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Abstract 

Activation likelihood estimation (ALE) meta-analyses were used to examine the 

neural correlates of prediction error in reinforcement learning.  The findings are 

interpreted in the light of current computational models of learning and action 

selection. In this context, particular consideration is given to the comparison of 

activation patterns from studies using instrumental and Pavlovian conditioning, and 

where reinforcement involved rewarding or punishing feedback.  The striatum was 

the key brain area encoding for prediction error, with activity encompassing dorsal 

and ventral regions for instrumental and Pavlovian reinforcement alike, a finding 

which challenges the functional separation of the striatum into a dorsal ‘actor’ and a 

ventral ‘critic’.  Prediction error activity was further observed in diverse areas of 

predominantly anterior cerebral cortex including medial prefrontal cortex and anterior 

cingulate cortex.  Distinct patterns of prediction error activity were found for studies 

using rewarding and aversive reinforcers; reward prediction errors were observed 

primarily in the striatum while aversive prediction errors were found more widely 

including insula and habenula.  
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1. Introduction 
Decision making requires learning of associations between conditioned stimuli and 

outcomes (Pavlovian learning), or between one’s actions and their consequences 

(instrumental learning), that are rewarding or punishing. The behavioural literature on 

reinforcement learning has demonstrated that it is not the reward (or punishment) per 

se that reinforces (extinguishes) behaviours but the difference between the predicted 

value of future rewards (punishments) and their realised value.  This is known as the 

reward prediction error (RPE).  In the original quantitative models of reinforcement 

learning (Bush & Mosteller, 1951; Mackintosh, 1975; Pearce & Hall, 1980; Rescorla 

& Wagner, 1972) the effect of unexpected outcomes on reinforcement learning is 

calculated as the difference between the reward received and reward expected. This is 

known as the prediction error (PE) and is depicted by the following formula: 

δ = Rt - V(t)      [Eq. 1] 

in which Rt is the value of reward received (or unconditioned stimulus value, US) and 

Vt is the expected value of reward signified by the conditioned stimulus (CS), both at 

time t.  When this prediction error equates to zero then learning does not occur, even 

when there continues to be a joint occurrence of conditional and unconditional stimuli 

(Schultz & Dickinson, 2000, Niv & Schoenbaum, 2008).  Sutton and colleagues noted 

various limitations inherent in the original PE model of Rescorla and Wagner and 

developed the temporal difference prediction method of learning (see Sutton and 

Barto, 1987), now known as the temporal difference learning algorithm (TD).  In TD, 

prediction error becomes the difference between the expected value of all future 

reward at a certain point in time (deemed the state at time “t”) and the expected value 
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of all future reward at the succeeding state (at time t+1).  The TD prediction error is 

calculated using the following equation: 

      δ t = rt +γV(St+1) - V(St)    [Eq.2] 

where, rt is the reward received, γ is the discount factor determining the weight given 

to future state values, and V(St) and V(St+1) represent the value of the current state 

and the subsequent state respectively.  This simple formulation of TD prediction error 

can also be extended to incorporate situations involving action learning (see Sutton & 

Barto, 1998, for a review of SARSA and Q-learning algorithms).  Given the relevance 

of prediction error to models of reinforcement learning, it is of no surprise that a large 

number of electrophysiology studies with animals and fMRI studies with humans 

have examined the brain regions involved in the computation of prediction errors.  

Furthermore, the electrophysiology studies have reported remarkably high similarity 

between RPE and the spiking activity of dopamine (DA) neurons in the midbrain 

(Montague et al., 1996; Schultz et al, 1997).  There is thus additional interest in the 

study of reward prediction error in humans using fMRI, since RPE may be taken as a 

proxy measure of DA related activity in both the midbrain and in areas such as the 

striatum, to which midbrain DA neurons project.  

A number of studies which explored the application of computational models , 

derived from machine reinforcement learning, have focused solely on the basal 

ganglia, and the neural circuitry that links this subcortical region to numerous other 

subcortical and cortical brain regions.  The most widely debated family of 

computational models come under the heading of the actor-critic framework (Houk et 

al, 1995; Suri and Schultz, 1998; 1999; Joel et al, 2002; Khamassi, 2005).  There are 

various versions of the actor-critic model, but the general format comprises an actor 
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module, which learns to select actions in order to maximize future reward together 

with a critic module, which calculates a TD prediction error (Barto, 1995). 

Recent narrative reviews of human fMRI studies have concluded that RPE in both 

Pavlovian and instrumental learning is computed in the ventral striatum (VS), with the 

dorsal striatum (DS) involved only in instrumental learning (Lohrenz et al., 2007; 

O’Doherty et al., 2004; Porcelli & Delgado, 2009).  If so, then this division of labour 

maps on well to the actor-critic model of reinforcement learning with the VS 

operating as the critic and the DS operating as the actor.   

However, this neat structural mapping of actor and critic, derived from a machine 

learning algorithm, has its detractors.  It makes the assumption of a single critic 

whereas the true situation may be more complicated with the critic possibly 

partitioned functionally and structurally, having evolved to deal with different task 

requirements.  Unlike machines, animals can accomplish a task via different routes 

through to the final action, referred to as ‘model–based’ (goal directed) or ‘model-

free’ (automatic) processes (see Daw et al., 2005; Dayan, 2009 for a discussion).  The 

actor-critic algorithm supports the model-free approach only (Balleine et al., 2008) 

whereas the model-based approach makes assumptions that require the existence of 

internally generated state transitions, including those that can be expected when 

preparing action selection (Van der Meer and Redish, 2010).  Redgrave and Gurney 

(2006) also raise doubts about a simple interpretation of phasic DA coding reward 

prediction error.  From a biologically informed perspective, they argue that the role of 

DA in reinforcement learning has more to do with reinforcing salient features of the 

context and the instrumental actions that are causally related to reward, and so the 

critic role may not be localized in one brain region but distributed.  
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The narrative reviews of fMRI studies of RPE referred to above, have been based on a 

small and select number of available studies rather than a systematic literature search 

followed by a meta-analysis.  A recent meta-analysis that used activation likelihood 

estimation (ALE) to examine the neural correlates of rewards and punishments in 142 

reward processing studies reported a widespread network of brain activations 

involving various prefrontal regions, striatum, inferior parietal lobe and insula (Liu et 

al, 2010).  This review did not select specifically for reinforcement learning studies (it 

included a diverse range of decision making tasks) and utilised objective 

reward/punishment values, rather than prediction error.  Furthermore Liu et al. (2010) 

did not disaggregate Pavlovian and instrumental forms of learning, and hence their 

findings could not contribute to the debate about the validity of computational models 

of reinforcement learning as useful models of the functional organization of human 

striatum.   

fMRI studies of prediction error are typically based on a Rescorla-Wagner or TD 

modelled prediction error implemented in various learning algorithms (e.g., advantage 

learning, Q-learning, SARSA) in which the estimated PE is calculated for each 

stimulus event.  This time series is then regressed onto the series of fMRI images to 

identify those voxels in which the BOLD activation value correlates with estimated 

PE (O’Doherty et al., 2007).  The issue of valency of outcome (reward vs. punishment, 

monetary gain vs. loss) remains controversial with some suggestions of a possible 

separation of brain systems calculating PE for rewards and punishments respectively 

e.g. reward PEs are calculated in the striatum and punishment PEs are calculated in 

various cortical regions including anterior cingulate cortex (ACC) and insula 

(Nieuwenhuis et al, 2005).  In fact, the Liu et al. (2010) meta-analysis found a high 
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degree of overlap in the brain regions coding both expected or experienced gains and 

losses.   

In the following meta-analysis we examine RPE and aversive prediction error (APE) 

in reinforcement learning paradigms involving Pavlovian and instrumental 

conditioning. To our knowledge there have been no previous meta-analytic reviews of 

the numerous fMRI studies based on the parametric modelling of prediction errors.  

We structured our meta-analysis around the following research questions: Is reward 

prediction error processing widespread or principally computed within ventral and 

dorsal striatum?  Do differential patterns of activation for Pavlovian and instrumental 

prediction errors implicate an actor – critic organization in the basal ganglia?  And 

finally, to what extent do activation patterns overlap or segregate for reward and 

punishment PEs?   

 

2. Methods 

2.1 Systematic literature search 

Studies were selected for the meta-analysis by searching the SciVerse Scopus 

(www.scopus.com) and Pubmed (www.pubmed.org) databases using the following 

search terms: “fmri OR neuroimaging” AND “prediction error” AND (“reinforcement 

learning” OR “classical conditioning” OR Pavlovian OR instrumental OR reward).  

The BrainMap Sleuth database (http://brainmap.org) was searched using the 

“prediction error” term, and reference lists from relevant review articles were 

assessed together with lists of articles written by key researchers in the field.  These 

search results were merged, with duplicates eliminated, to yield a total of 779 articles 
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(October 2011).  This high number is explained by the diverse terminology within this 

topic area and its high level of overlap with similar, but distinct, fields of study.  

Attempts to reduce the size of this initial screening by removing search terms 

eliminated studies of potential interest; the initial screen was therefore maintained at 

this broad level to minimise the risk of missing relevant articles.   

Abstracts from the above 779 articles were reviewed.  A large number of studies were 

rejected which either made reference to prediction error without being primarily 

focused on reinforcement learning (primary reason for discard), or which failed to 

provide coordinates for areas of relevant brain activation. An intermediate shortlist of 

109 articles of interest was then constructed, which were studied in detail. Inclusion 

and exclusion criteria were applied to these papers. Inclusion criteria were as follows: 

(1) primary research studies using human adult participants; (2) prediction error 

calculated using Rescorla Wagner or TD models, or from models derived from either 

of these; (3) coordinates of prediction error provided in Montreal Neurological 

Institute (MNI) or Talairach standard stereotactic space; (4) the study involved use of 

an experimental reinforcement learning task providing subject feedback (n.b. studies 

were excluded where tasks involved the simple probabilistic allocation of reward or 

punishment such as monetary incentive delay tasks).  Studies were excluded where 

(1) analysis was based solely on one or more ROIs e.g. using anatomical masks or 

based on coordinates from other studies; and (2) where sample populations were 

investigated whose brain functions might be expected to deviate from those of normal 

healthy adults (e.g. aged population, Parkinson’s disease patients, substance 

dependent adults; although separately reported results for matched control group were 

included if coordinate data was available).  
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Email contact was made with the authors of 16 papers where the study met the 

inclusion criteria but where whole brain prediction error coordinates were not 

included in the original articles.  This added another 7 studies making a total of 35 

whole-brain activation studies (Appendix A).  

 

2.2 Study categorisation and extraction of coordinate data 

Studies were categorised according to whether the experimental task involved 

instrumental (Inst) or Pavlovian (Pav, classical) conditioning, with reward, 

punishment or a combination of both.  MNI or Talairach based (x, y, z) Coordinates 

for the foci of areas of BOLD activity associated with RPE or APE were extracted 

from each of the fMRI studies, with those coordinates listed in Talairach space 

converted to MNI using the icmb2tal algorithm implemented in the BrainMap’s 

GingerALE 2.1 software (www.brainmap.org/ale/).  RPE and APE prediction error 

foci represented by both positive and negative BOLD signals were extracted from the 

study papers and used in the meta-analyses.  A master-list of all studies was created 

by combining all coordinates in MNI space in preparation for the ALE meta-analyses, 

with a total of 446 foci identified across the 35 studies.  

Studies were grouped by experimental task to enable contrasts to be undertaken 

between the different task-types (instrumental vs. Pavlovian or reward vs. 

punishment).  The minimum number of foci allocated to a group (Pavlovian-

punishment) was 71, exceeding the minimum number of coordinates recommended 

for use of the GingerALE meta-analysis for a simple sensory task of 20 

(www.brainmap.org/ale/).   A summary of the studies used and their allocations to 
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each meta-analysis group is shown in Table 1 with the studies included in the meta-

analysis listed in Appendix A.   

The distinction between dorsal and ventral striatum is given particular consideration 

here due to their importance in the reinforcement learning and decision making 

literatures.  However no unequivocal boundary can be agreed (Voorn et al., 2004).  It 

is now common for VS to be specified to include Nucleus accumbens (NAcc), the 

olfactory tubercle and ventral portions of caudate and putamen (Haber & McFarland, 

1999; Martin, 2003; Joel et al., 2002).  Assignations of DS and VS in this paper have 

followed the broad definitions set out in Postuma & Dagher (2006) i.e. 

Putamen DS: z > +2  VS: z < +2 

Caudate DS: z > +7 VS: z < +7 

--- Table 1 about here --- 

To assess potential NAcc activation, reported coordinates of VS prediction error 

activation were reviewed against the algorithm for recognition of the NAcc, and the 

MNI extent data as specified in Ahsan et al. (2007):  

left hemisphere:    -15 < x < -3;    4 < y < 14;    -14 < z < -3 

right hemisphere:   14 < x < 4;      5 < y < 15;    -14 < z < -3 

Foci were assigned to the NAcc if they fall within these extremes, which, by 

specifying a cuboid space, intentionally allows for a generous interpretation of NAcc 

activity.  Activation coordinates are assigned as left or right in accordance with 

general neurological and MNI convention whereby a positive value of the x 

coordinate indicates a location in the right brain hemisphere.  
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2.3 Activation likelihood estimation (ALE) meta-analysis 

ALE (Eickhoff, et al., 2009; Laird, et al., 2005; Turkeltaub et al., 2002) is a 

coordinate based quantitative meta-analysis method that identifies consistent brain 

activation locations elicited across studies employing similar experimental conditions.  

In a comparison of alternative coordinate-based meta-analytical approaches (ALE, 

kernel density analysis and multi-level kernel density analysis), ALE was found to 

produce results most comparable to image based meta-analysis (IBMA; Salimi-

Khorshidi et al., 2009).   Without access to the full image data for each study required 

for IBMA, ALE is a preferred method for meta-analytical comparison of 

neuroimaging data.  

In ALE, all foci reported in a given study are modelled by creating 3D Gaussian 

probability distributions centred at each reported foci (the reported x,y,z coordinates ).  

In BrainMap’s GingerALE 2.1 the width of the distribution, reflecting spatial 

uncertainty, is adjusted to accommodate between subject variance.   The modelled 

probability distributions for all reported foci are then combined to form a modelled 

activation (MA) map for that experimental task (e.g. instrumental or Pavlovian 

learning) for each study.  Given the adjustment for sample size, studies with larger 

numbers of subjects will have tighter Gaussian distributions for all foci within an MA 

and hence provide greater weight to those foci when combined in the meta-analysis.  

Following the union of MAs across studies, activation probabilities, or ALE scores, 

are determined for each voxel.  To enable statistical inference about spatial patterns of 

activation the null hypothesis assumes that spatial patterns of activation are associated 

randomly across studies.  A null distribution is achieved by randomly sampling a 



 

  12 

voxel from one MA map and then doing the same for every other MA map and 

obtaining the union of activation probabilities in exactly the same way as for the real 

MAs.  This process is repeated 1011 times to allow an ALE null distribution to be 

estimated against which the derived data may be assessed (Eickhoff et al., 2009).   

For contrasts requiring subtraction between two experimental tasks (e.g. instrumental 

- Pavlovian to find which areas are more active for instrumental than for Pavlovian) 

the difference between ALE scores are calculated.  A null distribution for this 

difference is then determined by pooling the data from both experimental tasks and 

randomly sampling from this pool to simulate two samples with similar numbers of 

foci as reported in the real data.  Thus unequal numbers of foci between two 

experimental tasks are incorporated in the modelled null distribution for each 

subtraction analysis (Eickhoff et al. 2009).  The nonparametric p values for the ALE 

maps for each experimental task are then thresholded using the false discovery rate 

(FDR) method.  For this study the FDR was set at p < .05 with a minimum cluster 

volume of 50mm3 using ‘all extrema’ peak cluster analysis to aid identification of 

individual areas of activation within large single clusters.  For the subtraction analyses, 

an uncorrected p value of .05 and a minimum cluster volume of 50mm3 were used. 

The use of the uncorrected p-value was adopted to avoid overly conservative results 

given that the inputs into these subtraction analyses have already been thresholded 

using FDR (Eickhoff et al., 2011). 

Final ALE cluster maps were exported as NIfTI files into Mango brain visualisation 

software (http://ric.uthscsa.edu/mango/), and were overlain onto a canonical 

anatomical T1 brain template (Colin27_T1_seg_MNI.nii available from 

www.brainmap.org/ale/). A single-subject template was used to promote clarity given 
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the multiple image presentation of the ALE results. Logical overlays were used within 

the Mango software to carry out overlap analysis.  

 

3. Results 

3.1 All Studies  

The cluster results of the ALE meta-analysis for all prediction error studies are listed 

in Table 2, and presented visually in the panel of brain-slices in Figure 1.  For all 

tables presenting cluster results, the size of each cluster is given in mm3 together with 

the coordinates and level of the maximum ALE value that indicates the relative effect 

size for each extrema within each meta-analysis.  In large clusters providing several 

peaks of activation, the foci of peak activations are listed separately (e.g. left hand 

column in Table 2) and the cluster size (right hand column) is left as blank.  

--- Table 2 about here --- 

--- Figure 1 about here --- 

In the analysis of all reinforcement learning studies (Table 2 and Figure 1) the most 

significant features are the large bilateral basal ganglia clusters with peaks in dorsal 

and ventral putamen, dorsal caudate and pallidum with the clusters also activating 

areas of thalamus, amygdala and hypothalamus. Striatal activation appears equally 

strong in the DS and VS, in left and right hemispheres and encompasses bilateral 

activation of the NAcc.  Separate small basal ganglia clusters are centred on right and 

left claustrum (this latter cluster also extends to include a peak in the left insula). 

Beyond the basal ganglia, there are 24 further areas of activation across the brain, 

with larger clusters observed in the right cingulate cortex, and bilateral frontal cortex 



 

  14 

including the medial, inferior and superior frontal gyri.  There is no clear effect of 

laterality across all brain regions; most non-striatal clusters are found in only one 

hemisphere but the distribution of these is balanced between left and right.  

 

3.2 Instrumental and Pavlovian Studies 

--- Table 3 about here --- 

--- Figure 2 about here --- 

Table 3 and Figure 2 show the results of the ALE prediction error analyses for 

instrumental and Pavlovian studies separately.  Distinct activation patterns for the two 

forms of reinforcement learning can be seen.  The ALE analysis for instrumental 

studies show a single large bilateral cluster in the basal ganglia covering dorsal and 

ventral putamen, caudate, pallidum and NAcc.  Further clusters are seen in the right 

and left claustrum.  

The Pavlovian analysis indicates large bilateral basal ganglia clusters with a 

significant lateral effect of stronger activation in the left striatum.  In the left 

hemisphere, activation encompasses peaks in the ventral and dorsal putamen, dorsal 

caudate and (extending dorsally to z = 14) caudate body, and ventrally (to z = -28) to 

include the parahippocampal gyrus.  In the right hemisphere the striatal cluster only 

extends dorsally from z = -5 (caudate head) to z = 14 (putamen), with the cluster 

activation peaking in dorsal caudate.  Notably, in both hemispheres the Pavlovian PE 

cluster in ventral striatum lies adjacent to the NAcc with only marginal overlap (1-

2mm at certain points) with the 1,200mm3 cuboid space enclosing the NAcc as 

defined by the coordinates given in Ahsan et al (2007).  Given the wide margin of 
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error in the use of the cuboid space to delineate the NAcc, it is considered unlikely 

that this marginal overlap indicates any degree of significant NAcc activation in the 

Pavlovian studies.  

The findings of laterality and non-inclusion of NAcc within the Pavlovian group of 

studies were confirmed in a separate ALE meta-analysis of 9 further Pavlovian ROI 

studies (39 foci).  A similar effect of laterality was observed in the right hemisphere 

with the Pavlovian striatal cluster located more dorsal than the cluster in the left 

hemisphere.  The Pavlovian striatal clusters in both hemispheres lie adjacent to, but 

not encompassing the NAcc.   

The overlap analysis shown in Figure 2 indicates that instrumental basal ganglia 

prediction error activation is more widespread than that observed for the Pavlovian 

studies, which lie to the lateral extremes of the instrumental clusters.  Beyond the 

basal ganglia, there are a further 11 Pavlovian and 13 instrumental clusters, found in 

both cases predominantly in the frontal cortex around the frontal gyrus, and in the 

cingulate cortex.  However, with the exception of a small degree of overlap in the 

right cingulate gyrus, all PE clusters outside of the basal ganglia are specific to either 

of the instrumental or Pavlovian conditions.  

--- Table 4 about here --- 

--- Figure 3 about here --- 

Table 4 and Figure 3 show the results of the ALE subtraction analysis for 

instrumental and Pavlovian prediction error studies.  Whereas instrumental-Pavlovian 

PE activation lies solely within the bilateral basal ganglia (primarily ventral striatum), 

Pavlovian-instrumental clusters lie entirely beyond the basal ganglia, in the right 
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cingulate and medial frontal gyri, left middle frontal gyrus and left insula. Thus the 

subtraction analysis confirms the earlier finding of stronger ventral striatal PE 

activation for instrumental compared to Pavlovian studies.  It should be noted that the 

peak maxima shown in Table 4 may not correspond to any of those shown in Table 3 

as the subtraction analyses may give rise to new maxima.  

 

3.3 Reward and Punishment Studies 

--- Table 5 about here --- 

--- Figure 4 about here --- 

Table 5 and Figure 4 show the results of the ALE prediction error analyses for studies 

involving rewarding and punishing reinforcers.  Despite the greater number of input 

foci for the reward condition (262) compared to the punishment condition (71), the 

activation pattern for reward studies is more concentrated as shown by the smaller 

number of cluster extrema in Table 5.  While some discrepancy in the cluster 

activation patterns might be expected between reward and punishment studies due to 

the larger number of studies (more foci) in the reward group, this is insufficient to 

explain the exceptionally low relative level of striatal activation for punishment 

studies.  While two large bilateral basal ganglia reward PE clusters encompass both 

dorsal and ventral caudate and putamen (including NAcc), the analysis of punishment 

studies shows only two small left hemisphere striatal clusters (peaking in left dorsal 

and ventral putamen).  Notably, no PE cluster activation is found for punishment 

studies in the right striatum.  In contrast, no clear effect of laterality is observed for 

striatal reward clusters.   
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Beyond the basal ganglia, PE clusters for both reward and punishment studies are 

widely distributed with no clear effect of laterality. For both groups the largest 

clusters are seen in the frontal and cingulate cortices, with activation seen at a lower 

level in the temporal and occipital gyri (reward) and fusiform and temporal gyri, and 

superior parietal lobule (punishment).  The overlap analysis reveals shared reward and 

punishment PE activation only within the striatal clusters and in the medial anterior 

cingulate.  Aside from these areas cluster activations are specific to each of the 

conditions.   

--- Table 6 about here --- 

--- Figure 5 about here --- 

The ALE subtraction analyses of reward and punishment studies shown in Table 6 

and Figure 5 confirms the pattern of activation described above.  There is greater PE 

activity for rewarding tasks compared to those involving punishment in the basal 

ganglia, with a large reward cluster in each hemisphere that encompasses the NAcc.  

The right side cluster covers both DS and VS whereas the left side cluster is 

predominantly ventral, with z < 0.  Notably, this large cluster has extrema in the right 

hypothalamus and pallidum despite these regions not appearing as peaks in the reward 

cluster table.  A further small left hemisphere dorsal caudate cluster peaks at z = 16 

and 18.  In contrast the punishment – reward analysis reveals no basal ganglia clusters, 

but three small clusters are found in regions, which show no activation for reward 

studies, namely left thalamus and insula, and the middle frontal gyrus.  
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3.4 Summary of Results 

This meta-analysis examined activation of human brain that correlated with reward 

and aversive prediction errors.  In the studies included in the current meta-analysis, 

prediction errors were measured in several ways, but all assume an underlying model 

that approximates either a Rescorla–Wagner or TD prediction error, or a model 

derived from either of these.  

Taking all studies together (i.e. combining all types of instrumental and Pavlovian 

PEs including both rewards and punishments) we found a large cluster of prediction 

error related activation in the striatum, which embraced both ventral and dorsal 

regions.  We also found activation that extends to medial frontal structures including 

pregenual and antero-medial cingulate cortex (see Figure 4), which have anatomical 

connections to the midbrain and/or striatum.  The results showed that prediction error 

was coded in diverse regions throughout the cerebral cortex, we noted 24 areas (see, 

Table 2), predominantly in anterior rather than posterior regions.  This finding 

concurs with the review of the animal literature by Schultz & Dickinson (2000).  

When comparing areas of activation for instrumental and Pavlovian conditioning we 

noted considerable overlap in dorsomedial striatum bilaterally and in left ventral 

putamen in the ventral striatum complex.  Surprisingly there was no overlap of 

prediction error coding for both forms of learning in NAcc in either the left or right 

hemispheres.  NAcc coded prediction error only in instrumental learning but not 

Pavlovian.  Outside of the basal ganglia there was also little overlap of PE coding for 

Pavlovian and instrumental learning.  This finding was also strongly supported by the 

subtraction analysis. 
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The meta-analysis also indicated that reward and aversive prediction errors are coded 

throughout the brain by broadly segregated neural networks with minimal integration 

between the reward and aversive prediction errors in the ventral striatum and antero-

medial cingulate cortex.  This suggests possible differences in the processing of 

aversive and appetitive reinforcers (Fujiwara et al, 2009; Grabenhorst & Rolls, 2011). 

 

4. Discussion 

Our findings are largely consistent with the review of the PE animal literature 

undertaken by Schultz & Dickinson (2000) which indicated that most areas of the 

brain calculate a prediction error, and which suggested that PE might be a common 

form of neuronal processing that is not confined to updating the expected value of the 

conditioned stimulus in reinforcement learning (see Fiorillo, 2008; Friston 2009; 

2010; Glimcher, 2011 for similar suggestions).  Therefore some caution is required 

since significant correlation between BOLD activity and the RPE might be the result 

of different cognitive processes that are themselves correlated with RPE (Roesch et al 

2010).  By way of example, Roesch et al., (2010) used several criteria to investigate 

whether neuronal activity in the amygdala which correlates with unexpected reward 

was actually RPE, outcome expectancy or, as they concluded, shift of attention.  In 

response to this issue, Caplin and Dean (2008a; 2008b) and Rutledge et al (2010) 

suggest three axioms that need to be obeyed if the BOLD signal in a particular region 

meets the necessary and sufficient conditions for coding RPE (that the size of the PE 

signal is consistent with prize ordering, uncertainty ordering and reflects surprise 

equivalence).  
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In comparison with the ALE meta-analysis study of Liu et al. (2010) which mapped 

objective reward and punishment coding rather than prediction error, we note the 

absence of PE activation in the reward regions of medial orbitofrontal cortex, 

hippocampus and amygdala.  

 

4.1 RPE in Instrumental vs. Pavlovian Reinforcement Learning 

One version of the actor-critic model of reinforcement learning assumes a single critic 

that calculates the discrepancy between the expected value of a stimulus and its actual 

value in both Pavlovian as well as instrumental learning (McClure et al., 2004; van 

der Meer & Redish, 2011).  On this basis, the ALE maps for the critic should be 

similar for both forms of reinforcement learning.  In the striatum, this similarity is 

most apparent in the dorsomedial region rather than ventral striatum, a finding which 

concurs with the early actor-critic models of reinforcement learning (reviewed in Joel 

et al., 2002).  More recent reviews have argued that prediction error and hence the 

critic, are computed in ventral striatum (McClure et al., 2004; van der Meer & Redish, 

2011; Doll et al., 2012).  However, in the current study, PE in ventral striatum during 

Pavlovian conditioning was confined to left putamen only, with no activity in the 

NAcc.  Conversely, during instrumental learning, PE did correlate significantly with 

activation throughout the NAcc, ventral putamen and ventral caudate on both left and 

right sides, a finding which was supported by the subtraction analysis (instrumental-

Pavlovian).   

These results suggest that the ventral striatum is not operating as a critic for use in 

both instrumental and Pavlovian reinforcement learning in humans.  However, it does 

not rule out the possibility that the functional organisation of the striatum follows the 
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actor-critic model, but without a direct one-to-one mapping.  It might be that there is 

more than one actor-critic implemented in the striatum (Doya et al., 2002; Baldassare 

2002) or there are different actor–critic systems, such as one for model-based and 

another for model-free processes of instrumental behaviour (see van der Meer and 

Redish, 2011; Bornstein and Daw, 2011; Doll et al., 2012 for a discussion), or 

alternatively that different regions in the striatum may each contribute to a 

‘distributed’ critic function, and the nature of this distribution is task dependent, 

perhaps with the NAcc contributing more to the estimation of prediction error in the 

case of instrumental learning (Redgrave and Gurney 2006).  

Two adaptations of the conventional view could also account for these findings.  

McClure, et al., (2003) present a computational model in which PE is used to assign 

incentive salience by updating not only predictions of future rewarding events (i.e. the 

conventional critic) but also biasing action choice (the conventional actor).  A second 

adaptation is offered by van der Meer & Redish (2011) who suggest that the critic 

also processes anticipated state values, more specifically those expected by the agent 

to occur as a result of their choice of action.  Both explanations assume greater 

activation across the ventral striatum when actions are required (i.e. in instrumental 

learning) as opposed to when the animal is passive (Pavlovian).  

However, the actor-critic model has many detractors as an accurate model for the 

functional organisation of the basal ganglia.  Humphries & Prescott (2010) consider 

that the conflux of information channels in the NAcc coding personal goals, spatial 

properties of the environment as well as prediction error suggest that this area is also 

involved in action selection, a view endorsed by Nicola (2007).  Yin & Knowlton 

(2006) and Nicola (2007) also consider the ventral striatum to be involved in 

Pavlovian-instrumental transfer.   
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An alternative view offered by Berridge, (2007; 2012) suggests that the ventral 

striatum is involved with incentive salience, or ‘wanting’.  A key postulate of 

incentive salience is that the current motivational value of the US transfers to the CS 

in reinforcement learning, and as such the value of the CS will vary dynamically 

according to motivational state.  The ventral striatum is seen as critical in this aspect 

of incentive salience, indeed more so than for the distinct process of ‘cognitive 

wanting’ (which comprises two separate processes of memory retrieval of CS value, 

and the computation of prediction error). Ventral striatal activity is thus expected to 

depend on the motivational value of both the CS and US, and if these are low, as 

might be the case for some experimental fMRI study designs, then low levels of 

ventral striatal activity would result.  This could explain the observed absence of 

NAcc PE involvement in Pavlovian reinforcement learning, as opposed to that 

observed for instrumental learning where the agent must engage with the environment 

to make a response (e.g., the response will only occur if the agent is motivated to act). 

 

4.2 RPE coding for reward and punishment 

Our results suggest possible differences in the processing of aversive and appetitive 

reinforcers.  We identified activations in the midbrain for reward prediction errors, 

consistent with those areas reported in  animal studies that showed increased spiking 

of DA neurons for the unexpected occurrence of rewards (Hollerman & Schultz, 

1998; Bayer & Glimcher, 2005).  Furthermore, widespread activation in the ventral 

striatum was observed for reward prediction errors while aversive prediction errors 

were encoded in a restricted cluster in the left ventral striatum.  This finding of RPE 

in the ventral striatum is unsurprising given neuroanatomical evidence that shows 

dense connections between the major axonal pathways of dopaminergic neurons and 



 

  23 

the striatum (Arbuthnott & Wickens 2007), and fits well with the findings of a 

previous study (Delgado et al., 2008).  In contrast, the anatomical source of the 

aversive PE in the left ventral striatum is less clear.  Earlier literature is mixed on 

whether DA neurons in the midbrain code solely for rewards or whether separate 

midbrain DA neurons code for reward and punishment respectively (see i.e. Schultz, 

2010; Bromberg-Martin et al., 2010 for a discussion).  

Robust aversive PE activation clusters were also detected in both the habenula and 

insular cortex.  The habenula finding is consistent with those of Salas et al (2010) 

who showed that the habenula complex calculates negative prediction error.  This 

region has been implicated in several emotional and cognitive functions including 

pain, learning and attention (Hikosaka, 2010).  In contrast, insula cortex is broadly 

acknowledged as viscerosensory cortex, and is implicated in the mapping of internal 

bodily states (including pain and taste) and in the representation of emotional arousal 

and feelings (Singer et al, 2009).  It is suggested that insular cortex might support 

different levels of representation of current and predictive states allowing for error-

based learning relating to both feeling and uncertainty (Singer et al., 2009).  

Both reward and aversive prediction error clusters were found in cingulate cortex, 

albeit with some regional differences within this area.  Pregenual ACC was active 

only for reward prediction errors whereas antero-medial ACC activity correlated with 

both reward and aversive prediction errors.  Both RPE and APE were observed in 

anterior cingulate cortex (ACC) in keeping with the results of electrophysiology 

studies in primates (Amiez et al, 2006; Matsumoto & Hikosaka, 2007), as well as 

EEG studies in humans (Holroyd & Coles, 2002; Nieuwenhuis et al., 2005; Oliveira 

et al, 2007).  The antero-medial ACC has previously been reported to play a role in 

negative affectivity (Price, 2000) and pain (Farrell, 2005; Lancaster et al., 2000; 
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Peyron et al., 2000; Vogt, 2005) and be more sensitive to aversive prediction errors 

than reward prediction errors (Shackman et al., 2011).  Our results suggest that 

antero-medial ACC is involved in the calculation of PE for both rewarding and 

punishing outcomes, but this may reflect its role in conflict-monitoring (Botvinick et 

al. 2004) or error-detection (Carter et al., 1998).   

A final point on the analysis of reward and aversive prediction error relates to the 

intrinsic coupling between action and reward in the dopaminergic system.  This 

suggests that the neural circuitry shared by reward and aversive PE in the ventral 

striatum might also be utilised in the processing of action requirements and 

motivational valence.  Guitart-Masip et al., (2011) recently demonstrated the greater 

involvement of ventral striatum (and partially dorsal striatum) in the coding of ‘go’ 

responses (i.e. elicit more striatal activity) than ‘no go’ responses, a finding that was 

irrespective of the outcome valence ( reward or punishment) .  It is possible therefore 

that our observation of greater VS signalling of reward prediction error in 

instrumental learning may be confounded by DA related activity specifically relating 

to action (‘go’ as opposed to ‘no go’).  

 

4.3 Caveats 

This meta-analysis has several methodological caveats.  Many fMRI studies of 

prediction error in humans have used striatal Region of Interest analysis (ROI) given 

the findings of electrophysiological studies in animals.  In order to avoid bias in our 

results, all ROI studies were excluded from the meta-analysis, although we have made 

reference to some in order to corroborate the different findings for instrumental and 

Pavlovian learning.   
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It was also impossible to separate studies of instrumental learning into those requiring 

goal based responding (in computational models, these are referred to as ‘model-

based’ or forward algorithms) and those requiring automatic or habit type responding 

(‘model-free’ algorithms).  There is considerable theoretical and empirical support for 

the involvement of distinct brain areas (in particular frontal and striatal regions) in 

model-based and model-free decision making (Humphries & Prescott, 2010; Van der 

Meer & Redish, 2010).  Many of the studies in this meta-analysis comprised simple 

discriminative learning paradigms where early trials may require a model-based 

approach, with later trials a model-free approach.  

As with other ALE meta-analyses, we ignored the sign of the fMRI BOLD signal.  

Some of the meta-analytical studies reported negative activations for aversive 

prediction errors, but these were few in number and the effect size was small.  

Furthermore, given the limited number of studies reporting reward magnitude, 

uncertainty or probability of loss relative to gain, these measures were not included in 

our analysis although they do appear to influence the magnitude of the BOLD signal. 

A more general weakness of the ALE meta-analysis approach is its failure to take into 

account the magnitude or the extent of activation for each input cluster.  This may 

skew the results as some studies may report a single peak cluster activation whereas 

others may report several peak activations within the same cluster.  Both may have 

the same magnitude and extent of activation but the study reporting several 

coordinates will have more power in the ALE analysis.  

And finally, a general caveat arises from the relation between the blood oxygenated 

level dependent (BOLD) signal in imaging studies and the underlying dopaminergic 

activity particularly in the striatum and any non-cortical structure.  All of the studies 

included in this meta-analysis have assumed the BOLD signal used in fMRI to be an 
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indirect proxy of neuronal activity due to increased perfusion in response to increased 

glucose utilization, or increased local field potentials, both being caused by the 

neuronal activity. However, DA receptors are found on some micro-vessels in the 

brain and DA release can itself have a direct effect on blood perfusion (Choi et al., 

2006). Thus, BOLD in experiments that involve DA release might be influenced by 

changes to perfusion resulting from both neuronal activity as well as from the direct 

effects of DA on vascular mechanisms.  
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Figure Captions 

 

Figure 1: Results of the ALE meta-analysis for all prediction error studies 

All brain-panel imaging figures show representative slices in sagittal (top), coronal (middle) and axial 

(bottom) views with MNI planar coordinates given below each image.  

 

 

 

Figure 2: Results of the ALE meta-analysis for instrumental (blue) and Pavlovian 

(red) prediction error studies. The overlap of the two analyses is shown in green.   
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Figure 3: Results of the ALE subtraction analysis for [instrumental-Pavlovian] (blue) 

and [Pavlovian-instrumental] (red) prediction error studies. The overlap of the two 

analyses is shown in green.   

 

 

 

Figure 4: Results of the ALE meta-analysis for reward (blue) and aversive prediction 

error studies (red). The overlap of the two analyses is shown in green. 

 

 

 

 

 

 



 

  44 

Figure 5: Results of the ALE subtraction analysis for Reward-Punishment (blue) and 

Punishment-Reward (red) prediction error studies. The overlap of the two analyses is 

shown in green.   
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Learning Reinforcer

Study Type Type

Brovelli (2008) Inst Combined R&P

Cohen (2007) Inst Reward

Delgado et al (2008) Pav Punishment

Gläscher (2009) Inst Combined R&P

Gläscher (2010) Inst Reward

Gradin (2011) Inst Reward

Hampton (2006) Inst Combined R&P

Howard-Jones (2010) Inst Reward

Jocham (2011) Inst Reward

Kahnt (2009) Inst Reward

Kahnt (2011) Inst Combined R&P

Kim (2006) Inst Reward/Punish

Kumar (2008) Pav Reward

Landmann (2007) Inst Reward

Li (2006) Inst Combined R&P

Li (2011a) Inst Combined R&P

Li (2011b) Pav Punishment

McClure (2003) Pav Reward

Morris (2012) Pav Reward

Murray (2008) Inst Reward

O'Sullivan (2011) Inst Reward

O!Doherty (2003) Pav Reward

Park (2010) Inst Combined R&P

Pessiglione (2006) Inst Reward

Ramnani (2004) Pav Reward

Rodriguez (2006) Inst Combined R&P

Schonberg (2010) Inst Combined R&P

Seger (2010) Inst Combined R&P

Seymour (2005) Pav Reward/Punish

Seymour (2007) Pav Reward/Punish

Spoormaker (2011a) Pav Punishment

Spoormaker (2011b) Pav Punishment

Tanaka (2006) Inst Combined R&P

Tobler (2006) Pav Reward

Valentin (2009) Inst Reward

Number of All Combined

Subjects Studies Inst Pav Reward Punish R&P

14 ! ! !

17 ! ! !

11 ! ! !

20 ! ! !

18 ! ! !

17 ! ! !

16 ! ! !

16 ! ! !

16 ! ! !

19 ! ! !

20 ! ! !

16 ! ! ! !

18 ! ! !

16 ! ! !

46 ! ! !

20 ! ! !

17 ! ! !

28 ! ! !

16 ! ! !

12 ! ! !

24 ! ! !

13 ! ! !

16 ! ! !

13 ! ! !

6 ! ! !

15 ! ! !

17 ! ! !

10 ! ! !

19 ! ! ! !

24 ! ! ! !

35 ! ! !

18 ! ! !

18 ! ! !

22 ! ! !

17 ! ! !

Number of Studies: Number of Studies: 35 23 12 20 7 11

Number of foci: Number of foci: 446 293 153 262 71 120

Table Captions 

 

Table 1 

Categorisation of fMRI Prediction Error Studies and Allocation to Meta-analysis 
Contrast Groups  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Footnote to Table 1: For simplicity, meta-analytical studies are referred to by the name of the first 
author and year of publication.   
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Table 2 

Detailed ALE Cluster Results for all Prediction Error Studies 

 

 

 

 

  

 

 

 

 

 

 

 

 

Footnote to Table 2: In this and all subsequent tables the following abbreviations are used:  

DS: dorsal striatum, VS: ventral striatum, NAcc: Nucleus accumbens, L: left hemisphere; R: right 
hemisphere 
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Detailed ALE Cluster Results for Instrumental and Pavlovian Prediction Error Studies 
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Table 4 

Detailed ALE Cluster Results for Instrumental and Pavlovian Prediction Error Studies: 

Subtraction Analyses 

 

 

 

 

 

 

 

Table 5 

Detailed ALE Cluster Results for Reward and Punishment Prediction Error Studies 
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Table 6 

Detailed ALE Cluster Results for Reward and Punishment Prediction Error Studies: 

Subtraction Analyses 
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