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1 Introduction

The past decades have seen tremendous progress in our understanding of the properties

underlying the S-matrices of a wide range of theories. Powerful relations and common

structures between scattering amplitudes of different theories have been discovered. In par-

ticular, the Kawai-Lewellen-Tye relations (KLT) [1], the Bern-Carrasco-Johansson (BCJ)

double-copy relation [2] and the Cachazo-He-Yuan (CHY) formulation [3–5] have shown

a surprising universality underlying amplitude construction. In the latter, only very few

building blocks are necessary to construct the integrands of gravity (G), Yang-Mills (YM),

biadjoint scalar (BS), Einstein-Maxwell (EM), Yang-Mills scalar (YMS), Born-Infeld (BI),

Dirac-Born-Infeld (DBI), non-linear sigma model (NLSM) and special Galileon (SG) the-

ories, as well as their extensions, i.e. more complex theories obtained by adding new fields

and interactions to the original ones. In this direction, differential operators have been

proposed very recently [6] which, starting from tree-level gravity amplitudes, produce the

S-matrices of various massless theories in arbitrary dimension. These transmutation oper-

ators were formulated to act on the explicit expressions for amplitudes, written in terms

of Lorentz invariants made from momenta and polarization vectors. It was later shown

that the action of at least some of them is equivalent to a particular type of dimensional

reduction at the action level [7].

In this paper we prove that the transmutation operators applied to the CHY formu-

lae transform integrands of one theory into another. This provides a further check of the

CHY integrands, some of which were only conjectured using “squeezing” and “generalized

– 1 –



J
H
E
P
0
1
(
2
0
1
9
)
1
8
0

dimensional reduction”. This allows to generate all desired integrands, even for extended

theories. Most importantly, they could be used at loop level to generate integrands start-

ing from gravity. At one-loop, CHY-like formulae were derived from ambitwistor strings

for gravity and Yang-Mills [8] and from the forward limit for scalar fields [9]. The loop

integrands of these theories are expressed in terms of (n + 2)-point tree-level integrands

localized on the loop-level scattering equations. This is reminiscent of the Feynman tree

theorem and was also explored in terms of operators on the sphere [10]. Therefore, at least

at one-loop, the transmutation operators have a similar action to that at tree-level and

allow to generate all desired integrands.

The paper is structured as follows: in the next section we recall some notions about

transmutation operators, while in section 3 the CHY formulation of tree-level massless

amplitudes is reviewed. In section 4 we apply the operators to the CHY integrands. In the

last section we discuss loop amplitudes. Conclusions and outlook complete the paper.

Note added. After completion of this work, we have become aware of [11], where similar

computations for the CHY integrands are performed.

2 Transmutation operators

Very recently, a set of first-order differential operator has been proposed [6], which trans-

mutes amplitudes of various massless theories in arbitrary spacetime dimensions into each

other. In this section, we collect some details on these operators, which will be useful in

the following.

Scattering amplitudes are functions of Lorentz-invariant products of polarization vec-

tors and momenta:1

(eiej , piej , pipj) , (2.1)

with the transmutation operators acting on these variables. Since they transmute physical

amplitudes into physical amplitudes, they should preserve on-shell kinematics and gauge

invariance. The following three types of operators were proposed:

Trace operators Tij. These two-point operators reduce the spin of particles i and j by

one, placing them within a new color trace structure:

Tij = ∂eiej . (2.2)

Therefore they transmute gravitons into photons, gluons into biadjoint scalars, and BI

photons into DBI scalars. They are intrinsically gauge invariant and symmetric Tij = Tji.
Take for example the n-point graviton amplitude A(h1, h2, . . . , hn). The action of the

trace operator Tij will transmute gravitons i and j into photons, which are now within the

same trace

Tij A(h1, h2, . . . , hn) = A(h1, h2, . . . , γi γj , . . . , hn) (2.3)

which is an amplitude of two photons coupled to n − 2 gravitons. To outline the trace

structure, particles within the same trace are not separated by a comma.

1vivj , with vi a momentum or polarization vector, has to be intended as vi · vj .
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Insertion operators Tijk. These operators reduce the spin of particle j by one and

insert it within an already existing trace structure between particles i and k:

Tijk = ∂piej − ∂pkej . (2.4)

They transmute gravitons into gluons, gluons into biadjoint scalars, and BI photons into

pions. They are not intrinsically gauge invariant but become effectively invariant when

combined with proper transmutation operators, i.e. if particles i and k are already trans-

muted. In particular, the combination TijkTik is gauge invariant, see [6] for more details.

The insertion operator is antisymmetric in the first and last index Tijk = −Tkji and satisfies

the additional property Tijk + Tkjl = Tijl. As an example, let us consider a color-ordered

Yang-Mills amplitude of n gluons and apply, first, the trace operator Tik. Particles i and

k are transmuted to biadjoint scalars and placed inside a trace structure with respect to

their dual color. The resulting amplitude of n− 2 gluons and two scalars now exhibits two

different trace structures

Tik A(g1g2 . . . gn) = A(g1 . . . , φiφk, . . . gn) , (2.5)

where the biadjoint scalars carry now a dual color, in addition to the original one. In a

second step we apply the insertion operator Tijk to equation (2.5) transmuting particle j

to a biadjoint scalar and inserting it between i and k in the dual color trace. The resulting

amplitude reads

TijkTik A(g1g2 . . . gn) = A(g1 . . . , φiφjφk, . . . gn) . (2.6)

It is useful to define the following combination of a single trace operator and various

insertion operators

T [α] = Ta1am ·
m−1∏
k=2

Tak−1,ak,am (2.7)

where α with elements ak is an ordered set.

Longitudinal operators Li. The one-point longitudinal operators reduce the spin of

particle i by one and convert it to a longitudinal mode

Li =
∑
j

pipj∂pjei . (2.8)

They transmute a graviton into a BI photon, a gluon into a pion and a BI photon into a

SG scalar. They can also be written as a linear combination of insertion operators

Li =

n∑
j=1
j 6=k

pipj Tjik , (2.9)

for an arbitrary state k. A longitudinal operator transmuting all particles of an amplitude

will give a vanishing result. The following combination

T L = Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk. (2.10)
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is gauge invariant and the resulting amplitude will be a permutation invariant expression

of n identical particles. In particular, it will not depend on the choice of the particles a1

and a2. Since the definition (2.10) is independent of the order of the particles, this type

of operator will not induce a trace structure on the resulting amplitude. For example,

applying (2.10) to a gravity amplitude we obtain an amplitude of n BI photons

ABI(γ1, γ2, . . . , γn) = T LAG(h1, h2, . . . , hn). (2.11)

which does not exhibit a trace structure.

The operator (2.10) can be modified by extending the single trace operator by a number

of insertion operators. Let us start by splitting the set of n particles On = {1, . . . , n}
into two disjoint subsets α and ᾱ such that α ∪ ᾱ = On, with α = {a1, a2, . . . , am} and

ᾱ = {ā1, . . . , ān−m}. We can define the following sequence of operators

T [α]
∏
ā∈ᾱ
Lā , (2.12)

where Lā is the one-point longitudinal operator (2.8) and T [α] was defined in (2.7). We

furthermore require |α| ≥ 2 to ensure that at least one trace operator is contained in T [α]

and |ᾱ| > 0.

In figure 1 the action of transmutation operators bringing from one theory to another

is shown. In particular we have:
ABS = T [a1 . . . an]AYM

AYM = T [a1 . . . an]AG

ANLSM = T [a1 . . . an]ABI


AEM = Ta1a2 · · · Ta2m−1a2mAG

AYMS = Ta1a2 · · · Ta2m−1a2mAYM

ADBI = Ta1a2 · · · Ta2m−1a2mABI


ASG = T LABI

ABI = T LAG

ANLSM = T LAYM

(2.13)

By applying combinations of operators acting only on subset of particles, we can find the

amplitudes for extended theories. For instance, (2.12) generates the extended versions of

BI, NLSM and SG.

3 CHY formulation

The CHY construction is a compact formulation for tree-level scattering amplitudes of vari-

ous theories in arbitrary spacetime dimension. In this formulation, the tree-level scattering

amplitude of n massless particles can be expressed as an integral over the moduli space of

a n-punctured Riemann sphere M0,n [3, 5]:

A(0)
n =

∫
M0,n

∏n
i=1 dσi

vol SL (2,C)

∏
a

′δ

 n∑
b=1
b 6=a

pa · pb
σab

 In({p, e, ẽ, σ}) =:

∫
M0,n

dµ0,n In , (3.1)

where σi denotes the holomorphic coordinate of the puncture i on the Riemann sphere and

σab = σa − σb.
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Figure 1. The connection between different theories through transmutation operators. The the-

ories under consideration are: Gravity (G), Einstein-Maxwell (EM), Yang-Mills (YM), Yang-Mills

scalar (YMS), biadjoint scalar (BS), Born-Infeld (BI), Dirac-Born-Infeld (DBI), nonlinear sigma

model (NLSM) and special Galileon (SG).

The integration measure dµ0,n is a universal object, identical for all theories, and

localizes the integral on the so-called scattering equations:

n∑
b=1
b 6=a

pa · pb
σab

= 0 for a ∈ {1, . . . , n} , (3.2)

which relate the kinematic invariants sab = 2pa·pb and the puncture locations σa. Originally

introduced in different contexts, i.e. dual resonance models [12] and high-energy behavior

of string theory [13], they represent an essential object in the formulation (3.1). The prime

in the formula indicates that only n− 3 scattering equations are linearly independent

∏
a

′δ

(
n∑
b=1
b 6=a

pa · pb
σab

)
≡ σijσjkσki

∏
a 6=i,j,k

δ

(
n∑
b=1
b 6=a

pa · pb
σab

)
, (3.3)

and, since dim(M0,n) = n− 3, the integral (3.1) is completely localised on (n− 3)! of their

solutions.

While the form of dµ0,n is universal, the integrand In depends on the theory under

consideration and is a function of the external data pa and ea, and of the σ’s. It exhibits

a double-copy structure

In = ILIR (3.4)

and, in general, only two building blocks enter its definition. The first one is the Parke-

Taylor factor

Cn[α] =
1

σα(1)α(2)σα(2)α(3) · · ·σα(n)α(1)
, (3.5)
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which depends on the ordering α of the particles contributing to the partial amplitude. It

appears naturally for every theory exhibiting a color or flavor structure.

The second building block is the reduced Pfaffian of an antisymmetric 2n×2n matrix Ψ

which depends on the external momenta {p1, . . . pn} and polarizations {e1, . . . , en} of the

particles and on {σ1, . . . , σn}. The matrix Ψ has the following block structure

Ψ =

(
A C

−CT B

)
(3.6)

where the n×n block matrices are given by

Aab =

{
pa·pb
σab

a 6= b

0 a = b
Bab =

{
ea·eb
σab

a 6= b

0 a = b
Cab =

{
pa·eb
σab

a 6= b∑
c 6=a

ea·pc
σac

a = b
(3.7)

with a, b = 1, . . . , n. The reduced Pfaffian Pf ′Ψ is defined via

Pf ′Ψ =
(−1)p+q

σpq
Pf(Ψpq

pq) (3.8)

for some 1 ≤ p < q ≤ n, and where Ψpq
pq is the matrix Ψ with the rows and columns p and q

removed. We notice that the Pfaffian of the matrix Ψ is instead vanishing, since the rows

and columns are linearly dependent on the solutions of the scattering equations.

We also introduce the following matrix

Xab =

{
δIa,Ib
σab

a 6= b

0 a = b
(3.9)

which will appear in later sections. Here Ia denotes the U(1) charge of particle a.

Let us provide some explicit examples. The CHY integrand for an n-point gravity

amplitude is given by

IG(p, e, ẽ, σ) = Pf ′Ψ(p, e, σ) Pf ′Ψ(p, ẽ, σ) (3.10)

where ea and ẽa are two sets of polarization vectors which, together, describe the polar-

ization tensor of the state a: εµνa = eµa ẽνa. This gravity theory, also called NS-NS gravity,

describes gravitons, dilatons and B-field states and it is the theory descending from YM

via KLT relations. To retrieve pure Einstein-gravity amplitudes, an appropriate symmet-

ric, traceless linear combination of eµa ẽνa terms should be chosen. The integrand for the

Yang-Mills tree-level partial amplitude with ordering [α] is instead

IYM,α(p, e, σ) = Cn[α] Pf ′Ψ(p, ẽ, σ) , (3.11)

and for the full amplitude we can write

Cn =
∑

α∈Sn/Zn

Tr (T aα(1) T aα(2) . . . T aα(n))Cn[α] . (3.12)

In table 1 we summarize the various integrands which will appear in this paper [4, 5].
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Theory IL IR
Gravity (G) Pf ′Ψ(p, e, σ) Pf ′Ψ(p, ẽ, σ)

Yang-Mills (YM) Cn[α] Pf ′Ψ(p, ẽ, σ)

Bi-adjoint Scalar (BS) Cn[α] Cn[β]

Einstein-Maxwell (EM) PfX (σ) Pf ′A(p, σ) Pf ′Ψ(p, ẽ, σ)

Born-Infeld (BI) [Pf ′A(p, σ)]2 Pf ′Ψ(p, ẽ, σ)

Dirac-Born-Infeld (DBI) [Pf ′A(p, σ)]2 PfX (σ) Pf ′A(p, σ)

Yang-Mills-scalar (YMS) Cn[α] PfX (σ) Pf ′A(p, σ)

Non-linear sigma model (NLSM) Cn[α] [Pf ′A(p, σ)]2

Special Galileon (SG) [Pf ′A(p, σ)]2 [Pf ′A(p, σ)]2

Table 1. CHY integrands for various theories. The definitions of Cn[α], Ψ, A and X can be found

in eq.s (3.5), (3.6), (3.7), (3.9) respectively.

4 Transmutation operators acting on CHY integrands

In this section we show that, starting with the CHY integrand for gravity and after re-

peated action of the transmutation operators, the integrands of all theories described in

the previous part of the paper can be derived, together with the ones for the extended

theories. Since the following paragraphs are technical in nature, we encourage the reader

to look at the figure at the end of the section, where our results are collected.

4.1 Single trace amplitudes: G → YM → BS and BI → NLSM

Let us start by studying the action of an operator T [α] as in (2.7) on the reduced Pfaffian

Pf ′Ψ for an arbitrary number of particles n. Let α be an ordered subset of {1, . . . , n} with

m ≤ n elements. The operator consists of a single trace operator and m − 2 insertion

operators:

T [α] = Ta1am ·
m−1∏
k=2

Tak−1,ak,am . (4.1)

First, we focus on the case m = n, where all particles are transmuted. Without loss

of generality, we can consider the canonical ordering 1, 2, . . . , n and choose to delete rows

and columns p = 1 and q = 2 in the definition of the reduced Pfaffian (3.8). The object

that needs to be computed then is

T [12 . . . n] Pf ′Ψ = T1n ·
n−1∏
a=2

Ta−1,a,n Pf ′Ψ . (4.2)

To determine the action of the transmutation operators let us rewrite them in terms of

the components Ψab, while keeping in mind that the indices 1 and 2 do not appear in the

reduced Pfaffian. We will consider first the trace operator T1n and afterwards the insertion

operators Tijk. In the latter, T12n and T23n have to be treated separately due to the choice

we made of p = 1 and q = 2.
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• T1n = ∂e1en : this operator will act on the component Ψn+1,2n = B1n = e1en
σ1n

of (3.6),

see (3.7). The action on Bn1 is irrelevant for the purpose of computing the Pfaffian,

since only one term will appear. Therefore, we can rewrite

T1n =
1

σ1n

∂

∂Ψn+1,2n
.

• Ta−1,a,n = ∂pa−1ea − ∂pnea , a ∈ {4, . . . , n− 1}: the variable pa−1ea appears in the two

components Ψa−1,a+n = Ca−1,a = pa−1ea
σa−1,a

and Ψa,a+n = Caa =
∑

b 6=a
pbea
σab

. The latter

component contains also pnea, which further appears in Ψn,a+n = Cna = pnea
σna

. This

leads to

Ta−1,a,n =
1

σa−1,a

∂

∂Ψa−1,a+n
+

1

σan

∂

∂Ψn,a+n
−
(

1

σa−1,a
+

1

σan

)
∂

∂Ψa,a+n
.

This formula can be simplified when a = 2, 3 as the components with indices 1 and

2 do not appear in the reduced Pfaffian. Indeed, for the case a = 3

• T23n = ∂p2e3 − ∂pne3 : we can simply ignore the first term, which would have a deriva-

tive with respect to Ψ2,n+3, and find

T23n =
1

σ3n

∂

∂Ψn,n+3
−
(

1

σ23
+

1

σ3n

)
∂

∂Ψ3,n+3
,

while for the case a = 2

• T12n = ∂p1e2 − ∂pne2 : we can ignore the first (Ψ1,n+2) and the last term (Ψ2,n+2),

T12n =
1

σ2n

∂

∂Ψn,n+2
.

We note that every transmutation operator can be represented as a linear differential

operator in the components Ψab, replacing a certain component with a corresponding σab.

We are now ready to act on the reduced Pfaffian. The reduced Pfaffian consists of (2n−3)!!

terms, with each of them consisting of n − 1 factors, see appendix A. Crucially, in every

term each of the 2n − 2 indices appears exactly one time. Furthermore, every term has a

different combination of indices. By acting with a transmutation operator on the reduced

Pfaffian, only those terms containing the exact same index combination will survive. As

we discussed above, each component will be replaced by the corresponding combination of

σ’s. Repeating this for all n− 1 operators, the number of relevant terms will decrease and

eventually all components will be replaced. Let us show how this works in detail.

Since the transmutation operators commute among themselves, we can choose their

ordering. We start with the simplest one, namely T1n, which makes most of the terms vanish

and keeps only those that involve the component Ψn+1,2n. This component is then replaced

by the factor 1
σ1n

. The second operator we consider is T12n. It limits the number of relevant

terms further, to those containing also the component Ψn,n+2. The next operator in the

process shall be T23n. Its first term involves a derivative with respect to Ψn,n+3 but, since

– 8 –
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every index appears only once per term, there are no terms with index n left after having

acted with T12n. Therefore only the derivative w.r.t. Ψ3,n+3 is relevant. Finally, we repeat

this procedure with the remaining three-point operators Ta−1,a,n for a ∈ {4, . . . , n − 1}.
Even though they contain the three pairs of indices (a− 1, a+n), (n, a+n) and (a, a+n),

for every a only the last pair is relevant. Indeed the second term again involves the index

n which was already deleted by T12n, while the first term contains the index a − 1 which

was deleted by the third term of Ta−2,a−1,n.

Therefore, we have showed that there is only a single term in the reduced Pfaffian on

which the n − 1 transmutation operators act non-trivially. The final result for the action

of the complete transmutation operator is

T [12 . . . n] Pf ′(Ψ) = sn
1

σ12

1

σn1

1

σ2n

(
1

σ23
+

1

σ3n

) n−1∏
a=4

(
1

σa−1,a
+

1

σan

)
= sn

1

σ12 · · ·σn1
,

(4.3)

where the factor 1
σ12

comes from the fact that we have chosen to remove rows and columns

{1, 2}, see (3.8). sn is an irrelevant sign factor depending on n

sn = (−1)
n(n+1)

2
−1 (4.4)

and is calculated by considering the signs coming from the Pfaffian, see appendix A, from

the operators and the reduced Pfaffian (3.8). Therefore, we see that, by acting with

the transmutation operator on the reduced Pfaffian, we obtain the Parke-Taylor factor

corresponding to the chosen ordering:

T [α] Pf ′Ψ = snCn[α] . (4.5)

We are now ready to transmute scattering amplitudes. Acting with the operator (4.2)

on the CHY integrand of gravity (3.10) we obtain the integrand for YM theory, ordered

with respect to the set α. Specifically, up to an irrelevant sign,

T [α] IG = T [α]
(

Pf ′Ψ̃Pf ′Ψ
)

=
1

σα(1)α(2) · · ·σα(n)α(1)
Pf ′Ψ = IYM(α) . (4.6)

Acting again with the operator in a given ordering β, we obtain a canonically-ordered

integrand for BS theory in the dual ordering with respect to α and β

T [β] IYM(α) = T [β]
(
Cn[α]Pf ′Ψ

)
= Cn[α]

1

σβ(1)β(2) · · ·σβ(n)β(1)
= IBS(α|β) . (4.7)

In the same way, a BI amplitude is transmuted into a NLSM one:

T [α] IBI = T [α]
(
Pf ′Ψ(Pf ′A)2

)
=

1

σα(1)α(2) · · ·σα(n)α(1)
(Pf ′A)2 = INLSM(α) . (4.8)

These integrands agree with [4].
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Finally, it is straightforward to extend the results above to the cases when not every

particle is transmuted, i.e. m < n, and find the integrands for extended theories:

T [α] Pf ′Ψ = sm,nCm[α] Pf[Ψ]ᾱ;ᾱ , (4.9)

where the sign sm,n = (−1)
m(m+1)

2
−1+n(m+1) now depends also on m and ᾱ is the n −m

subset of non-transmuted particles. [Ψ]ᾱ;ᾱ is therefore the 2(n−m)×2(n−m) matrix that

is obtained by restricting Ψ to the subset ᾱ.

4.2 Multiple trace amplitudes: G → EM and YM → YMS and BI → DBI

We move now to study the action of transmutation operators on CHY integrands for

multiple trace amplitudes. In particular, we start by considering a simple sequence of m

trace operators

T m{αβ} =
m∏
k=1

Takbk (4.10)

transmuting pairwise a subset of 2m particles {αβ} = {a1, b1; a2, b2; . . . ; am, bm} with ak <

bk.
2 We consider 2m ≤ n: therefore, not all particles are necessarily transmuted. Due to

permutation invariance, we can define the reduced Pfaffian Pf ′Ψ such that all particles from

the set {αβ} are placed in the last 2m rows and columns. As a starting point, we consider

the action of a single trace operator Tab with a < b on the reduced Pfaffian Pf ′(Ψ). The

variable eaeb appears only once and corresponds to the matrix entry Ψa+n,b+n = Bab = eaeb
σab

.

Using the recursive definition of the Pfaffian (A.4) with i = a+ n, we find

Pf ′(Ψ) =
(−1)p+q

σpq

2n∑
j=1
j 6=p,q
j 6=a+n

(−1)n+a+j+1+Θ(n+a−j) Ψn+a,j Pf(Ψp,q,n+a,j
p,q,n+a,j) . (4.11)

The product eaeb does not appear in the remaining Pfaffian, because the row and column

n+ a were erased, while it is present once in Ψn+a,j for j = n+ b. Therefore we can write

Pf ′(Ψ) = (−1)a+b+1+Θ(a−b) eaeb
σab

Pf ′(Ψn+a,n+b
n+a,n+b) + . . . , (4.12)

where the ellipses indicate terms which vanish after the action of the transmutation oper-

ator. Hence we find

Tab Pf ′(Ψ) =
(−1)a+b+1

σab
Pf ′(Ψa+n,b+n

a+n,b+n) . (4.13)

Let us proceed by studying the case m = 2, where another trace operator Tcd, with c < d

and a, b, c, d pairwise different, is applied to equation (4.13). Using again the recursion

relation for i = c+ n we have

Pf ′(Ψa+n,b+n
a+n,b+n) = (−1)c+d+1 sgn(abcd)

eced
σcd

Pf ′(Ψn+a,n+b,n+c,n+d
n+a,n+b,n+c,n+d) + . . . , (4.14)

2This can be done w.l.o.g., by virtue of the symmetry properties of Tab.
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where again all terms denoted by the ellipses vanish when applying Tcd. Here sgn(abcd)

is the sign of the permutation {a, b, c, d}. Therefore, for a sequence of two trace operators

acting on the reduced Pfaffian, we find

TcdTab Pf ′(Ψ) =
(−1)a+b+c+d sgn(abcd)

σabσcd
Pf ′(Ψa+n,b+n,c+n,d+n

a+n,b+n,c+n,d+n) . (4.15)

We are now ready to generalize the result to the full operator (4.10), by using (4.13)

and (4.15):

T m{αβ}Pf ′(Ψ) =
sgn({αβ})∏m
k=1 σak,bk

Pf ′
(

Ψ
;{αβ}
;{αβ}

)
, (4.16)

where the notation Ψ
;{αβ}
;{αβ} indicates that we removed all rows and columns corresponding to

{αβ} from the second block of Ψ, and left the first block unchanged. The factor sgn({αβ})
is the sign of the permutation

σ =

(
a1 b1 a2 b2 . . . am bm
â1 b̂1 â2 b̂2 . . . âm b̂m

)
(4.17)

with â1 < b̂1 < â2 < b̂2 < · · · < âm < b̂m . Let us note that (4.16) can be rewritten in

terms of the matrix X (3.9). Recalling that the operator (4.10) transmutes states pairwise

regarding the color structure, we find for the color charges of the transmuted particles

Iaj = Ibk if and only if j = k. In this special case,

sgn({αβ})∏m
k=1 σak,bk

= Pf(X ){αβ} , (4.18)

where (X ){αβ} denotes the reduced 2m × 2m matrix that is obtained from X by delet-

ing all rows and columns corresponding to non-transmuted particles. Therefore, we can

rewrite (4.16) as

T m{αβ}Pf ′(Ψ) = Pf(X ){αβ} Pf ′
(

Ψ
;{αβ}
;{αβ}

)
. (4.19)

To get a better understanding of equation (4.16), let us investigate the special case where

the highest possible number of trace operators is applied to the reduced Pfaffian. Since

every trace operator carries two indices, at most bn2 c operators can be applied. There are

two different cases:

• n even: exactly m = n
2 trace operators can be applied. Every product of the form

eaeb is erased from the matrix Ψ and only the upper left block A survives inside the

Pfaffian, see (3.6). The result does not depend anymore on the external polarizations

and (4.16) reduces to

T m{αβ}Pf ′(Ψ) =
sgn({αβ})∏n

2
k=1 σak,bk

Pf ′(A). (4.20)

• n odd: the maximal number of trace operators which can be applied is m = n−1
2 ,

with one of the n labels not appearing in {αβ}. Let us denote this label by x. In the
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lower right block of Ψ, i.e. the submatrix B, all rows and columns are erased apart

from one. The single entry remaining is Bxx = 0. In the off-diagonal blocks, a single

row or respectively column survives. We then obtain

T m{αβ} Pf ′(Ψ) =
(−1)x+1 sgn({αβ})∏n−1

2
k=1 σak,bk

Pf ′

(
A Cjx

(−Cjx)T 0

)
(4.21)

where Cjx denotes the x-th column of C. By using the recursive definition of the

Pfaffian (A.4) for i = n+ 1 this can be further rewritten as

T m{αβ} Pf ′(Ψ) =
(−1)x+1 sgn({αβ})∏n−1

2
k=1 σak,bk

n∑
j=1
j 6=p,q

(−1)j+1CjxPf ′(Ajj). (4.22)

where p and q denote the two rows and columns that are erased when taking the

reduced Pfaffian.

We can now evaluate the CHY integrands for Einstein-Maxwell theory and Yang-Mills

scalar theory. By starting from gravity (3.10) and applying the chain of operators (4.10),

we find

IEM(γa1γb1 , . . . , γamγbm ; {h}) = T m{αβ}IG

= Pf(X ){αβ} Pf ′
(

Ψ
;{αβ}
;{αβ}(p, e, σ)

)
Pf ′Ψ(p, ẽ, σ). (4.23)

Equation (4.23) is the expression for the CHY integrand of an EM theory with 2m photons

γa and n − 2m gravitons. Each trace operator applied above transmutes two gravitons

into two photons and puts them into a separate color trace. Hence the integrand contains

m traces of two photons, separated in equation (4.23) by a comma, and the remaining

{h} gravitons. This result for the EM integrand agrees with the results from [5] when

appropriately modified to have photons arranged in m separate pairs of color traces. The

U(1) charges I are chosen such that Iak = Ibk for all k and different otherwise. In the case

n = 2m, where all particles are transmuted, the matrix inside the Pfaffian reduces to the

matrix A, see (4.20). The CHY integrand for YMS can be derived from the Yang-Mills

integrand (4.6)

I [α]
YMS(φa1φb1 , . . . , φamφbm ; {g}) = T m{αβ} IYM,α

= Pf(X ){αβ} Pf ′
(

Ψ
;{αβ}
;{αβ}(p, e, σ)

)
Cn[α] . (4.24)

Equation (4.24) is the expression for the CHY integrand of a YMS theory with 2m scalars

and n−2m gluons {g}. Similarly to the previous case, since every trace operator transmutes

two gluons into two scalars in a separate trace, the integrand consists of m traces containing

two scalars each. Finally, the integrand for DBI can be obtained from the BI theory, which

we will derive in the next section

IDBI(φa1φb1 , . . . , φamφbm ; {γ}) = T m{αβ} IBI(γ1, . . . , γn)

= Pf(X ){αβ} Pf ′
(

Ψ
;{αβ}
;{αβ}(p, e, σ)

) [
Pf ′A(p, σ)

]2
. (4.25)
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Equation (4.25) describes the CHY integrand of a theory with 2m DBI scalars coupled

to n − 2m BI photons {γ} and agrees with [5] when a similar discussion as for the EM

charges is done. The scalars are organized in m pairs, each one in a different trace.

4.3 Longitudinal operators: G → BI → SG and YM → NLSM

Finally, we derive the CHY integrands for BI, NLSM and SG theories, and extended

theories, by using the longitudinal operators. Let us remind that we can define the following

sequence of operators

T [α]Lᾱ := T [α]
∏
ā∈ᾱ
Lā , (4.26)

where Lā is the one-point longitudinal operator (2.8) and α ∪ ᾱ covers all the set of n

particles of On = {1, . . . , n}. As explained in [6], for |ᾱ| even a product of longitudinal

operators can be rewritten in the following way:

∏
ā∈ᾱ
Lā =

∑
ρ∈Pn−m

n−m
2∏

k=1

Likjk + · · · (4.27)

where Lij is the two-point longitudinal operator

Lij = −pipj∂eiej (4.28)

and the ellipses denote remainder terms which vanish when transmuting all particles of a

physical amplitude. The sum is over the set of partitions of ᾱ into pairs. For |ᾱ| odd, we

can exclude one arbitrary element — call it x — from ᾱ to obtain a new set ᾱ′. Then∏
ā∈ᾱ
Lā = Lx ·

∏
ā∈ᾱ′
Lā (4.29)

and (4.27) can be used for the reduced set ᾱ′. This expansion simplifies the calculations, as

the two-point operator contains the same derivative as the trace operator we have already

discussed.

The number |α| determines the fraction of particles which are not transmuted by

the longitudinal operators. The case |α| = 2 directly connects to [6]: in this case the

operator transmutes amplitudes from gravity to Born-Infeld, from Born-Infeld to Special

Galileon and from Yang-Mills to the NLSM. For |α| > 2 the operator yields amplitudes

from extended theories and it transmutes

• Gravity amplitudes into amplitudes of BI photons coupled to gluons

• BI amplitudes into amplitudes of SG scalars coupled to pions

• Gluon amplitudes into pions coupled to biadjoint scalars

Let us start with the case |α| = 2, i.e. the operator

Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk . (4.30)
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It consists of a single trace operator, whose action is already known from the previous

section, and n− 2 longitudinal operators. These can be expanded using (4.27):

• n even: we can use (4.27) to rewrite the longitudinal operators as a sum of products

of r = n
2 − 1 two-point longitudinal operators. The action of one particular partition

on the reduced Pfaffian is given by equation (4.20) multiplied by the products of

momenta coming from the longitudinal operators:

Ta1a2 · Li1j1 · · · LirjrPf ′(Ψ) =
(−1)r sgn(a1, a2, {ij})

σa1a2

r∏
k=1

(Aikjk) Pf ′(A) (4.31)

where Aij =
pipj
σij

is an element of the matrix A. The sign is determined by the

ordering of all i and j as well as a1 and a2, which together cover the full set {1, . . . , n}.
However, the positions of a1 and a2 are the same for every partition and hence the

sign factorizes into

sgn(a1, a2, {ij}) = (−1)a1+a2+1 sgn({ij}) . (4.32)

Taking the sum over all possible partitions of ᾱ into pairs turns the product in equa-

tion (4.31), together with the sign, into the Pfaffian of the matrix Aa1,a2a1,a2 . Recalling

the definition of the reduced Pfaffian Pf ′Ψ = (−1)p+q

σpq
Pf(Ψpq

pq) this becomes

Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk Pf ′(Ψ) = (−1)
n
2 Pf ′(A)2 . (4.33)

• n odd: using (4.29) we rewrite the longitudinal operators as a sum of products of

r = n−3
2 two-point longitudinal operators multiplied by a single one-point longitudinal

operator Lx. In analogy to equation (4.22), the action of the r two-point operators

together with the trace operator is given by

Ta1a2 · Li1j1 · · · Lirjr Pf ′(Ψ)=
(−1)r+x+1 sgn({ij})

σa1a2

r∏
k=1

(Aik,jk)
n∑
j=1
j 6=p,q

(−1)j+1CjxPf ′(Ajj).

(4.34)

Before summing over all possible partitions, let us apply the remaining longitudi-

nal operator Lx, which will act only on the matrix elements Cjx in (4.34). The

longitudinal operator acts on a diagonal element of C as

LxCxx = Lx ·
∑
c 6=x

expc
σxc

=
∑
c 6=x

pxpc
σxc

= 0 (4.35)

on the support of the scattering equations. Therefore, the action of Lx on the matrix

C is

LxCjx =


pjpx
σjx

if j 6= x

0 if j = x
. (4.36)
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Since we can always choose p and q such that they are not equal to x, we have
n∑
j=1
j 6=p,q

(−1)j+1CjxPf ′(Ajj)
Lx−−−→

∑
j 6=p,q,x

(−1)j+1AjxPf ′(Ajj) = Pf ′(Ā) ,
(4.37)

where the recursion relation of the Pfaffian was used backwards to obtain a new

(n+1)×(n+1) matrix Ā. This matrix is an extension of the matrix A and results from

duplicating the x-th row and x-th column and adding them to the end. Therefore,

since the rows (and columns) of Ā are not linearly independent, Pf ′(Ā) = 0 for n odd:

Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk Pf ′(Ψ) = 0 . (4.38)

Using the fact that the Pfaffian of an antisymmetric n× n matrix vanishes for n odd, the

results for both cases can be summarized as

Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk Pf ′(Ψ) = (−1)
n
2 Pf ′(A)2 . (4.39)

We can now act with the operator (4.30) on the CHY integrand of gravity to obtain the

BI integrand containing n BI photons. Due to the permutation invariance of the reduced

Pfaffian, this integrand is independent of the choice of the two trace-operator transmuted

particles

IBI(γ̃1, . . . , γ̃n) = Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk IG(h1, . . . , hn) = (−1)
n
2
[
Pf ′A(p, σ)

]2
Pf ′Ψ(p, ẽ, σ) .

(4.40)

The notation γ̃i indicates that the BI photon i is characterized by the polarization vector

ẽi. Applying the operator once more to Pf ′Ψ leads to the SG integrand with n SG scalars:

ISG(φ1, . . . , φn) = Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk IBI(γ1, . . . , γn) =
[
Pf ′A(p, σ)

]4
. (4.41)

By proceeding in a similar way, the integrand for pure NLSM of n pions is obtained by

applying the |α| = 2 longitudinal operator to the YM integrand

INLSM,ω(π1, . . . , πn) = Ta1a2 ·
n∏
k=1

k 6=a1,a2

Lk IYM,ω(g1, . . . , gn) =
−[Pf ′A(k, σ)]2

σω(1),ω(2) · · ·σω(n),ω(1)
. (4.42)

The NLSM integrand can also be obtained by applying a T [ω] operator to the integrand

of BI theory: this is the same procedure as above but with the operators in reversed order.

Since the transmutation operators commute among themselves, the order of application

does not matter. With the same operation, we could also retrieve the DBI integrand from

the EM one. These results agree with [5] up to an irrelevant sign. Let us notice that the

trace operator Ta1a2 in equation (4.30) guarantees that the reduced Pfaffian of A is taken

instead of the full Pfaffian, which would be the result with only longitudinal operators.

This is the operatorial equivalent of the conjectured procedure described in [5].
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Extended theories. Finally, we investigate the extended theories generated by the op-

erator T [α]Lᾱ defined in (4.26), with |α| > 2. The set of all particles On is split into two

subsets α = {a1, a2, . . . , am} and ᾱ = {am+1, am+2, . . . , an}, where all particles in α (ᾱ) are

transmuted according to T (L). In the case where |ᾱ| is odd, the operator in (4.26) leads

to a vanishing result, as we have already showed in (4.38) for the particular case |α| = 2.

Using our previous results, we can easily study the action of T [α]Lᾱ on the reduced Pfaffian

Pf ′Ψ. The action of the multiple trace operator is governed by (4.9)

T [α] Pf ′(Ψ) = sm,n Cm[α] Pf[Ψ]ᾱ;ᾱ . (4.43)

The second part Lᾱ acts now on the Pfaffian of the 2(n −m)×2(n −m) matrix Pf[Ψ]ᾱ;ᾱ

of the remaining particles belonging to ᾱ. The n−m one-point longitudinal operators can

again be expanded in terms of two-point longitudinal operators. Studying one particular

partition, we find

r∏
k=1

Likjk Pf[Ψ]ᾱ;ᾱ = sgn({ij})
r∏

k=1

(
−pikpjk
σikjk

)
Pf[A]ᾱ;ᾱ , (4.44)

where r = n−m
2 and Pf[A]ᾱ;ᾱ is the matrix A restricted to particles from the set ᾱ. Summing

over all partitions, the terms combine into another Pfaffian of the matrix [A]ᾱ;ᾱ:

Lᾱ Pf[Ψ]ᾱ;ᾱ = (−1)r Pf[A]ᾱ;ᾱ

∑
{ij}

sign({ij})
r∏

k=1

(Aikjk) = −sn−m,n−m (Pf[A]ᾱ;ᾱ)2 . (4.45)

Therefore, the full operator gives

T [α]Lᾱ Pf ′(Ψ) = (−1)
n+m2

2
−1 Cm[α] (Pf[A]ᾱ;ᾱ)2 . (4.46)

Applying this operator to the integrand of gravity, all gravitons in the set α are trans-

muted into gluons ordered with respect to α, and all gravitons in ᾱ are transmuted into

BI photons. The integrand of the resulting extended BI theory is given by

IBI⊕YM(α) = T [α]Lᾱ IG = (−1)
n+m2

2
−1 Cm[α] (Pf[A]ᾱ;ᾱ)2 Pf ′Ψ. (4.47)

From here a second copy of the T [β]Lβ̄ operator leads to an extended SG theory which

couples SG scalars and biadjoint scalars to pions from two copies of NLSM:

ISG⊕NLSM2⊕BS(α|β) = T [β]Lβ̄ IBI

= (−1)
m2+m′2

2
+n Cm[α] (Pf[A]ᾱ;ᾱ)2 Cm′ [β]

(
Pf[A]β̄;β̄

)2
(4.48)

with m′ = |β|. The particles are transmuted in four distinct groups depicted in the table

below. The intersection α ∪ β contains biadjoint scalars with orderings α and β and the

intersection ᾱ ∪ β̄ SG scalars. The particles in the two remaining intersections α ∪ β̄ and

ᾱ ∪ β are pions of two copies of NLSM, the first with color structure α and the other with

color structure β.
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Gravity

Pf ′Ψ

Pf ′Ψ̃

YM

Cn[α]

Pf ′Ψ̃

BS

Cn[α]

Cn[β]

BI

Pf ′(A)2

Pf ′Ψ̃

NLSM

Cn[α]

Pf ′(A)2

SG

Pf ′(A)2

Pf ′(A)2

EM

Pf ′[Ψ]h,γ;h

Pf[X ]γ Pf ′Ψ̃

YMS

Cn[α] Pf[X ]s
Pf ′[Ψ]g,s;g

DBI

Pf ′(A)2 Pf[X ]s
Pf ′[Ψ]γ,s;γ

T [α] T [β]

T L

T [α]

T L

T L

T mγ T ms

T [α]

T ms

T L

Figure 2. Summary of the action of transmutation operators on CHY integrands. These are valid

for both tree-level and, suitably interpreted, one-loop integrands. Denoting the set of gravitons by

h, the set of gluons by g, the set of photons by γ and the set of scalars by s, we write [X ]x for the

matrix X restricted to the specific subset x and [Ψ]x,y;x for the matrix Ψ with its full first part and

its second part restricted to x. All integrands are presented modulo an overall sign.

α ᾱ

β BS NLSM

β̄ NLSM SG

Applied to the n-gluon YM integrand with ordering α, the generalized operator T [β]Lβ̄
transmutes all gluons in β into biadjoint scalars, and all gluons in β̄ into NLSM pions.

This leads to the following integrand for the extended NLSM:

INLSM⊕BS(α|β) = T [β]Lβ̄ IYM = (−1)
n2+m2

2
+n Cn[α] Cm[β]

(
Pf[A]β̄;β̄

)2
(4.49)

All particles are placed in one color trace ordered by α and the biadjoint scalars are

additionally ordered with respect to their dual color with ordering β.

These results agree with the integrands of extended BI, SG and NLSM described in [14].
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5 A first look at loop amplitudes

By using ambitwistor string, in [8] it was shown that the one-loop integrands of n-point

scattering amplitudes for gravity and Yang-Mills exhibit a very similar structure to those

at tree-level, i.e. a universal measure depending on the so-called nodal scattering equations

and integrands built from few building blocks:

A(1)
n =

∫
dD`

`2

∫
M0,n+2

∏
a dσa

vol SL (2,C)

∏
a

′δ
(
E(nod)
a

)
I(1)
n ({p, e, ẽ, σ})

=:

∫
dD`

`2

∫
M0,n+2

dµ1,n I(1)
n , (5.1)

where a = 1, · · · , n,+,− and

E
(nod)
+ =

∑
i

`ki
σ+i

, E
(nod)
− = −

∑
i

`ki
σ−i

, E
(nod)
i =

`ki
σi+
− `ki
σi−

+
∑
j 6=i

kikj
σij

(5.2)

are the n + 2 nodal scattering equations. The one-loop measure dµ1,n is the same as the

tree-level one, dµ0,n+2, with two additional particles carrying momentum ±˜̀ and labeled

by the punctures σ+ and σ− respectively. The on-shell momentum ˜̀ is related to the loop

momentum ` via ˜̀ = ` + η with an auxiliary momentum η satisfying `η = piη = eiη = 0.

Also the integrand I(1)
n can be related to the tree-level integrand In+2. The same structure

was found for biadjoint scalar amplitudes in [9] using the forward limit.

The building blocks of the one-loop integrands are given by the (n+2)-particle Parke-

Taylor factor

Cn+2[α] =
1

σ+α(1)σα(1)α(2) · · ·σα(n)−σ−+
(5.3)

and the one-loop NS integrand

I(1)
NS =

∑
r

Pf ′ (Ψr
NS) , (5.4)

where the matrix Ψr
NS is given by extending the tree-level matrix Ψ defined in equation (3.6)

to n+2 points with the two additional particles carrying momentum ±˜̀ and polarizations

e+ = er and e− = (er)† respectively:

Ψr
NS = Ψtree

n+2

∣∣∣
e+=er,e−=(er)†, l̃2=0

. (5.5)

The sum in I(1)
NS runs over a basis er of polarization vectors. Analogously to the tree-level

case, the one-loop integrands for gravity, color-ordered Yang-Mills and biadjoint scalar are

given by

I(1)
G = I(1)

NS Ĩ
(1)
NS (5.6)

I(1)
YM(α) = Cn+2[α] I(1)

NS (5.7)

I(1)
BS (α|β) = Cn+2[α] Cn+2[β] . (5.8)
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Therefore, the one-loop CHY integrands can be connected via transmutation operators

in a similar way as the tree-level ones. Indeed, we only need to extend the transmutation

operator T [α] to n + 2 points, T [12 · · ·n − +], i.e. to include the two particles + and −.

We can then apply it to the reduced Pfaffian of the 2(n+ 2)× 2(n+ 2) matrix Ψr
NS before

summing over the internal degrees of freedom r. Analogously to the tree-level case, the

result is the (n+ 2)-point Parke-Taylor factor

T [12 · · ·n−+]Ψr
NS = Cn+2[12 · · ·n−+] , (5.9)

leading to the relations

I(1)
G → I(1)

YM(α)→ I(1)
BS (α|β) . (5.10)

Importantly, following the same steps as in the previous sections, one can derive the

one-loop integrands for all the other theories discussed in this paper and their extensions,

and find similar results as those collected in figure 2.

The similarity between tree-level and one-loop amplitudes finds its reason in the Feyn-

man tree theorem and it is realised in the ambitwistor string context by the so-called gluing

operator [10]. This indeed relates amplitudes at one loop to tree-level amplitudes with two

additional particles. However, this theorem does not hold at two or more loops. Therefore,

we do not expect the integrands at two or more loops to be connected by the transmutation

operators in the same way.

6 Conclusions and outlook

In this paper we have applied the recently proposed transmutation operators [6] to the

CHY formalism of scattering amplitudes and reconstructed CHY integrands for a wide

range of theories. Starting from gravity, we have obtained integrands for Yang-Mills,

biadjoint scalar, Einstein-Maxwell, Yang-Mills scalar, Born-Infeld, Dirac-Born-Infeld, non-

linear sigma model and special Galileon theory. Their expressions are shown in figure 2.

and agree with the known integrands of these theories [4, 5]. Moreover, we derived the CHY

integrands for the extended theories of BI, NLSM and SG and find agreement with [14].

Therefore, these results also confirm, for any number of points, the form of those CHY

integrands which, while having passed non-trivial tests, were still at the level of conjecture.

These computations provide a powerful tool for calculating integrands of arbitrary theories

by applying the appropriate combination of transmutation operators. Finally, we use these

results to obtain the one-loop CHY integrands for the same theories, by using the similarity

among one-loop n+2-points and tree-level n-points integrands. However, we do not expect

the integrands at two or more loops to be connected via the transmutation operators [6]

in the same way. Indeed, at higher loops, the integrands cannot be constructed from the

tree-level ones and a suitable modification of these operators has yet to be found. We leave

this interesting question for future work.
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A The Pfaffian

Let M be an antisymmetric 2n×2nmatrix whose elements are denoted by mij . The Pfaffian

of M is defined as

Pf(M) =
∑
ρ∈Π

sgn(πρ)

n∏
k=1

mikjk , (A.1)

where Π is the set of all partitions of {1, 2, . . . , 2n} into pairs without regard of the order.

A generic element ρ ∈ Π can be represented as an ordered set of n ordered pairs

ρ = {(i1, j1), . . . , (in, jn)} with ik < jk and i1 < i2 < . . . < in. (A.2)

To every ρ ∈ Π one associates a permutation πρ with signature sgn(πρ)

πρ =

(
1 2 . . . 2n− 1 2n

i1 j1 . . . in jm

)
. (A.3)

In other words one first builds a product of components mij such that every index appears

only once and i < j is true for every component. Such a product will consist of n factors.

In a second step one sums over all (2n− 1)!! possible (and different) products that can be

obtained in this way, where every even permutation comes with a plus sign and every odd

permutation with a minus sign.

The Pfaffian fulfills the following recursion relation:

Pf(M) =
2n∑
j=1
j 6=i

(−1)i+j+1+Θ(i−j)mij Pf(M i,j
i,j ) (A.4)

for i ∈ {1, 2, . . . , 2n}. Here Θ denotes the Heaviside step function and M i,j
i,j the matrix M

with rows and columns i and j removed. Generalizing this notation we will write M i1,...,im
i1,...,im

for the matrix M with rows and columns i1, . . . , im removed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and

open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[2] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B269,1%22
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993


J
H
E
P
0
1
(
2
0
1
9
)
1
8
0

[3] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions,

Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

[4] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and

Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

[5] F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To

Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

[6] C. Cheung, C.-H. Shen and C. Wen, Unifying Relations for Scattering Amplitudes, JHEP 02

(2018) 095 [arXiv:1705.03025] [INSPIRE].

[7] C. Cheung, G.N. Remmen, C.-H. Shen and C. Wen, Pions as Gluons in Higher Dimensions,

JHEP 04 (2018) 129 [arXiv:1709.04932] [INSPIRE].

[8] Y. Geyer and R. Monteiro, Gluons and gravitons at one loop from ambitwistor strings, JHEP

03 (2018) 068 [arXiv:1711.09923] [INSPIRE].

[9] S. He and E.Y. Yuan, One-loop Scattering Equations and Amplitudes from Forward Limit,

Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].

[10] K.A. Roehrig and D. Skinner, A Gluing Operator for the Ambitwistor String, JHEP 01

(2018) 069 [arXiv:1709.03262] [INSPIRE].

[11] K. Zhou and B. Feng, Note on differential operators, CHY integrands and unifying relations

for amplitudes, JHEP 09 (2018) 160 [arXiv:1808.06835] [INSPIRE].

[12] D.B. Fairlie, A Coding of Real Null Four-Momenta into World-Sheet Coordinates, Adv.

Math. Phys. 2009 (2009) 284689 [arXiv:0805.2263] [INSPIRE].

[13] D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303

(1988) 407 [INSPIRE].

[14] F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016)

170 [arXiv:1604.03893] [INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevLett.113.171601
https://arxiv.org/abs/1307.2199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
https://doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0885
https://doi.org/10.1007/JHEP07(2015)149
https://arxiv.org/abs/1412.3479
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3479
https://doi.org/10.1007/JHEP02(2018)095
https://doi.org/10.1007/JHEP02(2018)095
https://arxiv.org/abs/1705.03025
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03025
https://doi.org/10.1007/JHEP04(2018)129
https://arxiv.org/abs/1709.04932
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04932
https://doi.org/10.1007/JHEP03(2018)068
https://doi.org/10.1007/JHEP03(2018)068
https://arxiv.org/abs/1711.09923
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.09923
https://doi.org/10.1103/PhysRevD.92.105004
https://arxiv.org/abs/1508.06027
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06027
https://doi.org/10.1007/JHEP01(2018)069
https://doi.org/10.1007/JHEP01(2018)069
https://arxiv.org/abs/1709.03262
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.03262
https://doi.org/10.1007/JHEP09(2018)160
https://arxiv.org/abs/1808.06835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.06835
https://doi.org/10.1155/2009/284689
https://doi.org/10.1155/2009/284689
https://arxiv.org/abs/0805.2263
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.2263
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1016/0550-3213(88)90390-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B303,407%22
https://doi.org/10.1007/JHEP06(2016)170
https://doi.org/10.1007/JHEP06(2016)170
https://arxiv.org/abs/1604.03893
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03893

	Introduction
	Transmutation operators
	CHY formulation
	Transmutation operators acting on CHY integrands
	Single trace amplitudes: G - YM - BS and BI - NLSM
	Multiple trace amplitudes: G - EM and YM - YMS and BI - DBI
	Longitudinal operators: G - BI - SG and YM - NLSM

	A first look at loop amplitudes
	Conclusions and outlook
	The Pfaffian

