Analysis of Local Search Landscapes for k-SAT Instances

Albrecht, A., Lane, P.C.R. and Steinhofel, K. (2010) Analysis of Local Search Landscapes for k-SAT Instances. Mathematics in Computer Science, 3 (4). pp. 465-488. ISSN 1661-8270
Copy

Stochastic local search is a successful technique in diverse areas of combinatorial optimisation and is predominantly applied to hard problems. When dealing with individual instances of hard problems, gathering information about specific properties of instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based procedures. In the present paper, we address parameter estimations in the context of landscapes induced by k-SAT instances: at first, we utilise a sampling method devised by Garnier and Kallel in 2002 for approximations of the number of local maxima in landscapes generated by individual k-SAT instances and a simple neighbourhood relation. The objective function is given by the number of satisfied clauses. The procedure provides good approximations of the actual number of local maxima, with a deviation typically around 10%. Secondly, we provide a method for obtaining upper bounds for the average number of local maxima in k-SAT instances. The method allows us to obtain the upper bound [...] for the average number of local maxima, if m is in the region of 2 k · n/k. [...see original online abstract for correct notation]

picture_as_pdf

picture_as_pdf
904108.pdf

View Download
visibility_off picture_as_pdf

Published Version
lock

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads