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Abstract

We combine pulsar population synthesis with simulation-based inference (SBI) to constrain the magnetorotational
properties of isolated Galactic radio pulsars. We first develop a framework to model neutron star birth properties
and their dynamical and magnetorotational evolution. We specifically sample initial magnetic field strengths, B,
and spin periods, P, from lognormal distributions and capture the late-time magnetic field decay with a power law.
Each lognormal is described by a mean, ,B Plog logm m , and standard deviation, ,B Plog logs s , while the power law is
characterized by the index, alate. We subsequently model the stars’ radio emission and observational biases to
mimic detections with three radio surveys, and we produce a large database of synthetic P–P diagrams by varying
our five magnetorotational input parameters. We then follow an SBI approach that focuses on neural posterior
estimation and train deep neural networks to infer the parameters’ posterior distributions. After successfully
validating these individual neural density estimators on simulated data, we use an ensemble of networks to infer the
posterior distributions for the observed pulsar population. We obtain 13.10Blog 0.10

0.08m = -
+ , 0.45Blog 0.05

0.05s = -
+ and

1.00Plog 0.21
0.26m = - -

+ , 0.38Plog 0.18
0.33s = -

+ for the lognormal distributions and a 1.80late 0.61
0.65= - -

+ for the power law at
the 95% credible interval. We contrast our results with previous studies and highlight uncertainties of the inferred
alate value. Our approach represents a crucial step toward robust statistical inference for complex population
synthesis frameworks and forms the basis for future multiwavelength analyses of Galactic pulsars.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Radio pulsars (1353); Pulsars (1306)

1. Introduction

As one of the end points of stellar evolution of massive stars,
neutron stars are influenced by many extremes of physics,
including strong gravity, large densities, fast rotation, and extreme
magnetic fields. Consequently, these compact objects have been
connected with several of the most energetic transient phenomena
in our Universe, such as fast radio bursts, superluminous
supernovae, ultraluminous X-ray sources, long- and short-duration
gamma-ray bursts, and gravitational-wave emission (e.g., Bachetti
et al. 2014; Berger 2014; Metzger et al. 2014; Abbott et al. 2017;
Margalit et al. 2018; Petroff et al. 2022). Accurately modeling
these processes requires a detailed understanding of neutron star
properties, which also set constraints on massive stellar evolution.
Inferring the birth properties of neutron stars and the physics that
govern their subsequent evolution is, thus, crucial for other fields
of astrophysics.

Detecting and accurately characterizing individual objects
within the entire neutron star population is, hence, critical. As a
result, the number of known pulsars (those neutron stars that
emit regular electromagnetic pulses) has steadily increased
since the first detection in 1967 (Hewish et al. 1968), and we
currently know of around 3500 of these objects (Manchester
et al. 2005).4 These are visible across the full electromagnetic
spectrum, and their emission is predominantly driven by their
enormous rotational energy reservoirs. Roughly 400 of these

sources are confirmed to be in binaries, of which the majority
were strongly influenced by accretion from their companions
and spun up to short spin periods earlier in their lives. The
remaining ∼3100 sources are primarily isolated neutron stars.
Due to observational limitations and diverse emission proper-
ties, we cannot detect these with a single telescope, but instead
have to focus on certain subpopulations. With around 1100
members, a subset of isolated radio pulsars constitutes the
largest fraction of neutron stars detected in a single survey
(Posselt et al. 2023). However, these numbers only cover a tiny
portion of the overall neutron star population. We can provide a
rough estimate of the neutron stars in the Milky Way by
multiplying their birth rate (a core-collapse supernova rate of
∼2 per century; see Keane & Kramer 2008; Rozwadowska
et al. 2021) by the age of the Milky Way (∼13 billion years;
see, e.g., Conroy et al. 2022; Xiang & Rix 2022) to arrive at a
total of 260 million Galactic neutron stars.
To bridge the gap between expected and observed neutron

stars, we take advantage of population synthesis. This approach
relies on producing a large catalog of synthetic pulsar populations
that are passed through a set of filters to mimic observational
constraints. The resulting populations are then contrasted with the
true observed sample to find those parameter regions that best
explain the data. Although different versions of this methodology
have been applied to pulsar data for several decades (e.g., Narayan
& Ostriker 1990; Lorimer 2004; Faucher-Giguère & Kaspi 2006;
Gonthier et al. 2007; Bates et al. 2014; Gullón et al. 2014, 2015;
Cieślar et al. 2020), the complexity of models that capture the
properties of observed Galactic neutron stars significantly
complicates the comparison between the simulated populations
and the observed one. This is especially true if we are interested in
quantifying uncertainties for our neutron star parameters, because
Bayesian Markov Chain Monte Carlo (MCMC) or nested
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sampling methods (the standard tools for this kind of question;
see, e.g., Feroz et al. 2009; Foreman-Mackey et al. 2013;
Sharma 2017; Ashton et al. 2019; Speagle 2020) become
infeasible for pulsar population synthesis unless significant
simplifications for simulation models and the likelihood function
are made (Cieślar et al. 2020). The main reason for this is that we
can no longer write down an explicit likelihood for realistic
neutron star simulation frameworks. In this paper, we thus focus
on simulation-based inference (SBI; also known as likelihood-free
inference; for a recent review see Cranmer et al. 2020) in the
context of pulsar population synthesis for the first time.

In the past few years, SBI has successfully challenged
traditional approaches such as approximate Bayesian computa-
tion (e.g., Rubin 1984; Beaumont et al. 2002; Dean et al. 2011;
Frazier et al. 2017) in those areas of science that rely on
complex simulators, which lead to intractable likelihoods. The
existence of such a simulator, essentially acting as a forward
model, is the only requirement for SBI. As such, the approach
is ideal for astrophysics and has been recently applied to
parameter estimation in, e.g., cosmology (Alsing et al. 2019;
Hahn et al. 2023; Lemos et al. 2023; Lin et al. 2023), high-
energy astrophysics (Huppenkothen & Bachetti 2022; Mishra-
Sharma & Cranmer 2022), gravitational-wave astronomy (Dax
et al. 2021; Cheung et al. 2022; Bhardwaj et al. 2023), and
exoplanet research (Vasist et al. 2023). SBI is particularly
powerful in combination with neural networks, whose benefits
for pulsar population synthesis studies were outlined in Ronchi
et al. (2021) by inferring point estimates for the dynamical
properties of radio pulsars in the Milky Way.

In this study, we take a Bayesian perspective to infer
posteriors of neutron star parameters using SBI. For this
purpose, we model the Galactic neutron star dynamics, the
magnetorotational evolution, and the radio emission properties.
We then run snapshots of the total pulsar population at the
current time through a set of filters to mimic observational

limitations. The resulting simulation output are synthetic P–P
diagrams (where P and P denote the pulsar spin period and its
time derivative, respectively) of the observed pulsar popula-
tion. We then construct an SBI pipeline, which we train,
validate, and test on a large database of these synthetic P–P
diagrams to infer posterior distributions of our input para-
meters. We specifically focus on five parameters related to the
initial period distribution of pulsars and their magnetic field
properties that crucially affect the positions of stars in the P–P
plane. We then apply our optimized deep-learning framework,
for the first time, to the radio pulsars detected in the Parkes
Multibeam Pulsar Survey (PMPS; Manchester et al. 2001;
Lorimer et al. 2006), the Swinburne Intermediate-latitude
Pulsar Survey (SMPS; Edwards et al. 2001; Jacoby et al. 2009),
and the low- and mid-latitude High Time Resolution Universe
(HTRU) survey (Keith et al. 2010) (all recorded with
Murriyang, the Parkes radio telescope).
The paper is structured as follows: Section 2 summarizes our

population synthesis framework. We then provide a general
overview of SBI and our choice of setup in Sections 3.1 and
3.2, respectively, whereas Section 3.3 summarizes the
machine-learning experiments conducted for this study. We
next address network training and inference results plus
corresponding validation approaches in Section 4, specifically
benchmarking our pipeline on test simulations before applying
it to the observed pulsar population. Finally, we provide a
detailed discussion of our approach and results, as well as an
outlook into the future, in Section 5.

2. Pulsar Population Synthesis

2.1. Overview

The key ingredients for our pulsar population synthesis
model are summarized in Figure 1. We first require a
prescription for the starʼs dynamical properties to populate

Figure 1. The key ingredients for pulsar population synthesis. Starting from the bottom left, this approach relies on modeling the neutron stars’ dynamical evolution,
as well as their magnetorotational properties. For a given beaming geometry and luminosity model, we then determine the pulsars’ radio emission and its propagation
across the Galaxy toward Earth. For the neutron stars pointing toward us, we subsequently invoke survey limitations and sensitivity thresholds to determine those
objects that are detectable. The resulting synthetic populations are compared to the observed ones to constrain input physics.
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our synthetic Galaxy with neutron stars. To this end, we model
their birth positions and velocities plus their subsequent
dynamical evolution in the Milky Way. We further capture
the stars’ initial magnetic and rotational characteristics in
addition to their evolution. For both these aspects, our
framework broadly follows earlier works (see, e.g., Faucher-
Giguère & Kaspi 2006; Gullón et al. 2014; Cieślar et al. 2020;
Ronchi et al. 2021), and our simulator employs a Monte Carlo
approach to sample relevant parameters at birth from corresp-
onding probability density functions. We note that we save
computation time by not evolving the dynamical properties for
each single simulation. As the dynamical and magnetorota-
tional properties are independent, we instead simulate a single
dynamical database for a large number of current pulsar
positions and velocities, and we subsequently sample from
these distributions before determining the magnetorotational
evolution. Next, we characterize the stars’ radio emission by
implementing a realistic beaming geometry. We then simulate
detections by propagating the corresponding radio pulses
across the Galaxy for a specific electron density model. The
resulting emission for those pulsars pointing toward Earth is
then contrasted to observational biases and sensitivity thresh-
olds for a given radio survey to determine which synthetic
pulsars would be detected. The resulting mock populations are
then compared to the observed populations to constrain
relevant model parameters. We explore SBI for this purpose
as outlined in detail in Section 3.

2.2. Dynamical Evolution

To create our dynamical database from which we sample
neutron star positions and velocities, we simulate 107 neutron
stars from birth to today. For each object, we randomly assign
an age sampled from a uniform distribution up to a maximum
age of 108 yr, which ensures that our synthetic Milky Way is
populated with a sufficient number of neutron stars within a
reasonable computation time. As sources older than 108 yr are
no longer detectable as radio pulsars (see below), this approach
provides a realistic description of the current positions and
velocities of these objects.

We then define a cylindrical reference frame, (r, f, z), whose
origin is located at the Galactic center. Here r, f, and z denote
the distance from the origin in kpc, the azimuthal angle in
radians, and the distance from the Galactic plane in kpc,
respectively. In particular, we position our Sun at r= 8.3 kpc,
f= π/2, and z= 0.02 kpc (see Pichardo et al. 2012, and
references therein).

To determine the birth locations of individual neutron stars,
we first focus on the distributions of their massive progenitors
in the (r, f)-plane and along z separately. Considering the
distribution of free electrons as a tracer of star formation in the
Milky Way that correlates with the massive OB stars that
evolve into neutron stars, we sample the initial positions in r, f
according to the Galactic electron density distribution of Yao
et al. (2017). This will also allow consistency when relating
pulsar distances with their dispersion measures in Section 2.5.
In addition, as the Galactic matter distribution is not static, we
assume that the Milky Way rotates rigidly in a clockwise
direction with an angular velocity Ω= 2π/T, where
T≈ 250Myr (Vallée 2017; Skowron et al. 2019). For a given
stellar age, we can thus retrace the angular coordinate, f, at
birth.

Moreover, we assume that pulsar birth positions along the z-
direction follow an exponential disk model (Wainscoat et al.
1992) and sample from a probability density function of the
form

⎜ ⎟
⎛
⎝

⎞
⎠

z
h

z

h

1
exp . 1

c c
( ) ∣ ∣ ( ) = -

We follow the pulsar population studies of Gullón et al. (2014)
and Ronchi et al. (2021) and set the characteristic scale height,
hc, to a fiducial value of 0.18 kpc. Note that this is consistent
with the distribution of young, massive stars in our Galaxy (Li
et al. 2019). We then randomly assign each starʼs z-coordinate a
positive or negative sign to distribute our population above and
below the Galactic plane.
Next, we focus on the pulsars’ birth velocities, which are a

combination of the kick velocity, vk, imparted during the
supernova owing to explosion asymmetries (see Coleman &
Burrows 2022; Janka et al. 2022, and references therein) and
the velocity, vpr, inherited from the progenitors’ orbital Galactic
motion. Specifically, we sample the magnitude of the kick
velocities, vk≡ |vk|, from a Maxwell distribution,

⎜ ⎟
⎛
⎝

⎞
⎠

v
v v2

exp , 2k
k

k

k

k

2

3

2

2
( ) ( )

p s s
= -

and then assign a random direction to determine the kick along
the r-, f-, and z-directions. For the dispersion parameter, σk, we
take a fiducial value of σk≈ 260 km s−1 (Hobbs et al. 2005),
which is broadly consistent with observed proper motions of
radio pulsars (Hobbs et al. 2005; Faucher-Giguère &
Kaspi 2006). See, however, Verbunt et al. (2017) and Igoshev
(2020), who find that a double Maxwellian characterizes the
data better.
The second velocity component due to the progenitors’

motion depends on the Galactic gravitational potential, ΦMW,
and points along the azimuthal direction:

v r
r z

r

,
, 3pr

MW( ) ˆ ( )f=
¶F

¶

where f̂ is a unit vector in the f-direction. For this study, we
consider a Galactic potential that is given as the sum of four
components, i.e., the nucleus, Φn, the bulge, Φb, the disk, Φd,
and the halo, Φh (Marchetti et al. 2019). The nucleus and bulge
contributions are described by a spherical Hernquist potential
(Hernquist 1990):

GM

R R
, 4n b

n b

n b
,

,

,
( )F = -

+

where R r z2 2= + is the spherical radial coordinate and G is
the gravitational constant. The disk has a cylindrical Miya-
moto–Nagai potential of the form (Miyamoto & Nagai 1975)

GM

a z b r
, 5d

d

d d
2 2 2 2( )

( )F = -
+ + +

where ad and bd represent the scale length and scale height of
the disk, respectively. Finally, the halo is characterized by a
spherical Navarro–Frenk–White potential (Navarro et al.
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1996):

⎜ ⎟
⎛
⎝

⎞
⎠

GM

R

R

R
ln 1 . 6h

h

h
( )F = - +

The free parameters, Mn,b,d,h, Rn,b,h, ad, and bd, can be obtained
through fits of the Milky Wayʼs mass profile and are given in
Table 2 of Ronchi et al. (2021) (see also Bovy 2015 and
Table 1 of Marchetti et al. 2019).

After determining the initial positions and velocities for each
of our 107 neutron stars, we perform the dynamical evolution
by solving the Newtonian equation of motion in cylindrical
coordinates, r MẄ = - F , according to the stars’ respective
ages. This way, we obtain a database of current pulsar positions
and velocities in the Milky Way.

2.3. Magnetorotational Evolution

The primary diagnostic for the pulsar population is the P–P
diagram. For our study, we focus on rotation-powered radio
pulsars, which are the easiest to detect and constitute the largest
class of neutron stars. Corresponding period and period
derivative measurements for this population are enabled via
radio timing. To first order, radio pulsars can be approximated
as rotating magnetic dipoles, implying that their spin-down is
driven by electromagnetic dipole radiation. The locations of
individual neutron stars and the shape of the populationʼs
distribution in the P–P plane are, hence, determined by their
dipolar magnetic fields and rotation periods at birth and the
subsequent magnetorotational evolution. The latter couples the
evolution of the pulsar period, P, the dipolar magnetic field
strength, B, at the pole, and the inclination angle, χ, between
the magnetic and the rotation axis.

To capture these physics, we first sample the misalignment
angle at birth, χ0, randomly in the range [0, π/2] according to
the probability density (Gullón et al. 2014)

sin . 70 0( ) ( ) c c=

We then sample the logarithm of the initial magnetic field, B0

(measured in G), and the initial period, P0 (measured in s), for
each pulsar from normal distributions of the form (Popov et al.
2010; Gullón et al. 2014; Igoshev 2020; Igoshev et al. 2022;
Xu et al. 2023)

⎛

⎝
⎜

⎞

⎠
⎟B

B
log

1

2
exp

log

2
, 8

B

B

B
0

log

0 log

log
2

( ) ( )
ps

m

s
= -

-

⎛

⎝
⎜

⎞

⎠
⎟P

P
log

1

2
exp

log

2
. 9

P

P

P
0

log

0 log

log
2

( ) ( )
ps

m

s
= -

-

The means, ,B Plog logm m , and the standard deviations, ,B Plog logs s ,
are free parameters of our model and four of those parameters,
whose posteriors we set out to infer with our SBI approach
in Section 3. We will specifically explore the ranges

12, 14Blog [ ]m Î , 1.5, 0.3Plog [ ]m Î - - , 0.1, 1.0Blog [ ]s Î ,
and 0.1, 1.0Plog [ ]s Î to encompass results of earlier analyses
(e.g., Gullón et al. 2014).

Assuming that pulsars spin down owing to dipolar emission,
we follow Spitkovsky (2006) and Philippov et al. (2014) and

solve the following coupled differential equations:

P
c

B R

I P
sin , 10

2

3

2
NS
6

NS
0 1

2( ) ( ) p
k k c= +

c

B R

I P
sin cos , 11

2

3

2
NS
6

NS
2 2 ( )c p
k c c= -

where c is the speed of light, RNS≈ 11 km is the neutron star
radius, and I M R2 5 1.36 10 g cmNS NS NS

2 45 2 » ´ is the
stellar moment of inertia (for a fiducial mass MNS≈ 1.4Me).
For realistic pulsars surrounded by plasma-filled magneto-
spheres, we choose κ0; κ1; κ2; 1, and we note that
Equation (11) implies that χ decreases with time, i.e., our
pulsars move toward alignment.
The final ingredient is a suitable prescription for the

evolution of the dipolar magnetic field strength. While the B-
field decay in the neutron star crust is typically assumed to be
driven by the combined action of the Hall effect and ohmic
dissipation (e.g., Aguilera et al. 2008), changes in the magnetic
field are strongly coupled to the thermal properties of the
neutron star interior (e.g., Pons & Viganò 2019). This is
particularly important for strongly magnetized neutron stars
with fields above ∼1013 G and, hence, relevant for a significant
fraction of our simulated pulsar population. In the past decade,
several theoretical and numerical efforts have begun to unveil
the complex processes of magnetothermal evolution (e.g.,
Viganò et al. 2013, 2021; De Grandis et al. 2021; Igoshev et al.
2021; Dehman et al. 2023). As corresponding simulations are
highly time-consuming, we instead develop a new approach,
outlined in detail in Appendix A and summarized in Figure 2,
that parameterizes a range of magnetothermal simulations for
different magnetic field strengths (Viganò et al. 2021). This
prescription allows us to extract magnetic fields up to pulsar

Figure 2. Illustration of the B-field parameterization used for this study. The
five solid curves represent realistic two-dimensional simulations of magne-
tothermal evolution in the neutron star crust (Viganò et al. 2021). We fit these
together with the late-time power-law evolution of the magnetic field with
several broken power laws. The dashed curves shown here are determined for
alate = −3.0. The colors represent the initial magnetic field strength, B0. To
avoid the field decaying to unrealistically small numbers at very late times, we
sample the final fields from a Gaussian distribution. The procedure, which
allows us to easily extract the dipolar field strength, B, at different times, t, to
study the magnetorotational evolution of our synthetic pulsars, is described in
detail in Appendix A.
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ages of around 106 yr. Above this value, current numerical
simulations become unreliable because they rely on imple-
mentations of complex microphysics that are unsuitable for
cold, old stars. Moreover, they do not capture the highly
uncertain physics of neutron star cores, which become relevant
at large ages. We instead incorporate the cores’ field evolution
at late times by means of a power law of the form

⎜ ⎟
⎛
⎝

⎞
⎠

B t
t

1 , 12
a

late

late

( ) ( )
t

µ +

where τlate≈ 2× 106 yr, t is the time, and the power-law
index, alate, is the fifth free parameter of our model. We note
that although the details of core field evolution are not
known, Equation (12) is physically motivated because several
known mechanisms exhibit similar power-law behavior (see
Appendix A). Hence, we will explore the parameter range
alate ä [−3.0, −0.5]. Finally, to prevent the dipolar magnetic
field from decaying to arbitrarily small values (in disagreement
with observations of old, recycled millisecond pulsars; see,
e.g., Lorimer 2008), we assume that the field eventually reaches
a constant value. Therefore, we sample the logarithm of
the field, Bfinal, from a normal distribution with a mean

8.5Blog ,finalm = and a standard deviation 0.5Blog ,finals = , in
line with observations of old pulsars.

Following this prescription allows us to determine the spin
periods, dipolar field strengths, and misalignment angles for
our simulated pulsars at the current time.

2.4. Emission Characteristics

We next implement a prescription for the radio emission
geometry to determine those pulsars whose beams sweep over
Earth and are, in principle, detectable. In the canonical model
of radio pulsars, their emission is produced close to the stellar
surface in the cone-shaped, open field-line region (Lorimer &
Kramer 2012; Johnston et al. 2020). Assuming that this entire
region is involved in the emission, geometric considerations
allow us to estimate the half opening angle of the emission
beam, ρb (in rad), via (Gangadhara & Gupta 2001)

r

cP

9

2
, 13b

em ( )r
p

where rem is the emission height. The latter is thought to be
period independent, and we set it to 300 km following Johnston
et al. (2020; see also references therein). Note that several
studies of pulsars with stable emission profiles have recovered
this ρb∝ P−1/2 behavior (e.g., Kramer et al. 1994; Maciesiak &
Gil 2011; Skrzypczak et al. 2018). Knowledge of ρb, then,
allows us to obtain the solid angle, Ωb, covered by a pulsarʼs
two radio beams. More specifically,

4 1 cos . 14b b( ) ( )p rW = -

As we do not expect biases in how we observe this conal
emission for any given pulsar, we draw a random line-of-sight
angle, α, with respect to the rotation axis in the range [0, π/2]
using the probability density sina. Combined with the half
opening angle, ρb, and the evolved inclination angle, χ, we can
then determine those pulsars whose radio beams are visible
from Earth. We note that as a result of this purely geometric
argument, between ∼60% and 95% of our generated pulsars

(depending on the specific choice of magnetorotational
parameters) are typically not detectable.
We proceed with determining the emission characteristics of

those neutron stars that point toward Earth. In particular, we
follow Maciesiak et al. (2011) and express the intrinsic pulse
width (measured in s) of our simulated pulsars as follows:

w P
2

arcsin
sin sin

sin sin
. 15int

2
2

2
2

b( ) ( )
( ) ( )

( )
p a c

=
-r a c-

Finally, as the radio emission is ultimately driven by the stars’
rotational energy reservoir, we assume that the intrinsic radio
luminosity, Lint (in erg s−1), for each star depends on the spin-
down power, E I P P4rot

2
NS

3∣ ∣ p= . In particular, we consider

L L
P

P
, 16int 0 3

( )


=

where L0 is a normalization factor whose logarithm we sample
from a normal distribution with mean 35.5Llogm = and
standard deviation 0.8Llogs = (see also Faucher-Giguère &
Kaspi 2006; Gullón et al. 2014) to eventually recover observed
luminosities.

2.5. Simulating Detections

Armed with the knowledge of intrinsic pulsar properties, we
now turn to the possibility of detecting those objects whose
emission beams cross our line of sight. First, the bolometric
radio flux, S, that reaches us from any given simulated pulsar is
equal to

S
L

d
, 17

b

int
2

( )=
W

where d is the distance known from the dynamical evolution
outlined in Section 2.2. To determine the corresponding radio
flux density, Sf (measured in Jy), at a specific observing
frequency, f, we follow Lorimer & Kramer (2012) and assume
that the radio emission spectrum follows a power law in f. In
particular, we set the spectral index to −1.6 (Jankowski et al.
2018). We can, hence, approximate the total fluence of a pulse
with width wint as Sfwint. Assuming that this fluence stays
constant as the radio signal propagates from the pulsar toward
us, we estimate the flux density, Sf,obs, that reaches Earth as

S S
w

w
, 18f f,obs

int

obs
( )

where wobs is the observed pulse width.
Specifically, as a radio pulse propagates, it experiences

dispersion and scattering caused by interactions with the free
electrons and density fluctuations in the interstellar medium
(ISM), respectively. Both mechanisms result in a broader pulse
when compared with the intrinsic width, wint. Further broad-
ening is caused by instrumental effects, which are dominated
by the sampling time, τsamp, of the hardware used to record
radio observations. Accounting for these processes, we can
write the observed pulse width as (Cordes & McLaughlin 2003)

w w . 19obs int
2

samp
2

DM
2

scat
2 ( ) t t t+ + +

We follow Bates et al. (2014) to determine τDM, encoding the
pulse smearing due to dispersion for a single frequency channel
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of the telescopeʼs receiver. Specifically,

e

m c

f

f
DM, 20

e
DM

2
ch
3

( )t
p

=
D

where e is the electronic charge, me is the corresponding mass,
Δfch us the hardware-specific width of a frequency channel at
observing frequency f, and DM is the dispersion measure. We
further use the empirical fit relationship from Krishnakumar
et al. (2015) for τscat, the pulse smearing due to scattering of
radio waves by an inhomogeneous and turbulent ISM:

3.6 10 DM 1 1.94 10 DM , 21scat
9 2.2 3 2( ) ( )t = ´ + ´- -

where τscat is measured in s. We moreover account for a
significant scatter in the underlying data (see Figure 3 in
Krishnakumar et al. 2015) by drawing log scatt values from a
Gaussian distribution around the fit in Equation (21) with a
standard deviation of 0.5. We also incorporate the fact that
Krishnakumar et al. (2015) analyzed observations at 327MHz
by rescaling to a given observing frequency f, assuming a
Kolmogorov spectrum, i.e., τscat∝ f−4.4 (see Lorimer &
Kramer 2012, for details). As τDM and τscat both depend on
the pulsars’ respective dispersion measure, we again employ
the Galactic electron density distribution of Yao et al. (2017) to
convert our simulated neutron star positions from Section 2.2
into DM values.

At this stage, we require information for the radio surveys
we want to emulate. We specifically focus on three surveys
recorded with Murriyang, the Parkes radio telescope: PMPS
(Manchester et al. 2001; Lorimer et al. 2006), SMPS (Edwards
et al. 2001; Jacoby et al. 2009), and the low- and mid-latitude
HTRU survey (Keith et al. 2010). All relevant survey
parameters (including the sampling time, τsamp, the observing
frequency, f, and the channel width, Δfch, needed to calculate
wobs) are summarized in Table 1.

To assess whether those simulated stars that cross our line of
sight are detectable with a given survey, we first determine
whether they are located in the surveys’ fields of view. While
PMPS and HTRU have a similar sky coverage, we highlight
that SMPS detected pulsars at higher Galactic latitude (see left
panel of Figure 3). This survey is thus sensitive to older

neutron stars that have had sufficient time to move away from
their birth positions closer to the Galactic plane, providing
complementary information on the pulsar population. For those
objects that fall within our survey coverage, we subsequently
establish whether they are sufficiently bright to be detected. To
do so, we calculate the pulsars’ signal-to-noise ratio (S/N)
using the radiometer equation (Lorimer & Kramer 2012):

S G n f t

T T l b

P w

w
S N

,
. 22

mean pol bw obs

sys sky

obs

obs[ ( )]
( )

b
=

D

+
-

Here Smean; Sf,obswobs/P denotes the mean flux density
averaged over a single rotation period P, G is the receiver
gain (see Lorimer et al. 1993; Bates et al. 2014, for details), npol
is the number of detected polarizations, Δfbw is the observing
bandwidth, tobs is the integration time, and β> 1 is a
degradation factor that accounts for imperfections during the
digitization of the signal. Moreover, Tsys denotes the system
temperature, and Tsky(l, b) is the sky background temperature
dominated by synchrotron emission of Galactic electrons,
which varies strongly with latitude, l, and longitude, b. To
model the latter, we use results from Remazeilles et al. (2015),
who provided a refined version of the temperature map of
Haslam et al. (1981, 1982). As the underlying data were
obtained at 408 MHz, we rescale to the relevant observing
frequencies by assuming a power-law dependence of the form
Tsky∝ f−2.6 (Lawson et al. 1987; Johnston et al. 1992).
A synthetic pulsar counts as detected if the value obtained

from Equation (22) exceeds the surveys’ sensitivity thresholds.
We aim to recover the numbers of detected isolated Galactic
radio pulsars for each survey, i.e.,

PMPS: 1009 observed pulsars,
SMPS: 218 observed pulsars,
HTRU: 1023 observed pulsars. 23( )

To obtain these values, we used the data from the ATNF Pulsar
Catalogue (Manchester et al. 2005)5 and removed extragalactic
sources and those in globular clusters. We further applied a

Table 1
Survey Parameters for PMPS, SMPS, and the Low- and Mid-latitude HTRU Survey Taken from Manchester et al. (2001), Lorimer et al. (2006), Edwards et al. (2001),

Jacoby et al. (2009), and Keith et al. (2010), Respectively

Survey PMPS SMPS HTRU mid HTRU low

Sky region −100° < l < 50° −100° < l < 50° −120° < l < 30° −80° < l < 30°
|b| < 5° 5° < |b| < 30° |b| < 15° |b| < 3°. 5

f (GHz) 1.374 1.374 1.352 1.352
Δfch (kHz) 3000 3000 390.625 390.625
τsamp (μs) 250 125 64 64
G (K Jy−1) 0.735 0.735 0.735 0.735
npol 2 2 2 2
Δfbw (MHz) 288 288 340 340
tobs (s) 2100 265 540 4300
β 1.5 1.5 1.5 1.5
Tsys (K) 21 21 23 23
S/N threshold 9 9 9 9

Note.We provide the survey region where completeness is above 90% in Galactic longitude (l) and latitude (b), the central observing frequency ( f ), the channel width
(Δfch), the sampling time (τsamp), the telescope gain (G), the number of observed polarizations (npol), the observing bandwidth (Δfbw), the integration time (tobs), the
degradation factor (β), the system temperature (Tsys), and the S/N threshold for each of the surveys. Corresponding units are given in parentheses in the first column.

5 https://www.atnf.csiro.au/research/pulsar/psrcat/; v1.69
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cutoff in period (P> 0.01 s) and period derivative
(P 10 s s ;19 1 > - - for those objects with measured P values
because the above counts also include a small number of
pulsars without P measurements) to remove those objects that
have (likely) been spun up by accretion from a companion star
and cannot be modeled with the framework discussed so far.
The locations of those objects with known period and period
derivatives are shown in the P–P plane in the right panel of
Figure 3. The distribution of mean flux densities, Smean,
measured at 1400MHz for isolated Galactic pulsars in our
three surveys as recorded in the ATNF catalog is shown in
Figure 4. Note that this database does not contain flux
measurements for all sources and that uncertainties on reported
Smean values can be large. We also note that Smean values in the
catalog do not form a homogeneous sample, as there is no
standardized way for Smean measurements to be reported in the
literature. For example, in some cases Smean is measured by
observing a flux calibration source, while other values are
estimated using the radiometer equation given by
Equation (22), introducing additional systematics due to
different prescriptions for the S/N or pulse width. For ease
of comparison with our simulated pulsar populations, we also
show kernel density estimation (KDE) fits for the corresp-
onding probability density functions obtained with a Gaussian
kernel in Figure 4.

2.6. Simulation Output

To simulate our mock observed pulsar populations, we do
not make any assumptions on the neutron star birth rate.
Instead, we randomly sample a subset of 105 neutron stars from
our dynamical database (see Section 2.2). We subsequently
evolve these stars magnetorotationally, as outlined in
Section 2.3, and assess how many of them are detected by
each of the three surveys (see Sections 2.4 and 2.5), saving
their respective properties. We iterate this process until the
number of detected stars matches the number of observed
objects in all surveys. Note that we adaptively reduce the
number of stars we draw from our dynamical database to 104

and 5× 103, once we have recovered 90% and 95% of the

target values, respectively. The output of a single simulator run,
which has a typical computation time of around 1 hr, is a data
frame containing the properties of those pulsars we can detect
with PMPS, SMPS, and HTRU, respectively.
The location of the resulting synthetic population and the shape

of the stars’ distribution in the P–P plane are directly controlled
by the magnetorotational parameters, , , ,B B P Plog log log logm s m s ,
and alate, the five parameters we want to infer. Three examples of
synthetic P–P diagrams are shown in the top row of Figure 5.
We note that our prescription does not rely on a by-hand

implementation of a pulsar death line (e.g., Bhattacharya et al.
1992; Chen & Ruderman 1993; Rudak & Ritter 1994; Zhang
et al. 2000), beyond which pulsar emission ceases, as done in
most previous population synthesis studies (e.g., Faucher-
Giguère & Kaspi 2006; Bates et al. 2014; Cieślar et al. 2020).
We opt for this approach owing to significant uncertainties
around the radio emission process generally associated with the
production of electron−positron pairs in pulsar magneto-
spheres above the polar caps (Ruderman & Sutherland 1975).

Figure 3. Observed populations of isolated Galactic radio pulsars detected with PMPS, SMPS, and the low- and mid-latitude HTRU survey (highlighted in yellow,
light blue, and purple, respectively). The left panel shows the distribution of these three populations in Galactic latitude, b, and longitude, l, while the right panel
depicts the detected pulsars in the period, P, and period derivative, P , plane. In the latter, we also give lines of constant spin-down power, Erot∣ ∣ , and constant dipolar
surface magnetic field, B (estimated via Equation (10) for an aligned rotator). Data taken from the ATNF Pulsar Catalogue (Manchester et al. 2005, https://www.atnf.
csiro.au/research/pulsar/psrcat/, v1.69). Observational filters are described in detail in the text.

Figure 4. Distributions of mean radio flux density measurements, Smean,1400, at
1400 MHz for the populations of isolated Galactic radio pulsars detected with
PMPS, SMPS, and the low- and mid-latitude HTRU survey (in yellow, light
blue, and purple, respectively). We show the normalized number of stars as a
function of radio flux density as solid lines. Dashed lines represent the
corresponding probability density functions obtained via KDE using a
Gaussian kernel. Data taken from the ATNF Pulsar Catalogue (Manchester
et al. 2005, https://www.atnf.csiro.au/research/pulsar/psrcat/, v1.69).
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In particular, different assumptions on magnetic field strengths
and geometries, pair production, and stellar properties (like
mass and radius) lead to different death lines, effectively
expanding into a death valley. We thus avoid adopting a
somewhat arbitrary choice for a single death line. In our
simulations, pulsars instead become undetectable naturally if
they approach the bottom right of the P–P plane. This is due to
the evolution toward (i) smaller misalignment angles, χ,
resulting in smaller beaming fractions, and (ii) smaller P (and
thus lower Erot∣ ∣ ), ultimately leading to sources that are too faint
to be detected.

At this point, we also highlight that our approach provides
information on the number of total stars generated over a
timescale of 108 yr (the oldest possible age for stars in our
dynamical database), implying that we can directly determine
the birth rate required to reproduce observations for a given
survey. Although not the primary focus of this work, we note
two things here: first, the number of detectable neutron stars per
iteration step described above and, thus, the birth rate (as well
as the distribution of stars in the P–P plane) depend strongly on
the five magnetorotational parameters. For some parameter
combinations, reaching the counts in Equation (23) requires
unrealistically large birth rates, and thus extensive computation
time. To mitigate this issue, we stop our iterative simulation
approach once the birth rate exceeds a conservative limit
of five neutron stars per century (Keane & Kramer 2008;
Rozwadowska et al. 2021), even though this implies that we do

not reach the numbers of observed objects in these simulations.
We, however, still use these simulations in the following to
assess whether our inference approach can identify those
parameter combinations that require birth rates 5 as
unreasonable from the distribution of stars in the P–P plane
alone. Second, for a single simulation run, we generally do not
obtain the same birth rate for all three surveys, and estimates
can differ by a factor of ∼1–3 neutron stars per century. In
principle, we only expect the correct physical simulator to
produce the observed distributions of pulsars across different
surveys. The correct simulation framework is, however, not
known, and constraining the relevant physics is the main goal
of our analysis. To explore this behavior, we thus produce
neutron stars until the target values in all three surveys are
reached (or exceeded). While this implies that the number of
detected objects in some simulations can be larger than the
observed number of stars for a given survey (by up to a factor
of ∼3), our focus on the location and shape of the distribution
of pulsars in P and P and not their total number (see below)
circumvents this issue. We will, however, return to the issue of
the birth rate in the discussion in Section 5.6, once we have
explained our inference approach and provided results for our
best estimates.
To provide a broad range of synthetic P–P diagrams for

our inference pipeline, we explore the ranges outlined in
Section 2.3 and uniformly sample random combinations of the

Figure 5. Examples of simulated pulsar populations and the corresponding density maps, which are fed into the SBI pipeline. The top row shows
synthetic P–P diagrams for the three surveys considered in this study generated from three random sets of magnetorotational parameters. In particular, test sample
1 (top left) is the result of a simulation with 13.19, 0.96, 0.85, 0.51B B P Plog log log logm s m s» » » - » , and alate ≈ − 0.86, while test sample 2 (top middle)
was generated with 13.86, 0.88, 0.42, 0.61B B P Plog log log logm s m s» » » - » , and alate ≈ − 1.71. Finally, test sample 3 (top right) corresponds to

13.35, 0.24, 1.25, 0.60B B P Plog log log logm s m s» » » - » , and alate ≈ − 2.38. The bottom row shows the three density maps (one for each survey)
generated with a resolution of 32 from the P–P diagram for test sample 1. Here dark blue encodes regions where no neutron stars are present, while yellow bins
represent the largest density for the binned pulsar distribution.
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five parameters as follows:
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We generate a total of 360,000 parameter combinations (which
we refer to as our input parameters, labels, or ground truths
below) and simulate the corresponding synthetic populations in
parallel over the course of 6 weeks.

To represent the discrete output of our simulator in a way
that can be processed by a neural network, we convert a single
P–P diagram for three surveys as seen in the top row of
Figure 5 into three two-dimensional density maps (one for each
survey) by counting the number of stars within a given bin. In
particular, we set the limits Pä [0.001, 100] s and
P 10 , 10 s s21 9 1[ ] Î - - - and test our inference procedure for a
resolution of 32 and 64 bins. To avoid sharp edges in our
binned distributions, we apply a smoothing Gaussian filter
(with radius 4σ and σ= 1), which will also improve the
stability during the training of our machine-learning pipeline.
An example of the resulting density maps is shown in the
bottom row of Figure 5 for one of our test simulations.

The final preprocessing stage for our simulated data is either
a normalization or a standardization step (depending on the
choice of setup discussed below) to provide the neural network
with signals and labels of similar magnitude. In the former
case, the bins in each individual density map are rescaled such
that they contain continuous values between 0 and 1. The same
holds for the corresponding labels, which are normalized over
the entire parameter ranges given in Equation (24). On the
other hand, standardization is achieved by using z-scores, so
that the resulting information in each map has a mean of 0 and
standard deviation of 1. The same method is applied to the
labels across our entire set of simulations.

3. Simulation-based Inference

3.1. Overview

The pulsar population synthesis pipeline summarized in
Section 2 is a typical example of a stochastic forward model
that aims to emulate real-world observations. We specifically
introduced stochasticity by sampling relevant variables from
underlying probability distributions using Monte Carlo techni-
ques. In particular, given the input parameter, θ= {θ1, θ2,...},
our simulator generates a synthetic realization of the observed
data, x. The key challenge is then to constrain our model
parameters in such a way that they are consistent with true
observations, x0, and our prior knowledge, encoded in the prior
distribution, ( ) q . To this end, we want to compute the
posterior distribution, x( ∣ ) q , using Bayes’s theorem

x
x

x
, 25( ∣ ) ( ) ( ∣ )

( )
( )

 


q q q
=

where x( ∣ ) q is the likelihood of our data, x, given the
parameter, θ, and

x x d 26( ) ( ∣ ) ( ) ( )  ò q q qº ¢ ¢ ¢

denotes the evidence obtained by marginalizing over all θ.
However, for complex simulators like ours, we typically cannot
write down an explicit form of the likelihood function, so

x( ∣ ) q is essentially intractable. In addition, even if the
likelihood were tractable, Equation (26) involves an integral
over θ, which becomes challenging for simulators with high-
dimensional parameter spaces.
SBI circumvents these issues by taking advantage of the fact

that our simulator encodes the likelihood function implicitly
(see Cranmer et al. 2020, for a recent review). These
approaches have been particularly successful in combination
with deep-learning techniques because neural networks can be
used to learn a probabilistic association between a given
simulation outcome, x, and the input parameters, θ. This allows
an approximation of the posterior distribution, x( ∣ ) q , without
the need to explicitly compute the likelihood. Three approaches
exist to achieve this goal:

1. Neural posterior estimation (NPE): The network learns to
directly map the simulator output, x, onto the posterior
distribution, x( ∣ ) q , for the underlying parameters, θ.
This requires the use of a flexible neural density estimator
such as a normalizing flow or a mixture density network
(MDN; e.g., Papamakarios & Murray 2016; Lueckmann
et al. 2017; Greenberg et al. 2019; Dax et al. 2021;
Mishra-Sharma & Cranmer 2022; Hahn et al. 2023;
Vasist et al. 2023).

2. Neural likelihood estimation (NLE): The network
emulates the simulator by learning an association
between θ and x, thus providing direct access to an
approximation of the likelihood, x( ∣ ) q . Because the
prior is known, the posterior can then be obtained by an
additional MCMC sampling step (e.g., Papamakarios
et al. 2018; Alsing et al. 2019).

3. Neural ratio estimation (NRE): Here the network learns
the likelihood-to-evidence ratio, x x xr ,( ) ( ∣ ) ( ) q qº ,
which is equivalent to x( ∣ ) ( ) q q using Bayes’s
theorem (Equation (25)). Once r(θ, x) is known, the
posterior can be recovered through MCMC by sampling
the prior weighted by the ratio, r(θ, x) (e.g., Hermans
et al. 2019; Miller et al. 2021; Bhardwaj et al. 2023).

For the following study, we choose an NPE approach to
directly learn the posterior conditional on our simulated data
(avoiding the additional sampling step required for NLE and
NRE) and take advantage of the corresponding implementation
in the open-source Python package sbi (Tejero-Cantero et al.
2020).6

3.2. Deep-learning Setup

For NPE, we approximate the posterior using a family of
densities, qψ, characterized by the distribution parameters, ψ.
For our SBI pipeline, we then use a neural network, F, to learn
these ψ for our simulator output, x, by adjusting the network
weights, f. In particular, we aim to optimize the neural density
estimator such that xq xF , ( ) ( ∣ )( ) q q»f . This can be achieved
by minimizing the Kullback–Leibler divergence, DKL 1 2( ∣∣ )  ,
which is a measure of the difference between two probability
distributions, 1 and 2 (Kullback & Leibler 1951). Papama-
karios & Murray (2016) showed that this is equivalent to

6 https://github.com/sbi-dev/sbi
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minimizing the expectation value of the loss function

qlog 27x
i

N

F i
1

,i
( ) ( ) ( )( ) åf q= - f

=

over a training data set {θi, xi} of size N, provided that N is
large and the density estimator is sufficiently flexible. In
practice, we maximize the negative of ( ) f , i.e., the total log-
posterior. A key advantage of the resulting posterior approx-
imation is that the evaluation of qF(x,f)(θ) corresponds to a
simple forward pass through a neural network (without the
need to simulate additional data), which is very fast. We will
take advantage of this amortized nature of the posterior to
assess the quality of our inferences below.

For our pulsar study, we have drawn the model parameters
a, , , ,i B B P Plog log log log late{ }q m s m s= from uniform priors as

defined previously in Equation (24). The corresponding output,
xi, of a single run through the simulator are the three P–P
density maps (one for each survey) illustrated in the bottom
row of Figure 5. In the following, we stack these maps together
to form a three-channel input for our neural network. Of the
360,000 synthetic simulations produced, we use 90% for
training and validation, reserving the remaining 10% for testing
purposes. The former data set is further split into 90% for
training (291,600 populations) and 10% for validation (32,400
populations). We note that as each population is represented by
three density maps, we train the following inference pipeline on
roughly 875,000 images. Performance results for the unseen
test samples quoted in the following are computed for 10% of
the full test set (3600 populations) for computational reasons.
The full workflow is illustrated schematically in Figure 6.

Due to the complexity of these data, we do not train a neural
density estimator directly on the density maps. We instead first
apply a convolutional neural network (CNN) to extract features
from our images and embed the corresponding information in a
lower-dimensional latent vector. We choose the following
baseline architecture for our embedding network:

1. Two-dimensional convolution layer with kernel size
3× 3, 3 input channels, 32 output channels, stride 1,
padding 1.

2. Two-dimensional Max pooling layer with size 2× 2,
stride 2, no padding.

3. Two-dimensional convolution layer with kernel size
3× 3, 32 input channels, 64 output channels, stride 1,
padding 1.

4. Two-dimensional Max pooling layer with size 2× 2,
stride 2, no padding.

5. Fully connected linear layer with the flattened output
from the second pooling layer as input and 32 output
neurons encoding the latent representation.

After each convolution and the fully connected layer, we apply
a rectified linear unit (ReLU) activation function. The weights
for the CNN are initialized using the Kaiming prescription (He
et al. 2015) to avoid exploding or vanishing gradients during
the training process.
We subsequently pass the latent vector generated by the

CNN to a neural density estimator. We implement an MDN and
specifically opt for a Gaussian mixture model in five
dimensions to approximate the posterior, qF(x,f)(θ), for our
five free magnetorotational parameters. This implies

q , , 28xF
c

C

c c c,
1

( ) ( ∣ ) ( )( ) åq q ma S=f
=

where C denotes the total number of Gaussian components
used, αc is the mixture weight, and ,c c( ∣ ) q m S is the
multivariate Gaussian distribution with mean vector μc and
covariance matrix Σc for the cth component.
For our MDN, we follow sbiʼs default implementation and

use the following:

1. Three fully connected layers with 32 neurons each.
2. Four fully connected output layers that encode the

Gaussian mixture weights, αc, means, μc, and diagonal
and upper triangular components of the covariance
matrices, Σc. These contain c, 5c, 5c, and 10c neurons,
respectively.

We again apply the ReLU activation function after each hidden
layer, while weights are now initialized with PyTorchʼs default
initialization (Glorot & Bengio 2010).
We subsequently train the entire pipeline using the gradient

descent optimizer Adam (Kingma & Ba 2014). At each epoch
the network undergoes a series of optimization steps based on
the information provided in the entire training data set before
epoch-averaged training and validation metrics are computed
based on the negative losses defined in Equation (27), i.e., we
maximize our metrics. Note that we also set an early stop of 20
to prevent overfitting, which implies that the training process is
interrupted (and the weights of the best validation epoch
recorded) once the validation metric has not improved for 20
epochs.

Figure 6. Schematic representation of our inference pipeline for three input P P–  maps (one for each survey) with resolution 32 × 32. A CNN is first used to extract
features from our images and produce a compressed representation of our simulation output, x. We then train a Gaussian MDN, a flexible neural density estimator, on
this latent representation to approximate the posterior distribution of the simulation input parameters, θ.
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3.3. Experiments

Table 2 summarizes the 22 different experiments that we
have conducted for this study to assess the performance of SBI
for pulsar population synthesis. For this purpose, we varied
aspects of the training data, as well as the hyperparameters of
our deep-learning pipeline. In particular, for the input we
explored two different resolutions for the P–P maps, 32 and 64,
assessed the network performance when all three density maps
or only two/one are provided, and examined whether normal-
ization or standardization during preprocessing leads to
different results. We further studied the impact of using the
full training data set or smaller subsets. Moreover, for the
network we varied the number of Gaussian mixture compo-
nents in our neural density estimator, the batch size, and the
learning rate, and we explored two different CNNs for our
embedding net. In addition to the baseline architecture
described in Section 3.2, we also conducted two experiments
with a deeper network composed of four convolutional blocks.
Here the two convolutional layers introduced previously are
followed by an additional layer with 32 and 64 input/output
channels, respectively. Kernel size, stride, padding, subsequent
pooling, and fully connected layers were kept as above.

Due to the computational cost of each training experiment, a
full grid search over all relevant configurations was beyond the
scope of this work. We therefore opted to produce a
representative set of experiments that provide sufficient
information to study the variation of our inferred posteriors in
Section 4. Finally, note that almost all of our optimizations are
performed on a Tesla V100 SXM2 GPU with 32GB memory.

We only trained experiments #3 and #4, for which the full
training data set with a resolution of 64 was too large to be
optimized on the GPU, on a CPU with 32GB RAM. In those

Table 2
Information for the 22 Machine-learning Experiments Conducted for This Study

No. Res Surveys Frac Input Comp BS LR CNN VM Epochs Time TM
(%) (s)

1 32 PMPS, SMPS, HTRU 100 std 10 8 0.0005 baseline 3.65 38 9,373 3.64
2 32 PMPS, SMPS, HTRU 100 std 10 8 0.0005 deep 3.71 49 14,292 3.71
3 64 PMPS, SMPS, HTRU 100 std 10 8 0.0005 baseline 3.55 55 78,837 3.54
4 64 PMPS, SMPS, HTRU 100 std 10 8 0.0005 deep 3.64 89 128,119 3.64
5 32 PMPS, SMPS, HTRU 75 std 10 8 0.0005 baseline 3.74 71 13,232 3.78
6 32 PMPS, SMPS, HTRU 50 std 10 8 0.0005 baseline 3.56 58 7,000 3.55
7 å 32 PMPS, SMPS, HTRU 100 norm 10 8 bf 0.01 baseline 3.47 30 7,445 3.73
8 32 PMPS, SMPS, HTRU 100 norm 10 8 0.001 baseline 9.66 54 13,015 9.60
9 32 PMPS, SMPS, HTRU 100 std 8 8 0.0005 baseline 3.74 52 12,389 3.73
10 32 PMPS, SMPS, HTRU 100 std 5 8 0.0005 baseline 3.83 118 27,973 3.86
11 32 PMPS, SMPS, HTRU 100 std 10 16 0.0005 baseline 3.99 85 10,476 3.97
12 32 PMPS, SMPS, HTRU 100 std 10 32 0.0005 baseline 4.11 79 5,346 4.06
13 32 PMPS, SMPS, HTRU 100 std 10 8 0.001 baseline 3.36 61 14,785 3.33
14 32 PMPS, SMPS, HTRU 100 std 10 8 0.0001 baseline 4.22 75 18,369 4.22
15 32 HTRU 100 std 10 8 0.0005 baseline 3.43 63 15,568 3.42
16 32 SMPS, HTRU 100 std 10 8 0.0005 baseline 3.58 40 9,979 3.59
17 32 PMPS, SMPS 100 std 10 8 0.0005 baseline 3.41 69 16,937 3.41
18 å 64 PMPS, SMPS, HTRU 50 std 10 8 0.0005 baseline 3.45 47 5,766 3.44
19 32 PMPS, SMPS, HTRU 100 norm 10 32 0.001 baseline 10.05 44 2,864 10.20
20 32 PMPS, SMPS, HTRU 100 norm 10 32 0.0001 baseline 10.31 90 5,815 10.49
21 32 PMPS, SMPS, HTRU 100 norm 10 16 0.001 baseline 9.82 77 9,901 9.98
22 å 32 PMPS, SMPS, HTRU 100 norm 10 16 0.0001 baseline 10.45 124 15,603 10.55

Note. The columns summarize the specific training data and hyperparameters, as well as the resulting metrics: the experiment number; the resolution for our P–P
density maps; the different surveys and the fraction of the 291,600 populations in the training set used for training; information on whether we standardized (std) or
normalized (norm) the input; the number of Gaussian components in our MDN; the batch size; the learning rate; the CNN architecture (we distinguish our baseline
setup and a deeper network; see Sections 3.2 and 3.3 for details); the best metric computed over the validation set; the number of training epochs; the time it took to
train the network in seconds; and the average metric computed over our 3600 test samples. In bold, we highlight those parameters that we have varied with respect to
the baseline experiment #1. Experiments with an asterisk (å) are removed from the following analysis owing to training irregularities.

Figure 7. Training behavior for baseline experiment #1. We show the training
metric (light-blue dashed line) and the validation metric (purple solid line) as a
function of the training epoch. We seek to maximize the total log-posterior,

qlog xi
N

F i1 ,i ( )( ) qå f= , over the training and validation data sets, respectively, as
the network learns. Both metrics increase as expected, and the validation curve
closely tracks the training curve, i.e., we see little overfitting. The best
validation metric is reached at epoch 17, and thus the early stop criterion halts
the training after 37 training epochs.
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two cases, training the network thus took markedly longer than
for the other experiments (see below).

4. Results

4.1. Training

Several metrics for our experiments are summarized in the
last four columns of Table 2. We observe that the
optimization of our neural networks takes ∼1–8 hr on the
GPU and on the order of a day on a CPU, completing
∼30–124 training epochs. In general, we find good training
behavior, with the validation metric closely tracking the
training metric and little or no overfitting. This is also evident
in the networkʼs generalization ability, illustrated by the
average metrics computed over the unseen test set of 3600
simulations. The evolution of the training and validation
metrics for experiment #1 is shown in Figure 7 as an
example. We remind the reader that we aim to maximize the
total log-posterior. After visual inspection of all training
curves, we remove experiment #7 owing to irregularities in
the training behavior and experiments #18 and #22 owing to
a slight tendency to overfitting. Note that these shortcomings
were not directly visible from the training metrics in Table 2.
We also highlight that we find systematically larger training,
validation, and test metrics in those experiments where our
input density maps were normalized. In the following,
however, we assess the quality of the corresponding poster-
iors and find that these do not result in better inferences.
Beyond this difference, we cannot identify any significant
variation in the metrics between the remaining configura-
tions. Hence, we proceed with an analysis of all experiments
apart from numbers #7, #18, and #22.

4.2. Benchmark Inferences

As a first assessment of our approximated posteriors, we
focus on inferring the five magnetorotational parameters,

a, , , ,B B P Plog log log log latem s m s , for simulated populations
where we know the input parameters, θ. We specifically
look at the three simulations, whose P–P diagrams were
illustrated in the top row of Figure 5. Corresponding ground
truths, θ, are summarized in the top five rows in Table 3. In
Figures 8 and 9, we show the resulting one- and two-
dimensional marginal posterior distributions obtained by
repeatedly sampling from the neural network optimized
during experiment #1. For all three cases, the posteriors are
well-defined, significantly smaller than our prior ranges
(Equation (24)) shown along the axes, and centered around
the ground truths, θ, highlighted in light blue. To quantify
this, we calculate the 1σ, 2σ, and 3σ credible regions, shown
as contours in the two-dimensional posteriors. In the one-
dimensional posterior panels, the corresponding 95% cred-
ible intervals (CIs) are given as black dashed lines, while
medians are illustrated as purple solid lines. Their numerical
values are given in Table 3. We observe that the ground
truths, θ, are typically contained within the 2σ credible
regions, which we interpret as evidence that our NPE
approach is capable of producing reasonable posterior
distributions. In general, the credible regions for the two
parameters characterizing the initial magnetic field distribu-
tion are narrower than those for the initial period distribution
and the late-time magnetic field decay. We confirm that this
behavior is qualitatively similar for the remaining P–P
simulations in our test set.
We next compare the inferences for our various training

experiments. To visualize corresponding differences, we plot
the one-dimensional marginalized posteriors for all 19
experiments for the three test samples in gray in Figure 10.
Ground truths, θ, are shown as light-blue dashed lines. We
observe that the widths of individual posterior approxima-
tions and their medians can vary somewhat between different
test samples and magnetorotational parameters. Compared
across the full test set, this behavior is again more dominant

Table 3
Magnetorotational Parameters for Three Random Test Samples and the Observed Pulsar Population

Parameters Test Sample 1 Test Sample 2 Test Sample 3 Observed Population

Ground truths, θ Blogm 13.19 13.86 13.35 L

Blogs 0.96 0.88 0.24 L

Plogm −0.85 −0.42 −1.25 L

Plogs 0.51 0.61 0.60 L

alate −0.86 −1.71 −2.38 L

95% CI experiment #1 Blogm 13.28 0.18
0.18

-
+ 13.73 0.15

0.15
-
+ 13.33 0.04

0.05
-
+ 13.07 0.08

0.07
-
+

Blogs 0.95 0.08
0.08

-
+ 0.79 0.07

0.07
-
+ 0.23 0.02

0.02
-
+ 0.43 0.03

0.03
-
+

Plogm 0.90 0.13
0.13- -

+ 0.35 0.18
0.19- -

+ 1.17 0.34
0.33- -

+ 0.98 0.29
0.25- -

+

Plogs 0.49 0.09
0.10

-
+ 0.73 0.15

0.20
-
+ 0.73 0.31

0.25
-
+ 0.54 0.25

0.33
-
+

alate 0.83 0.06
0.06- -

+ 1.88 0.35
0.35- -

+ 2.47 0.43
0.43- -

+ 1.77 0.38
0.35- -

+

95% CI ensemble Blogm 13.29 0.20
0.20

-
+ 13.74 0.16

0.19
-
+ 13.34 0.05

0.05
-
+ 13.10 0.10

0.08
-
+

Blogs 0.96 0.08
0.07

-
+ 0.78 0.08

0.09
-
+ 0.24 0.02

0.02
-
+ 0.45 0.05

0.05
-
+

Plogm 0.92 0.15
0.16- -

+ 0.40 0.27
0.20- -

+ 1.23 0.34
0.33- -

+ 1.00 0.21
0.26- -

+

Plogs 0.49 0.09
0.10

-
+ 0.74 0.17

0.20
-
+ 0.67 0.28

0.30
-
+ 0.38 0.18

0.33
-
+

alate 0.84 0.07
0.06- -

+ 1.76 0.43
0.39- -

+ 2.34 0.45
0.43- -

+ 1.80 0.61
0.65- -

+

Note. The first five rows show the ground truths, θ, used to simulate the test populations. The second block gives medians and 95% CIs obtained from inferences with
the neural network from experiment #1. The final block contains medians and 95% CIs determined from the ensemble posterior combining 19 experiments.

12

The Astrophysical Journal, 968:16 (24pp), 2024 June 10 Graber et al.



for the period and late-time magnetic field parameters than
for the initial B-field properties. However, no individual
NPEs stand out by exhibiting either particularly good or poor
posteriors. Further note that we also do not see any
differences for those experiments with normalized input
maps that showed systematically better metrics than those
experiments trained on standardized data. This highlights that
training behavior alone does not provide sufficient informa-
tion on the quality of the resulting inference.

In light of this, we also determine the combined posterior for
all 19 experiments. We calculate the corresponding ensemble
posterior, q ( )q , as the weighted average of the individual
posteriors (Hermans et al. 2021):

w qq , 29j F
j

19

j
( ) ( ) ( )åq q=

where wj represents the weight of the jth component. Giving
equal importance to each experiment in the ensemble, we
choose wj= 1/19. The corresponding one-dimensional margin-
alized ensemble posteriors for ,Blogm , ,B P Plog log logs m s , and
alate for the three test simulations are illustrated as purple
histograms in Figure 10. As expected, they fall within the
individual posteriors. The corresponding 95% CIs for the three

test samples, which are typically comparable to or slightly
wider than those calculated for experiment #1 posteriors alone,
are summarized in the bottom five rows of Table 3.

4.3. Posterior Validation

To further assess whether posterior estimates are well
calibrated, we determine their coverage. As outlined in detail in
Appendix B, the coverage probability measures the fraction of
test samples for which (for a given credibility level 1− α) the
ground truths, θ, fall within the corresponding 1− α region of
their respective posteriors, qF(x,f)(θ). For a well-calibrated
posterior distribution and a sufficiently large number of test
samples, this fraction should equal 1− α. This implies that the
coverage probability as a function of the credibility level is
diagonal. In contrast, for a conservative posterior that is wider
than the true posterior, we would recover a fraction larger than
1− α. Conversely, for a narrower (overconfident) posterior, the
corresponding fraction of test samples is less than 1− α. In
terms of the coverage, this corresponds to curves above and
below the diagonal, respectively, and can therefore be used to
assess the quality of approximate posteriors.
We show the coverage probabilities for our different

posterior estimates as a function of the credibility level,

Figure 8. Benchmark inference for test simulation 1 using the network from experiment #1. The corner plot shows one- and two-dimensional marginal posterior
distributions for the five magnetorotational parameters. We also show corresponding ground truths, θ, in light blue and the medians in purple. We observe that the
posteriors cover the θ well. Corresponding 95% CIs are summarized in Table 3.

13

The Astrophysical Journal, 968:16 (24pp), 2024 June 10 Graber et al.



1− α, in Figure 11. We single out the coverage for the
posterior from experiment #1 (light-blue dashed line) and the
ensemble posterior (purple solid line). All remaining experi-
ments are shown in gray. We observe that the approximate
posteriors for individual experiments closely follow the
diagonal, exhibiting either slightly conservative or slightly
overconfident behavior. As expected, the most conservative
estimate is given by our ensemble posterior, which incorporates
variations in the inference for 19 different machine-learning
configurations across all 3600 test samples. These results
provide additional support that our neural posteriors are
trustworthy and have indeed learned to accurately infer

magnetorotational parameters from simulated P–P den-
sity maps.

4.4. Inference on the Observed Population

Following the benchmark experiments and the coverage
determination, we now turn our attention to the true pulsar
populations observed with PMPS, SMPS, and the low- and mid-
latitude HTRU survey. The corresponding P–P diagram was
shown in the right panel of Figure 3. We represent these
populations as three density maps, as outlined in Section 2.6, and
subsequently feed them through our trained neural networks to
infer the five parameters, , , ,B B P Plog log log logm s m s , and alate,
assuming that our simulation framework provides a realistic
description of the underlying physics.
We show the corresponding one-dimensional marginal

posterior distributions for individual experiments (gray histo-
grams) and the ensemble (purple histograms) in Figure 12.
Additionally, a corner plot for the one- and two-dimensional
ensemble posteriors is illustrated in Figure 13. Corresponding
medians (shown in purple in the corner plot) and 95% CIs for
experiment #1 and the ensemble are also summarized in the
last column of Table 3.
The general trend (already observed for the simulated

populations) that the initial magnetic field parameters, Blogm
and Blogs , are much better constrained by our NPE frame-
work than the remaining three values also holds for the
observed population. As seen in the first two panels of
Figure 12, all 19 experiments recover narrow posteriors
around similar medians. For the initial period distribution
parameters, Plogm and Plogs (see third and fourth panel,
respectively), we obtain wider posteriors and a larger variety
of median values between different experiments. These
posteriors, however, cover similar regions within our prior
ranges and are comparable to what we observed for the test
samples. In contrast, the inferred posteriors for alate (the final
panel of Figure 12) exhibit different behavior from our
benchmark experiments. In particular, posteriors vary
significantly in width between different experiments, with
those at the larger (smaller) end of the alate range generally
exhibiting narrower (larger) widths. Moreover, several
distributions do not overlap at all. This is manifest as a
relatively wide posterior in the ensemble that also shows a
second peak, primarily driven by the rightmost individual
posterior resulting from experiment #2. Note that this
configuration did not cause irregularities during the network
optimization or unusual posteriors for our test samples.
Therefore, we do not associate this behavior with the
network itself. The corresponding bimodality is also visible
in the final row of the corner plot in Figure 13. We will
discuss our interpretation of this below.

5. Discussion and Conclusions

In this study, we have successfully developed a new
machine-learning pipeline that combines pulsar population
synthesis with SBI for the first time and tested the corresp-
onding approach by inferring magnetorotational properties of
neutron stars.

Figure 9. Same as Figure 8, but for test simulations 2 and 3.
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5.1. Simulation Framework

We first discussed our implementation of the forward
model, i.e., the prescription for simulating the dynamical and
magnetorotational properties of the Galactic population of
isolated radio pulsars, modeling their radio emission and
subsequently mimicking observational limitations for PMPS,
SMPS, and the low- and mid-latitude HTRU survey. We
followed earlier frameworks (e.g., Faucher-Giguère &
Kaspi 2006; Bates et al. 2014; Gullón et al. 2014, 2015;
Cieślar et al. 2020) but implemented several key differences,
as compared in detail in Table 4. In particular, we sampled
the birth positions of our pulsars from the Galactic electron

distribution (Yao et al. 2017) instead of following the typical
approach of combining a spiral arm model with a radial
pulsar distribution like that of Yusifov & Küçük (2004). The
latter is deduced for the observed, evolved pulsar sample and
not the initial population. Moreover, we have included the
(rigid) rotation of the Galaxy to treat the pulsar birth
positions more consistently compared to earlier analyses.
For the magnetic field evolution, we used a similar approach
to that of Gullón et al. (2014, 2015), taking advantage of the
newest two-dimensional magnetothermal simulations
(Viganò et al. 2021), and solved for the coupled evolution
of the spin period, P, and the misalignment angle, χ, for a
plasma-filled magnetosphere. To capture the field changes at

Figure 10. One-dimensional marginal posteriors for the five magnetorotational parameters for the three test simulations inferred using 19 different NPE experiments
shown in gray. The horizontal axes represent the parameters’ prior ranges. The ground truths are shown as vertical light-blue dashed lines. We observe variation
between the experiments, specifically for ,P Plog logm s , and alate. We also plot the ensemble posteriors (purple) obtained as a weighted average of the individual
posteriors.
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late times, we developed a new physically motivated
prescription in which the magnetic field, B, decays according
to a power law captured by the index, alate. Together with the
means, ,B Plog logm m , and standard deviations, ,B Plog logs s ,
which characterize the normally distributed logarithms of the
initial periods and the initial fields, we hence obtained five
parameters that control the neutron stars’ magnetorotational
evolution.

To simulate the detection of our synthetic pulsars, we make
the following changes compared to earlier studies: First, we do
not model the pulsars’ pseudoluminosity, defined as
Lps≡ Sf,obsd

2 (where Sf,obs is the detected flux at frequency, f,
and d is the pulsar distance), but instead assume that the
intrinsic neutron star luminosity, Lint, is proportional to the
spin-down power, Erot . In particular, we considered
L Eint rot

1 2∣ ∣µ to determine the bolometric radio flux and
subsequently propagate the corresponding pulsed emission
toward Earth. We also used a geometry-based description to
determine the pulsars that are beamed toward us, which earlier
works typically treat in an empirical manner. In addition, we do
not implement a pulsar death line to quench radio emission but
instead let pulsars become undetectable naturally. Finally, we
not only looked at PMPS and SMPS but also incorporated the
HTRU survey for the first time. Using the resulting simulation
framework, we then produced 360,000 synthetic P–P dia-
grams, which we converted to one density map per survey in
preparation for the neural networks. A total of 90% of these
simulations were used for training and validation, and the
remaining 10% were reserved for testing.

5.2. Inference Procedure

The second part of this study is centered on the implementation
of the SBI approach, specifically focusing on NPE, to learn a
probabilistic association between our simulator output and the
input parameters, a, , , ,B B P Plog log log log late{ }q m s m s= . To do
so, we first used a CNN to extract features from our high-

dimensional P–P maps and obtain a compressed representation,
which was then transferred into a flexible neural density estimator.
By taking advantage of the open-source Python package sbi
(Tejero-Cantero et al. 2020),7 we specifically opted for a
Gaussian mixture density model in five dimensions to
approximate our posterior. To study the sensitivity of the
NPE results on the representation of our input data and the
network hyperparameters, we conducted 22 distinct experi-
ments. An inspection of the corresponding training metrics led
us to discard three experiments owing to irregular training
behavior or overfitting. The remaining 19 trained neural
networks were analyzed further, and we found no significant
differences in the resulting inferences when benchmarked on
three random test simulations. The same was observed when
validating the posteriors through a coverage calculation over
the test set with 3600 samples, highlighting that all 19 posterior
estimates are well calibrated. From this we concluded, in
particular, that the training behavior is a poor identifier of
subsequent inference quality, because normalization of input
maps led to systematically better training, test, and validation
metrics compared to standardizing the input but comparable
inferences. Learning rate and batch size played a negligible role
in both setups.
We also point out that the use of smaller training data sets

did not affect the inference quality either. While we expect
that training sets of 10% (i.e., 30,000 simulations) will
eventually have an effect on this, databases of 50% (i.e.,
150,000 simulations) are sufficient when inferring five
parameters. For comparable studies, this would imply a
significant reduction in simulation time, the most costly part
of these analyses. Similar performances further justify
optimizing our networks for density maps with a resolution
of 32× 32 bins instead of 64× 64 and the shallower baseline
CNN to speed up the training process. Additionally, we
highlight that the use of different numbers of Gaussian
mixture components also led to comparable optimization
metrics and inference results. Extracting the corresponding
mixture weights, αc, after the optimization, we find that
across the entire test data set we only require two or three
Gaussians to approximate our posteriors. However, we point
out that training with a larger number of components was
faster owing to fewer training epochs. Finally, note that the
use of fewer surveys (i.e., one or two density maps only) did
not change the inference results for our five magnetorota-
tional parameters. Naively, one might think that complemen-
tary information on the pulsar population as, e.g., provided
by SMPS, which is sensitive to older stars at higher Galactic
latitudes, would help the network learn better posteriors.
However, we do not observe such behavior in our experi-
ments. Although this might suggest that using single surveys
in the future could be sufficient to constrain neutron star
parameters through population synthesis, we caution that
different surveys, in principle, provide additional information
on the neutron star birth rate (see below) that was not
supplied to our neural networks, i.e., we focused on the
location and shape of the pulsar population in the P–P
plane only.
Due to the variations in our inference results, and because

we could not identify a single neural network as the best
posterior estimator, we also determined the ensemble

Figure 11. Coverage probability as a function of the credibility level, 1 − α,
for our approximate posteriors calculated for 3600 test simulations. We
specifically highlight the coverage for experiment #1 as a light-blue dashed
line and that for the ensemble as a purple solid line. All remaining experiments
are given in gray. For a well-calibrated posterior, the coverage follows the
diagonal shown in black.

7 https://github.com/sbi-dev/sbi
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posterior through an equally weighted average of the
individual experiments. The resulting posterior behaved as
expected and showed more conservative behavior than the
ensemble members. For the next section, we will hence
follow the recommendation by Hermans et al. (2021) and use
our (most conservative) ensemble posterior to analyze the
observed pulsar population.

5.3. Inference Results on the Observed Population

Following the validation of our NPE approach, we
subsequently used the ensemble posterior estimator to infer
the five magnetorotational parameters for the true population of
isolated Galactic radio pulsars observed with our three surveys.
In particular, we found the following best estimates at the 95%

Figure 12. One-dimensional marginal posteriors for the five magnetorotational parameters for the observed pulsar population. We show inference results for 19
different NPE experiments in gray and the ensemble posterior in purple.

Table 4
Comparison between This Work and Several Population Synthesis Studies in the Literature

Faucher-Giguère & Kaspi (2006) Bates et al. (2014) Gullón et al. (2014, 2015) Cieślar et al. (2020) This Work

r,( ) f spiral arms, spiral arms, spiral arms, spiral arms, e-density model
r( ) r( ) r( ) r( ) Yao et al. (2017)

z( ) exponential exponential exponential exponential exponential

Galactic rotation L L L L T ≈ 250 Myr

vk( ) exponential exponential, normal exponential Maxwell Maxwell

B0( ) lognormal lognormal lognormal lognormal lognormal

P0( ) normal normal, lognormal normal normal lognormal

B(t) L L magnetothermal models exponential magnetothermal models
Viganò et al. (2013) decay Viganò et al. (2021),

late-time power law

P(t) vacuum dipole vacuum dipole plasma-filled dipole vacuum dipole plasma-filled dipole

χ(t) L exponential P–χ coupled L P–χ coupled

Beaming empirical empirical, empirical empirical geometry dependent
geometry dependent

Luminosity pseudo, pseudo, pseudo, pseudo, intrinsic,
Erot∣ ∣µ P Pµ a b Erot∣ ∣µ Erot∣ ∣µ Erot∣ ∣µ

Surveys PMPS, SMPS PMPS, SMPS PMPS, SMPS PMPS PMPS, SMPS, HTRU
+ X-ray pulsars (2015 study)

Comparison K-S test, K-S test annealing method, MCMC with SBI
by eye K-S test Gaussian likelihood

Note. We compare the following ingredients, which are given as individual table rows: the distributions of sources in the Galactic plane, r,( ) f , and along Galactic
heights, z( ) , in cylindrical galactocentric coordinates; the inclusion of Galactic rotation and, if present, the corresponding rotation period, T; the distribution of
neutron star kick velocities, v ;k( ) the distributions of initial dipolar magnetic field strengths and initial periods, i.e., B0( ) and P0( ) , as well as the prescriptions for
their evolution (denoted as B(t) and P(t), respectively); the treatment of the misalignment angle evolution, χ(t); the description of the radio beaming, where pulsars that
intercept our line of sight are determined either with an empirical relation between the beaming fraction and the period obtained from polarization data (Tauris &
Manchester 1998) or with a geometry-dependent approach that considers the radio beam aperture and the inclination angle, χ. We further provide information on the
luminosity (distinguishing between pseudo- and intrinsic luminosities), the respective surveys used for comparison, and, finally, the method used to contrast simulated
and observed populations (where K-S denotes the Kolmogorov–Smirnov test).
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The corresponding corner plot was illustrated in Figure 13,
while we show the resulting distributions for the initial
magnetic field and period as black solid lines in Figure 14.

As noted during the benchmarking experiments, we
generally obtain narrower posterior distributions for the initial
magnetic field parameters when compared to the initial period
parameters. Difficulties in constraining rotational birth proper-
ties are, however, not a shortcoming of our inference approach
itself, as this was also noted by earlier population synthesis
analyses (e.g., Gullón et al. 2014, 2015). Instead, this has a
physical reason that lies in the coupled evolution of the stars’
misalignment angle, rotation period, and magnetic field. While
the B-field initially stays constant (see Figure 2), pulsars move
from the top left in the P–P plane diagonally toward the bottom
right, following lines of constant magnetic field (see, e.g., the

right panel of Figure 3). As they do, stars with comparable field
strengths but different initial periods evolve toward similar P
values. In addition, the misalignment angle evolution intro-
duces further degeneracies because all χ decrease with time.
However, as the field decays, spin-down and misalignment
evolution slow down and pulsars begin to evolve almost
vertically toward smaller P values. These processes depend
further on B0 and P0, as stronger initial fields and smaller initial
periods result in faster spin-down and faster evolution toward
alignment. This is especially visible for test sample 3 (top right
panel of Figure 5), which is characterized by the smallest
period mean, Plogm , of all three test cases. The combined action
of these effects is that stars born with different rotational
properties attain similar P at current times. This information
loss on the initial period makes it harder to infer corresponding
parameters. As expected, test simulation 3 thus shows the
largest 95% CIs for Plogm and Plogs out of our three test samples
(third column in Table 3 and last row in Figure 10).

5.4. Comparing Results with Earlier Works

Contrasting the posterior medians from Equation (30) with
the results of earlier population synthesis studies summarized
in Table 5 and Figure 14, we first note that our Blogm estimate is
roughly consistent with Gullón et al. (2014, 2015) but

Figure 13. Inference results for the observed pulsar population using the ensemble posterior of 19 different NPEs. The corner plot shows one- and two-dimensional
marginal posterior distributions for the five magnetorotational parameters. We highlight the medians in purple. Corresponding values and 95% CIs are summarized
above the panels and in Table 3.
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somewhat larger than those of Faucher-Giguère & Kaspi
(2006), Cieślar et al. (2020), and Igoshev et al. (2022).
Moreover, while very close to Igoshev et al. (2022), we obtain
a smaller Blogs than Gullón et al. (2014, 2015) and Faucher-
Giguère & Kaspi (2006) and a slightly larger estimate than
Cieślar et al. (2020). Although these works determine optimal
parameter ranges different from ours (see Table 4), we expect
the variation in the B0 constraints to be mainly due to our more
realistic prescription for the field and the coupled P–χ
evolution.

A direct comparison of our initial period parameters and
earlier population synthesis literature is not possible because
(following recent results by Igoshev et al. 2022; see also Xu
et al. 2023) we considered the periods’ logarithm and not the
periods themselves to be normally distributed. However, we
highlight that our inferred Plogm is comparable to that of
Igoshev et al. (2022), whereas our Plogs is somewhat smaller
(see bottom panel of Figure 14). Igoshev et al. (2022) focused
on a simplified analysis of 56 young neutron stars in supernova
remnants and looked at magnetorotational properties only. The
authors were thus able to define an explicit likelihood function

and perform statistical inference. Corresponding CIs given in
Table 5 are similar to ours, but we highlight that a systematic
comparison is complicated owing to the distinct choices of
underlying data and inference techniques. In this context, we
also point out that although Cieślar et al. (2020) derive
relatively narrow posteriors (see Table 5) for a range of pulsar
properties using an MCMC analysis, their underlying simula-
tion framework is significantly reduced compared to ours
invoking, e.g., (unrealistic) exponential field decay, vacuum
magnetospheres, no coupling between periods and misalign-
ment angles, and a simplified prescription for the beamed
emission. In addition, they make an explicit assumption on the
likelihood that might not accurately capture the complexity of
the pulsar population synthesis even for their simplified model.
We reiterate the robustness of our SBI approach, which
eliminates the need for an explicit expression for the likelihood
and is therefore also suitable for more complex simulators like
ours. Moreover, as outlined above, the use of a neural density
estimator results in amortized posterior distributions that allow
fast evaluation and sampling. We used this fact to determine
the coverage and validate our posteriors, a procedure that is
infeasible in MCMC or nested sampling approaches owing to
the time-consuming need for repeated sampling.

5.5. Late-time Magnetic Field Decay

We now turn our attention to the parameter alate, the power-
law index for the late-time magnetic field decay. We newly
introduced alate in pulsar population synthesis to account for the
highly uncertain, core-dominated field evolution above 106 yr
in a phenomenological way. While corresponding inferences
were satisfactory for our benchmark experiments, we found
that posteriors for alate inferred from the observed population
differed significantly between our 19 experiments, resulting in
systematically larger 95% CIs for smaller alate medians and
vice versa (see rightmost panel of Figure 12). In addition,
several posteriors did not overlap at all across our prior range,
leading to a bimodality in the ensemble posterior. As we did
not see anything similar for our synthetic simulations, we do
not associate this behavior with the networks’ performance or
the SBI approach itself. Instead, we hypothesize that this is due
to shortcomings in our simulation framework. Put differently,
our statistical inferences are only as good as the simulation

Figure 14. A comparison of initial magnetic field, B0 (top), and period, P0

(bottom), distributions for the radio pulsar population. The logarithms of B0

and P0 are normally distributed (see Equations (8) and (9)) and characterized
by means, B Plog ,m , and standard deviations, B Plog ,s , respectively. That is, these
distributions are normalized such that the total area under the curves equals 1
for logarithmic abscissa values. Corresponding numerical values are summar-
ized in Table 5. The results of this work are illustrated as black solid lines.
Additional studies are shown as detailed in the legends.

Table 5
Comparison between Best Parameters for the Lognormal Initial Magnetic Field

and Initial Period Distributions in the Literature

References Blogm Blogs Plogm Plogs

Faucher-Giguère &
Kaspi (2006)

12.65 0.55 L L

Gullón et al. (2015) 12.99 0.56 L L
Cieślar et al. (2020) 12.67 0.02

0.01
-
+ 0.34 0.01

0.02
-
+ L L

Igoshev et al. (2022) 12.44 0.44 1.04 0.20
0.15- -

+ 0.53 0.08
0.12

-
+

This work 13.10 0.05
0.04

-
+ 0.45 0.02

0.03
-
+ 1.00 0.10

0.11- -
+ 0.38 0.10

0.16
-
+

Note. We provide references and the four relevant parameters. Note that the
first three studies use a different prescription for the initial period, which
prevents a direct comparison with our study. For Gullón et al. (2015) and
Cieślar et al. (2020), we compare with model D for the radio pulsar population
and the rotational model, respectively. The corresponding distributions are
illustrated in Figure 14. Where available, we quote CIs at the 68% level
(including for this work), but note that these are difficult to compare owing to
the difference in inference methods and underlying models and data.
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model used to train our density estimator. Consequently, we
see the complications in inferring alate as an indication that our
treatment of the late-time field evolution via a power law (albeit
physically motivated by the behavior of known magnetic field
evolution mechanisms) is insufficient to model the observed
pulsar population.

Although further work is needed to better understand the
late-time evolution of neutron star fields, we can assure
ourselves that our current power-law prescription is not too far
from reality. To do so, we rerun our simulator with the best
estimates summarized in Equation (30). We show an example
of the resulting population in Galactic longitude and latitude
and in P and P in Figure 15. Both panels are analogous to the
respective plots in Figure 3. Moreover, Figure 16 shows a
comparison between the estimated probability density func-
tions for the radio flux density distributions for the observed

populations (solid lines) and our best-parameter simulation
(dashed lines).
While a detailed comparison between this simulated and the

observed population and a study of implications for the neutron
star birth rate are beyond the scope of this work, we will
highlight a few main aspects. First, we note that the
distributions look markedly similar, giving a reasonable level
of confidence in our underlying simulation framework. This is
particularly true for the Galactic longitude vs. latitude
distribution and the mean radio flux densities. We attribute
the small remaining differences in Figure 16 primarily to
uncertainties in the flux density measurements in the ATNF
pulsar catalog discussed previously in Section 2.5, our choice
of luminosity function (see Equation (16)), and systematics in
the determination of pulsar survey sensitivities (see Table 1).
Finally, we do see a slight shift in the SMPS population in the
P–P diagram toward lower P values. This might again hint at
missing physics at late times because SMPS is sensitive to
somewhat older pulsars compared to the other two surveys.

5.6. Neutron Star Birth Rate

We can further count the numbers of detected pulsars in all
three synthetic surveys for our best-estimate simulation. Running
our simulator 10 times to account for its stochastic nature, we
obtain average pulsar counts of 1013, 242, and 1298 for PMPS,
SMPS, and the HTRU survey, respectively. Comparing these to
the true observed counts in Equation (23), we find an equivalent
number of objects in PMPS (within the sensitivity limits of our
iterative approach of generating and detecting pulsars as
summarized in Section 2.6), while we overestimate the SMPS
population by ∼11% and the HTRU population by ∼27% on
average.
To understand these small discrepancies, we return to our

earlier discussion of the neutron star birth rate in Section 2.6. In
particular, for our best estimates, we reach the observed target
counts given in Equation (23) for each survey for the following
birth rates:

PMPS: 2.02 0.02 neutron stars per century,
SMPS: 1.84 0.03 neutron stars per century,
HTRU: 1.66 0.02 neutron stars per century, 31( )

~ 
~ 
~ 

Figure 15. Simulated populations of isolated Galactic radio pulsars detected with PMPS, SMPS, and the low- and mid-latitude HTRU survey (highlighted in yellow,
light blue, and purple, respectively) for the parameters inferred via SBI from the observed radio pulsar population (see Equation (30)). The left panel shows the
distribution of the simulated population in Galactic latitude, b, and longitude, l, while the right panel depicts the pulsars in the period, P, and period derivative, P ,
plane. In the latter, we also give lines of constant spin-down power, Erot∣ ∣ , and constant dipolar surface magnetic field, B (estimated via Equation (10) for an aligned
rotator). Both plots directly compare to the true (observed) population shown in Figure 3.

Figure 16. Distributions of mean radio flux densities, Smean,1400, at 1400 MHz
for the populations of isolated Galactic radio pulsars in PMPS, SMPS, and the
low- and mid-latitude HTRU survey (in yellow, light blue, and purple,
respectively). To avoid overcrowding the plot, we omit the underlying
histograms (see Figure 4) and only show the individual probability density
functions obtained via KDE using a Gaussian kernel. Estimates for the
observed population are shown as solid lines, while one of our best-parameter
simulations is shown with dashed lines. Data taken from the ATNF Pulsar
Catalogue (Manchester et al. 2005, https://www.atnf.csiro.au/research/
pulsar/psrcat/, v1.69).
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where we quote means and standard errors for the 10 runs.
These estimates are somewhat smaller than those obtained in
earlier population synthesis studies (Faucher-Giguère &
Kaspi 2006; Gullón et al. 2014) and very close to the recent
core-collapse supernova estimate from Rozwadowska et al.
(2021; 1.63± 0.46 per century). The differences in
Equation (31) are sufficient to result in the slight over-
production of objects noted above. We remind that this is
because we continue producing neutron stars until we hit the
number of observed pulsars in all three surveys. In our specific
case, PMPS detections require a slightly larger birth rate than
the other two surveys. As mentioned previously, the main
reason for this is that we only expect the correct physical
model to produce the same birth rate across all surveys, again
hinting that our simulator is missing some physics. None-
theless, besides successfully constraining magnetorotational
parameters for pulsar population synthesis using SBI for the
first time, we do recover birth rate results in Equation (31) that
are very similar across all surveys.

5.7. Future Directions

In light of the previous conclusions, we intend to further
develop our current approach in a number of ways.

On the simulation side, we will investigate additional
luminosity prescriptions that go beyond our assumption,
L Eint

1 2∣ ∣µ , as this is another quantity that can significantly
affect the pulsar distribution. Varying the exponent in our
simulations, which was beyond the scope of this study owing to
computational limitations, but using SBI to constrain corresp-
onding parameter ranges would be a first step in that direction.
Moreover, while we followed Gullón et al. (2014, 2015) and
took a significant step forward in incorporating a realistic
description of the neutron star magnetic field, we already noted
above that further investigations into the field evolution of the
neutron star core at late times will be important for future
population synthesis frameworks. Finally, new pulsar surveys
(in the radio band, as well as in other wavelengths) might hold
the key to further constraining the neutron star population.
While we did not see a significant improvement in our
inferences using information from one, two, or three radio
surveys, future studies will benefit from larger numbers of
detected pulsars and accurate classification of telescope and
detection biases. Furthermore, other wave bands, specifically
X-rays or gamma rays, provide complementary information on
the neutron star population. Our focus on realistic magnetic
field evolution and the expansion of our approach to new three-
dimensional magnetothermal simulations (e.g., De Grandis
et al. 2021; Dehman et al. 2023) will be particularly crucial to
determine realistic X-ray luminosities of the most strongly
magnetized neutron stars. As highlighted by Gullón et al.
(2015), modeling these so-called magnetars and the isolated
radio pulsar population consistently will be crucial to break
degeneracies and constrain neutron star physics further.

The increase in simulator complexity associated with these
improvements will not only result in more free parameters but
also inevitably lead to larger computation times for our forward
model. The approach taken here, i.e., simulating a large
database for input parameter combinations that cover the entire
space sufficiently, will become infeasible. To overcome these
hurdles, we will also have to explore new SBI approaches.

Sequential methods (e.g., Papamakarios et al. 2018; Deistler
et al. 2022; Bhardwaj et al. 2023) that reduce the need for
simulations by starting from a relatively small database and
adaptively providing additional simulations (generated for
those parts of the parameter space that are most useful for a
neural density estimator to learn a posterior approximation)
seem particularly suited to these tasks.
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Appendix A
Magnetic Field Prescription

As outlined in Section 2.3, a key ingredient for the
magnetorotational evolution of radio pulsars is a realistic
prescription for the evolution of the dipolar magnetic field
strength, B, up to neutron star ages of 108 yr. While earlier
population synthesis studies have typically either neglected
magnetic field decay entirely or relied on simplified descrip-
tions invoking decaying exponentials or power laws, we
choose a different approach and take advantage of recent
progress in modeling the magnetothermal evolution of neutron
star crusts. In particular, we use a set of five two-dimensional
simulations (Viganò et al. 2021) to fit the early-time magnetic
field evolution, which is driven by the combined action of the
Hall effect and ohmic dissipation (see, e.g., Pons &
Viganò 2019, for details on these mechanisms).
All five curves, shown as solid lines in Figure 2, were

simulated with realistic assumptions on relevant physics. In
particular, the stellar structure and composition are based on the
equation of state SLy4 (Douchin & Haensel 2001) for a neutron
star of mass 1.4Me, resulting in a radius of 11.74 km. The
impurity parameter at the highest densities in the inner crust is
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set to 100 (Pons et al. 2013), representing the presence of
resistive nuclear pasta phases (see, e.g., Chamel & Haen-
sel 2008), whereas the impurity profile for other crustal
densities matches the results of Carreau et al. (2020, see their
Figure 5). Furthermore, the model for the neutron star envelope
is taken from Potekhin et al. (2015), while specific parameter-
ization for the superfluid and superconducting energy gaps
(SFB for the crustal neutrons, TToa for the core neutrons, and
CCDKp for the core protons) were adopted from Ho et al.
(2015).
What varies between the different simulations is the initial

poloidal magnetic field strength, B, taking the values 1012,
1013, 1014, 1015, and 5× 1015 G, respectively. This also implies
different toroidal field strengths, which are typically a factor 10
larger than the poloidal B values. We observe in Figure 2 that
those runs with larger magnetic fields decay faster. This is a
direct result of the Hall effect, which depends on B and acts to
redistribute the magnetic field energy to smaller scales, where it
subsequently decays owing to ohmic dissipation. For sources
with B 1012 G and coupled thermal evolution, this Hall
cascade does not take place and magnetic fields remain pretty
much constant on timescales of the order of 106 yr.

Above this timescale, however, current magnetothermal
simulations become unreliable because the implementation of
relevant microphysics (Potekhin et al. 2015) is unsuited to old
neutron stars with temperatures 106 K. In addition, these
simulations focus primarily on the crust and do not include a
realistic treatment of the highly uncertain dynamics of the
neutron star core, which should become relevant above ∼106 yr.
As we require a prescription for the field above 106 yr for our
population synthesis, we develop a simplified parameterization
for the late-time magnetic field evolution that encodes the
unknown evolution of the stellar core. As highlighted in
Equation (12), we assume that field changes at late times can
be captured by a power law characterized by the index, alate.
This choice is physically motivated because several known
magnetic field evolution mechanisms exhibit the same functional
form. For example, Hall-like physics are encoded by alate=−1
(Aguilera et al. 2008), while ambipolar diffusion follows a
power law with alate=−0.5 (Goldreich & Reisenegger 1992).

To directly parameterize the behavior of the magnetic field
across all relevant B ranges and times t, we describe the field
evolution with the following broken power laws:

⎜ ⎟
⎛
⎝

⎞
⎠

B t B
t

1 for . A3
a

0
late

late 1 2

late

( ) ( )
t

t t t= + < <

Here the two timescales A B b
1 1 0

1t º and A B b
2 2 0

2t º depend on
the initial magnetic field, B0, while τlate is a constant. The latter,

together with the free parameters A1,2 and b1,2 and the power-
law indices a1,2, can be adjusted to closely fit the numerical
simulations. Measuring all three timescales in years and B0 in
gauss, we then choose τlate= 2× 106 yr, A 10 yr G b

1
14 1= - ,

b1=− 0.8, A 6 10 yr G b
2

8 2= ´ - , b2=−0.2, a1=−0.13, and
a2=−3.0.
For particularly steep power-law indices, alate, the current

prescription, in principle, allows the magnetic field to decay to
unrealistically small values in contrast with observations of old
millisecond pulsars (Lorimer 2008). To prevent this, we
assume that the magnetic field eventually settles at a constant
value, Blate, for very late times. In line with detected old
neutron stars, we randomly sample the logarithm of Blate from a
normal distribution with a mean 8.5Blog ,finalm = and a standard
deviation 0.5Blog ,finals = as already outlined previously. The
result of this magnetic field prescription for alate=− 3.0 is
shown as the dashed lines in Figure 2.

Appendix B
Coverage Calculation

To validate our neural posterior estimates, we follow Cook
et al. (2006), who demonstrated that for a well-calibrated posterior
distribution the smallest volume that contains the ground truth, θ,
for a given sample in a test data set follows a uniform distribution.
This, in turn, implies that the cumulative distribution function of
these quantiles across the entire test set forms a diagonal line. The
graphical representation of this cumulative distribution function is
commonly referred to as the coverage plot (see Figure 11). Put
differently, if we consider a credibility level 1−α, we expect the
ground truth, θ, to fall into this region for a fraction 1−α of test
samples if the coverage is diagonal.
To calculate the corresponding coverage for our posteriors

and assess how well they are calibrated, we take advantage of
the amortized nature of our approximate posterior. In particular,
for each of our 3600 test samples, we have access to the ground
truth, θ, and the corresponding posterior approximation,
qF(x,f)(θ), where F(x, f) represents a trained neural network.
To determine the coverage, we need to calculate the quantiles
for each θ. In our case, where we infer five magnetorotational
parameters and the posterior, qF(x,f)(θ), is a five-dimensional
probability density function (see Equation (28)), we obtain
corresponding quantiles by determining the so-called highest-
density regions (HDRs), i.e., those regions covering our sample
space for a given probability 1− α that have the smallest

possible volume (Hyndman 1996). To obtain these HDRs for
each of our test samples, we first compute the total log-
posterior at the ground truth, θ, i.e., qlog xF , ( )( ) qf . From each
posterior, we subsequently draw samples, θs, with s ä {1,...,S},
for which we also individually compute the log-posterior, i.e.,

qlog xF s, ( )( ) qf . The HDR for a given test sample with ground
truth, θ, is now the percentage of samples, θs, that satisfy the
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condition q qlog logx xF s F, ,( ) ( )( ) ( )q q>f f . To compute the
cumulative distribution function (coverage) across our test
set, we repeat this process iteratively for all 3600 test samples
to determine, for a given credibility level 1− α, the fraction of
test samples where the HDR is smaller than or equal to 1− α.

Deviations from the diagonal are present when posterior
estimates are either too wide (conservative) or too narrow
(overconfident). In the former case, ground truths would be
enclosed within a given HDR more often than expected for the
true posterior, while in the latter scenario the opposite applies.
The resulting coverage curves would, thus, lie above and below
the diagonal, respectively, highlighting the benefit of the
coverage plot in validating our posteriors.

Finally, note that for our ensemble approach we calculate the
HDR with the ensemble posterior, q ( )q , using the condition

q qlog logs( ) ( )q q> . The remaining steps are identical to
those outlined above.
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