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Abstract. We critically examine a model that attempts to explain emergence

of power laws (e.g., Zipf’s law) in human language. The model is based on the

principle of least effort in communications — specifically, the overall effort is

balanced between the speaker effort and listener effort, with some trade-off. It

has been shown that an information-theoretic interpretation of this principle

is sufficiently rich to explain emergence of Zipf’s law in the vicinity of the

transition between referentially useless systems (one signal for all referable

objects) and indexical reference systems (one signal per object). The phase

transition is defined in the space of communication accuracy (information

content) expressed in terms of the trade-off parameter. Our study explicitly

solves the continuous optimisation problem, subsuming a recent, more specific

result obtained within a discrete space. The obtained results contrast Zipf’s

law found by heuristic search (that attained only local minima) in the vicinity

of the transition between referentially useless systems and indexical reference

systems, with an inverse-factorial (sub-logarithmic) law found at the transition

that corresponds to global minima. The inverse-factorial law is observed to be

the most representative frequency distribution among optimal solutions.
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1. Introduction

To put it simply, Zipf’s law states that given some (natural language) text and

the ranking of its words in the order of decreasing frequency, the frequency of

any word is inversely proportional to its rank. Thus, within such frequency

distributions of words sorted by decreasing frequencies, the most frequent word

will occur approximately twice as often as the second most frequent word, three

times as often as the third most frequent word, etc.

Zipf’s law has been reliably observed in data from multiple diverse textual

sources, while it has been shown that random texts do not exhibit Zipf’s law-like

rank distribution [1]. At the same time, widely accepted theoretical explanations

for Zipf’s law are still lacking. As mentioned by Manin [2], “Zipf’s law (1949) may

be one of the most enigmatic and controversial regularities known in linguistics. It

has been alternatively billed as the hallmark of complex systems and dismissed

as a mere artifact of data presentation. The simplicity of its formulation, its

experimental universality, and its robustness starkly contrast with the obscurity

of its meaning.” According to Ferrer i Cancho [3], various subsets of the language

(e.g., subsamples consisting of nouns only in multi-author collections of texts, the

speech of schizophrenics and very young children, military communications) obey

the generalised Zipf’s law, that is, follow a power law P (�) ∝ �−�, where � is the

rank, P (�) is the frequency of the word having rank �, and the exponent � may

differ from 1.

Furthermore, it is well-known now that power-law distributions occur in a

diverse range of physical, biological, technological and social phenomena [4, 5].

A power-law distribution is often called a scale-free distribution — it satisfies the

property that P (bx) = g(b)P (x), for any b, and some function g that depends

on the exponent of the power-law. That is, if the scale of units by which x

is measured is increased by a factor of b, the shape of the distribution P (x) is

unchanged, except for some multiplicative constant [4].

The wide-spread universality of Zipf’s law and power laws in general has

generated many attempts at an explanation [5]. In this study we critically

examine a model, proposed by Ferrer i Cancho and Solé [6] and comprehensively

expanded by Ferrer i Cancho [7], that attempts to explain emergence of

power laws (e.g., Zipf’s law) in human language as a result of minimising a

communication effort that balances certain trade-offs. The original model [6]

used an assumption that the objects referred to in the communication system are

uniformly distributed (the uniformity assumption), while the expanded model [7]

relaxed this assumption, using a more general energy (cost) function.

These models [6, 7] formalised the principle of least effort as an optimisation

problem, and suggested a candidate mechanism for generating power laws – by

heuristically solving the optimisation problem and considering a resultant phase

transition. Another follow-up study by Ferrer i Cancho and Dı́az-Guilera [8]

argued that the optimal solutions found by this method attain, however, only
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local minima. Ferrer i Cancho and Dı́az-Guilera analytically derived global

minima of the cost Ω� (for a discrete system), showing that the phase transition

is in fact a step function. They also discussed the difficulties of explaining power

laws observed in natural languages using the proposed models.

The study presented here contrasts the results of Ferrer i Cancho and

Solé [6] (obtained only for local minima) with explicit global solutions of the

continuous optimisation problem. Using a specific characterisation of minimal

solutions of the continuous optimisation problem (representable as suitably

defined functions), we confirm that (i) the phase transition is a step function,

and (ii) the minimal solutions have no synonyms, generalising observations by

Ferrer i Cancho and Dı́az-Guilera [8] for a discrete system. This leads to the

conclusion that power laws are not a necessary consequence of such optimisation.

Additionally, we derive a necessary condition required for emergence of power

laws within communication systems. This condition places an extra constraint

on the involved communication efforts.

The presented results point to a sub-logarithmic dependency as the most

representative frequency distribution among optimal solutions, rather than a

power law. Specifically, we show that the model [6] is not strong enough to

produce power laws at the global minima, where instead another dependency is

shown to be more dominant (for systems with an equal number of signals and

objects): an inverse-factorial (sub-logarithmic) law.

1.1. Basic Information-theoretic Model

The model introduced by Ferrer i Cancho and Solé [6] provided an information-

theoretic framework for the principle of least effort communications, and in

addition put forward a candidate mechanism for generating power laws in

communication systems. The latter aspect is particularly important, given the

current debate on the origin of power laws. For instance, Kosmidis et al. [9] relate

their statistical mechanical approach to human language to “the pioneering work

of Cancho and Solé [6] who attempt to derive Zipf law using the principle of

least action”, while Hunt [10] refers to the work of Ferrer i Cancho and Solé

in listing minimum effort among six underlying mechanisms that may lead to

power laws — in addition to nonlinear dynamics (chaos), self-organized criticality,

hierarchical dynamics, highly optimized tolerance, and fractal fracture properties.

The contribution of the work of Ferrer i Cancho and Solé was acknowledged in

other diverse contexts: quantitative linguistics [11], public transport [12], immune

networks [13], genetic coding [14], etc.

The proposed model [6] is based on optimality principle, namely the

principle of least effort in communications. Specifically, as the goal of language

is communication, the efficiency or accuracy of communications is the subject of

optimisation. A set of n signals S and a set of m objects R are used to describe

signals between a “speaker” (sender) and a “hearer” (receiver), and the objects
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Figure 1. The binary matrix A, with dots indicating non-zero elements.

Synonyms are enclosed within the vertical solid oval. Polysemy is shown with

the horizontal dashed-line oval.

of reference. The relation between S and R is modelled using a binary matrix

A, where an element ai,j = 1 if and only if signal si refers to object rj. The

model allows one to represent both polysemy (that is, the capacity for a signal to

have multiple meanings by referring to multiple objects), and synonymy where

multiple signals refer to the same object (Figure 1).

The effort for the sender is low if the signal entropy is low, implying a high

amount of ambiguity. HS expresses the effort of the sender, between 0 and 1, via

the log with respect to n:

HS ≡ Hn(S) = −
n∑

i=1

p(si) logn p(si) . (1)

Conversely, the effort for the receiver to decode a particular signal si is small if

there is little ambiguity, i.e. the probability of a signal si referring to one object

rj is high. In [6], this is expressed by the conditional entropy

HR∣si ≡ Hm(R∣si) = −
m∑

j=1

p(rj∣si) logm p(rj∣si) . (2)

The effort for the receiver is then dependent on the probability of each signal and

the effort to decode it, that is

HR∣S ≡ Hm(R∣S) =
n∑

i=1

p(si)HR∣si . (3)

When this entropy is minimal, i.e. there is a one-to-one mapping between signals

and objects, this effort is minimal. In computing the probabilities, we use the

following:

p(si∣rj) =
ai,j
!j

, (4)
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where !j is the number of synonyms for object rj, that is !j =
∑

i ai,j . That

is, the probability of using a synonym is equally distributed over all synonyms

referring to a particular object. Importantly, it is also assumed that p(rj) =
1
m

is uniformly distributed over the objects, leading to a joint distribution:

p(si, rj) = p(rj) p(si∣rj) =
ai,j
m !j

. (5)

A cost function Ω� is introduced to combine effort of sender and receiver,

with 0 ≤ � ≤ 1 trading off the effort between sender and receiver as follows:

Ω� = �HR∣S + (1− �)HS . (6)

In this representation, the binary matrix A is the variable of optimisation, and

we minimise the cost Ω� for different values of �. In the extreme cases only the

sender’s effort (� = 0) or the receiver’s effort (� = 1) is considered.

Comment 1. It should be noted that the cost function Ω� given by (6) is

a specific case of a more general energy function that a communication system

must minimize [7]

Ω0
� = −�I(S;R) + (1− �)HS , (7)

where I(S;R) = HR −HR∣S is the mutual information. As pointed out by Ferrer

i Cancho [7] in a comprehensive follow-up study, communicative efficiency is

totally favoured when � = 1, while saving cost is totally favoured when � = 0.

In addition, as mentioned in another follow-up study of Ferrer i Cancho and

Dı́az-Guilera [8], this energy function better accounts for subtle communication

efforts, noting that H(S) is both a source of effort for the sender and the receiver

because the word frequency affects not only word production but also recognition

of spoken and written words. The component I(S;R) also implicitly accounts

for both HS∣R (a measure of the sender’s effort of coding objects) and HR∣S

(i.e., a measure of the receiver’s effort of decoding signals). We follow the “least

effort communication” terminology rather than describe the efforts via the energy

consumed by the sender and the receiver, as the “least effort” is a more accepted

term in computational linguistics. One may also point out an interpretation of

“least effort” as the energy spent in order to transmit a bit of the information,

i.e., consider a cost function in the form Ω�/I(S;R), but this possibility is out of

scope of this study.

It follows that

Ω0
� = −�HR + �HR∣S + (1− �)HS = −�HR + Ω� . (8)

This more generic representation makes clear that the cost function Ω� is suitable

when H(R) is constant, and the uniformity condition p(rj) =
1
m

ensures precisely

that.

It is, of course, clear that the uniformity condition is a strong assumption that

many developed natural languages do not satisfy across their full vocabularies, or

even within nouns. For instance, Ferrer i Cancho [7] commented that “the word

dog is more likely to be used than the word aardvark because, roughly speaking,
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aardvarks, edentate mammals that are common in Southern Africa, have a much

more restricted habitat than dogs”. The study of Ferrer i Cancho [7] replaced

the uniformity assumption with p(rj) =
!j

M
, where, as defined above, !j is the

number of synonyms for object rj, while M is the total amount of synonyms,

M =
∑m

j=1 !j. This extension removed the constraint that H(R) is constant,

focussing on the energy function Ω0
�.

In our study we nevertheless analyse the more simple case where H(R) is

constant, attempting to analytically derive optimal solutions and the ensuing

dynamics. In addition, the following section points out some important

similarities between the models using p(rj) =
!j

M
(model A) and p(rj) = 1

m

(model B). ★

Finally, we note that the accuracy of the communication as the mutual

information I(S;R) is used to measure the result of the trade-off between these

efforts. Matrices were evolved to minimise cost Ω� by a simple mutation-based

genetic algorithm (GA) [6]. Each computational experiment employed a “greedy”

strategy: whenever the cost of a candidate solution was smaller than the current

minimal cost, the solution was accepted — otherwise, it was rejected. The

algorithm was stopped when there was no progress during a given number of

generations.

2. Recapitulation of the Results

The information-theoretic model has been shown by Ferrer i Cancho and Solé to

generate a phase transition in I(S;R) at a critical value of �∗ ≈ 0.4 where the

efforts of the sender and receiver were argued to be balanced. It also produced

frequency distributions for signals ranked (sorted) by decreasing frequencies that

follow power laws (e.g., Zipf’s law: P (�) ∝ �−� with � ≈ 1, � denoting the

rank, and P (�) denoting the frequency), for the matrices that corresponded to

the critical �∗.

We implemented and verified the original method of Ferrer i Cancho and

Solé tracing the accuracy of the communication I(S;R), as a function of �, for

150 × 150 matrices. We observed (Fig. 2) that for small values � < �∗, I(S;R)

is equal to (or near) zero, before undergoing a transition in the vicinity � ≈ �∗.

Single-signal systems dominate for � < �∗: “because every object has at least

one signal, one signal stands for all the objects” [6]. Low I(S;R) indicates that

the system is unable to convey information in this domain. Rich vocabularies are

found after the transition, for � > �∗. Full vocabularies are attained for very high

�. The maximal value of I(S;R) indicates that the associations between signals

and objects are one-to-one maps, removing any redundancy in the vocabulary.

It has been recently pointed out by Ferrer i Cancho and Dı́az-Guilera [8]

that the optimal solutions found by this method are, however, only local minima.

Ferrer i Cancho and Dı́az-Guilera analytically derived global minima of the cost

Ω�, showing that the phase transition is in fact a step function, completely
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separating two domains: � < �∗ and � > �∗ by the transition point � = �∗.

Moreover, they proved for the family of solutions that satisfy the assumption

p(rj) = 1
m

(model B) that (i) the only global minimisers for the first domain

(� < �∗) are given by single-signal communication systems — that is, one

signal refers to all objects; (ii) the only global minimisers for the transition point

(� = �∗) are given by matrices where no two signals refer to the same object;

and (iii) the only global minimisers for the second domain (� > �∗) are given

by matrices with one-to-one mapping between signals and objects (if n = m),

while if n > m every signal has to refer to at most one object and all objects are

referred to, and if n < m and the ratio m/n is an integer, the signals refer to the

same number m/n of objects and all objects are referred to.

Similar results were obtained for model A, i.e., p(rj) =
!j

M
. Specifically, (i)

the only global minimisers for the first domain (� < �∗) are also given by single-

signal communication systems — the difference from model B being that one

signal refers to (a subset of ) all objects; (ii) the only global minimisers for the

transition point (� = �∗) are again given by matrices where no two signals refer to

the same object; the only difference from model B is that some objects may have

no signals at all; (iii) the only global minimisers for the second domain (� > �∗)

are given by matrices with one-to-one mapping between signals and objects (if

n = m), while for n ∕= m the signals refer to the same non-zero number of objects,

and every obejct is referred to by at most one signal.

In short, for both models (A and B): the first domain (� < �∗) is

characterised by single-signal communication systems; and the second domain

(� > �∗) is characterised by one-to-one mapping between signals and objects (or,

for n ∕= m, solutions that maximally contain such one-to-one mapping). The

transition point allows the solutions from either of these domains, as well as any

solution without synonyms. Crucially, the global optima preclude solutions with

synonyms for any �.

The resulting similarity between models A and B in terms of the global

minimisers further justifies the choice of a more simple model B for a detailed

analysis motivated in the following section, while leaving analysis of model A to

a future study.

3. Motivation

These observations demonstrated that the computational method employed

by Ferrer i Cancho and Solé [6] does not reach the global optimum. Our

computational experiments showed that the sharpness of the phase transition

in the accuracy of the communication I(S;R) as a function of � is dependent on

the overall computational effort. That is, the more iterations were allowed within

the algorithm, the sharper the transition appear. Specifically, the critical value

�∗ ≈ 0.44 was slightly higher than �∗ ≈ 0.4 reported by Ferrer i Cancho and Solé

[6]. The follow up study of Ferrer i Cancho [7] identified the critical �∗ ≈ 0.5.
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Both studies noted emergence of power laws as a result of averaging multiple

solutions. However, the individual global minimal solutions (i.e., individual

matrices) at the phase transition do not necessarily exhibit power laws as their

frequency distributions.

It is important to point out that any power law under consideration is the

frequency distribution of an individual solution (a minimiser), and not a power-

law divergence of some order parameter in the vicinity of the phase transition.

In other words, the mechanism (i.e., the least-effort communications principle)

is a candidate to generate power laws within minimisers that correspond to the

phase transition, but not a candidate to explain the power-law divergence of an

order parameter (e.g., characteristic length) at the critical value of some control

parameter.

The absence of power-law frequency distributions within individual global

minimisers strongly motivates a further study. Firstly, we observe that there

are, in general, multiple values of the accuracy of the communication I(S;R)

for a given cost Ω�. That is, there are multiple minimisers, i.e. matrices A

that obtain the same cost Ω�, but differ in the corresponding values of I(S;R).

Secondly, the fact that the local minimisers found computationally do exhibit

power laws, while the theoretical global minimisers do not, puts under question

the mechanism behind the emergence of power laws in this model. Finally, one

may wish to explore alternative forms that dominate frequency distributions of

global minimisers at � = �∗.

The phase transition is the focus of our investigation. The original study of

Ferrer i Cancho and Solé did not interpret the accuracy of the communication

I(S;R) as some kind of a macroscopic (order) parameter. One may see, however,

that when the trade-off parameter � decreases, the inverted accuracy 1− I(S;R)

undergoes the transition, as shown in the Figure 2. That is, the inverted accuracy

1 − I(S;R) may be interpreted as an order parameter attaining the maximum

value of 1 for the single-signal systems that can be seen as having maximal

polysemy, being completely “ordered”, and the minimum value of 0 for the one-

to-one maps that lack any polysemy, being completely “disconnected”.

4. Results

4.1. Global Minimisers

The reason that the computational experiment [6] does not find the global

theoretical minima is the extreme complexity of the search-space, and the

“greedy” nature of the mutation-driven genetic algorithm. The solutions with

synonyms may only be local minimisers, where the algorithm would be trapped

by the low probability of simultaneous mutations required to jump to a better

candidate. This is the explanation for the increasing transition’s sharpness that

was obtained with a higher computational effort — that made it likelier to escape
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Figure 2. The mutual information as function of �. Analytical results:

dashed line as a step function. GA results: solid blue circles, with average

values only for � < 0.38 or � > 0.5. A: power law observed for a GA

solution, local minimiser, at � = 0.44 and I(S;R) ≈ 0.59, for 150 × 150

matrix. B: the corresponding power law on a log-log scale. C: an inverse-

factorial (sub-logarithmic) law for a global minimiser, marked #, at � = 0.5

and I(S;R) ≈ 0.86, for 50× 50 matrix.

some local minima. The study of Ferrer i Cancho and Dı́az-Guilera [8] obtained

and characterised the global minima, but constrained the minimisation space

to a discrete space, i.e. binary matrices, rather than the continuous space of

probability distributions. The notion of locality in the discrete space in terms of

Hamming distance is not necessarily compatible with the notion of locality in the

continuous space. In order to verify that solving in the continuous space does not

change the global minima, we provide an analytical solution of the problem in the

continuous space that generalises the results of Ferrer i Cancho and Dı́az-Guilera,

for the model B.

Henceforth, we consider a joint probability distribution p containing joint

probabilities p(si, rj) as the object of minimisation, given the cost function Ω�,

staying within the model B.

First of all, we establish the following result that applies to local minimisers

(clearly including global minimisers).

Lemma 1. Each solution (the joint probability distribution p) locally minimising

the function Ω�, specified by the equation (6), 0 ≤ � ≤ 1, can be represented as a

function f : R → S such that

p(si, rj) =

{
1/m if si = f(rj);

0 otherwise.
(9)

The proof is given in Appendix A. Note that each solution, i.e., each distribution

p corresponds via expression (5) to a matrix A (henceforth called minimiser
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matrix ) which is given in terms of function f as follows:

ai,j =

{
1 if si = f(rj);

0 otherwise.
(10)

The main outcome of this observation is that the analytical minimisation

of the suggested cost function results in solutions without synonyms — since

any function f precludes multiple signals s referring to the same object r. That

is, each column in the minimiser matrix has precisely one non-zero element.

Polysemy is allowed within the solutions. Importantly, the representation of

the solutions as functions subsumes the classes of global solutions described by

Ferrer i Cancho and Dı́az-Guilera [8]. The local minimisers obtained by GA are

obviously not the local minimisers in continuous space, but we focus on global

minimisers henceforth. The global minimisers in both discrete and continuous

space are the same.

Secondly, we make the following observation.

Lemma 2. For each solution p minimising the function Ω�,

HR∣S +
1

lognm
HS = 1 . (11)

The proof is given in Appendix B.

Corollary 3. If n = m, HR∣S +HS = 1.

It follows that for n = m the joint entropy HS,R = HR∣S+HS = 1. Although

the best trade-off for the global solutions depends on �, the actual effort values

may be quite different. The last lemma and corollary inform that the actual

values HS and HR∣S are interrelated (e.g., if sender’s effort is high, the receiver’s

effort is low), while the joint entropy (as a proxy of the joint effort) is kept fixed,

more precisely at its mid-point for square matrices, or at some point skewed by

1/lognm otherwise.

Corollary 4. If the entropies HR∣S and HS are equal, then

HR∣S = HS =
lognm

lognm+ 1
.

Thirdly, using these results, we obtain analytical solutions for the

minimisation of the function Ω�, that depend on the critical value of the

parameter �:

�∗ =
lognm

lognm+ 1
. (12)

Lemma 5. If � < �∗, then p minimising the function Ω� is given by

p(si, rj) =

{
1
m

for a particular i∗ and all j;

0 i ∕= i∗ and all j.

If � > �∗, then p minimising the function Ω� is given by

p(si, rj) =

{
1
m

for i∗ and j∗ where s∗i = f(r∗j );

0 otherwise
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for some function f : R → S, subject to

p(si) =
m∑

j=1

p(si, rj) =
1

n
.

If � = �∗, then any p representable as a function f : R → S as specified by

(9) minimises the function Ω�.

The proof is given in Appendix C.

Corollary 6. If n = m, �∗ = 1
2
.

The results of Ferrer i Cancho and Dı́az-Guilera [8] may now be derived in the

discrete space of binary matrices. In particular, for n = m:

∙ for all values � < �∗, the only minimisers A allowed are the single-signal

matrices with a single row i∗ of ai∗,j = 1 for any j, and any of these produces

I(S;R) = 0;

∙ for all values � > �∗, the only minimisers A allowed are the matrices with

one-to-one mapping, i.e., a single ai∗,j∗ = 1 in each row, and any of these

produces I(S;R) = 1;

∙ for the critical value �∗, there are multiple different minimisers A such that

no two signals refer to the same object (but one signal may refer to multiple

objects), that cover the range 0 ≤ I(S;R) ≤ 1.

The results for n ∕= m [8] are also easily derived, but are omitted due to the

lack of space. This confirms that the theoretical phase transition is indeed a step

function (Figure 2).

This still does not answer the main question on the emergence of power

laws in our model system. Obviously, the fact that human languages do

manifest power-law distributions is not debated here — we simply point out

that the interpretation of the least-effort communication principle, modelled in

the considered way is inadequate when one seeks global optima, as was indicated

by Ferrer i Cancho and Dı́az-Guilera [8]. The fact that the local optima found by

the simulation studies do exhibit power laws in the frequency distributions may

indicate that the evolution of languages in nature is likely to be trapped in local

optima for long periods, and specifically that “the need for communicating (the

need for I(S,R) > 0) may be a serious obstacle for human language reaching

the global optimum” [8]. Nevertheless, another intriguing possibility is that

alternative forms dominate frequency distributions of the global minimisers.

4.2. Power laws

The analysis presented above does not single out any of the global minimisers

for the critical value �∗: all of these are equal in attaining the minimum cost

Ω�∗ . The scale-free solutions may play some special role among the minimisers

that “co-exist” at � = �∗ if the optimisation task is modified. This subsection

explores one such possibility.



Phase Transitions in Least-Effort Communications 12

Lemma 7. The following condition is necessary for P (�) ∝ 1/�, where � is the

rank of the frequency distribution, for n→ ∞, assuming that lognm is finite:

2 lognm− 1

lognm
HS = HR∣S . (13)

The proof is given in Appendix D. In particular, it derives equation

HS = −
An ln

1
An

+ 1(n+ 1)− 1

An lnn
, (14)

where An is the n-th harmonic number, 1 = −0.07281584548... is a Stieltjes

constant, and 1(n+ 1) is the generalised Stieltjes constant (see Appendix D for

more details). Specifically, as n grows, the entropy HS approaches 1
2
from above.

When m is of the order of
√
n, i.e. lognm = 1

2
, the entropy HR∣S asymptotically

vanishes.

Corollary 8. If n = m, the following condition is necessary for P (�) ∝ 1/�,

where � is the rank of the frequency distribution, for n→ ∞:

HS = HR∣S . (15)

This establishes that a power law frequency distribution asymptotically leads to

a precise balance between the two involved efforts. We have not established that

this balance is a sufficient condition for emergence of power laws. Nevertheless,

the condition points out that when a frequency distribution of a minimiser obeys

a power law, then in addition to minimising the cost, the efforts of the sender

and receiver are equal for large systems with n→ ∞ and m→ ∞.

It should be pointed out for real-world human language communications

(e.g. n ≈ m ≈ 106; for instance, the number of English words in the Oxford

English Dictionary is about 600000), the balance is not achieved by an equal

split of the effort, but is rather given by HS ≈ 0.67 and HR∣S = 0.33, obtained

using (14) derived in Appendix D, and Lemma 2. In other words, a power law

frequency distribution that minimises the combined effort Ω� requires that the

sender spends about twice as much effort as the receiver. It may be argued that

106 words is not sufficiently large a vocabulary for the equal split HS = HR∣S.

4.3. Configurations

In the remainder of the paper, we study alternative forms that dominate

frequency distributions of the global minimisers, and carry out some more detailed

analysis of the corresponding minimisers.

Definition 9. The configuration for an (n × m) minimiser matrix A is an

(m + 1)-dimensional vector � = (�0 . . . �k . . . �m), where 0 ≤ k ≤ m and �k
are non-negative integers, such that there are �k rows with k non-zero elements

ai,j ∕= 0 in the matrix. ♦.

For example, if there 5 rows with a single non-zero element, that is, there are

5 signals each of which refers to only one object, then �1 = 5 (one may say that

there are 5 ‘singles’ in the matrix). Informally, a configuration is a histogram of
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signal usage, ordered by the number of referred objects, i.e. ranging from 0 to m

— hence, (m+ 1) dimensions in a configuration vector. A similar representation

is discussed by Trosso [15].

Multiple minimiser matrices may share the same configuration. In fact, a

configuration defines an equivalence class for minimiser matrices. It is clear that

the configuration for an (n × m) minimiser matrix A satisfies the constraints∑
k �k = n, and

∑
k k�k = m. The first condition,

∑
k �k = n, ensures that the

number of rows in the matrix described by the configuration is n, and the second

condition,
∑

k k�k = m, ensures that the number of non-zero elements is precisely

m. We shall refer to minimisers in the same equivalence class as configuration

instances.

Example 10. Consider (3 × 3) minimiser matrices A. The first configuration

(2; 0; 0; 1) describes all matrices with two rows containing only zero elements,

and a single row, for some i∗, of 3 elements ai∗,j = 1 for any j. There are 3 such

matrices obtained by permuting the rows. The second configuration (0; 3; 0; 0)

describes all 6 matrices with three rows, each containing a single ai∗,j∗ = 1. The

third configuration (1; 1; 1; 0) describes all 18 matrices with one row containing

only zero elements, a single row with one element ai,j = 1, and a single row with

two elements ai,j = 1. ★

We shall denote d consecutive zeros in a configuration by [0]d, so (0; 3; 0; 0)

is equivalent to (0; 3; [0]2).

A configuration vector � defines a mapping from minimisers to their

configuration, i.e. � : SR → [0, n]m+1. Here SR is the set of all functions

f : R → S that characterise minimisers. Each specific configuration vector �

maps a subset of functions from SR to the single corresponding configuration in

[0, n]m+1. For example, the functions f : R → S that map all objects to the

same signal (producing the minimiser matrices with a single row i∗ of 3 elements

ai∗,j = 1) are mapped to the first configuration (2; 0; 0; 1) in the example above.

For a fixed �, all minimisers that are mapped to the same configuration (i.e.,

the configuration instances) obtain the same cost Ω�. The configuration instances

also always agree on accuracy I(S;R).

Lemma 11. Any (m+1)-dimensional vector � = (�0 . . . �k . . . �m), where �k are

non-negative integers, that satisfies the constraints
∑

k �k = n, and
∑

k k�k = m

is a configuration.

This observation establishes that for any vector satisfying these constraints there

necessarily exists a minimiser matrix with �k rows with k non-zero elements

ai,j ∕= 0, where 0 ≤ k ≤ m. In general, there are multiple such matrices.

While there are multiple different minimisers A for the critical value �∗ that

cover the range 0 ≤ I(S;R) ≤ 1, their distribution across the configurations is

not uniform. Some of the configurations have more instances (cf. Example 10).

Every matrix has a frequency distribution, and all the instances of a

configuration share a frequency distribution.

Example 12. The configuration (2; 3; 2; [0]5) describing an equivalence class
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for some (7 × 7) minimiser matrices has more instances than any other. The

frequency distribution shared by all the instances of this configuration contains

p(s1) = p(s2) = 2
7
(for the two rows with two non-zero elements: �2 = 2);

p(s3) = p(s4) = p(s5) =
1
7
(for the three rows with one non-zero element: �1 = 3);

and p(s6) = p(s7) = 0 (for two rows with all zero elements: �0 = 2). ★

4.4. Maximising number of instances

We shall now derive an analytical representation for the configuration that

describes minimisers at the phase transition and has a maximal number of

instances (i.e., for the most populous configuration).

Lemma 13. The number of matrices ℒ described by the configuration vector

� = (�0 . . . �k . . . �m), where �k are non-negative integers, 0 ≤ k ≤ m, is

ℒ(�) = n! m!∏m

k=0 �k!(k!)
�k

. (16)

The proof and example are given in Appendix E. Let us briefly explain the

terms of the expression (16). The overall number of different instances for a

configuration is simply

ℒ(�) = ℒs(�) ⋅ ℒr(�) ,

where

ℒs(�) =
n!∏m

k=0 �k!
(17)

is the number of permutations of matrix rows, and

ℒr(�) =
m!∏m

k=0(k!)
�k

(18)

captures the number of possibilities to permute “ones” across an individual row,

that is, to permute across m columns.

The expression (16) allows us to approach the question of finding the vector

�∗ that maximises ℒ(�) under the conditions∑m

k=0 �k = n and
∑m

k=1 k�k = m.

Lemma 14. The vector �∗ = (�∗
0 . . . �

∗
k . . . �

∗
m), where �∗

k are real numbers,

that maximises ℒ(�) under the conditions
∑m

k=0 �k = n and
∑m

k=1 k�k =

m, asymptotically follows a Poisson distribution with the average (m/n) being

multiplied by n:

�∗
k ≈ ne−

m
n (m

n
)k

k!
. (19)

The proof is given in Appendix F. For example, if m = n, the optimal vector

is

�∗
k =

n

e k!
. (20)

Let us exemplify this solution for an (50×50) minimiser, where the configuration

(18; 19; 9; 3; 1; [0]46) was found to be the most populous by an explicit calculation

of expression (16) for all configurations. The solution (20) suggests the vector
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�∗ ≈ (18.3940; 18.3940; 9.1970; 3.0657; 0.7664; ...), which differs only slightly due

to non-integer nature of the solution. The integer variations around the vector �∗

make the dominance of this configuration even more significant. A contrasting

example of a configuration that corresponds to a power law frequency distribution

is provided at the end of the next subsection.

4.5. Inverse-factorial law

We have determined that the most populous configurations are integer variations

around vector �∗
k that follows a Poisson distribution with the average (m/n)

being multiplied by n, e.g. given by (20) if m = n. Henceforth we consider

square matrices, n = m.

Let us consider the rank �k of the sequence of signals si sorted by their

frequency P (�k) ≡ k
m
, where � = 1 denotes the highest rank (highest frequency).

The rank �k satisfies the following condition (cf. Figure 3):

m−
k∑

j=0

�j < �k ≤ m−
k−1∑

j=0

�j . (21)

Expressing k as a function of the rank �k, and setting P (�k) = k
m
, yields

(Appendix G) the inverse-factorial dependency

P (�k) ≈ 1

m
Γ−1

(
m e�−1

�k

)
, (22)

where Γ−1(x) is the principal branch of the inverse Γ(x) function, Γ(x) = (x+1)!

[16] (cf. Appendix G), and 0 < � ≤ ln(e − 1). This dependency reduces the

symbols’ frequency much slower than a power law P (�k) ∝ �−�
k — in fact, the

rate of change is sub-logarithmic.

Frequency distribution of configuration (18; 19; 9; 3; 1; [0]46), minimising in

the space of (50 × 50) matrices, obeys such a sub-logarithmic law (i.e., inverse-

factorial law) with the highest rank �4 = 1. That is, the sole signal referring to

4 objects (�4 = 1) is the most frequent.

This establishes that at the phase transition the space of minimisers

is dominated by inverse-factorial (sub-logarithmic) rather than power laws.

The latter type is not ruled out completely. For instance, the configuration

(35; 5; 5; 1; 1; 1; [0]2; 1; [0]6; 1; [0]35), that also describes minimisers in the space of

(50 × 50) matrices, has a frequency distribution closely following a power law

distribution with the highest rank �15 = 1. That is, the most frequent signal

refers to 15 objects (�15 = 1). However, this configuration has ≈ 1021 times fewer

instances than the configuration (18; 19; 9; 3; 1; [0]46).

5. Conclusions

In this paper we critically examined an information-theoretic model proposed by

Ferrer i Cancho and Solé [6] in the attempt to formalise the principle of least effort
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Figure 3. Frequency distribution (vertical axis) and the rank (horizontal

axis).

in communications. The model suggests to minimise the overall cost Ω� balanced

between the speaker effort and listener effort, with some trade-off �. When the

task is solved computationally by a “greedy” search method such as a mutation-

based genetic algorithm, the model appears sufficiently rich to explain emergence

of power laws (specifically, Zipf’s law) in human languages. The solutions

minimising the balanced cost Ω� are characterised by frequency distributions of

the signals that refer to (possibly multiple) objects in various ways. Specifically,

Ferrer i Cancho and Solé [6] observed one prominent frequency distribution —

Zipf’s law — in the vicinity of the transition between referentially useless systems

(one signal for all referable objects) and indexical reference systems (one signal

per object). The phase transition, during which Zipf’s law is found, is defined in

the space of communication accuracy (information content I) expressed in terms

of the trade-off parameter �.

We also followed up on a recent study of Ferrer i Cancho and Dı́az-Guilera

[8] who proved that the optimal solutions found by the computational method

[6] are only local minimisers, not reaching the global minima. The analytically

derived global minima of the cost Ω� produce the phase transition as a step

function [8]. Most importantly, the global minimisers at the phase transition do

not necessarily exhibit power laws.

Our investigation focussed on the phase transition between referentially

useless systems and indexical reference systems, trying to clarify the mechanism

behind the emergence of power laws in the original model, as well as explore

alternative forms of frequency distributions that occur within the global

minimisers at � = �∗.

In doing so, we explicitly solve the continuous optimisation problem, and

subsume the more specific result of Ferrer i Cancho and Dı́az-Guilera [8]
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obtained within a discrete space. The new results contrast Zipf’s law found

computationally (for local minima) in the vicinity of the phase transition, with an

inverse-factorial (sub-logarithmic) law found at the transition that corresponds to

global minima. The inverse-factorial law is observed to be the most dominant, i.e.

occurring in solutions that were significantly more widespread at the transition.

We reiterate that we do not debate here that human languages

manifest power-law distributions, but point out that the information-theoretic

interpretation of the least-effort communication principle [6] is not sufficiently

strong for generating power laws at the global minima of the effort (unless some

additional constraints are imposed — cf. Section 4.2). The study of Ferrer

i Cancho [7] which replaced the uniformity assumption and proposed a more

generic energy (cost) function deserves a more detailed analysis with respect to

forms of frequency distributions that dominate the transition point. Nevertheless,

we hope that the results reported here would not only reinvigorate the search for

a more precise model capturing the principle of least effort and power laws, but

also help to uncover and interrelate diverse critical phenomena that exhibit (sub-

)logarithmic laws.
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Appendices

Appendix A.

Lemma. Each solution (the joint probability distribution P ) locally minimising

the function Ω�, specified by the equation (6), 0 ≤ � ≤ 1, can be represented as a

function f : R → S such that

p(si, rj) =

{
1/m if si = f(rj);

0 otherwise.
(A.1)

In order to prove this Lemma, we establish a few preliminary propositions‡.
‡ These results are obtained by Nihat Ay.
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Appendix A.1. Concavity

Consider a set S = {s1, . . . , sn} of signals with n elements and a set R =

{r1, . . . , rm} of m objects, and denote with P(S × R) the set of all probability

vectors p(si, rj), 1 ≤ i ≤ n, 1 ≤ j ≤ m. We define the following functions on

P(S ×R):

HS(p) := −
∑

i

p(si) logn p(si)

and

HR∣S(p) := −
∑

i

p(si)
∑

j

p(rj∣si) logm p(rj∣si) .

Proposition 1. The functions HS and HR∣S are concave in p.

Proof. The statements follow from well-known convexity properties of the

entropy and the relative entropy.

(1) Concavity of HS: We rewrite HS as

HS(p) = −
∑

i

(
∑

j

p(si, rj)

)
logn

(
∑

j

p(si, rj)

)
.

The concavity of HS follows directly from the concavity of the Shannon-entropy.

(2) Concavity of HR∣S: We rewrite the function HR∣S as

HR∣S(p) = −
∑

i

p(si)
∑

j

p(rj∣si) logm p(rj∣si)

= −
∑

i,j

p(si, rj) logm
p(si, rj)∑
j p(si, rj)

= −
∑

i,j

p(si, rj) logm
p(si, rj)

m 1
m

∑
j p(si, rj)

= −
∑

i,j

p(si, rj) logm
p(si, rj)

1
m

∑
j p(si, rj)

+ 1.

The concavity of HR∣S now follows from the joint convexity of the relative entropy

(p, q) 7→ D(p∥q) =∑i,j p(si, rj) logm
p(si,rj)

q(si,rj)
. ■

With a number 0 ≤ � ≤ 1, we now consider the corresponding convex

combination of the functions HS and HR∣S:

Ω�(p) = �HR∣S(p) + (1− �)HS(p) .

From above proposition, it immediately follows that Ω� is also concave.

Corollary 2. The function Ω� is concave in p.

Appendix A.2. Extreme Points

We will consider the restriction of Ω� to the convex set

C :=
{
p ∈ P(S ×R) : p(rj) =

∑
i p(si, rj) =

1
m

for all j
}
.
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The extreme points of C are specified by the following proposition.

Proposition 3. The set C has the extreme points

Ext(C) =
{
p ∈ P(S ×R) : p(si, rj) =

1
m
�f(rj)(si)

}
,

where f is a function R → S.

Proof. Consider the convex set

T =
{
A = (ai∣j)i,j ∈ ℝ

m⋅n : ai∣j ≥ 0 for all i, j,

and
∑

i ai∣j = 1 for all j
}

of transition matrices. The extreme points of T are given by functions f : j 7→ i.

More precisely, each extreme point has the structure

ai∣j = �f(j)(i) .

Now consider the map ' : T → C that maps each matrix A = (ai∣j)i,j to the

probability vector

p(si, rj) :=
1

m
ai∣j , for all i, j.

This map is bijective and satisfies '((1 − t)A + t B) = (1 − t)'(A) + t '(B).

Therefore, the extreme points of C can be identified with the extreme points of

T . ■

Appendix A.3. Minimisers

If we now minimise the function Ω� over the set C then, with a local minimiser p,

each further point q in the face F (p) of C that contains p is a local minimiser with

the same value. The following proposition shows that for 0 < � < 1, F (p) = {p},
which means that a minimiser is always an extreme point.

Lemma. Let F and G be concave functions on a convex set C, let pk ∈ C,
�k ∈ [0, 1], k = 1, . . . , r, satisfying

∑r

k �k = 1. Then the equation

(F +G)

(
∑

k

�k pk

)
=
∑

k

�k (F +G)(pk) (A.2)

implies

F

(
∑

k

�k pk

)
=
∑

k

�k F (pk) and

G

(
∑

k

�k pk

)
=
∑

k

�kG(pk) .

Proof. Without loss of generality, assume

F

(
∑

k

�k pk

)
>
∑

k

�k F (pk) .

Then
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(F +G)

(∑
k �k pk

)

= F

(
∑

k

�k pk

)
+G

(
∑

k

�k pk

)

>
∑

k

�k F (pk) +G

(
∑

k

�k pk

)

≥
∑

k

�k F (pk) +
∑

k

�kG(pk)

=
∑

k

�k (F +G)(pk) .

This is a contradiction to the equality (A.2). ■

Proposition 4. Let 0 < � < 1 and let p be a local minimiser of the map

C → ℝ, p 7→ Ω�(p).

Then p is an extreme point of C.
Proof. Consider a representation of p as convex combination of points pk ∈
Ext(C):

p =
∑

k

�k pk, �k > 0,
∑

k

�k = 1.

We have to prove that p = pk for all k. This is done in several steps.

(1) The assumption that p is a local minimiser of Ω� implies

Ω�(p) = ((1− �)HS + �HR∣S)(p)

=
∑

k

�k ((1− �)HS + �HR∣S)(pk) =
∑

k

�k Ω�(pk).

From the above Lemma Appendix A.3 it therefore follows that

HS(p) =
∑

k

�kHS(pk) and (A.3)

HR∣S(p) =
∑

k

�kHR∣S(pk) . (A.4)

(2) From the strict concavity of the entropy HS with respect to the S-marginal

we get

p(si) = pk(si) for all k and i. (A.5)

If p(si) > 0 then (A.5) implies for all j

p(rj∣si) =
∑

k

�k

pk(si, rj)

p(si)
=
∑

k

�k

pk(si, rj)

pk(si)

=
∑

k

�k pk(rj∣si) . (A.6)
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(3) The function

T → ℝ, A = (aj∣i)i,j 7→ −
∑

i

p(si)>0

p(si)
∑

j

aj∣i logm aj∣i

is strictly concave. Together with (A.4) and (Appendix A.3) this implies that for

all i with p(si) > 0

p(rj∣si) = pk(rj∣si) for all j, k.

A combination with (A.5) yields

p(si, rj) = p(si) p(rj∣si) = pk(si) pk(rj∣si) = pk(si, rj).

We finally observe that, also in the case p(si) = 0, the equality p(si, rj) = pk(si, rj)

holds for all k and j:

0 ≤ p(si, rj) ≤
∑

j′

p(si, rj′) = p(si) = 0 and also

0 ≤ pk(si, rj) ≤
∑

j′

pk(si, rj′) = pk(si)
(A.5)
= p(si) = 0.

■

Consider the set of 0/1-matrices that have at least one “1”-entry in each

column:

S :=

{
(ai,j) ∈ {0, 1}n⋅m :

∑

i

ai,j ≥ 1 for all j

}
.

This set can naturally be embedded into the set T , which we have considered in

the proof of Proposition 3:

{ : S →֒ T , (ai,j)i,j 7→ ai∣j :=
ai,j∑
i ai,j

.

Together with the map ' : T → C we have the injective composition ' ∘ {. From
Proposition 3 it follows that the extreme points of C are in the image of ' ∘ {.
Furthermore, Proposition 4 implies that all local, and therefore also all global,

minimisers of Ω� are in the image of ' ∘ {. The previous work of Ferrer i Cancho

and Sole [6] refers to the minimization of the function

Ω̃� := Ω� ∘ ' ∘ { : S → ℝ.

It is not obvious how to relate local minimisers of this function, with an

appropriate notion of locality in S, to local minimisers of Ω�. However, we

have the following obvious relation between global minimisers.

Corollary 5. A point p ∈ C is a global minimiser of Ω� if and only if it is in

the image of ' ∘ { and (' ∘ {)−1(p) globally minimises Ω̃�.
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Appendix B.

Lemma. For each solution p minimising the function Ω�,

HR∣S +
1

lognm
HS = 1 . (B.1)

Proof. We begin by analysing the expression

HR∣si = −
m∑

j=1

p(rj∣si) logm p(rj∣si) . (B.2)

Using Bayes rule p(rj∣si) = p(si,rj)

p(si)
, we obtain

HR∣si = −
m∑

j=1

p(si, rj)

p(si)
logm

p(si, rj)

p(si)
. (B.3)

Expression (9) used within the logarithm yields

HR∣si = −
m∑

j=1

p(si, rj)

p(si)
logm

1

mp(si)
, (B.4)

where the sum is taken for non-zero p(si, rj), while the sum’s terms with

p(si, rj) = 0 are all equal to zero. It follows that

HR∣si = − 1

p(si)
logm

1

mp(si)

m∑

j=1

p(si, rj) = − logm
1

mp(si)
, (B.5)

where the last reduction is obtained by using marginalisation p(si) =
∑

j p(si, rj).

Hence,

HR∣S =
n∑

i=1

p(si)HR∣si = −
n∑

i=1

p(si) logm
1

mp(si)
(B.6)

=
n∑

i=1

p(si)(logmm+ logm p(si)) = 1 +
n∑

i=1

p(si) logm p(si) (B.7)

= 1 +
1

lognm

n∑

i=1

p(si) logn p(si) = 1− 1

lognm
HS .

The lemma’s objective follows immediately. ■

Appendix C.

In this section, we establish the following lemma for the critical value

�∗ =
lognm

lognm+ 1
. (C.1)
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Lemma. If � < �∗, then p minimising the function Ω� is given by

p(si, rj) =

{
1
m

for a particular i∗ and all j;

0 i ∕= i∗ and all j.

If � > �∗, then p minimising the function Ω� is given by

p(si, rj) =

{
1
m

for i∗ and j∗ where s∗i = f(r∗j );

0 otherwise

for some function f : R → S, subject to

p(si) =
m∑

j=1

p(si, rj) =
1

n
.

If � = �∗, then any p, representable as a function f : R → S as specified by

(9), minimises the function Ω�.

Proof. Using the observation

HR∣S +
1

lognm
HS = 1 ,

we express the receiver’s effort as

HR∣S = 1− 1

lognm
HS

and the sender’s effort as

HS = lognm(1−HR∣S) .

Then we reformulate the objective function, first as

Ω�(HS) = �(1− 1

lognm
HS) + (1− �) HS =

�+ (1− �
lognm+ 1

lognm
) HS

and, second, as

Ω�(HR∣S) = �HR∣S + (1− �) lognm(1−HR∣S) =

(1− �) lognm+ (�(1 + lognm)− lognm) HR∣S .

If � < logn m

logn m + 1
, then the slope of function Ω�(HS), linear in terms of HS,

is positive, and its minimum is attained at the lower boundary HS = 0. At

the same time, if � < logn m

logn m + 1
, then the slope of function Ω�(HR∣S), linear in

terms of HR∣S, is negative, and its minimum is attained at the upper boundary

HR∣S = Hmax. These two conditions yield

p(si, rj) =

{
1
m

for a particular i∗ and all j;

0 i ∕= i∗ and all j.
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If � > logn m

logn m + 1
, then the slope of function Ω�(HS), linear in terms of HS, is

negative, and its minimum is attained at the upper boundary HS = Hmax. At

the same time, if � > logn m

logn m + 1
, then the slope of function Ω�(HR∣S), linear in

terms of HR∣S, is positive, and its minimum is attained at the lower boundary

HR∣S = 0. These two conditions yield that there is a function f : R → S, such

that

p(si, rj) =

{
1
m

for i∗ and j∗ where s∗i = f(r∗j );

0 otherwise,

and such that

p(si) =
m∑

j=1

p(si, rj) =
1

n
.

If � = logn m

logn m + 1
, then function Ω� does not depend on HS and HR∣S, and any p

attains its minimum. ■

Appendix D.

Lemma. The following condition is necessary for P (�) ∝ 1/�, where � is the

rank of the frequency distribution, for n→ ∞, assuming that lognm is finite:

2 lognm− 1

lognm
HS = HR∣S . (D.1)

Proof.

Let us assume P (�) ∝ 1/�, where � is the rank of the frequency distribution.

The probability P (�) must satisfy
∑n

�=1 P (�) = 1, so

1

An

n∑

�=1

1

�
= 1 (D.2)

for some constant An that depends on n only. Hence,

An =
n∑

�=1

1

�
(D.3)

is the n-th harmonic number that can also be expressed analytically as An =

 +  0(n + 1), where  is the Euler-Mascheroni constant (0.5772156649...) and

Ψ(x) =  0(x) is the digamma function. Asymptotically,

lim
n→∞

An = lnn+  . (D.4)

Substituting P (�) = 1
An�

into (1) yields

HS = −
n∑

�=1

1

An�
logn

1

An�
, (D.5)

producing [17]

HS = −
An ln

1
An

+ 1(n+ 1)− 1

An lnn
, (D.6)
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where 1 = −0.07281584548... is a Stieltjes constant§, and 1(n + 1) is the

generalised Stieltjes constant∥. The following term converges to zero:

lim
n→∞

−
An ln

1
An

An lnn
= lim

n→∞

lnAn

lnn
= lim

n→∞

ln(lnn+ )

lnn
= 0 ,

where expression (D.4) is used at the second-last step. This leaves only the term:

lim
n→∞

HS = lim
n→∞

−1(n+ 1)

An lnn
. (D.7)

Connon [20] noted that

lim
u→∞

[
1(u) +

1

2
ln2(u)

]
= 0 .

This resolves the remaining term (D.7) as

lim
n→∞

HS = lim
n→∞

1

2

ln2(n+ 1)

An lnn
=

1

2
lim
n→∞

ln2(n+ 1)

(lnn+ ) lnn
,

resulting in

lim
n→∞

HS =
1

2
. (D.8)

Using Lemma 2, we obtain

lim
n→∞

HR∣S = lim
n→∞

[
1− 1

lognm
HS

]
= lim

n→∞

2 lognm− 1

2 lognm
.

Hence, as n→ ∞,

HR∣S

HS

=
2 lognm− 1

lognm
,

immediately producing the lemma. ■

Appendix E.

Lemma. The number of matrices ℒ described by the configuration vector

� = (�0 . . . �k . . . �m), where �k are non-negative integers, 0 ≤ k ≤ m, is

ℒ(�) = n! m!∏m

k=0 �k!(k!)
�k

. (E.1)

Proof. To re-iterate, the overall number of different instances for a configuration

is simply

ℒ(�) = ℒs(�) ⋅ ℒr(�) ,

where

ℒs(�) =
n!∏m

k=0 �k!
(E.2)

§ Stieltjes constants are coefficients in the Laurent expansion of the Riemann zeta function

�(z) about z = 1, given by n = limM→∞

∑
M

i=1
(ln i)n

i
− (lnM)n+1

n+1 [18].

∥ The generalised Stieltjes constant 1(a) is the first coefficient in the Laurent expansion of the

Hurwitz zeta function �(s, a) about s = 1 [19].
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is the number of permutations of matrix rows, and

ℒr(�) =
m!∏m

k=0(k!)
�k

(E.3)

captures the number of possibilities to permute “ones” across an individual row,

that is, to permute across m columns.

For example, the configuration (2; 3; 2; 0[5]) for a 7× 7 matrix has two rows

with zeros (�0 = 2), three rows with a single “one” (�1 = 3), and two rows with

two “ones”(�2 = 2). That is, there are three distinct “letters” (“zeros”, “singles”

and “doubles”) to permute in a seven-letter word. It is well known that the

expression (E.2) gives the number of all possible permuted words, and in this

example there are ℒs(2; 3; 2; 0
[5]) = 7!/(2!3!2!) = 210 possibilities.

Let us consider the term ℒr(�). This term captures the number of

possibilities to permute “ones” across an individual row, that is, to permute

acrossm columns. For example, let us consider “singles” — the rows with a single

“one”. The first of those has
(
m

1

)
choices, the second has

(
m−1
1

)
choices, and the

third one has
(
m−(1+1)

1

)
choices — that is, the overall number of permutations for

“singles” is ℒr(1) =
(
7
1

)(
6
1

)(
5
1

)
= 210. Abbreviating

mk = m−
k−1∑

j=1

j�j

for 0 < k ≤ m, it can be easily seen that the number ℒr(k) of choices to permute

columns in �k rows with k “ones” is given by

ℒr(k) =

(
mk

k

)(
mk − k

k

)
. . .

(
mk −

k(�k−1)︷ ︸︸ ︷
(k + . . .+ k)

k

)

=
mk!

k!(mk − k)!

(mk − k)!

k!((mk − k)− k)!
. . .

(mk − k(�k − 1))!

k!(mk − k�k)!

=
mk!

k! . . . k!︸ ︷︷ ︸
�k

(mk − k�k)!
.

That is,

ℒr(k) =
mk!

(k!)�k (mk − k�k)!
.

In our example, ℒr(1) =
7!

(1!)3 (7−3)!
= 210, and ℒr(2) =

(7−3)!
(2!)2 ((7−3)−2⋅2)!

= 6.

In order to produce the total number, one simply needs to multiply the terms

ℒr(k), each of which further reduces the total number of choicesm by the number

of “ones” already dealt with:

ℒr(�) =
m∏

k=1

ℒr(k) =
m∏

k=1

mk!

(k!)�k (mk − k�k)!
.
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Noticing that m1 = m, mk+1 = mk − k�k for k > 0, and mk = m�m for k = m

(so that (mk −m�m)! = 1 for k = m), this can be further reduced as follows:

ℒr(�) =
m!∏m

k=1(k!)
�k

=
m!∏m

k=0(k!)
�k
,

immediately yielding expression (E.3) and the lemma. ■

For example, ℒr(2; 3; 2; 0
[5]) = 7!

0!2⋅1!3⋅2!2
= 1260. The overall number of

different instances for our example configuration (2; 3; 2; 0[5]) is given by ℒ(�) =
ℒs(�) ⋅ ℒr(�) = 210 ⋅ 1260 = 264600. It turns out to be the largest number of

instances across all configurations for a 7× 7 minimiser, amounting to over 32%

of all the instances.

Appendix F.

Lemma. The vector �∗ = (�∗
0 . . . �

∗
k . . . �

∗
m), where �∗

k are real numbers, that

maximises ℒ(�) under the conditions
∑m

k=0 �k = n and
∑m

k=1 k�k = m,

asymptotically follows a Poisson distribution with the average (m/n) being

multiplied by n:

�∗
k ≈ ne−

m
n (m

n
)k

k!
. (F.1)

Proof.¶ In order to maximise ℒ(�), we need to minimise
∏m

k=0 �k!(k!)
�k . Since

the conditions are linear in �, we minimise the logarithm:

ln

(
m∏

k=0

�k!
m∏

k=0

(k!)�k

)
=

m∑

k=0

ln �k! +
m∑

k=0

�k ln(k!) .

Differentiating over �, and using Gamma function (extension of the factorial

function), i.e., �k! = Γ(�k + 1), yields the condition for the optimal �∗
k:

d ln Γ(�∗
k + 1)

d�∗
k

+ ln(k!) = �′
1 + k�′

2 ,

where �′
1 and �′

2 are Lagrange multipliers for the conditions. Using digamma

function Ψ, that is, the logarithmic derivative of Gamma function Ψ(�∗
k + 1) =

d ln Γ(�∗

k
+1)

d�∗

k

, we obtain

Ψ(�∗
k + 1) + ln(k!) = ln�1 + k ln�2 ,

where �1 = e�
′

1 and �2 = e�
′

2 . For large arguments Ψ(x+1) ≈ ln(x), and within

this approximation

�∗
k ≈ �1�

k
2

k!
. (F.2)

The condition
∑m

k=0 �k = n yields

n ≈
m∑

k=0

�1�
k
2

k!
=
�1e

�2 Γ(m+ 1, �2)

m!
≈ �1e

�2 .

¶ The Authors thank an anonymous referee for this proof, and for pointing out Poisson

distribution as the optimal solution.
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The condition
∑m

k=1 k�k = m produces

m ≈
m∑

k=1

k
�1�

k
2

k!
=
�1�2e

�2 Γ(m,�2)

(m− 1)!
≈ �1�2e

�2 .

Using the last two equations we obtain

�2 ≈
m

n
(F.3)

and

�1 ≈ ne−�2 = ne−
m
n . (F.4)

Substituting (F.3) and (F.4) into (F.2) yields

�∗
k ≈ ne−

m
n (m

n
)k

k!
. (F.5)

That is, the optimal vector �∗ follows a Poisson distribution with the average

(m/n) being multiplied by n. ■

Appendix G.

The rank �k of the sequence of signals si sorted by their frequency P (�k) ≡ k
m

satisfies the following condition:

m−
k∑

j=0

�j < �k ≤ m−
k−1∑

j=0

�j . (G.1)

For example, the rank of signals which encode one object (i.e., k = 1) satisfies

m− �0 − �1 < �1 ≤ m− �0 .

Let us consider the lower bound, using the solution (20):

�k = m−
k∑

j=0

�j = m−
k∑

j=0

m

e j!
= m− m

e

k∑

j=0

1

j!
.

Taylor expansion for exponential function ex, at x = 1, yields

k∑

j=0

1

j!
= e−Rk(1) ,

where Rk(x) is the remainder term of the k-th order Taylor approximation to ex:

Rk(1) =
e�

(k + 1)!

for a number � between 0 and 1. In fact, 0 < � ≤ ln(e − 1). Hence, the lower

bound is given by

�k = m− m

e

(
e− e�

(k + 1)!

)
=

m e�−1

(k + 1)!
.

Substituting (k−1) for k gives the upper bound of expression (G.1), establishing

m e�−1

(k + 1)!
< �k ≤ m e�−1

k!
. (G.2)
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Expressing (k + 1)! as a function of the rank �k leads to approximation

(k + 1)! ≈ m e�−1

�k
or

Γ(k) ≈ m e�−1

�k

Cantrell [16] noted that for x ≥ x0, where x0 denotes the positive zero of the

digamma function (x0 ≈ 1.461632), Γ(x) is strictly increasing. Hence, restricting

its domain accordingly, the inverse is a function given by

Γ−1(x) =
L(x)

W (L(x)/e)
+ 1/2 (G.3)

where

L(x) ≈ ln
x+ 0.036534√

2�

and W (z) is the principal branch of the Lambert W function (the product

logarithm), i.e., the inverse function of the function f(w) = wew. Using the

inverse function Γ−1(x) we obtain

k ≈ Γ−1

(
m e�−1

�k

)
.

Setting P (�k) =
k
m

yields

P (�k) ≈ 1

m
Γ−1

(
m e�−1

�k

)
.

It is clear that this dependency reduces the symbols’ frequency much slower than

a power law — in fact, the rate of change is sub-logarithmic.
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