τ

A� return(e) :τ

VarDec :
A{v :<δ,δ>}� Rest :τ A� Rest :τ

A� δ v; Rest :τ

if ¬∃ (v :<δ′,δ′>) ∈ A

Let :
A� e :σ A{v :<δ,σ>}� Rest :τ

A� v = e; Rest :τ

if ( ∃ (v :<δ,σ ′>) ∈A ⇒ σ � δ )

∧ ( ¬∃ (v :<δ,σ>) ∈A ⇒ δ= fBaseType(σ)[∗] )

Cond :
A� e : bool A� Asst; Rest :τ A� Asse; Rest :τ′

A� if (e) {Asst;} else {Asse;}; Rest :τ′′

if ∃ τ′′ : τ′′ = flub(τ, τ′)

Assert1 :
A� e :σ

A� assert( e, τ) :τ if τ � σ

Assert2 :
A� e :σ

A� assert( e, τ) :σ if σ � τ

Fig. 6. The basic type inference rules of SaC.

So far, only typing rules for function bodies have been presented. For typing

function definitions and function applications the set of legal types has to be

extended by function types. The type of an n-ary function that expects arguments

of types τ1, ..., τn and returns values of type τ is denoted as
n⊗

i=1

τi →τ.

In contrast to standard monomorphic type systems the typing rules for user-

defined functions in SaC do not only serve to check a function’s declared type

against its body, but are also used to specialize shape-invariant functions for specific

argument shapes. This can be elegantly formalized by making use of the subtyping

relationship.

Figure 7 presents the type rules for user defined functions in SaC. The rules

for typing function definitions, i.e. Prg, FunDef1 and FunDef2, allow more specific

types to be inferred than the declared types. Since these specializations are a compiler

introduced form of overloading, covariance has to be enforced in order to ensure type

safety (see Castagna (1995) for an extended discussion of this topic). Which of the

potentially infinite number of specializations actually is built is guided by the FunAp

rule for typing function applications. It allows any argument type to be chosen which
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Prg :
{}� τ main() Body :σ

{}� FunDef1, ..., FunDefn τ main() {Body} :σ

if σ � τ

FunDef1 :
{}� Body :σ

{}� τ F() {Body} :σ

if σ � τ

FunDef2 :
{vi :<δi,τi>}� Body :τ

A� δF(δ1 v1, ..., δn vn) {Body} :
n⊗

i=1

τi →τ

if τi � δi ∧ τ � δ

FunAp :

A� ei :σi {}� δF(δ1 v1, ..., δn vn) {Body} :
n⊗

i=1

τi →τ

A� F(e1...en) :τ

if ∀i ∈ {1, ..., n} : σi � τi � δi ∧ τ � δ

Fig. 7. Specialization of user defined functions in SaC.

is a supertype of the actual argument type and a subtype of the declared parameter

type. Although this ambiguity renders the type system non-unique, it can be shown

that

• the type system is decidable, and that

• if two types α and β can be inferred for an expression e, either α � β or β � α

holds.

Decidability results from the fact that all shape information can be neglected by

introducing type assertions and falling back to the [*]-types which renders the type

system isomorphic to standard monomorphic systems. The second property can be

shown by induction over the typing rules.

Whereas user-defined functions can be specialized by analyzing the function bodies

with assumptions about different argument shapes, built-in array operations, e.g. dim

or sel have to be treated differently. For each of these functions, a type declaration

similar to that of user defined functions is accompanied by an operation-specific

type function CT, which computes from given argument types result types as specific

as possible.6

The typing rule for applications of built-in array operations is given in the upper

part of figure 8. It states that the type of an application of a primitive (built-in)

operation F is computed by the type function CFF associated to F , provided that the

inferred argument types match the declared type of F . If the type function yields ⊥,

i.e. it detects a shape incompatibility, the function application under consideration

can not be successfully typed.

6 In fact, these type functions can be considered a special form of built-in dependent types.
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PrfAp :

A� ei :σi A� F :
n⊗

i=1

τi →τ

A� F(e1, ..., en) :σ

if ∀i ∈ {1, ..., n} : σi � τi ∧ CTF (σ1, ..., σn) = σ �= ⊥

where ∀α ∈ { int, float, double, char, bool} :

dim:: α[∗] → int

CTdim(x) =int

sel:: α[∗] × int[.] → α[∗]

CTsel(x, y) =




α[s0, ..., sn−1] iff x = α[s0, ..., sm+n−1] ∧ y = int[m]

α[

n︷ ︸︸ ︷., ..., .] iff x = α[

m+n︷ ︸︸ ︷., ..., .] ∧ y = int[m]

⊥ iff x � α[

n︷ ︸︸ ︷., ..., .] ∧ y = int[m] ∧ m > n

α[∗] otherwise

Fig. 8. Typing primitive array operations in SaC.

As an example, the type declarations as well as the CT-functions of the built-in

operations dim and sel are given in the lower part of figure 8. The function dim

(cf. section 2.3), which computes an array’s dimensionality, returns a scalar value

irrespective of the shape of its argument. Therefore, the declared type (α[∗] → int)

of dim contains an exact shape on its right-hand side which renders the associated

type function CTdim constant.

In contrast to dim, the selection function sel (cf. section 2.3) may return

arrays of arbitrary shape which requires a (relatively imprecise) type declaration

α[∗] × int[.] → α[∗]. The result shape of a given application of sel depends on

the dimensionality of the argument array and the length of the selection vector.

This relationship between argument and result types is captured by the associated

type function CTsel. If the shapes of both arguments are known and the length

of the selection vector is smaller than or equal to the dimensionality of the array,

an element/subarray is selected, i.e. the result shape is a postfix of the shape of

the first argument. If only the dimensionality of the array is known, at least the

dimensionality of the result can be determined. Should it turn out that the selection

vector is longer than the number of dimensions of the array, then ⊥ is returned by

CTsel, which results in a type error. In all other cases, the return type has to remain

as general as the declared type.

The type inference for with-loops can be formalized in a similar way. Figure 9

shows the rules for typing genarray-with-loops. The WlIdx rule is used to infer the

length of the index-vector of a generator expression. The inference is done by means

of a type function CTWlIdx which computes the generator type from the types of the

boundary, step, and width expressions. If at least one of them is an integer vector of

some known length n and the others types are supertypes of int[n], the generator

can be successfully typed as int[n]. It should be noted here that for vectors for which

less specific types than int[n] are inferred conformity checks have to be made at

runtime. If no exact shapes are known for the four generator components, but their
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WlIdx :
A� e1 :τ1 A� e2 :τ2 A� e3 :τ3 A� e4 :τ4

A� with(e1 <= iv <= e2 step e3 width e4) :τ

if CTWlIdx(τ1, τ2, τ3, τ4) = τ �=⊥

where CTWlIdx(l, u, s, w) =




int[n] iff
1

∃ n : int[n] � l, u, s, w

int[.] iff int[.] � l, u, s, w

⊥ otherwise

WlGen :

A� with(e1 <= iv <= e2 step e3 width e4) :τidx

A{iv :<τidx,τidx>}� eval :τval A� eshp :τshp

A� with( . . . iv . . .) genarray( eshp, eval) :σ

if CTWlGen(τidx, τshp, τval) = σ �=⊥
where CTWlGen(i, s, v) =


α[

m+n︷ ︸︸ ︷., ..., .] iff (
1

∃ m : int[m] � i, s) ∧ v � α[

n︷ ︸︸ ︷., ..., .]
⊥ iff (¬∃ m : int[m] � i, s)

fBaseType(v)[∗] otherwise

WlGen2 :

A� with(e1 <= iv <= e2 step e3 width e4) :τidx

A{iv :<τidx,τidx>}� eval :τval

A� with( . . . iv . . .) genarray( [s0, . . . , sn−1], eval) :σ

if CTWlGen2([s0, . . . , sn−1], τval) = σ ∧ int[n] � τidx

where CTWlGen2([s0, . . . , sn−1], v) ={
α[s0, ..., sm−1] iff v = α[sn, ..., sm−1]

α[∗] otherwise

Fig. 9. Typing With-loops in SaC.

types do include integer vectors, the generator under consideration is typed int[.].
Again, this requires conformity checks at runtime. For all other type combinations

a type error is produced.

The rule WlGen specifies by means of yet another type function CTWlGen how

the type of a genarray-with-loop is computed from the type of its generator part,

the type of its shape expression, and the type of its value expression. Only if the

lengths of the shape expression and the generator expressions may be the same, i.e.

there exists an m so that int[m] is a subtype of the shape expression type and the

generator type, the genarray-with-loop can be successfully typed. Furthermore, a

more specific type than α[∗], where α is the element type of the value expression,

can only be inferred, if (i) the length of the shape or the generator expression is

statically known, and if (ii) at least the dimensionality of the value expression can be

determined. If so, the dimensionality of the genarray-with-loop can be inferred as

the length of the shape expression plus the dimensionality of the value expression.

A second rule for genarray-with-loops, WlGen2, allows to infer exact shapes for

genarray-with-loops with constant shape expression. The significant difference to

WlGen is that the result shape is computed from the shape expression itself rather

than from its type. Therefore, it is applicable to constant shape expressions only.

Similar rules can be formulated for modarray- and fold-with-loops.
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4 Compilation of SaC programs

This section focuses on compilation issues, particularly on measures taken in the

actual SaC compiler release7 to achieve runtime performances comparable to that

of low-level programs.

First, it has to be guaranteed that individual array operations can be compiled

into code which can be executed efficiently. Most array operations in SaC being

specified as with-loops, it primarily suffices to find a suitable compilation scheme

that generates code for these constructs. However, dealing with statically unknown

dimensionalities requires a rather complex index generation scheme which introduces

quite some overhead when compared to static loop nestings. To avoid this overhead,

the actual SaC compiler infers the dimensionalities of the arrays to which shape-

invariant operations are actually applied. This is done as part of the type inference

process which exploits the latitude of the type system to specialize functions wrt.

arbitrary subtypes of their formal parameter types.

Whenever this process yields exact shapes rather than just dimensionalities, the

code can be further improved by exploiting the map-like definition of with-loops.

Since the order of individual with-loop indices can be arbitrarily permuted without

affecting the overall result, the loop nestings can be arranged so that the order of

array accesses at runtime is adjusted to the cache characteristics of the intended target

architecture. This property facilitates the implementation of several optimization

techniques to this effect such as Loop Tiling and Array Padding (Lam et al., 1991;

Wolf & Lam, 1991b; Coleman & McKinley, 1995; Manjikian & Abdelrahman,

1995) as no data dependencies or loop alignments have to be taken care of. Details

on the incorporation of these optimizations into the SaC compiler can be found in

Grelck (2001).

However, being able to compile individual array operations (with-loops) into

efficiently executable code only constitutes the first step of compiling Apl-like

specifications as introduced in section 2. More challenging efficiency problems arise

from the compilation of nested applications of such operators. A näive compilation

of such expressions introduces intermediate arrays, which degrades performance due

to higher rates of memory accesses and increased memory consumption.

Many sophisticated compilation techniques for optimizing conventional loop

nestings and arrays have been developed (for surveys, see Zima & Chapman (1991),

Gao et al. (1993), Wolfe (1995), Lewis et al. (1998) and Allen & Kennedy (2001)).

Most of these techniques are based on data dependency analysis (Allen & Kennedy,

1987; Wolf & Lam, 1991a; Yi et al., 2000) which, for loops in general, provides the

essential criteria to decide what kind of loop transformations can be safely applied.

On the level of with-loop expressions in SaC, the situation is rather different

as the language design guarantees several important properties. Each with-loop

represents a multi-dimensional loop nesting that operates on the same domain of

data. In most cases, these domains are even known precisely at compile time. Per

definition, there are no side-effects or data dependencies between different instances

7 See <http://www.informatik.uni-kiel.de/∼sacbase/>.
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of such loop nestings. These properties allow for more radical optimizations as the

loop instances can be arbitrarily permuted and the computation of individual array

elements can be deferred by forward substitution without effecting the overall result.

This observation leads to an optimization on the level of with-loops, called With

Loop Folding, which systematically eliminates intermediate arrays.

Since most array operations in SaC are defined by means of with-loops, this single

optimization technique suffices to eliminate intermediate arrays between arbitrary

array operations.

Formally, With Loop Folding is based on the well known map equation

map f ◦ map g ≡ map ( f ◦ g)

but has been extended to handle restricted (index) domains as they result from

structural operations where the generator parts do not cover the entire index range

of the array to be created/modified. To exploit the full potential of this optimization,

static knowledge of the exact generator sets and the array shapes involved is essential.

Therefore, function specialization during type inference is enforced to exact argument

shapes as far as possible. Furthermore, the entire range of standard optimizations,

in particular Constant Folding and Common Subexpression Elimination have to be

applied prior to With Loop Folding in order to increase the number of generator

boundaries whose values are statically available.

There are also memory related issues to be considered to achieve competitive

runtimes. With arrays that consume significant fractions of the available memory,

it is essential to destructively update arrays whenever possible, without violating

referential transparency. In particular with sequences of modarray operations, of

which each changes a few elements only, a single superfluous intermediate array can

spoil the entire runtime performance. Therefore, garbage collection schemes that

postpone the identification of garbage until a pre-specified amount of memory has

been used up, e.g. Mark-Sweep Collection (Cohen, 1981) based schemes or Copying

Collection (Cohen, 1981) based schemes, are not suitable for SaC. Instead, Reference

Counting (Cohen, 1981) is used which, at runtime, identifies and removes garbage as

soon as the last access to it has been made. Similar to the approach taken in Sisal,

referential transparency allows for several code reordering optimizations to avoid

superfluous reference counting operations and to maximize potential memory reuse

(Cann, 1989).

However, the drawback of the reference counting approach is that irrespective

of the size of the data structure it is applied to, a fixed amount of administrative

overhead is required. Although this overhead can usually be neglected for operations

on large arrays, for small data structures this is not the case. In particular, when

taking into account that in SaC all data structures – including scalars, index

vectors, and other small arrays – conceptually are arrays, a uniform application

of reference counting to all arrays is not feasible. Instead, the compilation process,

again, makes use of the static availability of shape information: scalars, i.e. arrays

of dimensionality zero, and arrays with only a few elements are allocated on the

runtime stack rather than on the heap. This does not only avoid overhead due to
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Scanner / Parser

Type Inference / Type Specialization

LaC2Fun

Reference Counting Inference

Fun2LaC

CCode Generation

HighLevel Optimizations

Array Elimination
Dead Code Removal

Inlining

Constant Propagation

Loop Unrolling
Loop Unswitching
Loop Invariant Removal
With Loop Folding

Constant Folding

Common Subexpression Elimination
Copy Propagation

Algebraic Simplification

Index Vector Elimination

Fig. 10. Compiling SaC programs into C programs.

reference counting, but also indirect accesses as they are required for heap allocated

objects.

After giving a brief outline of the compilation process, the following subsections

focus on With Loop Folding and on the compilation of with-loops to static loop

nestings.

4.1 An outline of the compilation process

The natural choice of a target language for the compilation of SaC is C. Compilation

to C can be liberated from all hardware-specific low-level optimizations such as

delay-slot utilization or register allocation, as this is taken care of by the C compiler

for the target machine. Last not least, the strong syntactical similarity between

the two languages allows the compilation efforts to be concentrated on adequate

array representations and on optimizing the code for array operations. Other basic

language constructs can be translated more or less one to one to their C counterparts.

The major phases of the actual SaC compiler are shown in figure 10. After

scanning and parsing the SaC-program to be compiled, its internal representation

is simplified by a transformation called LaC2Fun which eliminates syntactical sugar

such as loop constructs and (non-top-level) conditionals.

The next compilation phase implements a type inference algorithm based on the

type rules described in the preceding section. To achieve utmost code optimizations,

the actual implementation tries to specialize all array types to specific shapes. Starting

from the designated main function, it traverses function bodies from outermost to

innermost, propagating exact shapes as far as possible. To avoid non-termination,

the number of potential function specializations is limited by a pre-specified number
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of instances. If this number is exceeded, the generic version is used instead. However,

since for most application programs all shapes can be statically inferred, the actual

compiler implementation is restricted to such programs, i.e. it is assumed that after

type inference, all shapes are statically known.

The fourth compilation phase implements all the optimizations that can be done

on the level of SaC itself .8 Of particular interest in this context are three SaC-specific

optimizations which try to get rid of arrays whenever they can either be entirely

avoided or be replaced by scalars:

• With Loop Folding eliminates intermediate arrays by folding consecutive with-

loops into single ones. It constitutes the key optimization for achieving

competitive runtimes and is therefore discussed in some detail in the next

subsection.

• Array Elimination replaces arrays with with less than a pre-specified number

of elements in their data vectors by sets of SaC scalars which in turn are

implemented as scalars in the generated C code.

• Index Vector Elimination tries to replace by scalar offsets into data vectors

integer vectors used for indexing, anticipating row-major order.

To improve the applicability of these optimizations, constants have to be propag-

ated/inferred as far as possible, i.e. several standard optimizations have to be

included in this compilation phase as well. It also turns out that on the SaC level

these standard optimizations, due to the absence of side-effects, can be applied much

more rigorously than in state-of-the-art C compilers. The standard optimizations

implemented in the actual compiler include Function Inlining, Constant Folding,

Constant Propagation, Dead Code Removal, etc. (cf. figure 10).

Many of these optimizations interact with each other, e.g., constant folding may

enable With Loop Folding by inferring exact generator boundaries of with-loops

which, in turn, may enable further constant folding within the body of the resulting

with-loop. Therefore, the optimizations are applied in a cyclic fashion, as shown on

the right hand side of figure 10. This cycle terminates if either there are no more

code changes or if a pre-specified number of cycles has been performed.

The three final compilation phases transform the optimized SaC code step by

step into a C program. The first phase, called Reference Counting Inference, adds for

all non-scalar arrays operations that handle the reference counters at runtime. The

techniques used here are similar to those developed for Sisal.

The next phase, called Fun2LaC, is dual to LaC2Fun; it reverts tail-end recursive

functions into loops and inlines functions that were created from non-top-level

conditionals during LaC2Fun.

Finally, the SaC-specific language constructs are compiled into ANSI C code. The

most interesting aspect of this phase is the code generation for with-loops, which

can be parameterized by the cache characteristics of the target architecture. It is

described in some more detail in section 4.3.

8 It should be noted here, that in fact some slight extensions of SaC to be mentioned in the next
subsections are required.
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4.2 With Loop Folding

As explained earlier, the key idea of With Loop Folding is to provide a scheme that

replaces functional compositions of compound array operations by a single array

operation which realizes the functional composition without creating intermediate

arrays.

The simplest of these transformations is the composition of two with-loops which

maps functions f and g to all elements of an array. Assuming A to be an array with

element type τ and f and g to be functions of type τ → τ, then

{...

B = with( . <= iv <= . )

modarray( A, iv, f( A[iv] ));

C = with( . <= jv <= . )

modarray( B, jv, g( B[jv] ));

...}

can be replaced by

{...

C = with( . <= jv <= . )

modarray( A, jv, g( f( A[jv] ) ));

...}

provided that B is not referenced anywhere else in the program.

In this restricted setting the intended optimization directly corresponds to the

well known map equation map f ◦ map g ≡ map (f ◦ g), which is fundamental

to several optimizations such as Deforestation (Wadler, 1990; Chin, 1994; Gill, 1996;

Nemeth & Peyton Jones, 1998) in the context of operations on lists and Loop Fusion

(Bacon et al., 1994; Zima & Chapman, 1991; Wolfe, 1995; Allen & Kennedy, 2001)

in the context of conventional (sequential) loops.

However, in a more general setting

• the with-loops to be folded may have non-identical index sets in their

generator parts;

• the second with-loop may contain several references to the elements of the

array defined by the first one;

• the access(es) to the array defined by the first with-loop may be non-local,

i.e. instead of B[jv] expressions of the form B[I op(jv)] are allowed where

I op projects index vectors to index vectors.

The piece of SaC program given in the upper part of figure 11 highlights these

features in a nutshell, and will therefore be used as a running example throughout

this section. It consists of two with-loops which successively compute vectors B and

C from a given vector A. Each of these vectors consists of 80 integer numbers. The

first with-loop defines B to differ from A in that the first 40 elements are incremented

by 3, the second with-loop defines C to differ from B in that the last 60 elements of

C are computed as the sum of two elements of B, the actual one and the one that is

located at the actual index position minus 10.

These with-loops are graphically depicted in the lower part of figure 11: each

horizontal bar shows all elements of the vector named to the left of it. The index
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{...

B = with( [0] <= iv < [40])

modarray( A, iv, A[iv] + 3);

C = with( [20] <= jv < [80])

modarray( B, jv, B[jv] + B[jv - [10]]);

... }

[0] [40] [80]

B = A[i vec] + 3 A[i vec]

[0] [20] [80]

C = B[j vec] B[j vec] + B[j vec-[10]]

Fig. 11. Two successive with-loops with overlaping index ranges and multiple references.

[0] [40] [80]

B = A[i vec] + 3 A[i vec]

[0] [20] [80]

C = B[j vec] B[j vec] + B[j vec-[10]]

⇓
[0] [20] [40] [50] [80]

C = A[j vec] + 3 �

�� (A[j vec] + 3) + (A[j vec-[10]] + 3)

�

�� A[j vec] + (A[j vec-[10]] + 3)

�

�� A[j vec] + A[j vec-[10]]

Fig. 12. Substituting two successive array modifications by a single one.

vectors on top of the bars indicate the positions of the respective elements within

the bars. The SaC expressions inscribed in the bars define how the vector elements

are computed from the elements of other vectors. Since different computations are

required in different index vector ranges the bars are accordingly divided up by

vertical lines.

Instead of first computing B from A then C from B, the array C can be computed

from the array A directly. As depicted in figure 12, this operation requires four

index ranges of C to be treated differently, which cannot be expressed by a single

with-loop anymore. To remedy this problem, a more general version of with-loops

needs to be introduced which is not part of SaC proper, but only internally used

by the SaC compiler. It allows an arbitrary number of generator operation pairs

to be specified, provided that (i) the index vector sets defined by the generators are

disjoint, and that (ii) their union is the set of all legal index vectors of the result

array.9

For these internal with-loops the following notation will be used:

9 (ii) is required for genarray- and modarray-with-loops only.
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For i ∈ {1, ..., m} let ( li <= iv <= ui step si width wi) be legal generator

expressions that denote disjoint index vector sets, and let Opi(iv) be expressions

that evaluate to arrays of type τ[s0, ..., sl−1] for all index vectors iv from the respective

index vector sets. Then

A = with

( l1 <= iv <= u1 step s1 width w1) :Op1( iv)
...

...

( lm <= iv <= um step sm width wm):Opm( iv)

genarray( [r0, ..., rk−1]);

defines an array A of shape [r0, ..., rk−1, s0, ..., sl−1] with element type τ
where A[iv] := Opj( iv) ⇔ iv ∈ Gen(lj, uj, sj, wj), provided that

(i) ∀i, j ∈ {1...m} : Gen(li, ui, si, wi) ∩ Gen(lj , uj , sj , wj) �= � ⇒ (i = j), and

(ii)
m⋃
j=1

Gen(lj , uj , sj , wj)= Liv( [r0, ..., rk−1]);

otherwise, it is undefined.

Note that this notation serves as a generalized form of genarray- and modarray-

with-loops. fold-with-loops have a slightly different internal representation which

uses an expression of the form fold( fun, neutr) instead of genarray( [r0,

..., rk−1]).

With this notation at hand, our example problem can be specified as follows: Find

a transformation scheme which transforms

B = with

( [ 0] <= iv < [40] ):A[iv] + 3

( [40] <= iv < [80] ):A[iv]

genarray( [80]);

C = with

( [ 0] <= jv < [20] ):B[jv]

( [20] <= jv < [80] ):B[jv] + B[jv - [10]]

genarray( [80]);

into

C = with

( [ 0] <= jv < [20] ):A[jv] + 3

( [20] <= jv < [40] ):(A[jv] + 3) + (A[jv - [10]] + 3)

( [40] <= jv < [50] ):A[jv] + (A[jv - [10]] + 3)

( [50] <= jv < [80] ):A[jv] + A[jv - [10]]

genarray( [80]);

The basic idea is to define a scheme which takes two internal with-loops, and

step by step replaces all references to the result of the first with-loop (the array B

in our example) by their definitions. Once all references to that array are replaced,

its defining with-loop can be eliminated.

Figure 13 gives the rule for a single replacement step. The upper part shows the

most general pattern for an application of the replacement rule: a function body

contains two with-loops; the first with-loop defines an array A whose elements are
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{ ...

A = with

IV1,1( iv):Op1,1( iv)
...

...

IV1,m( iv):Op1,m( iv)

genarray( shp);

...

B = with

IV2,1( jv):Op2,1( jv)
...

...

IV2,i( jv):Op2,i( jv) = � . . .A[ I op( jv)]. . . �
...

...

IV2,n( jv):Op2,n( jv)

wl oper;

...}

⇓

{ ...

A = with

IV1,1( iv):Op1,1( iv)
...

...

IV1,m( iv):Op1,m( iv)

genarray( shp);

...

B = with

IV2,1( jv) :Op2,1( jv)
...

...

IV2,i,1( jv):Op2,i,1( jv) = � . . .Op1,1( I op( jv)). . . �
...

...

IV2,i,m( jv):Op2,i,m( jv) = � . . .Op1,m( I op( jv)). . . �
...

...

IV2,n( jv) :Op2,n( jv)

wl oper;

...}

with IV2,i,1 :={ jv | jv ∈ IV2,i ∧ I op( jv) ∈ IV1,1}
...

...

IV2,i,m :={ jv | jv ∈ IV2,i ∧ I op( jv) ∈ IV1,m}

Fig. 13. Single with-loop-folding step.
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referred to in at least one expression Op2,i( jv) of the second with-loop, as indicated

by � . . .A[ I op( jv)]. . . �. For reasons of convenience, all generator expressions are

denoted by IVidx( iv) which is considered a notational shortcut for ( lidx <= iv <=

uidx step Sidx width Widx). When referring to the set of index vectors defined by

IVidx( iv), i.e. Gen(lidx, uidx, sidx, widx), IVidx is used without the trailing index

vector name in brackets. wl oper at the end of the second with-loop indicates that

the replacement rule can be applied irrespective of the internal with-loop version

actually used.

To replace A[ I op( jv)] in Op2,i( jv) by its definition, it has to be determined

to which index vector set from the definition of A the projected index vectors

I op(jv) belong. Since they may refer to more than one of these sets, in general,

IV2,i has to be split up into m subsets IV2,i,1, ..., IV2,i,m, each of which contains those

elements of IV2,i whose mappings wrt. I op are in the index vector sets IV1,1, ..., IV1,m,

respectively. The expressions associated to these sets are derived from Op2,i( jv)

by replacing A[ I op( jv)] with the respective definitions Op1,1(I op( jv)), ...,

Op1,m(I op( jv)), i.e.

IV2,i( jv) = � . . .A[ I op( jv)]. . . �

from the definition of the second with-loop is replaced with

IV2,i,1( jv) : Op2,i,1 = � . . . Op1,1( I op( jv)). . . �
... :

...

IV2,i,m( jv) : Op2,i,1 = � . . . Op1,m( I op( jv)). . . � .

However, this rule can only be applied if it can be made sure that such generators

IV2,i,j( jv) indeed exist, i.e. if subsets of the form { jv | jv ∈ IV2,i ∧ I op( jv) ∈
IV1,1} always can be denoted by generator expressions. After restricting I op to

linear transformations, this task eventually boils down to computing intersections

of generator-defined index vector sets. It can be assumed without loss of generality

that the widths of the generators under consideration are 1 in all dimensions, since

other generators with width components greater than 1 can be split up into several

element-wise shifted generators of widths 1.

Given two such generators Gen(lA, uA, sA, [1...1]) and Gen(lB , uB , sB , [1...1]), their

intersection indeed can be denoted by a generator expression. The key observation

to be made here is that whenever there exist two index vectors iv and iv′ from

Gen(lA, uA, sA, [1...1]) ∩ Gen(lB , uB , sB , [1...1]), their difference is a multiple of sA
and of sB . As a consequence, their difference is also a multiple of the least common

multiple of sA and sB which thus can be used as step vector of the intersection. The

generator boundaries of the intersection can be computed from the element-wise

maxima and minima of the lower and upper bounds, respectively. This value might

have to be adjusted only for the lower bound since the maximum of the lower

bounds is not necessarily an element of the intersection if the generators are not

dense ( sa �= [1...1] ∧ sB �= [1...1]). Therefore, within the first period an intersecting

index vector has to be looked for. If found, it serves as lower bound, otherwise, the
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B = with

( [ 0] <= iv < [40] ):A[iv] + 3

( [40] <= iv < [80] ):A[iv]

C = with

( [ 0] <= jv < [20] ): B[jv]

( [20] <= jv < [80] ):B[jv] + B[jv - [10]]

(a)

⇓
C = with

( [ 0] <= jv < [20] ):A[jv] + 3

( [20] <= jv < [80] ): B[jv] + B[jv - [10]]

(b)

⇓
C = with

( [ 0] <= jv < [20] ):A[jv] + 3

( [20] <= jv < [40] ):(A[jv] + 3) + B[jv - [10]]

( [40] <= jv < [80] ):A[jv] + B[jv - [10]]

(c)

⇓
C = with

( [ 0] <= jv < [20] ):A[jv] + 3

( [20] <= jv < [40] ):(A[jv] + 3) + (A[jv - [10]] + 3)

( [40] <= jv < [80] ):A[jv] + B[jv - [10]]

(d)

⇓
C = with

( [ 0] <= jv < [20] ):A[jv] + 3

( [20] <= jv < [40] ):(A[jv] + 3) + (A[jv - [10]] + 3)

( [40] <= jv < [50] ):A[jv] + (A[jv - [10]] + 3)

( [50] <= jv < [80] ):A[jv] + A[jv - [10]]

(e)

Fig. 14. Stepwise with-loop-folding at the example presented in figure 12.

intersection is empty. More formally, we have:

Gen(lA, uA, sA, [1...1]) ∩ Gen(lB , uB , sB , [1...1])

=

{
Gen(l, u, s, [1...1]) iff ∃ x, y ∈ Nn

0 : lmin � lA + x ∗ sA = lB + y ∗ sB � lmax
� otherwise

where

s = lcm(sA, sB) u = min(uA, uB)

lmin = max(lA, lB) lmax = min(lmin + s − 1, u)

l = lA + x ∗ sA

where lcm computes the least common multiple and all operations are considered

to be applied element-wise to the vector arguments given.

Applying the above replacement rule to the example problem we get a sequence

of program transformations as shown in figure 14. Starting out from the internal

representation of the two given with-loops (figure 14(a)), it shows the stepwise



1038 S.-B. Scholz

transformation of the second with-loop construct until the final version which does

not contain any references to the array B anymore in figure 14(e) is reached. Each

of these steps results from a single application of the With Loop Folding rule of

figure 13; the references to B which are replaced in the next transformation step in

each of the intermediate forms figure 14(a) to figure 14(d) are marked by boxes.

4.3 Code Generation for with-loops

The definition of multi-generator with-loops as introduced in the previous subsec-

tion allows the order in which the index vector sets are traversed to be arbitrarily

permuted without affecting the overall result. This property can be exploited when

it comes to compiling them into C code. The simplest approach to do so is to

compile each generator into a separate nesting of for-loops whose innermost body

contains the associated expression to be evaluated. A näive compilation scheme for

this approach is presented in figure 15. It consists of rules of the form C[[expr]] =

expr′ which denote context-free substitutions of SaC program fragments expr by C

program fragments expr′. The rules apply only to multi generator with-loops. A

compilation scheme for entire SaC programs is beyond the scope of this paper and

would not provide any further insights into the code generation for with-loops.

Rules (1) and (2) apply to the two variants of multi generator with-loops. They

differ in two respects: the initialization of the variable that holds the result and the

recursive application of the compilation scheme to the individual generators.

The genarray-variant allocates the result array using a = MALLOC( shp). An

explicit initialization is not required as the generator sets are guaranteed to be a

partition of all legal index vectors. In the applications of the compilation scheme

to the individual generators, the expressions to be evaluated are transformed into

assignments of the form a[iv] = Op( iv), which ensures correct insertion of the

computed values into the result array.

In contrast, the compiled code for fold-with-loops starts out with an initialization

of the result by the neutral element. The actual fold operation is generated in the

course of compiling the generators, which is triggered by an application of the

compilation scheme to generators that have been modified accordingly.

The last two rules concern the compilation of generator expressions into nestings

of for-loops. As shown in rule (3), for each component of the indexing vector iv two

nested for-loops are created: an outer loop for initializing and stepwise increasing

the appropriate index vector component, and an inner loop for treating width

components larger than 1. The body of the inner loop derives from recursively

applying the compilation scheme to the generator with its leading index vector

components being eliminated. The creation of the innermost loop body is described

by rule (4). It simply replaces the empty generator by the assignment associated with

it.

Unfortunately, näive compilation has two major problems. First, separately com-

piling the generators often introduces a considerable amount of loop overhead. One

source are adjacent generators that perform identical operations. Another source are

non-dense generators that have almost identical boundaries. They lead to separate



Single Assignment C 1039

C







a = with

( l1 <= iv <= u1 step s1 width w1) : Op1( iv)
...

...

( lm <= iv <= um step sm width wm) : Opm( iv)

genarray( shp);





 (1)

=




a = MALLOC( shp);

iv = MALLOC( shape( l1) );

C[[( l1 <= iv <= u1 step s1 width w1) : a[iv] = Op1( iv)]]
...

C[[( lm <= iv <= um step sm width wm) : a[iv] = Opm( iv)]]

C







a = with

( l1 <= iv <= u1 step s1 width w1) : Op1( iv)
...

...

( lm <= iv <= um step sm width wm) : Opm( iv)

fold( fun, neutr);





 (2)

=




a = neutr;

iv = MALLOC( shape( l1) );

C[[( l1 <= iv <= u1 step s1 width w1) : a = fun( a, Op1( iv))]]
...

C[[( lm <= iv <= um step sm width wm) : a = fun( a, Opm( iv))]]

C
[[

( [li...ln−1] <= iv <= [ui...un−1]

step [si...sn−1] width [wi...wn−1]) : Ass

]]
(3)

=




for( iv[i] = li; iv[i] <= li; iv[i] += si-wi) {
stop = MIN( iv[i]+wi-1, li);

for( ; iv[i]<=stop; iv[i]++) {

C
[[

( [li+1...ln−1] <= iv <= [ui+1...un−1]

step [si+1...sn−1] width [1...1]) : Ass

]]
}

}

C[[( [] <= iv <= [] step [] width []) : Ass ]] = Ass; (4)

Fig. 15. Compilation of multi generator with-loops.

loop nestings which could be reused if the non-dense generators were merged

properly.

The second problem of näive compilation results from the intricacies of the

executing machinery, in particular from data caching. Whereas the organization of

caches by lines favors memory accesses to adjacent addresses (so-called spatial reuse

(Hennessy & Patterson, 1995)), the memory access patterns that result from näive

compilation – in general – turn out to be rather ragged.

Although elaborate C compilers provide several optimizations for rearranging

loops, e.g. loop-fusion, loop-splitting and loop-permutation (Wolfe, 1995; Zima &

Chapman, 1991; Allen & Kennedy, 2001), they often fail to significantly improve

näively compiled code. The major problem these compilers have to deal with is the

lack of information concerning the special form of for-loops as they are created by
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näive compilation. C compilers do not statically know that all innermost loop bodies

can be computed independently. Instead, they have to analyze the loop nestings for

potential data dependencies which in C may be hidden in side-effecting function

calls. Furthermore, C compilers cannot easily detect that all loop nestings generated

from a single with-loop, together, assign a value to each index position in the

result array exactly once. They have to apply optimization schemes based on cost

heuristics that identify loop nestings for which a loop rearrangement most likely will

improve spatial reuse (Ding, 2000).

These observations lead to the idea of systematically transforming näively com-

piled code into loop nestings that obey a specific order, the so called canonical

order (Grelck et al., 2000). Computing the array elements in canonical order means

that the addresses of the resulting array elements are sorted in strictly ascending

order irrespective of the form the generators involved have. This guarantees good

spatial reuse for the write accesses to the resulting array and in many applications

leads to good spatial reuse of the read accesses as well. Furthermore, it reduces

the loop overhead by merging loop nestings whose index ranges overlap in outer

dimensions.

Due to the variety of loop nestings that result from näive compilation, such a

transformation scheme in its general form requires rather complex loop modifica-

tions. However, the basic principle of this transformation can be exposed in a rather

restricted setting. For with-loops that consist of dense generators only, i.e. all step

components and all width components are 1, the loop nestings generated by näive

compilation consist of loops of the form

for( iv[i]=l; iv[i]<=u; iv[i]+=0){
stop = MIN( iv[i] +1-1, u);

for( ; iv[i]<=stop; iv[i]++){
Body;

}
}

only, which can be simplified to

for( iv[i]=l; iv[i]<=u; iv[i]++){
Body;

}

For such loop nestings simple loop splitting and loop fusion operations suffice to

establish canonical order. An example to this effect is shown in figure 16. It consists

of a multi generator with-loop that generates a two-dimensional array a by means

of three dense generators. While the first two generators define how to compute the

elements of the upper and the lower left segment of the array, the third generator

defines how to compute the remaining right half of the array.

Applying näive compilation, loop nestings as shown in the middle section of

figure 16 are created. They compute all elements of the first generator (lines (3)–(7)),

before computing any elements of the third generator (lines (13)–(17)). Assuming

that all arrays are stored in row-major order, this violates the canonical order which

requires the elements of a to be computed one row after the other.
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a = with
( [0,0] <= iv <= [4,4]) : OP1;
( [5,0] <= iv <= [9,4]) : OP2;
( [0,5] <= iv <= [9,9]) : OP3;

genarray( [10,10]);

⇓Näive Compilation

a = MALLOC( [10,10]); ( 1)
iv = MALLOC( [2]); ( 2)
for( iv[0]=0; iv[0]<=5; iv[0]++) { ( 3)

for( iv[1]=0; iv[1]<=5; iv[1]++) { ( 4)
a[iv] = OP1; ( 5)

} ( 6)
} ( 7)
for( iv[0]=6; iv[0]<=9; iv[0]++) { ( 8)

for( iv[1]=0; iv[1]<=5; iv[1]++) { ( 9)
a[iv] = OP2; (10)

} (11)
} (12)
for( iv[0]=0; iv[0]<=9; iv[0]++) { (13)

for( iv[1]=6; iv[1]<=9; iv[1]++) { (14)
a[iv] = OP3; (15)

} (16)
} (17)

⇓Transformation into Canonical Order

a = MALLOC( [10,10]); ( 1)
iv = MALLOC( [2]); ( 2)
for( iv[0]=0; iv[0]<=5; iv[0]++) { ( 3)

for( iv[1]=0; iv[1]<=5; iv[1]++) { ( 4)
a[iv] = OP1; ( 5)

} ( 6)
for( iv[1]=6; iv[1]<=9; iv[1]++) { ( 7)

a[iv] = OP3; ( 8)
} ( 9)

} (10)
for( iv[0]=6; iv[0]<=9; iv[0]++) { (11)

for( iv[1]=0; iv[1]<=5; iv[1]++) { (12)
a[iv] = OP2; (13)

} (14)
for( iv[1]=6; iv[1]<=9; iv[1]++) { (15)

a[iv] = OP3; (16)
} (17)

} (18)

Fig. 16. A simple example for dense generators.

To fix this problem, the third generator has to be split up in the middle and

to be fused with the other generators. The result of this transformation is shown

at the bottom of figure 16. The third nesting has vanished. Instead, the other two

generators contain copies of its body (lines (7)–(9) and (15)–(17)).

To formalize this transformation process, the two loop modifications needed are

presented in figure 17. The operation Split effects Loop Splitting (Wolfe, 1995).

It splits a given loop over an index range [l,u] up into two loops with identical

bodies over two adjacent index ranges [l,m−1] and [m,u], provided that l � m �
u. The second operation, called Merge, applies Loop Fusion (Wolfe, 1995) to the
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Split

[[
for( iv[i]=l; iv[i]<=u; iv[i]++){

Body;
}

]]
m

=




for( iv[i]=l; iv[i]<=m-1; iv[i]++ ) {
Body;

}
for( iv[i]=m; iv[i]<=u; iv[i]++ ) {

Body;
}

Merge

[[
for( iv[i]=l; iv[i]<=u; iv[i]++){

Body1;
}

,
for( iv[i]=l; iv[i]<=u; iv[i]++){

Body2;
}

]]

=




for( iv[i]=l; iv[i]<=u; iv[i]++ ) {
Body1;
Body2;

}

Fig. 17. The loop transformations Split and Merge.

Canon LoopNests

= case LoopNests of {
[] | true -> []

[ln:lns]| ∃ ln′ ∈ lns : (range ln) == (range ln′)

-> Canon ( Merge[[ ln , ln′ ]] ++ (lns \\ ln′))

[ln:lns]| ∃ ln′ ∈ lns : (lower ln) < (lower ln′) � (upper ln)

-> Canon ( Split[[ ln ]](lower ln′) ++ lns)

[ln:lns]| ∃ ln′ ∈ lns : (lower ln) � (upper ln′) < (upper ln)

-> Canon ( Split[[ ln ]](upper ln′) ++ lns)

[ln:lns]| ∃ ln′ ∈ lns : (lower ln′) < (lower ln) � (upper ln′)

-> Canon ( ([ln:lns] \\ ln′) ++ Split[[ ln′ ]](lower ln))

[ln:lns]| ∃ ln′ ∈ lns : (lower ln′) � (upper ln) < (upper ln′)

-> Canon ( ([ln:lns] \\ ln′) ++ Split[[ ln′ ]](upper ln))

[ln:lns]| true -> sort ( [ ForHeader { sort ( Canon Body) } ]

++ (Canon lns) )

where ForHeader { Body } = ln

}

Fig. 18. Algorithm for transforming näively compiled code into canonical order.

outer loop10. It combines two loops with identical index ranges into a single one that

contains both loop bodies. It should be noted here that this loop transformation in

fact changes the order in which the result array is computed. Whereas this can safely

be done for with-loops, in a more general setting an analysis would be required to

make sure that any existing dependencies between the two loop bodies involved can

still be observed after the fusion (Wolfe, 1995).

With these two operations at hand, an algorithm can be defined that systematically

transforms näively compiled code into canonical order. Figure 18 gives such an

algorithm in pseudo functional notation. It uses list notation to represent sequences

of loop nestings as well as the usual list operations such as (++) for catenation

10 It is called Merge here, since for non-dense generators a more general functionality than Loop
Fusion is required.
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for( iv[i] = li; iv[i] <= ui; ) {
c1 × Body1

...

cn × Bodyn
}

=s

for( iv[i] = li; iv[i] <= ui; ) {
stop = MIN( iv[i]+c1-1, ui);

for( ; iv[i] <= stop; iv[i]++) {
Body1

}
...

stop = MIN( iv[i]+cn-1, ui);

for( ; iv[i] <= stop; iv[i]++) {
Bodyn

}
}

Fig. 19. General form of loop nestings.

and (\\) for difference. The algorithm operates as follows: For each loop nesting ln

found, the outermost index range is inspected:

• If within the remaining loop nestings (lns) a loop nesting ln′ with an identical

range in the outermost loop is found (denoted by (range ln) == (range

ln′)), these two nestings are merged wrt. the outer dimension and the trans-

formation process continues on the new list of loop nestings.

• If within the remaining loop nestings (lns) a loop nesting ln′ is found whose

range in the outermost loop overlaps that of the actual loop nesting ln, i.e.

either the lower bound of ln′ (denoted by lower ln′) or the upper bound of ln′

(denoted by upper ln′) is within the range of ln, or vice versa, the overlapping

generator is split up accordingly.

• Finally, if the loop nesting ln within the outermost dimension is disjoint from

all other loop nestings, the transformation process is applied to the body of

ln which, due to potential applications of Merge, may consist of several loop

nestings by itself. To ensure canonical order, the remaining loop nestings on

each level have to be sorted wrt. the index ranges they are applied to, which

is indicated by applications of sort within the recursive calls.

Although the algorithm shown in figure 18 was derived for dense generators only,

it can be applied to non-dense generators as well. All there needs to be done is

to find a more general form of loop pattern which – when applied recursively –

(i) comprises loop nestings as they are generated from non-dense generators, and

(ii) is general enough to be closed under applications of split and merge operations.

Such a loop pattern is shown in figure 19. It consists of an outer loop, which

determines the overall range in the actual dimension (i), and n ∈ N inner loops

which contain n potentially different loop bodies. This allows not only to denote

simple non-dense generators, it also allows for loop nestings that contain arbitrary

periodical sequences of sub-loops. The overall period is determined by the sum of

the individual ranges of all inner loops (c1...cn). In order to prevent an inner loop

from exceeding the overall upper boundary ui, the upper limit of all inner loops

is computed as a minimum of the intended range and ui. To improve program

readability inner loops are abbreviated by expressions of the form number × body,
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Split




 for( iv[0] = 0; iv[0] <= 1023; ) {

3 × Body1

7 × Body2

}




65

=




for( iv[0] = 0; iv[0] <= 64; ) {
3 × Body1

7 × Body2

}
for( iv[0] = 65; iv[0] <= 1023; ) {
5 × Body2

3 × Body1

2 × Body2

}

Fig. 20. An example for splitting a loop nesting in its general form.

Merge




 for( iv[0] = 0; iv[0] <= 1023; ) {

3 × Body1

7 × Body2

}
,

for( iv[0] = 0; iv[0] <= 1023; ) {
3 × Body3

2 × Body4

}






=




for( iv[0] = 0; iv[0] <= 1023; ) {
3 × Body1; Body3

2 × Body2; Body4

3 × Body2; Body3

2 × Body2; Body4

}

Fig. 21. An example for merging two loop nestings in their general form.

indicating a loop that ranges over number elements and has a body body. The left

hand side of figure 19 shows the loop pattern in abbreviated form.

All there remains to be done is to redefine Split and Merge on the more

general loop pattern. However, this task turns out to be more complex than in the

dense case. These operations are therefore explained by means of examples here.

Formal definitions can be found in Appendices A and B, respectively.

Figure 20 shows an example application of Split. The outer loop of the loop

nesting to be split at position 65 ranges from 0 to 1023. As for the dense case, the

loop nesting is split into two almost identical loop nestings, whose outer loops range

from 0 to 64, and from 65 to 1023. However, due to the existence of inner loops,

the relation between the period of these loops (3 + 7 = 10 in the example) and

the actual splitting index (65) affects the form of the second loop. Since 65 is not

an integral multiple of 10, the inner loops have to be rotated by 5 elements which

requires the second inner loop to be split up as well. As a result, the ‘last’ 5 instances

of Body2 constitute the first inner loop, followed by the 3 instances of Body1 and

the ‘first’ 2 instances of Body2.

An example for an application of Merge to two loop nestings in general form is

given in figure 21. In contrast to the dense case, the bodies of the outer loops can

not simply be appended to each other since the inner loops of both of them contain

increments of the index vector component iv[0]. They have to be synchronized

which requires adapting the ranges of the inner loops and thus adapting both periods
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Fitting LoopNests

= case LoopNests of {
[] | true -> []

[ln:lns]| ((upper ln) - (lower ln)) mod (period ln) = m �= 0

-> Fitting ( Split[[ ln ]]((upper ln) - m) ++ lns)

[ln:lns]| true -> [ ForHeader { Fitting Body } ] ++ (Fitting lns)

where ForHeader { Body } = ln

}

Fig. 22. Fitting algorithm.

as well. The resulting loop nesting has a period of 10 which is the least common

multiple of the individual periods (5 and 10). It is split up into four inner loops of

sizes 3 and 2 which are primarily derived from the two inner loops of the second

loop nesting. The bodies of the inner loops actually contain the concatenated loop

bodies taken from the two different loop nestings to be merged.

As can be seen from the examples discussed so far, even simple non-dense

generators may lead to rather complex loop nestings when transformed into

canonical order. In particular, the number of inner loops inserted in each dimension

usually grows when transforming loop nestings into canonical order. The upper

bound of these inner loops is computed as a minimum of the intended range and

the upper bound of the surrounding outer loop. These minimum computations do

not only introduce overhead in all but the last iterations of the outer loop, they also

prevent the C compiler from unrolling inner loops. To avoid these deficiencies, a

simple optimization technique called Fitting is applied. The basic idea is to split each

loop after the last integral multiple of the period within the range to be traversed. A

description of this optimization in pseudo functional notation is shown in figure 22.

Similar to the algorithm Canon for each loop nesting ln the outermost range is

inspected. Whenever the range of the outer loop ((upper ln) - (lower ln)) is not

an integral multiple of the period (referred to by (period ln)), the last incomplete

period is split off and fitting proceeds. Otherwise, fitting is propagated into all bodies

of the inner loops and into the remaining loop nestings as well.

After this optimization has been applied, all minimum computations can be

eliminated which in turn allows the range of all inner loops to be determined

statically.

The canonical order established so far only ensures spatial reuse for the write

accesses. To further improve the cache behavior, other loop transformations have

to be applied that take into account the cache characteristics of the intended target

hardware. See Grelck (2001) for details.

5 Case study: the PDE1-benchmark

In this section, the suitability of SaC for implementing numerically intensive

applications is investigated. Rather than trying to present a systematic performance

evaluation, we intend to give a flavor of SaC from the programmer’s point ov view.

A benchmark algorithm is used as a vehicle to study the various aspects of SaC as
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an implementation language, e.g. expressiveness of the language constructs, potential

for modular specifications, and runtime efficiency.

The program under consideration is the so-called PDE1 benchmark which

originates from various Hpf compiler comparisons. It implements a so-called red-

black relaxation algorithm for approximating three-dimensional poisson equations

and thus can be seen as a typical application kernel for many number crunching

applications.

In the first subsection, the PDE1 algorithm is introduced along with the es-

sential parts of its Hpf implementation. Starting out from a straightforward re-

implementation of the Hpf solution in SaC, section 5.2 discusses aspects of software

reuse and program readability in the context of shape-invariant programming facilit-

ies. In the course of this discussion, six different variants of the SaC implementation

with an increasing level of abstraction are proposed, ending up with an entirely

shape-invariant Apl-style solution. The runtimes of all these implementations are

examined in Subsection 5.3. They are contrasted with the runtimes obtained from

the Hpf implementation using the SUN Fortran95 compiler.

5.1 PDE1 – the given algorithm

The core of the PDE1 algorithm is a so-called stencil operation on a three-

dimensional array. It iteratively re-computes the inner elements of an array, i.e.

all elements with non-minimal/non-maximal indices, as weighted sum of adjacent

elements. In the case of PDE1, the stencil is almost trivial: the value of an element

u′
i,j,k is computed by adding up all six direct neighbors of ui,j,k , adding that value to a

fixed number h2fi,j,k , and subsequently multiplying with a constant factor. Assuming

NX, NY, and NZ to denote the extents of the three-dimensional arrays U, U1, and

F, this operation can in Hpf be specified as:

U1(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

The central language feature of Fortran90/Hpf used here is the so-called triple

notation. It allows triples of the form l : u : s or tuples of the form l : u to be used

insted of single indices, which affects assignments to refer to entire index ranges (all

elements between l and u strided by s) rather than to single elements. Thus, the

assignment above in fact denotes assignments to all inner elements of U1.

However, in the case of PDE1, this operation is not applied to all elements in a

single step, but in two consecutive steps on two disjoint sets of elements. These sets

are called the red set and the black set, which include all those elements with even

and odd indices in the first dimension, respectively. In Hpf, this can be expressed by

introducing a three-dimensional array of booleans RED whose elements are .TRUE.

for all those elements belonging to the red set and .FALSE. for all the black elements.

RED(2:NX-1:2,2:NY-1,2:NZ-1) = .TRUE.

RED(3:NX-1:2,2:NY-1,2:NZ-1) = .FALSE.
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With this definition at hand, relaxation on the red set can be specified using the

WHERE construct of Hpf:

WHERE(RED(2:NX-1,2:NY-1,2:NZ-1))

U1(2:NX-1,2:NY-1,2:NZ-1) = &

& FACTOR*(HSQ*F(2:NX-1,2:NY-1,2:NZ-1)+ &

& U(1:NX-2,2:NY-1,2:NZ-1)+U(3:NX,2:NY-1,2:NZ-1)+ &

& U(2:NX-1,1:NY-2,2:NZ-1)+U(2:NX-1,3:NY,2:NZ-1)+ &

& U(2:NX-1,2:NY-1,1:NZ-2)+U(2:NX-1,2:NY-1,3:NZ))

END WHERE

WHERE(RED(2:NX-1,2:NY-1,2:NZ-1))

U (2:NX-1,2:NY-1,2:NZ-1) = U1 (2:NX-1,2:NY-1,2:NZ-1)

END WHERE

Note, that the first where-block initializes only elements of U1 that belong to

the red set. To make sure that all non-red elements of the result remain the same,

the freshly computed elements of U1 are copied back into U by means of a second

where-block. The complete relaxation algorithm of PDE1 consists of an iteration

loop that contains two of the blocks above, one for the red elements and another

one for the black elements.

5.2 Implementing PDE1 in SaC

The Hpf solution can be carried over to SaC almost straightforwardly. Rather than

using the triple notation of Hpf, the computation of the inner elements is in SaC

specified for a single element at index position iv, which by a with-loop is mapped

on all inner elements:

red = with ( [1,0,0] <= iv < shape(u) step [2,1,1])

genarray ( shape(u), iv, true);

u = with (. < iv < . ) {

if( red[iv]) {

local_sum = u[iv+[1,0,0]] + u[iv-[1,0,0]]

+ u[iv+[0,1,0]] + u[iv-[0,1,0]]

+ u[iv+[0,0,1]] + u[iv-[0,0,1]];

val = factor * (hsq * f[iv] + local_sum);

} else {

val = u[iv];

}

} modarray (u, iv, val);

(Low-Level)

Instead of the where-construct in Hpf, an explicit conditional is inserted into

the body of the with-loop which computes the weighted sum of adjacent elements.

This solution does not only specify the computation of the red elements, but the

alternative part of the conditional includes a specification for the black elements as

well. As a consequence, there is no need to ‘copy’ the red elements as it is required

in the Hpf solution. Instead, the resulting array may directly be named u again.
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However, this solution has several weaknesses. First of all, the relaxation part and

the distinction between red and black elements are tightly coupled, which impairs

program readability and software reuse. To set them apart, the selective application

of the relaxation step has to be abstracted out into an array operation of its own.

This can be done by defining a Where-operation in SaC:

double[*] Where( bool[*] mask, double[*] a, double[*] b)

{

c = with( .<= iv <= . ) {

if( mask[iv]) val = a[iv];

else val = b[iv];

} genarray( shape(a), val);

return( c);

}

It takes three arrays as arguments: an array mask of booleans, and two arrays a

and b of doubles. Provided that all three arrays are of identical shape, a new array

c of the same shape is created, whose elements are copied from those of the array

a if the mask evaluates to true, and from b otherwise.

Assuming a function Relax to implement relaxation on all inner elements of an

array, red-black relaxation now can be defined in terms of that operation:

red = with ( [1,0,0] <= iv <= . step [2,1,1])

genarray ( shape(u), iv, true);

u = Where( red, Relax(u, f, hsq), u);

u = Where( !red, Relax(u, f, hsq), u);

(PDE1)

Note here that the black set is referred to by !red, i.e. by using the element-wise

extension of the negation operator (!).

This specification has several advantages over the low-level specification: it is

much more concise, it does not require the weighted sum to be specified twice, and

the intended functionality is more clearly exposed. Furthermore, the specification of

Relax may be reused in other relaxation-based contexts.

An implementation of the relaxation step can be derived straightforwardly by

abstracting out the computation of the weighted sum of neighbor elements:

double[*] Relax( double[*] u, double[*] f, double hsq)

{

factor = 1d/6d;

u1 = with (. < iv < . ) {

local_sum = u[iv+[1,0,0]] + u[iv-[1,0,0]]

+ u[iv+[0,1,0]] + u[iv-[0,1,0]]

+ u[iv+[0,0,1]] + u[iv-[0,0,1]];

val = factor * (hsq * f[iv] + local_sum);

} modarray (u, iv, val);

return( u1);

}

(Relax 1)

Note that the usage of < instead of <= on both sides of the generator part restricts

the elements to be computed to the inner elements of the array u.
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The disadvantage of this solution, which in the sequel will be referred to as (Relax

1) is that it is tailor-made for the given stencil. In the same way the access triples in

the Hpf-solution have to be adjusted whenever the stencil changes, the offset vectors

have to be adjusted in the SaC solution. These adjustments are very error-prone,

particularly, if the size of the stencil increases or the dimensionality of the problem

changes. These problems may be remedied by abstracting from the problem specific

part with the help of an array of weights W. In this particular example, W is an array

of shape [3,3,3] whose elements are all 0.0 except the six direct neighbor elements

of the center element, which are set to 1.0. Relaxation thus can be defined as:

double[*] Relax( double[*] u, double[*] f, double hsq, double[*] W)

{

factor = 1d/6d;

u1 = with (. < iv < . ) {

block = tile( shape(W), iv-1, u);

local_sum = sum( W * block);

} modarray( u, iv, factor * (hsq * f[iv] + local_sum));

return( u1);

}

(Relax 2)

For each inner element of u1 in this piece of program a sub-array block is taken

from u which holds all the neighbor elements of u[iv]. This is done by applying the

library function tile( shape, offset, array), which creates an array of shape

shape whose elements are taken from array starting at position offset. The weighted

sum of neighbor elements may be computed by an application sum( W * block),

where ( W * block ) multiplies element by element the arrays W and block and

sum sums up all elements of this product array.

Abstracting from the problem specific stencil data has another advantage: the

resulting program does not only support arbitrary stencils but can also be applied

to arrays and stencils of other dimensionalities without changes, for which the usage

of shape(W) rather than [3,3,3] as first argument for tile is essential.

Though the indexing operations have been eliminated by introducing W, the

specification still consists of a problem specific with-loop which contains an element-

wise specification of the relaxation step. This includes some redundancy, since parts

of the functionality, e.g. the multiplication of the constant factor with each element

of the result, already exist as library functions. Extensive usage of these library

functions allows these operations to be ‘lifted’ out of the body of the with-loop:

double[*] Relax( double[*] u, double[*] f, double hsq, double[*] W)

{

factor = 1d/6d;

u1 = hsq * f;

u1 += with (. < iv < . ) {

block = tile( shape(W), iv-1, u);

} modarray( u1, iv, sum( W * block));

u1 = CombineInnerOuter( factor * u1, u);

return( u1);

}

(Relax 3)
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Since these functions effect all elements rather than just the inner ones, a new

function CombineInnerOuter( inner, outer) is required to adjust the border

elements. It takes two identically shaped arrays inner and outer as arguments

to create a new one whose inner elements are taken from inner and whose outer

elements are taken from outer. A shape-invariant version of this function can be

specified by a single with-loop:

double[*] CombineInnerOuter(double[*] inner, double[*] outer)

{

res = with ( . < iv < .)

modarray( outer, iv, inner[iv]);

return( res);

}

Taking further the idea of lifting operations out of the body of the with-

loop and applying more generally applicable array operations instead, leads to yet

another approach for specifying the stencil operation. Instead of addressing neighbor

elements and summing them up on the level of scalars, the entire array could be

shifted and subsequently summed up. This yields the following specification

double[*] Relax( double[*] u, double[*] f, double hsq)

{

factor = 1d/6d;

u1 = hsq * f;

for (i=0; i<dim(u); i++) {

u1 += shift( i, 1, 0d, u);

u1 += shift( i, -1, 0d, u);

}

u1 = CombineInnerOuter( factor*u1, u);

return( u1);

}

(Relax 4)

where shift( dim, num, value, array) shifts the elements of array with respect

to the axis dim by num elements towards increasing indices.

Again, this specification can be made invariant against different stencils by

introducing an array W of weights and summing up shifted arrays by means of

a fold with-loop.

double[*] Relax( double[*] u, double[*] f, double hsq, double[*] W)

{

factor = 1d/6d;

u1 = with ( 0*shape(W) <= iv < shape(W))

fold( +, hsq * f, W[iv] * shift( 1-iv, 0d, u));

u1 = CombineInnerOuter( u1*factor, u);

return( u1);

}

(Relax 5)
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Fig. 23. Runtimes for red black relaxation implementations in Hpf and in SaC.

Here another slightly different shift operation from the SaC-library is used.

Rather than shifting an array with respect to one axis, shift( shift vec, val,

array) shifts array with respect to all axes. The number of positions to be

shifted per axis is defined through the vector shift vec. Another peculiarity of

this specification is the usage of hsq * f as ‘neutral element’ for the fold operation.

This integrates elegantly hsq * f as initial summand of the element-wise addition

of arrays.

5.3 A runtime comparison with Hpf

In this subsection, the runtimes for the six SaC implementations of the PDE1

benchmark discussed in the previous subsection are contrasted with the runtime of

the Hpf implementation whose essential parts have been given in section 5.1.

All measurements are made on a SUN Ultra2 Enterprise 450 with 4 GB of

memory, running Solaris-8. The C code generated by the SaC compiler is compiled

to native code by the SUN Workshop 6 compiler cc v5.1. For the Hpf implementa-

tion, the SUN Workshop 6 compiler f90 v 6.1 is used.

To allow for a fair comparison, the Hpf implementation is taken from the

demo benchmarks that come with the Adaptor Hpf compiler release (Brandes

& Zimmermann, 1994). It contains timer calls that measure the time spent in

the numerical part only. Since such timer calls are not available in SaC, all

runtimes are derived from measuring wall clock times for two different numbers of

iterations and dividing the runtime difference by the difference of the numbers of

iterations.

Figure 23 shows the runtimes for two different problem sizes of the arrays to

be iterated: 643 elements (≈ 2MB per array) and 2563 elements (≈ 130MB per

array). All runtimes are shown relative to the Hpf runtime. The average times

for a single iteration on the entire array (red and black set) are written into the

bars.
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Fig. 24. Memory consumptions for red black relaxation implementations in Hpf

and in SaC.

It can be observed that all SaC variants outperform the Hpf code by factors of

roughly 4 in the 643 elements case, and factors of roughly 2.5 in the 2563 elements

case. Despite the considerable difference in their level of abstraction, all six SaC

variants perform almost identical. When examining the C code generated by the SaC

compiler it turns out that all versions – apart from variable renaming – are almost

identical. Only minor variations can be observed in the way the neighbor elements

of an array are accessed. The C code also reveals that the array f of constants as

well as the mask array red are entirely eliminated by the SaC compiler which, most

likely, is the main reason for the performance edge over the Hpf solution. In fact,

this may also explain the difference between the speedup factors for the two example

sizes, as for smaller overall memory demands the potential gains due to better cache

reuse substantially increase.

This is reflected by the memory consumption shown in figure 24 which was

measured by using the system command top. Again, the memory demands are

shown relative to the memory demand of the Hpf version, and the absolute numbers

are annotated in the bars. In particular, for the 2563 problem size where a single

array requires ≈ 130MB of memory, the memory demand can be readily related

with the program sources. The Hpf implementation requires roughly 3.5 times the

space of a single array of doubles: two arrays serving as source and destination

of every relaxation step, one array for holding the values of f, and an arrays of

booleans for the mask which requires half the size of arrays of doubles. In contrast,

the SaC versions require only 2 times the space of a single array of doubles due to

the elimination of f and red.

The elimination of f and red as well as the transformation of all SaC versions

into almost identical C programs can be primarily attributed to With Loop Folding.

To make its effects visible, figure 25 shows runtimes obtained when explicitly turning

off that particular optimization. Irrespective of the problem size, the runtimes of the

various SaC versions increase with the level of abstraction applied. An examination
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Fig. 25. Runtimes with disabled With Loop Folding.

of the C code confirms that they only differ wrt. temporary arrays being created.

Without With Loop Folding, the low-level version creates arrays f and red, which

reduces the factor over Hpf from 4 to roughly 0.9. The versions (Relax 1) and

(Relax 2) now compute a relaxation step on the entire array before restricting the

result to the red (black) set by means of an application of Where. However,

the runtimes of these versions are still only about a factor of 1.5 slower than

those of the Hpf implementations. (Relax 3) requires further temporaries for the

simple arithmetic operations that are lifted out of the inner loop, which leads to a

less favorable factor. A more significant slowdown can be observed for the versions

(Relax 4) and (Relax 5). Since they replace the selection of neighbor elements by

shifts of the entire array, it is copied several times while doing a single relaxation

step. This leads to runtimes which are roughly 4 and 10 times slower than the Hpf

solution.

6 Conclusion

This paper presents a novel concept for supporting a shape-invariant programming

style for array operations in functional languages. The primary objectives of this

approach are (i) to provide a level of abstraction which liberates array programming

from the details of specifying starts, stops and strides of iteration loops and of

artful loop nestings, and (ii) to demonstrate that these high level specifications can

be compiled to executable code whose runtime efficiency is competitive with that

obtained by compilation of equivalent HPF programs, thus closing the performance

gap between functional and imperative programming in the number crunching

department.

This concept, which has been implemented as an integral part of a fairly simple

functional language called SaC (for Single Assignment C) with a call-by-value

semantics, is based on the representation of arrays by shape and data vectors
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and on compound array operations specified in terms of shape-invariant array

comprehension constructs called with-loops. The strength of this approach largely

derives from the fact that the with-loops are perfect vehicles for implementing,

besides a set of standard operations as they are supported by state-of-the-art array

programming languages such as APL, customized sets of application-specific array

operations, both of which may be linked as libraries to SaC executables. With a

well chosen set of customized operations at hand, application programs may be

written in fairly concise and comprehensible form which, following the basic idea of

the functional paradigm, ensures correct programs largely by construction based on

abstractions.

The high-level programming style of SaC is complemented by a sophisticated type

system and by refined compilation techniques to generate highly efficient executable

code.

The type system is based on a hierarchy of array types with increasingly specific

shape information which allows an inference algorithm to step-wise turn shape-

invariant into shape-specific programs. Though shape inference generally is an

undecidable problem, decidability of the type system of SaC is ensured by falling

back on more general shapes and inserting into the code dynamic type checks, if

it otherwise would fail. As a cosequence, inferred array types are unique modulo

subtyping only.

Exact knowledge about shapes being an essential pre-requisite for efficient array

computations, code optimizations primarily focusses on a new technique called

With Loop Folding which rigorously eliminates the generation of intermediate

arrays from compositions of compound operations. Since all array operations are

implemented as with-loops, this optimization plays the key role in generating fast

code.

A particularly difficult problem of the compilation into C code which is extensively

discussed in the paper concerns efficient ways and means of handling the application

of different operations to disjoint sections of an array. Since näive compilation would

generate memory (and cache) access patterns that match less than perfectly with

the underlying machinery, a great deal of code optimizations must be devoted

to rearranging array traversals so as to minimize cache misses. Here it pays

off that SaC is a functional language which allows to perform operations on

individual array elements in any order since there are no side effects to worry

about.

The elegance of array programming that comes with the array concept of SaC

and the runtime efficiency of SaC executables are demonstrated by means of a

red-black relaxation program taken from the APR Hpf-benchmarks. The Hpf

implementation is compared with several variants of SaC implementations that

feature increasing levels of abstraction. The runtime figures show that all SaC

implementations, different degrees of abstraction notwithstanding, execute in about

the same time, very likely due to the overriding effect of With Loop Folding, but

outperform the Hpf implementation by factors better than 2.5, depending on problem

sizes.
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A Definition of Split for loop nestings in their general form

Split







for( iv[i] = l; iv[i] <= u; ) {
c1 × Body1

.

.

.
cn × Bodyn

}





m

=




for( iv[i] = l; iv[i] <= m − 1; ) {
c1 × Body1

...

cn × Bodyn
}
for( iv[i] = m; iv[i] <= u; ) {

ck2 × Bodyk
ck+1 × Bodyk+1

...

cn × Bodyn
c1 × Body1

...

ck−1 × Bodyk−1

ck1 × Bodyk
}

where

k−1∑
i=1

ci � m′ <
k∑

i=1

ci

m′ = (m − l) mod
n∑

i=1

ci

ck1 = m′ −
k−1∑
i=1

ci

ck2 = ck − ck1

B Definition of Merge for loop nestings in their general form

Merge

[[
for( iv[i] = l; iv[i] <= u; ) {

Body1

}
,

for( iv[i] = l; iv[i] <= u; ) {
Body2

}

]]

=




for( iv[i] = l; iv[i] <= u; ) {

Merge′




 Body1

.

.

.
Body1


m1 ,

Body2

.

.

.
Body2


m2






}

where

m1 = lcm(p1 ,p2)
p1

, m2 = lcm(p1 ,p2)
p2

, pi = period(Bodyi)
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Merge′
[[

c1 × Body1

Rest1
,

c2 × Body2

Rest2

]]

=




c1 ×
{

Body1

Body2

Merge′[[Rest1,Rest2]]
iff c1 = c2

c1 ×
{

Body1

Body2

Merge′
[[
Rest1,

(c2 − c1) × Body2

Rest2

]] iff c1 < c2

c2 ×
{

Body1

Body2

Merge′
[[

(c1 − c2) × Body2

Rest1
,Rest2

]] otherwise
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